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Introduction to Analytic Methods of
Wave Analysis

6.1 Introduction

In the last chapter we introduced the concept of a wave and presented two
approaches to the mathematical description of waves. We also illustrated
how canonical wave eqautions can be derived by asymptotic methods from
more complicated mathematical models.

In this chapter we will introduce several methods for analyzing the solu-
tions of wave equations. The first of these methods is the method of char-
actereistics. We introduced this method in the last chapter in order to
describe solutions of linear hyperbolic wave equations. The method still
works in the nonlinear setting but it may produce solutions which develop
singularities in their derivatives in finite time, even though the initial data
was smooth. This tendency to produce steep gradients is a characteristic
effect of nonlinearity in hyperbolic equations.

In physical systems one hardly ever sees actual blowup of derivatives.
This is because such growth is usually arrested by diffusive effects which,
mathematically, are modelled by adding a diffusive term to the hyperbolic
equation. This can no longer be solved by the method of characteristics;
however, the asymptotic behaviour of solutions for large time can often be
described by the second method we introduce: Laplace’s method which is
a special case of the method of steepest descent. We will illustrate how this
works in the famous example of Burgers’ equation.

Finally we return to the description of waves through their dispersive
character. We introduce the method of stationary phase to make precise
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the subtle concept of a slowly varying wavetrain. Although we develop this
only in the linear setting it is a fundamental paradigm in the asymptotic
description of nonlinear waves as well.

In the final section we introduce Hamiltonian structures and their re-
lation to the description of nonlinear waves. This will form the basis for
a more detailed discussion of nonlinear dispersive waves and conservation
laws in Chapter 9.

6.2 Nonlinear Waves: The Method of
Characteristics and Singularities

Let us compare the solutions to the two problems:

(@) wg+cu, = 0, c¢=constant (6.1)
(b) uy +uu, = O0;

subject to the identical set of initial conditions

u(r,0) = a®>—2% |z|<a

=0 |z| > a (6.3)

which describes the propagation of a parabolic pulse, initially confined be-
tween —a <z < a.

Problem (a)

We already know that the general solution to (a) is f(z — ct) and that it
describes the propagation, without change in shape of an arbitrary initial
disturbance. The solution to (a) for the specified initial data becomes

w(x,t) = a>—(x—ct)?, |z—ct|<a
=0 |z —ct| > a (6:4)
or in terms of the moving coordinate ( = x — ct
ua,t) = @*—¢ |(|<a
- 0 > a (6.5)

In this coordinate the solution has no explicit dependence on t (steady
pulse) and represents the same pulse as the initial one whose center is
shifted by ct along the positive x-axis (see Figure 6.2).
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Problem (b)

The problem is nonlinear due to the presence of the term uu,. Nevertheless
the method of characteristics, introduced in chapter 5 for linear hyperbolic
waves, can be extended to solve this nonlinear equation.

6.2.1 The Method of Characteristics

We consider a generalization of Problem (b)

ug +c(u)u, = 0 (6.6)

in which the speed is taken to be ¢(u) where ¢ is any differentiable function.
We recover the original problem by taking ¢ to be the identity function.
Equation (6.6) is subject to the initial condition

u(z,0) = f(x). (6.7)

The total derivative of u is given by

Ou ou
so that if the point P = (t,z) is constrained to lie on a curve C (see

Figure 6.1), then at any such point P on C we have

du ou dx\ Ou
() o8

ot oz

where (1,dxz/dt) is the tangent of the curve C in the (¢,2) plane at the
point P.

Comparison of (6.6) and (6.9) shows that we may interpret (6.6) as an
ode,

du

= = 1
7 0, (6.10)

along any member of a family of curves C which are the solution curves of

— = c(u) (6.11)
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FIGURE 6.1. Tangent to Characteristic

These curves C are called the characteristic curves of equation (6.6).

The solution to the pde (6.6) has then been reduced to the solution of
a pair of simultaneous ode’s (6.10-6.11). Integrating these two equations
respectively we have

= a (6.12)
= c(a)t + as

where a; and as are constants along C. The initial data, along ¢ = 0 can
be parametrized by ( as

= f(Q) (6.13)
= ¢

Comparing (6.13) with (6.12) we can eliminate the constants a; in terms
of initial data as a2 = ¢ and a; = f(¢{) so that

z = C+te(f(0)) (6.14)

Thus each characteristic is a straight line whose slope, ¢(f(()), is deter-
mined by the value of the initial data, f({), at the point (¢,0). Equation
(6.14) is the equation of the family of characteristic curves C. The solution
may be written in implicit form by eliminating ¢ between v = f({) which
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is valid along each characteristic and equation (6.14) for the characteristic
to give

u(z,t) = f(z — c(u)t).

6.2.2 The Formation of Singularities

Returning to problem (b) we can now write down its exact solution in the
implicit form

u(z,t) = f(x — ut)

where f is an arbitrary function.

Using the initial condition (6.3) we obtain

u(x,t) = a>—¢* for|¢|<a
=0 for |{| > a (6.15)
where ( =z — ut.
We can solve (6.15) explicitly in the present case and we obtain
u(z,t) = gz [(20t — 1) £ V1 — 4ot + 4a>1?] €| <a (6.16)
~ 0 c>a

We observe a fundamental difference between the linear problem (a) and
the nonlinear one (b). In the linear problem the characteristics are parallel
straight lines of slope ‘Zl—”t” = ¢, a constant, whereas in the nonlinear problem,
while they are still straight lines, their slope (‘fl—f = u) depends on the value,
u(¢,0), at each point ¢ along the initial line, ¢t = 0.

The characteristic lines can be drawn directly from equation (6.16) for
the nonlinear problem (b) (see Figure 6.3).

Where the characteristics intersect, u(z,t) is no longer unique and the
solution u(z,t) is physically untenable at the point of intersection. If we are
interested in a unique, bounded, single-valued solution in such a situation,
we have to introduce the concept of a weak solution which permits moving
jump discontinuities. These discontinuities are called shocks in fluid dy-
namics. In practice, some additional “physics” comes into play when the
physical quantities of interest show rapid variation in some local region -
we shall see shortly that the addition of a weak dissipative (diffusive) term
will prevent the jump discontinuity from developing while maintaining the
rapid variation across the shock front. We can understand this from ideas
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developed earlier in this course if we think of the steepening front as gen-
erating higher spatial Fourier modes in k-space; we know that a diffusive
term damps out high k-modes most rapidly!

Note: The values at the points £ = +a remain fixed for all times in this
nonlinear problem because u = 0; i.e., the velocity is always zero at these
points.

In the nonlinear problem, the leading edge (negative sloped) region of
the pulse continuously steepens and eventually becomes multi-valued, in-
dicating a nonphysical behavior. Note that the solution remote from this
multi-valued region is still physically acceptable.

Figure 6.3 displays sucessive snapshots, with increasing time, of the pro-
file of the explicit solution to (6.16). Notice that these solution profiles
eventually become 3-valued. The space-time region where this occurs is the
region where the characteristics overlap. One of these solution branches is
just the x-axis which we will not consider in the subsequent discussion of
this example.

Observe that when ¢ is sufficiently small, only the upper sign before the
radical in (6.16) is admissible, in order that the initial data (6.3), which is
continuous, be recovered as t — 0 [use L’ Hospital’s rule twice]. The repre-
sentation (6.16) also shows that the solution constructed by characteristics
can have at most two values (here we disregard the z-axis branch). For a
fixed t these two values “meet” over a branch point x determined by the
vanishing of the radical; i.e., 1 — 4at + 4a’t? = 0.

We claim there must be a time at which the slope of the profile of the
solution at a becomes infinite; i.e., u, "blows up”. ;From (6.16) one directly
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calculates that

1 2t

At x = a, the slope of the initial profile is negative; using the upper branch
of the radiacal one has:

ug(a,0) = }51(1) ug(a,t) = —2a < 0. (6.18)

On the other hand, for ¢ sufficiently large one sees that the expression for
u,(a,t) is positive no matter what sign of the radical one takes. In order for
u.(a,t) to change from negative to positive it must pass through infinity;
i.e., the derivative of the velocity must blow up. This occurs at the time

Ty = —.
2a

In fact one sees that this is the minimum value of ¢ for which the slope can
change sign and so 75 is the shock formation time. As a consistency check
we finally observe that when t = 7, and = = a the radical has a zero; thus,
for appropriate £ > a and t > 7, both signs in (6.16) are admissible.

For more general initial data

u(z,0) = f(zr) —-co<z <00

where f(z) is a continuously differentiable function, 7o = (—1/fz),in-

In summary, we have seen that nonlinearity brings about a progressive
deformation of the initial wave profile. Singularities can form independent
of how smooth the initial data is. We can explicitly determine the time 7
needed for the shock to form.

6.2.3 FEzercise

Consider again the more general initial value problem (6.6, 6.7)

ug + c(u)uy, =0

where ¢ is some given function of v and

u=f(z) ,t=0,—00 < x < 00.

a) We have seen that in the case of a general ¢(u) the characteristic curves
are solutions of

dz
pri c(u).

b) Argue that the solution of this problem is given by
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u=f(£), (6.19)

for f a continuously differentiable function where £ = £(x,t) is implicitly
defined by

z=¢+ F(6)t (6.20)

where F(&) = ¢(f(£)); in other words, u is again constant along character-
istic curves.
c¢) Show that the evolving profile attains a vertical slope (i.e. u, becomes

infinite) at time
(r®)
Te = | — .

(Hint: u, = f'(£)&: ; now, implicitly differentiate (6.20) to find &,.)

Thus we see that in order for a vertical steepening or “shock” to be
possible two things are necessary:

(1) F'(¢) must be negative (the shock occurs in the future);

(2) F'(¢) must have a minimum in the region where F’(£) is negative (or
if F' is twice differentiable, Frz = 0 in this region).

This means that the (first) shock emerges from a point where the initial
data has an inflection point and negative slope.

If these conditions are not met, there is still the possibility of nonlin-
ear spreading, or rarefaction. We will not discuss that here; however, for a
complete and unified treatment of shock formation and rarefaction in the
inviscid Burgers equation and its application to modelling interesting phe-
nomena such as traffic flow, we refer to the excellent text by G.B. Whitham:
LINEAR AND NONLINEAR WAVES.

6.2.4 Quasilinear First Order Partial Differential Equations

In this section we will present a generalization of the above method of
characteristics to a general class of first order partial differential equations.
Consider first order partial differential equations of the form

f(may)u)uz + g(m,y,u)uy = h(x,y,u) (621)

with initial data given parametrically as ¢ = z(a),y = y(a),u = u(a). This
differs from the linear hyperbolic equation we considered in chapter 5 in
that the coefficient functions here, f, g, h, can depend on w so this equation
is nonlinear. Such an equation is called quasilinear because, although it
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is nonlinear, it is linear in derivatives. The characteristic curves for this
equation are defined to be the solutions of the ODE system

de/ds = f(z,y,u)
dy/ds g(z,y,u) (6.22)
du/ds = h(z,y,u).

We will need to make some assumptions about (6.21) in order to give a
complete description of its solutions. We assume that the system (6.22)
has no fixed points; i.e., (f,g,h) # (0,0,0) anywhere in the domain of con-
sideration. We also assume that the initial data curve is non-characteristic;
i.e., it is nowhere tangent to a solution of the ode system (6.22).

Notice that if f = 1,9 = v and h = 0, then (6.21) reduces to u, +
uu, = 0 which is just the nonlinear equation (6.2) we considered in the
previous sections and (6.22) reduces to the definition of characteristics for
that equation.

We are going to show how to construct, explicitly and geometrically, a
possibly multivalued solution of the initial value problem (6.21).

First, suppose that u = ¢(x, y) is a single-valued solution of (6.21) whose
graph is a surface S in (z,y,u)-space. We claim that if (zo,yo,uo) € S,
then the characterisitic through (zo, yo, o) must lie on the surface S. This
follows because the curve C' determined by

de/dt = f(z,y,0(z,y))
dy/dt 9(x,y, ¢(z,y))
u = ¢($, y)

lies on S (by the last equation), and along C

du/dt bzdz/dt + ¢,dy/dt

= ¢uf+dyyg
h.

Thus C'is an integral curve of the characteristic equations (6.22) and passes
through (zo, yo, uo); hence, C coincides with the characteristic through this
point by existence and uniqueness for ODE’s.

Conversely, suppose we start with some (non-characteristic) curve de-
fined parametrically by z = z(a),y = y(a),u = u(a) and consider the
family of characteristics emanating from this curve. The union of this fam-
ily of characteristics is a surface which, globally, is not necessarily the graph
of a function of (z,y). However it can be regarded as a possibly multival-
ued solution of the PDE, since solving the PDE is equivalent to saying that
du/dt = h along any curve defined by dz/dt = f,dy/dt = g. This is the
condition we used to construct the above family of characteristics.
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Exercise: Solve the initial value problem

up —uy, =e “, u(zr,0) = h(x).

For a classical treatment of the method of characteristics and an exam-
ple of its application (to the study of shock formation in compressible fluid
flow) we refer the reader to SUPERSONIC FLOW AND SHOCK WAVES
by Courant and Friedrichs. For a modern mathematical treatment we rec-
ommend SHOCK WAVES AND REACTION DIFFUSION EQUATIONS
by J. Smoller.

6.3 Nonlinearity and Diffusion: Burgers Equation,
the Method of Laplace, and Shocks

6.3.1 Burgers equation

Compare the following evolution equations:

a) ug+ Cuy — pig, = 05 c, p const, >0 (linear)
b) wut + uuy — pug, = 05 Burgers equation (nonlinear)

Setting u(z,t) = ae’**~“ in (a) we get the dispersion relation for a
linear diffusive wave:
w = ck — ipuk? (6.23)

and so

u(x,t) = ae"ttoeihl@—ct) (6.24)

with to = 1/uk? i.e. ty becomes smaller as k increases and high k& modes
are rapidly damped out. The parameter “u” can then be interpreted as a
diffusion coefficient.

Consider now problem (b) and look for traveling wave solutions u(z,t) =
u((), ¢ = & — ct where now “c” plays the role of a parameter to be deter-

mined.
This transformation yields the second order ode

—cu¢ + uue — puce =0 (6.25)

which on integration yields,
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1
—cu + §u2 —puc =A (6.26)

where A is a constant of integration.
Rewriting (6.26) as

1 1
U = E(zﬁ —2cu —24) = ﬂ(u—u;)(u—u;) (6.27)
where
ul, = c—Ve2+24
u, = c+vVcZ+24
are roots of
u? — 2cu —2A = 0. (6.28)

To ensure that the roots uL are real, we shall assume that ¢ + 24 > 0
and then uy > ul

A solution of(6.27) is

u(z,t) = c—V/c? + 2A tanh (%C) (6.29)

1 - _ut
o (R SR USRS T B

5 ™ (z — %(u; + ujo)t)] } .

Therefore, the solution (6.29) joins the two asymptotic states us, at
( = —o0 and ul at ( = +oo through continuously varying states (see
figure 6.5). Note that

1
c= §(u;o +ul). (6.30)

The solution (6.29) gives the structure of the shock wave. In fact, as yp —
0 the characteristic width of the shock narrows and in the limit we recover
the jump discontinuity associated with a weak solution of the equation
us + uug = 0.

On the other hand, the traveling wave (steady) solution to the linearized
Burgers equation

Ut — Uy =0 (6.31)

is

94
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FIGURE 6.5. Traveling Front

u(z,t) =u(¢) = A+ Be w° (=x—ct (6.32)
When

( - 400, u —A
( - —00, u —

Consequently, the only bounded solution to (6.31) is the constant state.
The linearized form of Burgers equation does not admit a solution joining
two uniform states through continuously varying states.

We conclude that the nonlinearity of the Burgers equation achieves a
smooth joining of two asymptotic uniform states through continuously
varying states. We have already seen that if there is a region of negative
slope on a pulse profile, then the solution of

ug + uugy =0 (6.33)

develops a very steep slope and eventually a discontinuity. The term “pu,,”
in the Burgers equation smooths out such a discontinuity.

6.3.2 The Cole-Hopf Transformation

We will now present a method to construct more general classes of solutions
to Burgers equation than just travelling waves. This method is based on a

95
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remarkable observation. Let us apply the following nonlinear transforma-
tion

u=—-2u(lny), (6.34)

to Burgers equation

U + Uy — [y = 0. (6.35)

We will carry out the transformation in two steps
1. Rewrite the equation in terms of a velocity potential ¢ defined by

u:d]z;

Yt + Vothze — ,L“/}zzz =0, (636)

and integrate once w.r.t. x, with zero integration constant, to get

1
oy + 51/}5 — gz = 0.

2. Now set ¢y = —2ulog ¢ and substitute into this equation which yields

2 2
VAL s gy £2e — ] 5 2l _y,
' ' '
which then reduces to
Pt = fipaa- (6.37)

The Cole-Hopf transformation transforms the nonlinear Burgers equation
(6.3.1) into a linear diffusion equation (6.37)!

Now we can take solutions to the linear diffusion equation (which are
simple to obtain by standard means) and work backwards to construct
solutions to the nonlinear Burgers equation.

Exercise: We want to consider a multidimensional version of the velocity
potential form of Burgers equation:

1/}t - NA/(/} + C|V¢|2 0 (:L’,t) € R" x (0,00)
v = gon R"x{t=0},

where p > 0. Show that if a transformation w = I'(¢) is to convert the
above equation to a linear equation in w, then I' must be of the form

w = exp(—cth/ ).
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6.3.3 The Lazx-Oleinik Representation

Suppose that we are given an initial condition of the Burgers equation:

u(z,0) = f(z) —00 < T < 00. (6.38)
The Cole-Hopf transformation

u = —2u(log p)s

allows us to write

so that the corresponding initial conditions for the heat equation

Pt = WPz
is
p(z,0) = e 7o HnO (6.39)
e_ﬁ fow f(n)dn (640)
= ®(z)

(Note that we have taken the lower bound in the integral to be zero. How-
ever, we could have chosen it to be any value without affecting u(z, 0) since
the Cole-Hopf map is a logarithmic derivative and is therefore insensitive
to changes by a scalar factor.)

The explicit solution of the heat (diffusion) equation (6.37), subject to
initial condition (6.39) is

1 oo |:7(w47ft)2j|
pz,t) = W/_Oo‘b(f)e d¢
1 %0 {fﬁ[%ﬁjﬂn)dn]}d
et ) ¢

Substituting into the Cole-Hopf transformation, we obtain the solution
to the initial value problem for Burgers equation
fix’oo wT—ﬁe—ﬁI(w@t)dg

f‘x’ —ﬁf(w@t)df

e
—00

ut(z,t) = (6.41)

where

r — 2 3
I(z,§,t) = % +/0 f(m)dn.
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This is called the Lax-Oleinik representation.

We can view the Cole-Hopf transformation as a “nonlinear superposi-
tion principle” whereby relatively simple solutions to a linear diffusive pde
initial value problem can be used to construct fully nonlinear solutions to
Burgers equation. The latter solution can exhibit self-steepening and shock
formation while the linear problem from which it is derived cannot!

This idea of associating a linear problem with a nonlinear evolution equa-
tion through some nonlinear transformation is the key to identifying and
solving various “soliton” equations. The latter refer to nonlinear “disper-
sive” rather than nonlinear “diffusive” equations such as the Burgers equa-
tion discussed here.

6.3.4 Laplace’s Method

One can view equation (6.41) as giving a sequence of solutions u”(z,t) to
the sequence of Burgers equations indexed by p in which the initial data is
held fixed, independent of u: u#(z,0) = f(z). A natural question to ask is
what is the limiting behaviour of u*(z,t) as  — 07 Does the limit exist?
What is the relation of the limit to the solutions of the inviscid Burgers
equation, u; + uu, = 0, constructed by the method of characteristics? The
answer to these questions can be determined by using Laplace’s method
which enables the asymptotic evaluation as p — 0 of integrals containing
expressions of the form e~ !/# where I is some function.

Consider a class of integrals of the form

I6) = [ e gy,
0

generalizing the Laplace transform, where one assumes that f(z) — oo as
x — 00. One can in fact try to write this as a Laplace transform by making
the substitution v = f(z) so that

o0

J(s) :/ e *“h(u)du,
£(0)

where h(u) = g(x)/f'(z). This makes sense as long as f' # 0 anywhere. In

this case it can be shown (Watson’s Lemma) that

J(s) = O(1/s).

On the other hand, if f'(z) = 0 somewhere, then this is not valid. Suppose
there is only one critical point, xy, and that it is a simple critical point,
ie., f'(xo) =0 but f"(xo) # 0. The following exercise develops a classical
result about normal forms of simple critical points.

Exercise: Morse Lemma in R. Suppose that a twice differentiable
function f(z) on R has a critical point at = a and that f"(a) # 0. (Such
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a critical point is called non-degenerate.) Show that there is a local change
of coordinates x — y near a such that in these new coordinates

f=1(a)+ f"(a)y”.

Hint: Use the elementary result from calculus:
For any twice differentiable function f(z) on R' there is another function
k(z) such that

With this, one may approximate f by a parabola in the vicinity of zg.
The part of the integral outside the interval where this approximation is
valid gives an O(1/s) contribution to the total integral, by Watson’s lemma.
The dominant contribution comes from within this interval. There, using
the Morse lemma, one makes a change of variables = x(o) such that

o~ (.’L'—CE()) f”(sz)-

near . The final asymptotic result is

27

— e/ s).
Sf”(l“o) g( 0)+O(1/ )

I(s) =

6.3.5 Inviscid Limit of Solutions to Burgers FEquation

/ T 1@ e,

it is plausible that the leading order (in u) contribution to this integral
should come from the vicinity of points where I has a minimum. In fact it
is not hard to show that

In the integral

Lemma 6.3.1 Suppose that k., ¢ : IR — R are continuous, £ grows at most
linearly and k grows at least quadratically. Assume further that there is a
unique point & € IR such that

k(&) = min, (g K(E);

then

X pieyewkE g

lig 4=o0 {8 S ).
1—0 fjooo e*uk(g)dg

99
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Proof. The growth conditions on k and ¢ insure convergence of the

integrals. Set ko = k(&). Then

ko—k()
n e *
X*(y) =ar o koK) ?
m

(& z
—00

for y € R, satisfies
i) x* >0, VY
i) [Zoox"(w)dy =1, Yy
iii) and x*(y) — 0 exponentially fast as u — 0 for y # &.

Thus x* is a delta sequence and so one may conclude that

oo

lim [ £(y)x" (y)dy = €()-

n—0 NN
It is immediate that this integral is equal to the ratio of integrals in the
statement of the lemma. g

For most (z,t), I(z,&,t) in (6.41) will have a unique minimum which we
will denote by &o(«,t). This minimum is a critical point of I and therefore
satisfies the equation

0=1= _—m—tfo + f(&)-
By the lemma we also see that
— t
lim u(z,t) = r bt )
n—0 t

Combining these two observations we find that

lim u”(z,t) = f(£)

n—0
along the line where z = & + tf(£) which is precisely the characteristic
solution of the conservation law u; + uu, = 0 which we looked at earlier.
The difference arises when for some (x,t), I(z,,t) does not have a unique
minimum. This coincidence of minima, typically occurs along curves in the
(z,t) plane as in Figure 6.6.

One minimum point will be to the left of this curve, denoted & (z,t), and

one will be to the right, denoted &,.(x,t). The characteristic lines emerging
from these two points meet at (z,t) and typically “carry” different values;
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FIGURE 6.6. Coincidence of minima

ie. f(&) # f(&). Thus lim,_,o u* will have a jump discontinuity along
this curve corresponding to coincident minima. If one could find an apriroi
way to determine the curves of discontinuity in the (z,t) plane one would
have a complete description of the inviscid limit. In fact there is such a
construction due to the following clever argument originally formulated by
Maxwell. A solution of the inviscid Burgers equation necessarily conserves
its total integral (physically, its total momentum) in z (we assume that u
and u, vanish at £00) under the time evolution:

d/dt /00 u(z,t)dx

—00

= / urdx
= [m %(Uz)xdl’
= 0.

Similarly, one can show that for solutions of the viscous equation
o0
d/dt/ uf(z,t)de =0
— 00

for all u. (Show this!) These conservation laws suffice to establish the
Maxwell Equal Area Rule.

This rule states that at each time, the jump discontinuity must be placed
at a location z, such that the vertical axis through it in the (z,u)-plane
cuts off ‘lobes” of equal area on the multi-valued solution. This is illustrated
in Figure 6.7.
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FIGURE 6.7. Maxwell Rule

Momentum conservation also holds for the multi-valued solution as well
as the inviscid limit of the Burgers solution. To see this we can argue as
follows (below u? is just the solution of the inviscid Burgers equation by the
method of characteristics, which may be multivalued, and @ = lim,,_,o u*):

/u“(:r,O) = /u“(:r,t) viscous area conservation

| |
a(z,0) /ﬂ(:r, t) holds Vu = holds in limit g — 0

|
/uo(a:,O)

:>/u°(a:,t) = [ a(z,t) Vit

/ u®(z,t) inviscid area conservation

= shock cuts off equal area lobes.

On the left hand side, the vertical equalities hold because we take the inital
data to be the same for all p (including p = 0 which is the inviscid case).

Note that in calculating the integral of u® one must explain what this
means when this solution becomes multi-valued. In this case one interprets
the integral as the sum of the signed areas under each of its branches. Using
the linearity of the integral it is not hard to check that the argument for
momentum conservation extends to this more general setting.

We want to introduce one more picture which helps to understand the
minimization of I. It is equivalent to think of this in terms of finding the
maximal separation between — fi)o f(n)dn and the parabola %
tered at z.

Alternatively one can find & (z,t) by sliding the parabola in the positive
vertical direction and then bringing it back down until it first becomes
tangent to the graph of the negative velocity potential. The point over
which the tangency occurs will be & (x,t) (see Figure 6.8). Therefore (z,t)
will lie on a shock curve if the parabola becomes simultaneously tangent
at two different points (see Figure 6.9). This picture shows clearly that for
sufficently small time, since the parabola will be very narrow, a shock will

cen-
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FIGURE 6.8. Sliding Parabola

not occur. However, for large time the parabola widens and the likelihood
of a shock forming increases.

One appealing feature of the representation (6.41) for solutions of Burg-
ers equation is that it allows one to consider solutions for rough initial data.
All that is required is that the integral of the data make sense. For instance
one could consider random white noise as initial data. One can then con-
sider the inviscid limit of the resulting “solution” and ask questions about
the statistics of shocks. Using the sliding parabola picture above, do you
think one could draw any qualitative conclusions about the distribution of
shocks in this model?

In the remaining subsections we will look at some special initial data and
consider the behaviour of u# as p gets very small but is not zero.

6.3.6 Single Hump Solution:

Consider a displacement of the general form of Figure 6.10, where u — 0 as
x — £00. This single hump solution can be constructed from the following
similarity solution to the linear diffusion equation ¢; = pd,,:

o0
olx,t) =c1 + ¢ efyz/zdy.

2V/nt

The integrated term in this expression is the error function \/g erf (ﬁ) .

The ratio x/2/ut is called a similarity variable and this solution, which
is a function of this ratio, is called a similarity solution. The constants c;
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FIGURE 6.9. Shock formation corresponds to double tangencies of parabola

Initial Single Hump
———
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0.6—

0.4—

0.2~

FIGURE 6.10. A Single Hump
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and ¢ are chosen such that u — 0 as x — Fo0o consistent with the above
picture.
Using the Cole-Hopf transformation

pla,t) = e J v (6.42)
we find that

as r — 00,
oz, t) 2 e’ =¢; =1;
as r — —o0
- oo d oo
o(xz,t) — e JZ2, vz =c +02/ e_yz/Qdy.
—00
Now the quantity ffooo udzx is constant, as observed earlier in this sec-

tion. We define a non-dimensional number R = ﬁ ffooo udz and call it the
Reynold’s number. This can be interpreted as the area under the pulse
(product of velocity and length scales for such a pulse) divided by the
coefficient of viscous diffusion

:>61:]., Cy =

The Cole-Hopf transformation now gives

Pz
u(z,t) = —2p(logp). = —ZN?
_ /_,u/t N e 0/O4ut .
7T /2y
R 1 + /2\% e Y

The form of this solution depends on the magnitude of the Reynold’s num-
ber R of the initial profile. (Remember that R remains constant for all
time). Its temporal evolution is shown in Figure 6.11.

When R = 0 the first term in the denominator dominates over the inte-
gral term and we recover the usual characteristic diffusion.

For R large, the solution exhibits the shock structure discussed ear-
lier. However, the viscous term pup,, prevents the solutions from becoming
multi-valued.

6.3.7 Planar N- Wave

This example has a physical realization as a spherical explosion in the
context of gas dynamics. Look for a solution ¢(z,t) of the linear diffusion
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Single Hump
——

FIGURE 6.11. Evolved Single Hump for Increasing Values of R

equation which is even about z = 0. Then the corresponding solution to
the Burgers equation, proportional to ¢,, is odd about z = 0. We also
require that the Burgers solution vanish at z = oo for all time to accord
with the model of an explosion. Such a solution to the diffusion equation is

plw,t) = 1+ (to 1)/ ="/ nt

where tg is a constant.
The corresponding solution to the Burgers equation is

_ o Pr x/t
wet) = 2 = T ) e

We define the Reynold’s number in this case as the area, A, under one lobe
divided by 2u (since the area under the full wave is equal to zero);

ie. R= % =5 J5° udz =logp(0,t) =log |1 + (to/t)l/Q]

Note that R is no longer constant and decays to zero with time.

With this definition of R, the planar N wave solution may be written as
z/t
1+ (ex®/4ut) /(eft — 1)

For R << 1 the exponential term (eff — 1) << 1 so that, approximately,
u(z,t) is simply a time dependent multiple of a differentiated Gaussian,

u(z,t) =

tg:L’ 2
e ? /At

u(z,t) ~ 2
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FIGURE 6.12. Evolution of N-Wave

(use eff = 1+ (1)1/2). This occurs for p very large or, later in time, at
the stage of the solution where R has decayed sufficiently from its initial
large value, so that the advection has died out, and the flow is essentially
diffusive.

For pu very small, when R >> 1,

ulz,t) m {14l ey
_ %{1+eﬁ(z2/2tﬂ4)}—1

so that

z/t,|z] < (2tA)V/? -6
Ole| > (2tA)/2 456

where (=4, ) is a small window about the front whose size depends on the
smallness of p.

When g — 0, the characteristic width of the front narrows (i.e. § —
0) and this becomes the inviscid solution to Burgers equation (see Fig-
ure 6.12).

The shock center x; may be found by locating the outer inflection points:
for example, the right one which occurs, approximately, where v is midway
between the maximum of the discontinuous profile and zero; i.e., where
u~ Ly /tor

1+e’”§/4“t/(eR— 1) ~ 2= P/t ~ R
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s ~\/4utin(e — 1) = \/4utln(te/t)L/2.

The last expression describes the evolution of the shock front.
Exercise: Estimate the rate at which the maximum of the N-wave profile
decays.

Digression: Decay Estimates. A natural question to ask about the so-
lution of a differential equation is whether and how that solution grows
or decays asymptotically in time (i.e. as t — o0). For the solution of a
PDE there are several ways to measure growth or decay corresponding to
the several ways one has of measuring the size of the function. Different
measures can lead to different answers to the above questions. One way to
measure the size of a function is in terms of its sup norm. Precisely, if f(z)
is a function on IR then it’s sup or L* norm is denoted and defined as

£l = Sup{f(z)|z € R}.

Another natural measure is the mean-square or L> norm of f(z):

1fll2 = / f(x)2dz.

The Lax-Oleinik formula can be used to describe the asymptotic be-
haviour of the inviscid limit (@ = lim,,ou") of a solution to Burgers
equation as t — oo in terms of either of these norms. Precisely, one has the
following

Theorem 6.3.1 (L estimates) For initial data f(x) which is bounded
and integrable on R, there exists a constant C' such thatl the invisicd limit
of the solution to Burgers equation with this data satisfies

~ c
lu(z, t)] < a7
forallz € R, t > 0.
Thus u — 0 as t — oo in L™ as one would expect for a diffusive equation.
On the other hand one also has the following

Theorem 6.3.2 (L! estimates) If f(x) has compact support containing 0,
then there exists a constant C such that

o %
/ ja(e, ) — N )ldr < -7

— 00

where
if —(pt)? <z < (qt)/?

Nz, 1) = otherwise,

Oy
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for all t > 0 and with

_ . y
p=—2min R 2 flx)de
— —0o0
q=2max, R [, f(z)dz.
So u does not decay to zero in L' unlike the case of the linear heat equation.
In fact the momentum conservation law already implies that the L'-norm
of u remains constant in time. This theorm shows that what the solution

does in fact evolve towards an N-wave of the form described in section
5.3.7.

For proofs of these decay estimates we refer the reader to PARTIAL
DIFFERENTIAL EQUATIONS by Lawrence C. Evans.

6.3.8 Ezercise: Periodic Initial Conditions

Consider initial values and boundary conditions

u(z,0) = uosinWTx 0<z<I

u(0,t) = wuw(l,t)=0t>0

The Cole-Hopf transform of the initial data is

up [®gip T2
(10(1_,0) — ex Jo sin B dz
I
— e;—ow(l—cos%)

The boundary conditions will be satisfied if the corresponding solution
of the heat equation is periodic and even:

n2n2¢ nmwe

oo
oz, t) = Ag + Z Ape "= cos -
n=1

where

L _upl Uol
e Tnr (1 COSﬂCE/l)dm — e Tux IO(—)

2um

1 l
A() = 7
) l

/0
2ol

Ap = —/eiZM"(lfcos”/l)cos@dm
A l

1. Evaluate u(z,t) for this data using Cole-Hopf.

2. Show that this solution recovers the initial data when ¢t — 0.
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FIGURE 6.13. Evolution of Periodic Wave

3. Take the Reynold’s number here, associated to one lobe, to be R =
g—z. Show that if R is small, then for large time u approaches

uge 1/ sin(mzx/1).

On the other hand, using the method of Laplace, show that for R large
this solution approaches the inviscid solution, a sawtooth, shown in
figure 6.13.

4. From this example one learns that i) nonlinearity generates an infinity
of higher harmonics with diminishing amplitudes ii) the nonlinear
problem depends on the Reynold’s number R rather than only ug as
it would in the linear case. Explain and justify these statements.

6.4 Dispersion: Slowly Varying Wavetrains and the
Method of Stationary Phase

The Fourier Transform provides an effective tool for analyzing the asymp-
totic (e.g. long time) behaviour of linearly dispersive waves. It also provides
a framework for discussing dispersion in nonlinear wave equations. There-
fore we will spend some time in this section developing a linear dispersion
analysis.

Recall that the Fourier transform of a function f(z) on R is
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~

k) = —= / e~k f(2)da

which is certainly well-defined if f is in L'(R). The inverse transform is
given by

f@) = (e _m/ e f(k)

We will employ that fact that the inverse Fourier transform carries multi-
plication to convolution:

(f*g) = —=(f3)"

where (f x g)( f_ —y)dy = ffooo f(z—y)g(y)dy whenever all
terms make sense

A fundamental property of the Fourier transform is the Riemann-Lebesgue
lemma which states that if f is continuous, then |f(k)| — 0 as |k| — oo. In-
tuitively, one can believe that a sufficiently nice function is locally constant
and therefore, for k sufficiently large, the transform is locally effectively
like integrating a constant against a sinusoid which certainly vanishes. The
proof is accomplished by a little trick:

5~
3

By a translation substitution one sees that

A e~ ika _ _L > e~k pip v ©
Hence,
Var|f(k)l = ‘%/m e f() = f(e + 5p)}de

< %/_Z\f(w) f@+30)|do,

which tends to 0 as |k| — oo by continuity.

_More regularity gives stronger decay: If f is n-times differentiable then
F(k) = o(1/k").

Exercise:
(a) Show that this decay estimate follows directly from the Riemann-
Lebegue lemma.
(b) Calculate the Fourier transform of the following continuous but non-
differentiable function: f(z) =

0 r<—1
x+1 -1<z<0
—x+1 O<e<l

0 x> 1.
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How does f(k) decay with large |k|? Is this consistent with Riemann-
Lebesgue and part (a) of this exercise? Explain.

6.4.1 Oscillatory Integrals

An integral depending on a parameter ¢ which is of the form
S .
I(t) = / "5 g(y)dy
— 00

may be regarded as a generalization of the Fourier transform in which the
phase function tS(y) replaces —kz. Such an integral is called an oscillatory
integral. A natural question to ask is whether or when the correlation be-
tween the regularity of f and the decay of f also holds for a more general
oscillatory integral, such as between g and I. An answer is that, with some
mild assumptions, if the phase S(t) is differentiable and has no station-
ary, or critical, points, then the regularity-decay relation is the same. Since
S'(y) # 0 anywhere, one can rewrite the integral as

I(t) = %/_O:Odiy (eitS(y)) %dy.

Integrating by parts gives

_ L7 d (9W) N sy, o 9W) its()
w=5/ & (S@)) W sme e

Thus, as long as g,((yy)) vanishes at y = foo and d% ( S’(y)) is integrable,

I(t) = O(1/t).

6.4.2 Linear Dispersive Waves
Earlier (in Chapter 5) we discussed two model soliton equations

KdV:
U — 6UUy + Ugpe = 0;

and

NLS:
@ — /2 +1ilg)*q = 0.

The linearization of these equations around the zero solution was used
to introduce the dispersion relation. In this section we will consider these
as models of linear dispersive wave motion: Linearized KdV:

ut+uzzz:0a
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and

Linearized NLS:
qt — 7//2119090 =0.
If u(z,0) = f(z) and f, fu, fzz — 0 as |z| — o0, the solution of linearized

KdV may be represented through the Fourier transform as an oscillatory
integral

L[ o s
u(z,t) = T / etk k") £k dk;

Exercise: Show that the solution of Linearized KdV is given by

e =G0 [~ gwai (S22 ) ay

where

Ai(z) = iﬂ /00 exp{i(kz + %kB)}dk

is the Airy function of z. Remark: Ai(z) solves w,, — zw = 0.

Similarly, the solution of linearized NLS is given by the oscillatory inte-
gral

1 [ 1o
q(a:,t):\/—Q_?T/ ¢ilke = 3K%0) F () gk

where now f and ¢ are complex-valued.

The phases for these integrals are not monotonic; therefore we may ex-
pect some new behaviour corresponding to places where the phase has a
critical point.

6.4.3 Slowly Varying Wavetrains

Consider the oscillatory integral representation of a solution of linearized
NLS in a region where £ ~ v, a fixed constant, and where ¢ (and therefore
x) are very large. In this case we can effectively take the integrand to be
of the form e/*(**=3+) f(k) so that the phase function S(k) = (kv — 3k?)
has a critical point at k = v. We want to see if this makes a difference in
the long time decay rate of the oscillatory integral.

One can evaluate this integral directly using a little bit of complex func-
tion theory. The integral representation of ¢ is the inverse Fourier transform
of a product

q(z,t) = (f'e*i“ﬁ/?)\/ - \/%f % (efitk2/2)\/_

Exercise:
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e—itk2/2)\/ _ i(ke—3k%t) Ik

a) Make a change of variables in ( = \/% e

which reduces this integral to

L ity /  ilt/2) (k=v)?
——e" e ! ) dk.
V2T — o

b) Show that [ e dz =7
c) Use (b) and Cauchy’s theorem to show that [ e~ dz = "/ /7.

d) From (a) and (c) conclude that (e=ik*/2)V = e=in/4gitv/2 |/}

alot) = e/ 2 [ paeitenr

which is O(1/v/t) and therefore dominates over the decay we found in the
non—stationary case.
Now take f = 1. Recall that near the stationary point one has

Thus

ko(z,t) =v =x/t.
Observe that one can write
1 1
t?)2 = (z/t)x — §(x2/t2)t = kox — §k§t.

Thus the solution may be asymptotically represented as

\/%e—iwﬂei(ko(x,t)z—%kg(ac,t)t)’

when one is in a region where £ ~ v, a fixed constant, and where ¢ (and

t
therefore x) are very large.
Note that L dk
0
—— =0(1/x).
To dz (1/2)
This quantity is a local wavelength times the spatial rate of change of
the wavenumber. Since x and ¢ are very large this says that over a few
wavelengths, the change in the wavenumber is effectively zero. Similarly
one can examine the spatial variation of the frequency:

27 dwyg
—— =0(1/x),

oo dr (1/z)

where wy = %k:g This quantity is a local period times the spatial rate of
change of the frequency and once again one sees that over a few periods
this remains quite small. One can make a similar assessment for temporal
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variations. The upshot is that the scale 1710 is the order of distances over
which ky and wy are effectively constant and wi is the order of times over
which these quantities are effectively constant. Thus we see that asymp-
totically the wave looks locally like a harmonic oscillation but in fact the
wavenumbers and frequencies vary slowly in space and time.

Exercise:
1. What is the group velocity v, in this region?

2. Is the amplitude of the wave big or small in this region? How big or
how small?

3. Sketch a snapshot in time of what the wave looks like when v, is
large; when v, is small.

6.4.4 The Method of Stationary Phase

The asymptotic representation we developed in the last section for solutions
of linear Schrédinger extends to general oscillatory integrals having a simple
stationary point.

If S(z) has one stationary point at = o and if S”(a) > 0, respectively
< 0, then

™

I(t) = / e SWg(y)dy = W,,(a)Q(C“)eits(a)im/4 +O(1/1)

If there is more than one simple critical point, then the asymptotic be-
haviour is a superposition of contributions of this form, one from each
critical point. The representation may also be extended to critical points
of higher multiplicity

Exercise:

1. Use the stationary phase formula to reproduce the representation of
solutions to linear NLS from the last section.

2. Use the stationary phase formula to describe the asymptotic be-
haviour of solutions to the linearized KdV equation for large time
t.

Exercise: Geometric Optics and the WKB method. There is an-
other method, closely related to stationary phase, called the WKB method,
which is also useful in describing the behaviour of oscillatory integrals. This
method grew out of the classical theory of geometric optics and provides in-
sight into the formation of caustics and their regularization by diffraction..
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We want to develop a rudimentary understanding of the WKB method in
this exercise.

Travelling wave solutions of Maxwell’s equations in a medium solve the
wave equation
\I’tt = 62/1’L2V2‘I’

where ¢ = speed of light in vacuum and n(z) = refractive index. Ignoring
polarization, we may remove the dependence on t by taking

U = ¢)(x) exp(iwt)

with (x) a complex scalar wave function and so reduce to the Helmholtz
equation
V2 4+ w202 (z)h = 0

in which ¥ = w/c is the wavenumber in vacuum and w = frequency.
We want to understand the behavior of the wave function as Kk — oo.
Look for a solution in the form of a slowly varying plane wave

¥(x) = a(z) exp(irx(z))

where we take a to have an expansion in k: a(z) = > " &k
the amplitude and yx is the phase of the wave function.

—n

an(z). a is

1) Derive the following equations for the amplitude and phase:

1 Vv?
REAL : |[Vx|? =n® + A

K2 a
IMAG : V - (a2Vy) = 0.

If one neglects the order > # terms the resulting leading order equations
are the well known

eikonal equation : [Vxo|*> = n?
and
transport equation : V - (a3Vy) = 0.

Given Y, the level curves x(x) = constant are called the wavefronts and the
integral curves of Vy are called the rays. The formation of caustics can be
understood through an analysis of the transport equation.
Consider a tube Q consisting of rays and cut by two wavefronts Sy, S1:
Let 6 be the normal to this tube.

2) Show that on the sides 6-Vx = 0 and on the ends 6-Vy = £|Vx| = £n
(+ on Sy, - on Sp).
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~
o

FIGURE 6.14. Ray Tube

3) Use the transport equation and the divergence theorem to show that

/a2nds:/ a’nds.
Sl So

Thus the area integral of a®n is constant. If the areas of these cross-sections
are taken sufficiently small so that a®> and n are nearly constant then

Pt =S ()

Thus if ddf((;o)) — 0, then a(z) — oo. This is precisely the condition for
an envelope of rays, i.e. a caustic, to form. So our theory fails on caus-
tics and we must bring back the % terms. This requires one to calculate
diffraction integrals which we will mention later and for which our geomet-
ric singularity theory can be applied again to approximate the structure of

the diffraction fringes.

6.4.5 Nonlinearity and Dispersion: Solitons

In 1965 Zabusky and Kruskal solved the KdV equation numerically with
the value 0.022 replacing 6 as the coefficent of the nonlinear term and using
the initial condition

u(z,0) =sinmzx 0<x <2,

with u,u, and u,, required to be periodic on [0,2] for all ¢. The evolution
of their solution is depicted in Figure 6.15. The first figure shows the initial
profile at ¢ = 0; the second figure represents the profile at ¢t ~ 1/7; and the
final figure is the profile at ¢t &~ 3.67. What one observes is that the wave ini-
tially steepens, reminiscent of the solution to the inviscid Burgers equation,
until a local balance between nonlinearity and dispersion is achieved. At
later times, unlike the Burgers equation, a train of eight well defined soli-
tary waves, each (locally) like sech? solutions above, develop with the taller
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FIGURE 6.15. Kruskal-Zabusky Experiment

FIGURE 6.16. Two-Soliton Evolution

(faster) ones overtaking the smaller ones. After a long time, the original
profile reappears. This is called Fermi-Pasta-Ulam (FPU) recurrence.

The crucial observation in this and many other KdV numerical simula-
tions that were done at that time, is that even though two such solitary
waves in the profile interact strongly on collision, they retain their original
identities when they emerge from the collision. This is what one would ex-
pect for linear waves but these waves are not linear. The only indication
that this interaction is in fact not linear is that the two emerging waves
are phase shifted; that is, they are not in the positions after the collision
which they would occupy if they had moved at constant speed through the
collision. This behavior is reminiscent of the elastic collision of two particles
and led Zabusky and Kruskal to coin the term soliton for a solution which
appears to consist of an ensemble (i.e., more than one) of these solitary
sech®-like pulses. Figure 6.16 depicts the evolution of a two-soliton.

Although it might be tempting to believe that the asymptotic wavetrain
obtained for the linearized KdV by the method of stationary phase is a
reasonable first approximation for small amplitude solutions of KdV, in fact
the asymptotic form of a wavetrain solution to the nonlinear equation is
fundamentally different as the discussion above may suggest. Partially this
is because although the nonlinearity has a small effect on the wave pattern
for O(1) times, the effect over long times is not negligible. However, one
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important aspect of our linear analysis does have the potential to carry
over to the nonlinear setting. This is the idea of representing dispersive
waves, linear or not, by an ansatz of slowly varying wavetrains. One can
then try to employ a variety of asymptotic methods to describe how the
wavenumbers and frequencies depend on slow space and time scales. In the
nonlinear but near-integrable setting this will lead us to averaging methods
and modulation theory.

6.5 Hamiltonian Systems and Conservation Laws

In chapter 5 we mentioned that certain pde’s, such as the KdV and NLS
equations were completely integrable. We mentioned that, as a consequence,
these equations had many associated constants of motion and also that they
had solitary wave solutions. In this section we will begin to explain the
structures that underlie this integrability. The most basic of these is that
of a Hamiltonian system. It is within the framework of Hamiltonian systems
that complete integrability is defined. We will explain what it means for
a dynamical system to be Hamiltonian first in one degree of freedom (the
case of phase plane analysis), then in two degrees of freedom, and finally in
infinitely many degrees of freedom. The last is the setting for Hamiltonian
pde’s of which KdV and NLS are examples.

6.5.1 The Pendulum

We consider again the example of the ode which models the pendulum:
uge +sin(u) = 0. (6.43)
Multiplying this equation by u; gives
ugtg + (sin(u))ur =0

which is a perfect derivative of

1
§(ut)2 — cos(u) = constant.

If one rewrites equation (6.43) as the system
Uy = v (6.44)
vy = —sin(u)

then the above integral can be written

’U2

5 + (1 —cos(u)) =H
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for constant H. However, since the form of this integral is the same no
matter what orbit of the system (6.44) we are considering, we can regard
it as a function on the (u,v) phase plane:

’U2

H(u,v) = 5 + (1 — cos(u)).

Thus the level curves of this function (see Figure ?? are just the orbits of
the system (6.44). The minima of H which occur at u = 2nw, v = 0 where
H = 0 are the stable fixed points of the system while the saddle points
at v = (2n + 1)m, v = 0 where H = 2 are the unstable fixed points. The
remaining orbits are, topologically, either circles (inside the separatrices)
or lines (outside the separatrices). If one takes u to be a periodic variable

of period 27 then all the orbits which are not fixed points are circles.
The gradient
VH = (sm(u) )
v

is normal to these level curves. Rotating these gradients 90° counterclock-
wise they become tangent vectors to the level curves with counterclock-
wise orientation inside the separatrix and oriented right to left above the
separatrix and left to right below the separatrix. This operation can be
represented via rotation by the matrix

(00,
(5 o) (") = (o)

which is the RHS of (6.44); i.e., it is the phase vector field for the pendulum.

Thus

If one sets ¥ = <Z) then we can summarize all this in the equation

# = JVH(Z). (6.45)

More generally, given any differentiable function on the phase plane, one
can associate to it a dynamical system given by equation (6.45). For any
dynamical system having this form, it is guaranteed that the function H
remains invariant under under the phase flow; i.e., H(Z(t)) is constant for
all ¢. To see this, observe first that in coordinates (6.45) reads

W oo
T e

O0H
vy =

S u”
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Thus,

d . oOH OH
—H(Z(t)) = %Ut“‘%vt

OHOH 0HO0H

du dv v du
= 0.

A dynamical system of the form (6.45) is called a Hamiltonian system and
H is called the Hamiltonian of the
system.

6.5.2 Higher Dimensional Hamiltonian Systems and
Integrability

Consider the example of the two degree of freedom harmonic oscillator
whose dynamical system on a four dimensional phase space with coordi-
nates & = (u1,v1, u2,v2) is

Uip = VU;

Vit = U

This is a Hamiltonian system on IR*; i.e., it has the form (6.45) if we now
define

0 1 0 O
-1 0 0 O
7= 0 0 0 1
0 0 -1 0

and take H = 1 (v} +v3 +u} + u3). More generally an N degree of freedom
Hamiltonian system is a dynamical system of the form (6.45) where J is
a 2N x 2N block diagonal matrix 2 x 2 diagonal blocks each a copy of
<_01 (1)> The phase flow of the harmonic oscillator is rather simple to
describe since there are two obvious quantities that are invariant under
this flow: 7} = u? + v} and r3 = ul + v3. Geometrically this says that
the projection of this flow into the coordinate 2-plane (u;,v;) maintains
a constant radius r;. In R? the product of these two circles is a 2-torus
of bi-radius (ry,r2). Thus, a phase orbit starting on such a 2-torus will
remain on it for all time. The projected flow into each of the coordinate
2-planes is a rotation of constant angular velocity 1. In the identification
space representation of the fundamental domain of the torus in the plane
this flow is given as a linear flow of constant slope.

The above description is almost completely typical of the topological dy-
namical structure of a completely integrable two degree of freedom Hamil-
tonian system. The only thing that is not typical is that generally the
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angular velocities depend on the torus and the linear flow on the funda-
mental domain has irrational slope, and so is ergodic, on a set of tori of
full measure.

There is a concise description of completely integrable Hamiltonian sys-
tems. To state it, we first define the Poisson bracket of two Hamiltonian
functions, F' and G by

(FG) - (2F0G _OF OGN (OF 0G _0F 0G
’ - 8u1 61)1 61)1 6u1 8uz 8’02 61)2 6u2 )

Note that the Poisson bracket of two functions is another function. This
bracket may be expressed more compactly as {F, G} =< VF, JVG > where
< -,» > is the standard Euclidean inner product. In this latter form the
bracket generalizes to N degree of freedom Hamiltonian systems. One says
that F' and G are in involution if {F,G} = 0. The criterion for complete
integrability of a Hamiltonian system is called the Arnold-Liouville Theo-
rem:

Theorem 6.5.1 A two degree of freedom Hamiltonian system with Hamil-
tonian H is said to be completely integrable on a region of R* if there is
another function, G, independent of H on this region (meaning that the
2 x 4 matriz (VH,VQG) has a non-vanishing 2 X 2 minor at every point of
the region) such that {H,G} = 0. In this case there is a canonical (mean-
ing "preserving J”) change of coordinates such that in these coordinates the
flow is linear on the 2-dimensional common level sets H = constant and
G = constant. If the region is bounded, then these level sets are 2-tori.

The harmonic oscillator satisfies these conditions if one takes G = r?.

(Check that the hypotheses of the theorem are satisfied in this example on
the region where r; # 0 and ry # 0.) This theorem generalizes to N degree
of freedom systems by replacing ”two” by "N” and requiring that there be
N-1 functions, G; such that H,G1,...,GxN are independent and pairwise
in involution.

6.5.3 Infinite Dimensional Hamiltonian Systems

In the previous section we introduced the Poisson bracket in terms of which
we defined what it means for a Hamiltonian system to be completely inte-
grable. The notion of a Poisson bracket can be abstracted to more general
settings including infinite dimensional Hilbert spaces. The properties that
the bracket on a Hilbert space, 7, must have in order to carry out the
usual constructions of Hamiltonian systems theory are that it should be
a bilinear pairing on the space of differentiable functionals on H to itself
which satisfies

(i) antisymmetry: {F,G} = —{G, F},

(ii) the product rule: {F,GH} = {F,G}H + {F,H}G,
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(iii) the Jacobi identity: {F,{G,H}} + {H,{F,G}} +{G,{H,F}} =0.

We will illustrate this for the case of the KdV equation which we recall
here:
U — 6uty + Upzr = 0.

First notice that this can be written in the form of a conservation law:

where 7 = v and X = —3u?+4u,,. If we work with either periodic boundary
conditions or vanishing boundary conditions at oo on IR, then, as in the
case of Burgers’ equation, we find that 4 [7Tdx = [ X,dz = 0. Thus, we
see that [ Tdz is an invariant of the KdV flow. In chapter 9 we will see
that there are other invariant functionals of the flow. One might naturally
ask if there is a Hamiltonian structure underlying these invariances.

In the early ’70’s Gardner, Greene, Kruskal and Miura answered this
question affirmatively. The underlying Hilbert space is taken to be the
space of square-integrable functions on IR, L?(IR) or, in the case of periodic
boundary conditions, L?(S'), square-integrable functions on the circle. The
correct choice for the J operator is not obvious, but it turns out that taking
J = —0;, differentiation, is a very natural choice. Thus the Poisson bracket
for KdV is

{F,G} =< VF,-0,VG >

where < -,- > is the standard L?-inner product on functions

<fig>= / f(@)g(x)de

and VF is the Frechet derivative. We briefly recall that the Frechet deriva-
tive generalizes the gradient in R” to general Hilbert spaces. Operationally
one defines this by saying that for any v € H,

d
%F(u + ev)|e=0 =< VF(u),v > .

Now, if one wants to write KdV in the form
Uy = JVH
with J = —8,, then one must have VH = —3u?+ u,,. It is straightforward
to check that if one takes the Hamiltonian functional to be
3,15
Hu)=- [ u +§uwdaj,

then KdV is a Hamiltonian system with this Hamiltonian. (Check this. It is
an exercise using integration by parts.) Technically, one needs to restrict to
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a domain in L2 on which H is defined (for example, H involves derivatives
of u which need not be in L?) but we will not worry about that here. In
chapter 9 we will see that this KdV system has infinitely many function-
als in addition to H which are pairwise in involution with respect to the
above Poisson structure. KdV is in fact an infinite dimensional completely
integrable system.

The NLS equation is also a completely integrable Hamiltonian system.
The appropriate Hilbert space for NLS is square-integrable complez-valued
functions on IR or S!. In this case the J-operator is just multiplication by
—i (i =+/—1). Hamilton’s equations then take the form

dq O0H
o _ oM
ot g

with Hamiltonian function

.0 = [ 500 - o)

Exercise

Show that the system (6.46) is in fact equivalent to the NLS equation.



