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1 Supremum and infimum

Completeness property of the real numbers:
Let S be a non-empty set of real numbers that is bounded above. Then S

has a supremum (least upper bound).
Let S be a non-empty set of real numbers that is bounded below. Then S

has an infimum (greatest lower bound).

2 Sequences

A real sequence an, n ∈ N converges to a limit a, that is, limn→∞ an = a,
provided ∀ε > 0∃N∀n ≥ N |an − a| < ε.

A real sequence an, n ∈ N is monotone increasing proved that for each m,n
with m ≤ n we have am ≤ an.

A real sequence an, n ∈ N is monotone decreasing proved that for each m,n
with m ≤ n we have am ≥ an.

Theorem. Suppose an, n ∈ N is a monotone increasing real sequence whose
values are bounded above. Then it converges to the supremum of these values.

Theorem. Suppose an, n ∈ N is a monotone decreasing real sequence whose
values are bounded below. Then it converges to the infimum of these values.

Theorem. Suppose an, n ∈ N is a real sequence whose values are bounded
(above and below). Then it has a subsequence anj , j ∈ N that converges.

Proof: Say that n is a peak index if for each k with k > n we have ak ≤ an.
If there are infinitely many peak indices, then we may take nj to be the

jth peak index. Then anj is a monotone decreasing sequence that is bounded
below, so it converges.

If there are finitely many peak indices, then there is a largest one p. Then
for each n > p there is a k with k > n and ak > an. Take n1 > p and construct
the remaining indices so that for each nj we have nj+1 > nj and anj+1 > anj .
Then the anj is a monotone increasing sequence that is bounded above, so it
converges.
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3 Closed sets

A set S of real numbers is closed provided that whenever an, n ∈ N is a sequence
with each an in S that converges to a limit a, then a ∈ S.

Remark: If a set S is non-empty and bounded, then it has a supremum and
and infimum. If the set S is non-empty and closed and bounded, then it has a
maximum and an minimum.

4 Sequentially compact sets

A set S of real numbers is sequentially compact provided that whenever an, n ∈
N is a real sequence with each an in S, then it has a subsequence anj , j ∈ N
that converges to a limit a in S.

Theorem. If a set S of real numbers is sequentially compact, then it is closed
and bounded.

The proof is easy. One shows that if the S is not closed, then it is not
sequentially compact. Then one shows that if the set is not bounded, then it is
not sequentially compact.

Theorem. If a set S of real numbers is closed and bounded, then it is
sequentially compact.

Given the convergent subsequence theorem, the proof is easy. Since the set
S is bounded, if there is a sequence with values in S, then it has a convergent
subsequence. Since the set S is closed, then limit of this convergent subsequence
must be in S.

5 Continuous functions and sequential compact-
ness

A real function f on a set D of real numbers is continuous on D if whenever
an, n ∈ N is a sequence of numbers in D that converges to some a in D, then
the sequence f(an), n ∈ N converges to f(a).

Theorem: If f is continuous and D is sequentially compact, then the image
of D under f is sequentially compact.

Proof: Suppose that bn is a sequence of numbers in the image of D under
f . Then there is a sequence an of numbers in D with f(an) = bn. Since D is
sequentially compact, an has a subsequence anj that converges to some a in D.
Since f is continuous, it follows that bnj = f(anj ) converges to f(a) as j →∞,
and f(a) is in the image of D under f . This proves that the image of D under
f is sequentially compact.

Corollary: If f is continuous and D is closed and bounded and non-empty,
then the image of D under f is closed and bounded and non-empty, and so the
image of D under f has a maximum and an minimum.
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6 Strictly increasing continuous functions and
fixed point iteration

Theorem. Suppose that g is a strictly increasing continuous function on some
open interval. Suppose that g has a fixed point with g(r) = r. Suppose that
x < r is equivalent to g(x) > x and x > r is equivalent to g(x) < x. Let x1 be
in the interval. Define xn+1 = g(xn). Then xn → r as n→∞.

Proof: Suppose first that x1 < r. Then g(x1) > x1. It is not difficult to
prove by induction that g(xn) > xn. This is because g(xn) > xn implies xn+1 =
g(xn) > xn. Since g is strictly increasing, we have g(xn+1) > g(xn) = xn+1.
We see in this case that the sequence is strictly increasing and bounded above
by r. Hence it converges to some t.

Instead suppose that x1 > r. Then g(x1) < x1. It is not difficult to prove by
induction that g(xn) < xn. This is because g(xn) < xn implies xn+1 = g(xn) <
xn. Since g is strictly increasing, we have g(xn+1) < g(xn) = xn+1. We see
in this case that the sequence is strictly decreasing and bounded below by r.
Hence it converges to some t.

We have shown that for some t in the interval we have that xn → t as
n → ∞. It follows that xn+1 → t. Also, by continuity, g(xn) → g(t). Since
xn+1 = g(xn), we have t = g(t). Thus t = r.

Note: This theorem gives a practical way of finding solutions of equations.
For instance, say that we want to solve the equation x = ln(x)+2 for x > 1. Let
g(x) = ln(x) + 2. If one starts the iteration of g at 2, one gets 2.00000, 2.69314,
2.99071, 3.09551, 3.12995, 3.14101, 3.14454, 3.14566, 3.14602, 3.14614, 3.14617,
3.14618, 3.14619, and so on. This is strictly increasing, and it converges to
the solution. In particular, each value is a lower bound for the solution. If one
instead starts at 4, then the result is 4.00000, 3.38629, 3.21973, 3.16929, 3.15351,
3.14851, 3.14693, 3.14642, 3.14626, 3.14621, and so on. This is a decreasing
sequence that converges to the solution. Each value is an upper bound for the
solution.

Graphical representation of iteration. Graph y = g(x). Graph the diagonal
y = x. The point where they intersect is the fixed point of g. The iteration
xn+1 = g(xn) has a nice graphical representation. Pick a point (x1, x1) on
the diagonal. Then repeat the following process. Start with (xn, xn) on the
diagonal, draw a vertical line to (xn, xn+1) on the graph, then draw a horizontal
line to (xn+1, xn+1) on the diagonal. Mark the resulting points on the diagonal;
they represent the sequence that results from the iteration.
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7 Continuous functions and the intermediate value
theorem

Theorem. Say that f is a real continuous function on the closed bounded interval
[a, b]. Suppose f(a) < c < f(b). Then there exists a number t in (a, b) with
f(t) = c.

Proof: Let S be the set of all x in [a, b] with f(x) < c. Then S is non-empty,
since f(a) < c. Furthermore, S is bounded above by b. Let t be the supremum
of S. Then t is in the interval [a, b].

Since t is the least upper bound for S, it follows that for each n there is a
number xn with t− 1/n < xn and f(xn) < c. Since t is an upper bound for S,
it follows that xn ≤ t. Thus xn → t as n→∞. By continuity f(xn)→ f(t) as
n→∞. Since each f(xn) < c, it follows that f(t) ≤ c. In particular, t < b.

Since t is an upper bound for S, it follows that x > t implies f(x) ≥ c. Hence
f(t + 1/n) ≥ c. By continuity, f(t + 1/n) → f(t) as n → ∞. Hence f(t) ≥ c.
In particular, t > a.

We conclude that a < t < b and f(t) = c.
Corollary. Say that f is a real continuous function on the closed bounded

interval [a, b]. Then the image of f is also a closed bounded interval.
Proof: We know from the compactness argument that the image has a min-

imum and a maximum point. Let s and t be such that f(s) is the minimum
and f(t) is the maximum. If f(s) = f(t), then the function is constant, and the
image consists of just one point. Otherwise f(s) < f(t). Then by the interme-
diate value theorem f assumes all values between f(s) and f(t). So the image
is again the interval [f(s), f(t)].

The bisection method. This gives a way of computing the root. Let f be
continuous on [a, b]. The problem is to solve the equation f(t) = c, where
f(a) < c < f(b).

Start with an interval [a, b] with f(a) < c < b. Repeat the following process.
Compute m = (a + b)/2. If f(m) > c, then replace b by m. If f(m) ≤ c, then
replace a by m. After each such repetition the interval is half as long. After
n repetitions it is only 1/2n as long. Furthermore, we still have f(a) ≤ c and
f(b) > c. So the result is that we can find a very small interval [a, b] such that
a ≤ t < b, and f(t) = c. Thus we know t to high accuracy.
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8 Uniform continuity

A function f : S → R is uniformly continuous on S if whenever un, vn are
sequences in S such that un − vn → 0 as n → ∞, then f(un) − f(vn) → 0 as
n→∞.

Remark: To make sense of this definition, look at the u, v plane. Let ε > 0
be small. Look at the set |u − v| < ε. This is the same as the set where
−ε < u− v < ε, or u− ε < v < u+ ε. This is a small strip about the diagonal
line v = u. To say that un− vn →∞ as n→ 0 is to say that for every ε > 0 the
points un, vn eventually stay in the ε strip about the diagonal. However they
can wander around in a crazy way inside this strip.

Theorem. If f : S → R is uniformly continuous, then f : S → R is
continuous.

Theorem. If f : S → R is continuous, and S is compact, then f : S → R is
uniformly continuous.

Proof: Suppose f : S → R is continuous and S is compact. Suppose that
f : S → R is not uniformly continuous. Then there are sequences un and vn
with un − vn → 0 as n → ∞, yet for some ε > 0 we have |f(un) − f(vn)| ≥ ε
for infinitely many n.

It follows easily (by passing to a subsequence) that there are sequences un
and vn with un − vn → 0 as n→∞, yet |f(un)− f(vn)| ≥ ε for all n.

By compactness, there is a subsequence unj that converges to some u in
S. It follows that vnj also converges to u. So by continuity f(unj ) − f(vnj )
converges to f(u)− f(u) = 0. This is a contradiction. The only way out is for
f to be uniformly continuous.

9 ε and δ

The ε − N criterion for the limit of a sequence at infinity involves three alter-
nating quantifiers: ∀ε > 0∃N∀n(n ≥ N ⇒ |an − a| < ε).

The ε − δ criterion for continuity of f at a also involves three alternating
quantifiers: ∀ε > 0∃δ > 0∀x(|x− a| < δ ⇒ |f(x)− f(a)| < ε).

The ε− δ criterion for continuity of f on S is

∀a ∈ S∀ε > 0∃δ > 0∀x ∈ S(|x− a| < δ ⇒ |f(x)− f(a)| < ε).

The ε− δ criterion for uniform continuity of f on S is

∀ε > 0∃δ > 0∀a ∈ S∀x ∈ S(|x− a| < δ ⇒ |f(x)− f(a)| < ε).

What is the relation between these concepts? Look at where the ∀a ∈ S
quantifier appears. In the criterion for continuity the δ > 0 can depend on ε > 0
and on a ∈ S. However in the criterion for uniform continuity the δ > 0 must
depend only on the ε > 0.
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10 Monotone functions

Say that f is a monotone increasing function if x < y implies f(x) ≤ f(y).
Consider a monotone increasing function defined on an open interval (a, b). If
t is a number in the interval, then f(t−) is defined as the supremum of f(x)
for x < t, while f(t+) is defined as the infimum of the f(x) for x > t. Then
f(t−) ≤ f(t) ≤ f(t+).

Theorem. Suppose that f is a monotone increasing function defined on an
open interval (a, b). Let t be a number in the interval. Then either f(t−) =
f(t+) and the function is continuous at t, or else f(t−) < f(t+) and the entire
open interval from f(t−) to f(t+) is not in the image of the function, except
possibly for the number f(t).

Proof: Start from the fact that f is monotone increasing. We know that for
x < t we have f(x) ≤ f(t−) and for x > t we have f(x) ≥ f(t+). So the only
value that can be assumed between f(t−) and f(t+) is f(t).

Suppose f(t−) = f(t) = f(t+). Let ε > 0. Since f(t) is the least upper
bound of the f(x) for x < t, it follows that f(t) − ε is not an upper bound.
So there is a δ1 > 0 such that f(t − δ1) > f(t) − ε. Similarly, since f(t) is the
greatest lower bound of the f(x) for x > t, it follows that f(t) + ε is not a lower
bound. So there is a δ2 > 0 such that f(t+ δ2) < f(t) + ε. Let δ be the smaller
of δ1 and δ2. Then from the fact that f is monotone we see that t−δ < x < t+δ
implies f(t)− ε < f(x) < f(t) + ε. This is continuity.

Say that a set of real numbers has a gap if there is an open interval not in
the set that is bounded below and above by points in the set.

Corollary. Suppose that f is a monotone increasing function defined on an
open interval (a, b). Suppose its image has no gaps. Then f is continuous.

Application to probability. Consider a random variable with a certain prob-
ability distribution. The probability that the random variable has a value ≤ t
is f(t). This is called the cumulative probability distribution function of the
random variable. It is a monotone increasing function.

The probability that the random variable is < t is f(t−), while the proba-
bility that the random variable is ≤ t is f(t+). So with the above definition we
have for each t that f(t) = f(t+).

Each point t is either a continuity point or a point where there is a gap. If
there is a gap of a certain size at t, this represents the probability f(t+)−f(t−)
that the random variable has a value exactly equal to t. The corresponding
probability is the length of the gap.
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11 Differentiation

The derivative of f at x is

f ′(x) = lim
t→0

f(x+ t)− f(x)
t

= lim
z→x

f(z)− f(x)
z − x .

Examples: sin′ = cos, cos′ = − sin, exp′ = exp.
The sum of two functions is given by (f+g)(x) = f(x)+g(x). The sum rule

says that (f + g)′ = f ′ + g′. The additive identity is 0. The additive inverse is
−f . Clearly (−f)′ = −f ′.

The product of two functions is given by (fg)(x) = f(x)g(x). The product
rule says that (f + g)′ = fg′ + f ′g. The multiplicative identity is 1. The
multiplicative inverse is 1/f . Since 1 = f(1/f), we have 0 = 1′ = (f(1/f))′ =
f(1/f)′ + f ′/f , and derivative is (1/f)′ = −f ′/f2.

The composition of two functions is given by (f ◦ g)(x) = f(g(x)). This is
not a commutative operation! The chain rule says that (f ◦ g)′ = (f ′ ◦ g)g′.
The composition identity is #, the identity function. The composition inverse
is f−1. Since # = f ◦ f−1, we have 1 = #′ = (f ◦ f−1)′ = (f ′ ◦ f−1)(f−1)′, and
its derivative is (f−1)′ = 1/(f ′ ◦ f−1).

Example: Since exp′ = exp and ln = exp−1, we have ln′ = 1/ exp′ ◦ ln =
1/ exp ◦ ln = 1/# on (0,+∞).

Example: Let r be a real number. Consider #r defined on (0,+∞) by
#r = exp ◦(r ln). Then (#r)′ = r#r−1. This is proved by calculating (#r)′ =
(exp′ ◦(r ln))r ln′ = r(exp ◦(r ln))1/# = r exp ◦(r ln)) exp(− ln) = r exp ◦((r −
1) ln) = r#r−1.

Note: Say that r = n/k is a rational number, where n, k are integers, and k
is odd. Then #r may be extended in a natural way to be an odd function if n
is odd, and it may be extended in a natural way to be an even function if n is
even.

First derivative test: If t is a local maximizer or a local minimizer for h, and
if h is differentiable at t, then h′(t) = 0.

Rolle’s theorem. If h is continuous on [a, b] and differentiable on (a, b) and
h(a) = h(b), then there is a t in (a, b) with h′(t) = 0.

The Lagrange mean value theorem. If f is continuous on [a, b] and differen-
tiable on (a, b), then there is a t in (a, b) with f ′(t) = m, where m is the slope
from a, f(a) to b, f(b), that is, f(b)− f(a) = m(b− a).

The Lagrange mean value theorem follows from Rolle’s theorem by taking
h(x) = f(x)−mx.

The Cauchy mean value theorem. If f and g are each continuous on [a, b]
and differentiable on (a, b), and if f(b)− f(a) = m(g(b)− g(a), then there is a t
in (a, b) with f ′(t) = mg′(t) A more revealing way to state this is to say that the
vectors [f ′(t), g′(t)] and [f(b)− f(a), g(b)− g(a)] in R2 are linearly dependent.

The Cauchy mean value theorem follows from Rolle’s theorem by taking
h(x) = f(x)−mg(x).
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Second derivative test. If f ′(t) = 0 and f ′′(t) > 0, then t is a local minimizer.
If f ′(t) = 0 and f ′′(t) < 0, then t is a local maximizer.

Proof: Say for instance that f ′′(t) > 0. Then (f ′(u)− f ′(t))/(u− t) > 0 for
all u near t with u 6= t. Since f ′(t) = 0, this says that f ′(u) has the same sign
as u − t. Consider z near t with z 6= t. By the Lagrange mean value theorem
f(z)− f(t) = f ′(c)(z − t) for some c between t and z. Then c− t has the same
sign as z − t, so f(z)− f(t) = f ′(c)(z − t) > 0. This says that f(z) > f(t).

Effect of composition on first derivative test. If g(x) = t and f ′(t) = 0, then
(f ◦ g)′(x) = 0.

Proof: (f ◦ g)′(x) = f ′(g(x))g′(x) = f ′(t)g′(x) = 0.
Effect of composition on second derivative test. If g(x) = t and g′(x) 6= 0 and

if f ′(t) = 0 and f ′′(t) > 0 or f ′′(t) < 0, then (f ◦ g)′′(x) > 0 or (f ◦ g)′′(x) < 0.
Proof: (f◦g)′′(x) = f ′′(g(x))g′(x)2+f ′(g(x))g′′(x) = f ′′(t)g′(x)2+f ′(t)g′′(x) =

f ′′(t)g′(x)2.
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12 Leibniz notation

In the following a function is said to be smooth on an open interval if it has
derivatives of arbitrarily high order. A smooth function from an open interval to
another open interval is said to be a diffeomorphism if it has an inverse function
that is also smooth.

A one-manifold M is a set together with a collection of one-to one functions
u : M → R, each with an image consisting of an open interval. These functions
are called coordinate functions. It is required that if h is a diffeomorphism
and u is a coordinate function, then v = h ◦ u is also a coordinate function.
Furthermore, it is required that if u and v are coordinate functions, then the
function h = v ◦ u−1 is a diffeomorphism.

A function y : M → R is called a variable quantity if it is of the form
y = f ◦ u, where f is a smooth function and u is a coordinate function. We
usually write this as y = f(u).

If y = f(u) is a variable quantity, then we write

dy

du
= f ′(u). (1)

Each side of this equation is a variable quantity.
If y = f(u) is a variable quantity and if u = g(x), then we have the chain

rule
dy

dx
=
dy

du

du

dx
. (2)

This is because y = f(g(x)) = (f ◦ g)(x), and so

(f ◦ g)′(x) = f ′(g(x))g′(x) = f ′(u)g′(x). (3)

We can differentiate again by the chain rule and get

d2y

dx2
=
d2y

du2

(
du

dx

)2

+
dy

du

d2u

dx2
. (4)

Let P be a point in M where dy
du (P ) = 0. Then dy

dx (P ) = 0. This shows the
coordinate invariance of the first derivative test.

Suppose in addition that d2y
du2 (P ) is strictly positive or strictly negative at

the point where the first derivative is zero. Then since we assume that du
dx 6= 0

we get that d2

dx2 (P ) has the same sign. This shows the coordinate invariance of
the second derivative test at a point where the first derivative test applies.

The trouble with this Leibniz notation is that there is not an accepted way
of speaking of the value of a variable quantity on a point in M . Of course if
y = f(u) we can write the value f(a), where a is a real number. But this is a
value of f , not of y. Perhaps a solution is to introduce a notation like u = a for
the point P in M with u(P ) = a. Then we have y(u = a) = y(P ) = f(u(P )) =
f(a). Similarly, if dy/du = f ′(u), then dy/du(u = a) = f ′(a).

Note: It would be better to follow the convention used in many computer
programming languages and use an assignment sign such as u← a rather than
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an equality sign u = a. The equality sign does not mean equality in this
context; u = a is not the same as a = u. For example, u2 +a2 with u = a is 2a2,
while u2 + a2 with a = u is 2a2. Even some programming languages promote
this confusion by using equality for assignment. Assignment is not equality.
Nevertheless, mathematical convention is conservative, and so in the following
we continue to use the equal sign for this kind of assignment.

Example: Consider the problem of finding a fence of length 40 to border a
river. The set M of all fence configurations has coordinates u with 0 < u < 20
and v with 0 < v < 40. These coordinates satisfy 2u + v = 40. If we want to
enclose the maximum possible area y = uv, we need to maximize y on M .

If we express y in terms of v we get y = u(40− 2u). Then dy/du = 40− 4u
and d2y/du2 = −4. The maximum is at the point u = 10.

If we express y in terms of u we get y = (20 − v/2)v and dy/du = 20 − v
and d2y/dv2 = −1. The maximum is at the point v = 20. This is exactly the
same fence configuration as with the first solution.

13 Differentials

If y = f(u), then since dy/dx = f ′(u)du/dx, and it does not matter which
coordinate x is used, it is common to write

dy = f ′(u) du (5)

It is important to understand that these are not variable quantities of the kind
we had before. It makes no sense to talk about the numerical values of such
differentials. Nevertheless, it makes sense to talk about whether they are zero
or non-zero. This does not depend on the choice of coordinate. In particular,
the first derivative test can be carried out using differentials.

At a point P where dy = 0, we can write

d2y = f ′′(u)(du)2. (6)

Again these are not variable quantities of the kind we had before. It makes
no sense to talk about the numerical values of such second differentials. Nev-
ertheless, at a point where the first derivative test applies it makes sense to
talk about whether the second differential is zero, strictly positive, or strictly
negative. This does not depend on the choice of coordinate. In particular, the
second derivative test can be carried out using differentials.

Example: Consider the problem of finding a fence of length 40 to border a
river. The set M of all fence configurations has coordinates u with 0 < u < 20
and v with 0 < v < 40. These coordinates satisfy 2u + v = 40. If we want to
enclose the maximum possible area y = uv, we need to maximize y on M .

We can express dy = v du + u dv. Also we have 2 du + dv = 0. At the
configuration where dy = 0 we have v = 2u. At this configuration we have
d2y = −4(du)2 = −(dv)2. The fact that this is negative indicates a local
maximum.
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14 Integration

Let f be a bounded function on [a, b]. Let P be a partition of [a, b]. Thus
P = {x0, x1, . . . , xn−1, xn} with a = x0 < x1 < · · · < xn−1 < xn = b. We call
the maximum value of xi − xi−1 the gap of the partition.

Let mi be the infimum of f on [xi−1, xi], and let Mi be the supremum of f
on [xi−1, xi]. The lower and upper sums are defined by

L(f, P ) =
n∑

i=1

mi(xi − xi−1) (7)

and

U(f, P ) =
n∑

i=1

Mi(xi − xi−1). (8)

We always have L(f, P ) ≤ U(f, P ). Define the lower integral by

L(f) = sup
P
L(f, P ) (9)

and
U(f) = inf

P
U(f, P ). (10)

Then we always have L(f) ≤ U(f).
If L(f) = U(f), then the integral of f on [a, b] is defined by I(f) = L(f) =

U(f).
If f is a monotone increasing function, then mi = f(xi−1) and Mi = f(xi).

If furthermore we take the regular partition in which each xi−xi−1 = (b−a)/n,
then

U(f, P )− L(f, P ) = [f(b)− f(a)](b− a)/n. (11)

So in this case the integral exists.
If f is a monotone decreasing function, then mi = f(xi) and Mi = f(xi−1).

If furthermore we take the regular partition in which each xi−xi−1 = (b−a)/n,
then

U(f, P )− L(f, P ) = [f(a)− f(b)](b− a)/n. (12)

So in this case the integral also exists.
Some properties of the integral are easy to verify from the definition. For

instance, if a < b and f ≤ g, then I(f) ≤ I(g).
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Other properties are more subtle. Say that we want to prove that I(f+g) =
I(f)+I(g). The problem is that all we can say is that mi(f)+mi(g) ≤ mi(f+g)
and Mi(f + g) ≤Mi(f) +Mi(g). However using this we get that

L(f, P ) + L(g, P ) ≤ L(f + g, P ) ≤ U(f + g, P ) ≤ U(f, P ) + U(g, P ). (13)

However if I(f) and I(g) exist, then U(f, P ) − L(f, P ) and U(g, P ) − L(g, P )
can be made small, and so U(f + g, P )− L(f + g, P ) can be made small. This
shows that I(f + g) exists and I(f) + I(g) ≤ I(f + g) ≤ I(f) + I(g), which
establishes what was wanted.

Theorem. If f is continuous on [a, b], then I(f) exists.
Proof: Let f(v)− f(u) be the largest of the Mi −mi. Then

U(f, P )− L(f, P ) ≤ [f(v)− f(u)](b− a), (14)

where u and v are in the same partition interval. Now let Pn be a sequence
of partitions with gap approaching zero. In particular vn − un approach zero.
Write

U(f, Pn)− L(f, Pn) ≤ [f(vn)− f(un)](b− a). (15)

By uniform continuity the right hand side approaches zero.
If f is defined on some larger interval, then we denote its integral on the

interval [a, b] with a < b by Iba(f). This is the setting for the first and second
Fundamental Theorem of Calculus.

FTC1. If f is continuous and bounded on (a, b) and F is continuous on [a, b]
with F ′ = f on (a, b), then Iba(f) = F (b)− F (a).

FTC2. If f is continuous on [a, b], and F = Ia(f) regarded as a function of
the upper limit of integration, then F ′ = f on (a, b).

If a < b we set Iab (f) = −Iba(f), and we take Iaa (f) = 0.
Substitution. Suppose f : [c, d] → R is continuous, and g : [a, b] → R is

continuous, and that g : (a, b) → (c, d) has a derivative g′ that is continuous
and bounded. Then Iba((f ◦ g)g′) = I

g(b)
g(a)(f).
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15 Integration of differential forms

Let M be a one-dimensional manifold. Thus M is a set that resembles an open
interval, except that it is not a set of numbers. Rather, it is a set of points.
There are various coordinate functions on M , each coordinate function gives
a correspondence of M with some open interval of numbers. This story was
described in detail in an earlier section.

As we know, if u is a variable quantity defined on M , then expressions like
like y = F (u) or dy/du = F ′(u) also define variable quantities defined on M .
However an expression like dy = F ′(u) du is not a variable quantity, it is a
differential form. The way that a differential form becomes a variable quantity
is that it is compared with the change of a coordinate, as in dy/dt = F ′(u) du/dt.

If u = c and u = d are two points on the manifold, then the integral

∫ u=d

u=c

f(u) du = Iba(f). (16)

is defined.
This integral depends on the differential form and on the two points in M .

However there is the possibility of using other coordinates to express the same
differential form. So, for example, if u = g(x) expresses the variable quantity u
in terms of the variable quantity x, then we have

f(u) du = f(g(x))g′(x) dx. (17)

Say that c = g(a) and d = g(b), so that x = a and x = b are the same points of
M as u = c and u = d. Then

∫ x=b

x=a

f(g(x))g′(x) dx =
∫ u=g(b)

u=g(a)

f(u) du. (18)

Example: The quantities need not be geometrical. Say that pv = C is the
equation of state for a gas at constant temperature. The manifold consists of
the different configurations of the system, some with higher pressure and smaller
volume, some with lower pressure and larger volume.

Then p dv + v dp = 0, so p dv = −v dp. The work done by the gas as it
expands from one state to another is

w12 =
∫ v=v2

v=v1

p dv = −
∫ p=p2

p=p1

v dp = C ln(v2/v1) = −C ln(p2/p1). (19)
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Example: In this example r > 0 is fixed. Consider a quarter circle of radius
r. This is the manifold M . Notice that it is a geometrical object. Let P and Q
be the lower right hand and upper left hand end points of the quarter circle.

Various coordinates are possible. For example, one can take the angle θ with
0 < θ < π/2. Or one can take the coordinate x = r cos(θ) with 0 < x < r. Or
one can take the coordinate y = r sin(θ) with 0 < y < r.

There are corresponding relations between differential forms. Since x2+y2 =
r2, we have x dx + y dy = 0. Furthermore we have dx = −r sin(θ) dθ and
dy = r cos(θ) dθ.

The area may be calculated by integrating various differential forms from
P to Q. Some of these differential forms are x dy = r2 cos2(θ) dθ and −y dx =
r2 sin2(θ) dθ and (1/2)r2 dθ.

By using the identities cos(2θ) = cos2(θ)− sin2(θ) and cos2(θ) + sin2(θ) = 1,
we get 2 cos2(θ) = 1 + cos(2θ) and 2 sin2(θ) = 1− cos(2θ). Hence we get x dy =
(1/2)r2 dθ + (1/2)r2 cos(2θ) dθ and −y dx = (1/2)r2 dθ − (1/2)r2 cos(2θ) dθ.

But cos(2θ) dθ = (1/2)d(sin(2θ)). Notice that the integral of d(sin(2θ)) from
P to Q is zero. Thus the area is

∫ y=r

y=0

x dy = −
∫ x=0

x=r

y dx =
1
2
r2

∫ θ=π/2

θ=0

dθ =
1
4
πr2. (20)

Summary: The integral

∫ Q

P

f(g(x))g′(x) dx =
∫ Q

P

f(u) du (21)

is the integral of a differential form f(g(x) g′(x) dx = f(u) du over a manifold
from the point P in M to the point Q in M . If u = c at P and v = d at Q,
then this is ∫ Q

P

f(u) du = Idc (f). (22)

In applications variables such as x and u have independent meanings. One
may be a function of another, for instance u = g(x). However it is also possible
that u = h(t), where t is some other coordinate. The variable quantity u is not
the same as the function g or the function h. However it can have numerical
values, such as for example u(x = a) = g(a) or u(t = z) = h(z).
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