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Preface

These lectures are an introduction to various structures in real analysis. These
include the following:

• Sets and functions

• Ordered sets and order-preserving mappings

• Metric spaces and contraction mappings

• Metric spaces and Lipschitz mappings

• Metric spaces and uniformly continuous mappings

• Topological spaces and continuous mappings

• Measurable spaces and measurable mappings

Measurable spaces are the setting for the integral. The construction of an
integral is done starting from an elementary integral defined on a vector lattice
of functions. Measure is a special case of integral. The goal is to exhibit the
simplicity of this remarkable theory.

The concept of topological space seems much more elegant than the concept
of metric space. One thesis of these lectures is that metric spaces are important
in their own right. In particular, the notion of complete metric space is crucial.
A Polish space is a separable complete metric space, and the exposition tends
to focus on Polish spaces rather than on locally compact Hausdorff spaces.
Second countable locally compact Hausdorff spaces are Polish spaces. An infinite
dimensional separable Banach space is always a Polish space and is never locally
compact.

In general, topology and measure coexist somewhat uneasily. However, mea-
sure theory is much simpler in the case of Polish spaces. One highlight is a
remarkable uniqueness result. While Polish topological spaces include a huge
variety of spaces that occur in analysis, the measurable spaces associated with
uncountable Polish spaces are all isomorphic.

The integral and metric space notions come together in functional analysis.
The concept of Banach space is central. A Banach space is a vector space with
a norm that makes it a complete metric space. The fact that the function space

xi



xii PREFACE

Lp is a Banach space is a landmark result that sheds much light on such subjects
as Fourier analysis and probability.

For linear mapping of Banach spaces the concepts of Lipschitz, uniformly
continuous, and continuous coincide. The space of Lipshitz linear mappings
from one Banach space to another is again a Banach space. In particular, the
dual space of a Banach space is a Banach space. There are two notions of
convergence in a dual Banach space, the metric notion of norm convergence and
the topological notion of weak∗ convergence. Some spaces of measures are dual
Banach spaces, and this leads to the useful concept of weak∗ convergence of
measures.

This book is an introduction to real analysis structures. The goal is to
produce a coherent account in a manageable scope. Standard references on
real analysis should be consulted for more advanced topics. Folland [5] is an
excellent general work. It has the results on locally compact Hausdorff spaces
in full generality, and it gives thorough coverage both of theoretical topics and
applications material. Another useful reference is Dudley [4]. It gives precise
statements of the main results of real analysis. It also defends the thesis that
Polish spaces are a natural setting for measure and integration, especially for
applications to probability.

The reader should be warned that in these lecture positive means ≥ 0 and
strictly positive means > 0. Similar warnings apply to the terms increasing and
strictly increasing and to contraction (Lipschitz constant ≤ 1) and strict con-
traction (Lipschitz constant < 1). This terminology is suggested by the practice
of the eminent mathematician Nicolas Bourbaki; it avoids awkward negations.
A few unusual definitions are introduced in the text; these are indicated in the
index with a dagger †. In discussions of measurable spaces the term σ-algebra
can refer either to the collection of measurable subsets or the corresponding
space of measurable functions. In the same way, the term measure can refer to
the measure defined on the measurable subsets or to the corresponding integral
defined on the positive measurable functions.

The plan of this book is straightforward. Parts I through IV are foundation
material. Part I is on Sets and Functions. Part II presents Order and Structure.
Part III is on Measure and Integral. Part IV covers Metric Spaces. Parts III
and IV may be read in either order.

Part V on Polish Spaces may be read at any point after Parts III and IV.
Part VI on Function Spaces includes applications to Fourier analysis and to
probability. Part VII on Topology and Measure covers ideas of general topology
and their application to Banach spaces, in particular to weak∗ convergence of
measures.



Part I

Sets and Functions

1





Chapter 1

Logical language and
mathematical proof

1.1 Terms, predicates and atomic formulas

There are many useful ways to present mathematics; sometimes a picture or
a physical analogy produces more understanding than a complicated equation.
However, the language of mathematical logic has a unique advantage: it gives
a standard form for presenting mathematical truth. If there is doubt about
whether a mathematical formulation is clear or precise, this doubt can be re-
solved by converting to this format. The value of a mathematical discovery is
enhanced if it is clear that the result and its proof could be stated in such a
rigorous framework.

Here is a somewhat simplified model of the language of mathematical logic.
There may be function symbols. These may be 0-place function symbols, or
constants. These stand for objects in some set. Example: 8. Or they may be
1-place functions symbols. These express functions from some set to itself, that
is, with one input and one output. Example: square. Or they may be 2-place
function symbols. These express functions with two inputs and one output.
Example: +.

Once the function symbols have been specified, then one can form terms. The
language also has a collection of variables x, y, z, x′, y′, z′, . . .. Each variable is a
term. Each constant c is a term. If t is a term, and f is a 1-place function symbol,
then f(t) is a term. If s and t are terms, and g is a 2-place function symbol,
then g(s, t) or (sgt) is a term. Example: In an language with constant terms
1, 2, 3 and 2-place function symbol + the expression (x+ 2) is a term, and the
expression (3+(x+2)) is a term. Note: Sometimes it is a convenient abbreviation
to omit outer parentheses. Thus 3 + (x + 2) would be an abbreviation for
(3 + (x+ 2)).

The second ingredient is predicate symbols. These may be 0-place predicate
symbols, or propositional symbols. They may stand for complete sentences. One

3
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useful symbol of this nature is ⊥, which is interpreted as always false. Or they
may be 1-place predicate symbols. These express properties. Example: even.
Or they may be 2-place predicate symbols. These express relations. Example:
<.

Once the terms have been specified, then the atomic formulas are specified.
A propositional symbol is an atomic formula. If p is a property symbol, and t
is a term, then tp is an atomic formula. If s and t are terms, and r is a relation
symbol, then srt is an atomic formula. Thus (x+ 2) < 3 is an atomic formula.
Note: This could be abbreviated x+ 2 < 3.

1.2 Formulas

Finally there are logical symbols. Each of ∧, ∨, ⇒ is called a logical connec-
tive. The ∀, ∃ are each a quantifier. Also, there are parentheses. Once the
atomic formulas are specified, then the other formulas are obtained by logical
operations. For instance ∃xx+ 2 < 3 is an existential formula.

And If A and B are formulas, then so is (A ∧B).

Or If A and B are formulas, then so is (A ∨B).

Implies If A and B are formulas, the so is (A⇒ B).

The implication A⇒ B is also written

if A, then B

A only if B

B if A.

Not We shall often abbreviate (A⇒ ⊥) by ¬A. Thus facts about negation will
be special cases of facts about implication.

Equivalence Another useful abbreviation is (A ⇔ B) for ((A ⇒ B) ∧ (B ⇒
A)).

The equivalence A⇔ B is also written

A if and only if B.

All If x is a variable and A(x) is a formula, then so is ∀xA(x).

The universal quantified formula ∀xA(x) is also written

for all x A(x)

for each x A(x)

for every x A(x).

Exists If x is a variable and A(x) is a formula, then so is ∃xA(x).

The existential quantified formula ∃xA(x) is also written

there exists x with A(x)

for some x A(x).
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In writing a formula, we often omit the outermost parentheses. However this
is just an abbreviation.

The converse of A ⇒ B is B ⇒ A. The contrapositive of A ⇒ B is ¬B ⇒
¬A. Note the logical equivalence

(A⇒ B)⇔ (¬B ⇒ ¬A). (1.1)

When A is defined by B, the definition is usually written in the form A if
B. It has the logical force of A⇔ B.

Note: Avoid expressions of the form “for any x A(x).” The word “any” does
not function as a quantifier in the usual way. For example, if one says “z is
special if and only if for any singular x it is the case that x is tied to z”, it is
not clear which quantifier on x might be intended.

1.3 Restricted variables

Often a quantifier has a restriction. The restricted universal quantifier is ∀x (C(x)⇒
A(x)). The restricted existential quantifier is ∃x (C(x) ∧A(x)). Here C(x) is a
formula that places a restriction on the x for which the assertion is made.

It is common to have implicit restrictions. For example, say that the context
of a discussion is real numbers x. There may be an implicit restriction x ∈ R.
Since the entire discussion is about real numbers, it may not be necessary to
make this explicit in each formula. This, instead of ∀x (x ∈ R ⇒ x2 ≥ 0) one
would write just ∀xx2 ≥ 0.

Sometimes restrictions are indicated by use of special letters for the variables.
Thus often i, j, k, l,m, n are used for integers. Instead of saying that m is odd if
and only if ∃y (y ∈ N ∧m = 2y + 1) one would just write that m is odd if and
only if ∃km = 2k + 1.

The letters ε, δ are used for strictly positive real numbers. The corresponding
restrictions are ε > 0 and δ > 0. Thus instead of writing ∀x (x > 0 ⇒ ∃y (y >
0 ∧ y < x)) one would write ∀ε∃δ δ < ε;.

Other common restrictions are to use f, g, h for functions or to indicate sets
by capital letters. Reasoning with restricted variables should work smoothly,
provided that one keeps the restriction in mind at the appropriate stages of the
argument.

1.4 Free and bound variables

In a formula each occurrence of a variable is either free or bound. The occurrence
of a variable x is bound if it is in a subformula of the form ∀xB(x) or ∃xB(x).
(There may also be other operations, such as the set builder operation, that
produce bound variables.) If the occurrence is not bound, then it is said to be
free.

In general, a bound variable may be replaced by a new bound variable with-
out changing the meaning of the formula. Thus, for instance, if y′ is a variable
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that does not occur in the formula, one could replace the occurrences of y in the
subformula ∀y B(y) by y′, so the new subformula would now be ∀y′B(y′). Of
course if the variables are restricted, then the change of variable should respect
the restriction.
Example: Let the formula be ∃y x < y. This says that there is a number greater
than x. In this formula x is free and y is bound. The formula ∃y′ x < y′ has the
same meaning. In this formula x is free and y′ is bound. On the other hand,
the formula ∃y x′ < y has a different meaning. This formula says that there is
a number greater than x′.

We wish to define careful substitution of a term t for the free occurrences
of a variable x in A(x). The resulting formula will be denoted A(t) There is
no particular problem in defining substitution in the case when the term t has
no variables that already occur in A(x). The care is needed when there is a
subformula in which y is a bound variable and when the term t contains the
variable y. Then mere substitution might produce an unwanted situation in
which the y in the term t becomes a bound variable. So one first makes a
change of bound variable in the subformula. Now the subformula contains a
bound variable y′ that cannot be confused with y. Then one substitutes t for
the free occurrences of x in the modified formula. Then y will be a free variable
after the substitution, as desired.
Example: Let the formula be ∃y x < y. Say that one wished to substitute y+ 1
for the free occurrences of x. This should say that there is a number greater
than y + 1. It would be wrong to make the careless substitution ∃y y + 1 < y.
This statement is not only false, but worse, it does not have the intended mean-
ing. The careful substitution proceeds by first changing the original formula to
∃y′ x < y′. The careful substitution then produces ∃y′ y + 1 < y′. This says
that there is a number greater than y + 1, as desired.

The general rule is that if y is a variable with bound occurrences in the for-
mula, and one wants to substitute a term t containing y for the free occurrences
of x in the formula, then one should change the bound occurrences of y to bound
occurrences of a new variable y′ before the substitution. This gives the kind of
careful substitution that preserves the intended meaning.

1.5 Quantifier logic

Here are some useful logical equivalences. The law of double negation states
that

¬¬A⇔ A. (1.2)

??De Morgan’s laws for connectives state that

¬(A ∧B)⇔ (¬A ∨ ¬B) (1.3)

and that
¬(A ∨B)⇔ (¬A ∧ ¬B). (1.4)
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??De Morgan’s laws for quantifiers state that

¬∀xA(x)⇔ ∃x¬A(x) (1.5)

and
¬∃xA(x)⇔ ∀x¬A(x). (1.6)

Since ¬(A ⇒ B) ⇔ (A ∧ ¬B) and ¬(A ∧ B) ⇔ (A ⇒ ¬B), De Morgan’s
laws continue to work with restricted quantifiers.

Examples:

1. The function f is continuous if ∀a∀ε∃δ∀x(|x−a| < δ ⇒ |f(x)−f(a)| < ε).
It is assumed that a, x, ε, δ are real numbers with ε > 0, δ > 0.

2. The function f is not continuous if ∃a∃ε∀δ∃x(|x−a| < δ∧¬|f(x)−f(a)| <
ε). This is a mechanical application of De Morgan’s laws.

Similarly, the function f is uniformly continuous if ∀ε∃δ∀a∀x(|x− a| < δ ⇒
|f(x)−f(a)| < ε). Notice that the only difference is the order of the quantifiers.

Examples:

1. Consider the proof that f(x) = x2 is continuous. The heart of the proof
is to prove the existence of δ. The key computation is |x2 − a2| = |x +
a||x − a| = |x − a + 2a||x − a|. If |x − a| < 1 then this is bounded by
(2|a|+ 1)|x− a|.
Here is the proof. Let ε > 0. Suppose |x − a| < min(1, ε/(2|a| + 1)).
From the above computation it is easy to see that |x2 − a2| < ε. Hence
|x− a| < min(1, ε/(2|a|+ 1))⇒ |x2− a2| < ε. Since in this last statement
x is arbitrary, ∀x (|x − a| < min(1, ε/(2|a| + 1)) ⇒ |x2 − a2| < ε). Hence
∃δ∀x (|x − a| < δ ⇒ |x2 − a2| < ε). Since ε > 0 and a are arbitrary, the
final result is that ∀a∀ε∃δ∀x (|x− a| < δ ⇒ |x2 − a2| < ε).

2. Consider the proof that f(x) = x2 is not uniformly continuous. Now the
idea is to take x−a = δ/2 and use x2−a2 = (x+a)(x−a) = (2a+δ/2)(δ/2).

Here is the proof. With the choice of x−a = δ/2 and with a = 1/δ we have
that |x−a| < δ and |x2−a2| ≥ 1. Hence ∃a∃x (|x−a| < δ∧|x2−a2| ≥ 1).
Since δ > 0 is arbitrary, it follows that ∀δ∃a∃x (|x−a| < δ∧|x2−a2| ≥ 1).
Finally we conclude that ∃ε∀δ∃a∃x (|x− a| < δ ∧ |x2 − a2| ≥ ε).

It is a general fact that f uniformly continuous implies f continuous. This
is pure logic; the only problem is to interchange the ∃δ quantifier with the ∀a
quantifier. This can be done in one direction. Suppose that ∃δ∀aA(δ, a). Let
δ′ be a temporary name for the number that exists, so that ∀aA(δ′, a). In
particular, A(δ′, a′). It follows that ∃δA(δ, a′). This conclusion does not depend
on the name, so it follows from the original supposition. Since a′ is arbitrary, it
follows that ∀a∃δ A(δ, a).
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What goes wrong with the converse argument? Suppose that ∀a∃δ A(δ, a).
Then ∃δ A(δ, a′). Let a′ satisfy A(δ′, a′). The trouble is that a′ is not arbitrary,
because something special has been supposed about it. So the generalization is
not permitted.

1.6 Natural deduction

The formalization of logic that corresponds most closely to the practice of math-
ematical proof is natural deduction. Natural deduction proofs are constructed
so that they may be read from the top down. (On the other hand, to construct
a natural deduction proof, it is often helpful to work from the top down and the
bottom up and try to meet in the middle.)

In natural deduction each Suppose introduces a new hypothesis to the set
of hypotheses. Each matching Thus removes the hypothesis. Each line is a
claim that the formula on this line follows logically from the hypotheses above
that have been introduced by a Suppose and not yet eliminated by a matching
Thus .
Example: Say that one wants to show that if one knows the algebraic fact
∀x (x > 0 ⇒ (x + 1) > 0), then one is forced by pure logic to accept that
∀y (y > 0 ⇒ ((y + 1) + 1) > 0). Here is the argument, showing every logical
step.

Suppose ∀x(x > 0⇒ (x+ 1) > 0)
Suppose z > 0
z > 0⇒ (z + 1) > 0
(z + 1) > 0
(z + 1) > 0⇒ ((z + 1) + 1) > 0
((z + 1) + 1) > 0

Thus z > 0⇒ ((z + 1) + 1) > 0
∀y (y > 0⇒ ((y + 1) + 1) > 0

Notice that the indentation makes the hypotheses in force at each stage quite
clear. On the other hand, the proof could also be written in narrative form. It
could go like this.
Example: Suppose that for all x, if x > 0 then (x+1) > 0. Suppose z > 0.
By specializing the hypothesis, obtain that if z > 0, then (z+ 1) > 0. It follows
that (z+1) > 0. By specializing the hypothesis again, obtain that if (z+1) > 0,
then ((z + 1) + 1) > 0. It follows that ((z + 1) + 1) > 0. Thus if z > 0, then
((z + 1) + 1) > 0. Since z is arbitrary, conclude that for all y, if (y > 0, then
((y + 1) + 1) > 0).

Mathematicians usually write in narrative form, but it is useful to practice
proofs in outline form, with proper indentation to show the subarguments.

Natural deduction takes time to learn, and so a full exposition is not at-
tempted here. However it worth being aware that there are systematic rules for
logical deduction. The following pages present the rules for natural deduction,
at least for certain of the logical operations. In each rule there is a connective
or quantifier that is the center of attention. It may be in the hypothesis or
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in the conclusion. The rule shows how to reduce an argument involving this
logical operation to one without the logical operation. (To accomplish this, the
rule needs to be used just once, except for the all in hypothesis and exists in
conclusion rules. If it were not for this exception, mathematics would be simple
indeed.)

1.7 Rules for logical operations

Here is a complete set of natural deduction rules for the logical operations ∧,
∀, ⇒, ¬, and the falsity symbol ⊥. Most of these these rules gives a practical
method for using a hypothesis or for proving a conclusion that works in all
circumstances. The exceptions are noted, but the supplement provides recipes
for these cases too.

And in hypothesis

A ∧B
A

B

And in conclusion

A

B

A ∧B
All in hypothesis

∀xA(x)

A(t)

Note: This rule may be used repeatedly with various terms.

All in conclusion If z is a variable that does not occur free in a hypothesis in
force or in ∀xA, then

A(z)

∀xA(x)

Note: The restriction on the variable is usually signalled by an expression
such as “since z is arbitrary, conclude ∀xA(x).”
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Implication in hypothesis

A⇒ B

A

B

Note: This rule by itself is an incomplete guide to practice, since it may
not be clear how to prove A. See the supplement for a variant that always
works.

Implication in conclusion

Suppose A

B

Thus A⇒ B

The operation of negation ¬A is regarded as an abbreviation for A⇒ ⊥.
Thus we have the following specializations of the implication rules.

Not in hypothesis

¬A

A

⊥

Note: This rule by itself is an incomplete guide to practice, since it may
not be clear how to prove A. See the supplement for a variant that always
works.

Not in conclusion

Suppose A

⊥
Thus ¬A

Finally, there is the famous law of contradiction.
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Contradiction

Suppose ¬C

⊥
Thus C

So far there are no rules for A∨B and for ∃xA(x). In principle one could not
bother with such rules, because A∨B could always be replaced by ¬(¬A∧¬B)
and ∃xA(x) could be replaced by ¬∀x¬A(x). Such a replacement is rather
clumsy and is not done in practice. Thus the following section gives additional
rules that explicitly deal with A ∨B and with ∃xA(x).

1.8 Additional rules for or and exists

Or in hypothesis

A ∨B
Suppose A

C

Instead suppose B

C

Thus C

Or in conclusion

A

A ∨B

together with

B

A ∨B
Note: This rule is an incomplete guide to practice. See the supplement
for a variant that always works.
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Exists in hypothesis If z is a variable that does not occur free in a hypothesis
in force, in ∃xA, or in C, then

∃xA(x)

Let A(z)

C

From this point on treat C as a consequence of the existential hypothesis
without the temporary supposition A(z) or its temporary consequences.

The safe course is to take z to be a variable that is used as a temporary
name in this context, but which occurs nowhere else in the argument.

Exists in conclusion

A(t)

∃xA(x)

Note: This rule is an incomplete guide to practice. See the supplement
for a variant that always works.

1.9 Strategies for natural deduction

A natural deduction proof is read from top down. However it is often discovered
by working simultaneously from the top and the bottom, until a meeting in the
middle. The discoverer then obscures the origin of the proof by presenting it
from the top down. This is convincing but not illuminating.
Example: Here is a natural deduction proof that ∀x (x rich ⇒ x happy) leads
to ∀x (¬x happy⇒ ¬x rich).

Suppose ∀x (x rich⇒ x happy)
Suppose ¬w rich

Suppose w happy
w happy⇒ w rich
w rich
⊥

Thus ¬w happy
Thus ¬w rich⇒ ¬w happy
∀x (¬x happy⇒ ¬x rich)

There are 3 “Suppose” lines and 2 “Thus” lines. Each “Thus” removes a
“Suppose.” Since 3-2 = 1, the bottom line follows from the top line alone.

Here is how to construct the proof. Start from the bottom up. To prove the
general conclusion, prove the implication for an arbitrary variable. To prove
the implication, make a supposition. This reduces the problem to proving a
negation. Then work from outside to inside. Make a supposition without the
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negation and try to get a contradiction. To accomplish this, specialize the
hypothesis.
Example: Here is the same proof in narrative form.

Suppose ∀x (x rich⇒ x happy). Suppose ¬w rich. Suppose w happy.
Specializing the hypothesis gives w happy ⇒ w rich. So w rich. This gives a
false conclusion ⊥. Thus ¬w happy. Thus ¬w rich⇒ ¬w happy. Since w is
arbitrary ∀x (6 x happy⇒ ¬x rich)
Example: Here is a natural deduction proof of the fact that ∃x (x happy∧x rich)
logically implies that ∃xx happy ∧ ∃xx rich.

Suppose ∃x (x happy ∧ x rich)
Let z happy ∧ z rich
z happy
z rich
∃xx happy
∃xx rich
∃xx happy ∧ ∃xx rich

Example: Here is the same proof in narrative form.
Suppose ∃x (x happy ∧ x rich). Let z happy ∧ z rich. Then z happy

and hence ∃xx happy. Similarly, z rich and hence ∃xx rich. It follows that
∃xx happy ∧ ∃xx rich. Since z is an arbitrary name, this conclusion holds on
the basis of the original supposition of existence.
Example: We could try to reason in the other direction, from the existence of
a happy individual and the existence of a rich individual to the existence of a
happy, rich individual? What goes wrong?

Suppose ∃xx happy∧∃xx rich. Then ∃xx happy, ∃xx rich. Let z happy.
Let w rich. Then z happy ∧ w rich. This approach does not work.
Example: Here is another attempt at the other direction.

Suppose ∃xx happy∧∃xx rich. Then ∃xx happy, ∃xx rich. Let z happy.
Let z rich. Then z happy∧ z rich. So ∃x (x happy∧x rich). So this proves the
conclusion, but we needed two temporary hypotheses on z. However we can-
not conclude that we no longer need the last temporary hypothesis z rich, but
only need ∃xx rich. The problem is that we have temporarily supposed also that
z happy, and so z is not an arbitrary name for the rich individual. All this proves
is that one can deduce logically from z happy, z rich that ∃x (x happy∧x rich).
So this approach also does not work.
Example: Here is a natural deduction proof that ∃y∀xx ≤ y gives ∀x∃y x ≤ y.

Suppose ∃y∀xx ≤ y
Let ∀xx ≤ y′
x′ ≤ y′
∃y x′ ≤ y
∀x∃y x ≤ y

Example: Here is the same proof in narrative form.
Suppose ∃y∀xx ≤ y. Let y′ satisfy ∀xx ≤ y′. In particular, x′ ≤ y′.

Therefore ∃y x′ ≤ y. In fact, since y′ is just an arbitrary name, this follows on
the basis of the original existential supposition. Finally, since x′ is arbitrary,
conclude that ∀x∃y x ≤ y.
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A useful strategy for natural deduction is to begin with writing the hypothe-
ses at the top and the conclusion at the bottom. Then work toward the middle.
The most important point is to try to use the all in conclusion rule and the
exists in hypothesis rule early in this process of proof construction. This intro-
duces new “arbitrary” variables. Then one uses the all in hypothesis rule and
the exists in conclusion rule with terms formed from these variables. So it is
reasonable to use these latter rules later in the proof construction process. They
may need to be used repeatedly.

1.10 Lemmas and theorems

In statements of mathematical theorems it is common to have implicit universal
quantifiers. For example say that we are dealing with real numbers. Instead of
stating the theorem that

∀x∀y 2xy ≤ x2 + y2 (1.7)

one simply claims that
2uv ≤ u2 + v2. (1.8)

Clearly the second statement is a specialization of the first statement. But it
seems to talk about u and v, and it is not clear why this might apply for someone
who wants to conclude something about p and q, such as 2pq ≤ p2 + q2. Why
is this permissible?

The answer is that the two displayed statements are logically equivalent,
provided that there is no hypothesis in force that mentions the variables u or
v. Then given the second statement and the fact that the variables in it are
arbitrary, the first statement is a valid generalization.

Notice that there is no similar principle for existential quantifiers. The state-
ment

∃xx2 = x (1.9)

is a theorem about real numbers, while the statement

u2 = u (1.10)

is a condition that is true for u = 0 or u = 1 and false for all other real numbers.
It is certainly not a theorem about real numbers. It might occur in a context
where there is a hypothesis that u = 0 or u = 1 in force, but then it would be
incorrect to generalize.

One cannot be careless about inner quantifiers, even if they are universal.
Thus there is a theorem

∃xx < y. (1.11)

This could be interpreted as saying that for each arbitrary y there is a number
that is smaller than y. Contrast this with the statement

∃x∀y x < y (1.12)

with an inner universal quantifier. This is clearly false for the real number
system.
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1.11 Relaxed natural deduction

Mathematicians ordinarily do not care to put in all logical steps explicitly, as
would be required by the natural deduction rules. However there is a more
relaxed version of natural deduction which might be realistic in some contexts.
This version omits certain trivial logical steps. Here is an outline of how it goes.

And The rules for eliminating “and” from a hypothesis and for introducing
“and” in the conclusion are regarded as obvious.

All The rule for eliminating ∀xA(x) from a hypothesis by replacing it with A(t)
is regarded as obvious. The rule for introducing ∀xA(x) in a conclusion
is indicated more explicitly, by some such phrase as “since x is arbitrary”,
which means that at this stage x does not occur as a free variable in any
hypothesis in force.

Implies The rule for eliminating ⇒ from a hypothesis is regarded as obvious.
The rule for introducing ⇒ in a conclusion requires special comment. At
an earlier stage there was a Suppose A. After some logical reasoning
there is a conclusion B. Then the removal of the supposition and the
introduction of the implication is indicated by Thus A⇒ B.

Not The rule for eliminating ¬ from a hypothesis is regarded as obvious. The
rule for introducing ¬ in a conclusion requires special comment. At an
earlier stage there was a Suppose A. After some logical reasoning there
is a false conclusion ⊥. Then the removal of the supposition and the
introduction of the negation is indicated by Thus ¬A.

Contradiction The rule for proof by contradiction requires special comment.
At an earlier stage there was a Suppose ¬A. After some logical reasoning
there is a false conclusion ⊥. Then the removal of the supposition and the
introduction of the conclusion is indicated by Thus A.

Or The rule for eliminating ∨ for the hypothesis is by proof by cases. Start with
A ∨ B. Suppose A and reason to conclusion C. Instead suppose B
and reason to the same conclusion C. Thus C. The rule for starting
with A (or with B) and introducing A ∨ B in the conclusion is regarded
as obvious.

Exists Mathematicians tend to be somewhat casual about ∃xA(x) in a hy-
pothesis. The technique is to Let A(z). Thus z is a variable that may
be used as a temporary name for the object that has been supposed to
exist. (The safe course is to take a variable that will be used only in this
context.) Then the reasoning leads to a conclusion C that does not men-
tion z. The conclusion actually holds as a consequence of the existential
hypothesis, since it did not depend on the assumption about z. The rule
for starting with A(t) and introducing ∃xA(x) is regarded as obvious.
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Rules for equality (everything is equal to itself, equals may be substituted)
are also used without comment.

One of the most important concepts of analysis is the concept of open set.
This makes sense in the context of the real line, or in the more general case of
Euclidean space, or in the even more general setting of a metric space. Here we
use notation appropriate to the real line, but little change is required to deal
with the other cases.

For all subsets V , we say that V is open if ∀a (a ∈ V ⇒ ∃ε∀x (|x− a| < ε⇒
x ∈ V )).

Recall the definition of union of a collection Γ of subsets. This says that for
all y we have y ∈ ⋃Γ if and only if ∃W (W ∈ Γ ∧ y ∈W ).

Here is a proof of the theorem that for all collections of subsets Γ the hy-
pothesis ∀U (U ∈ Γ ⇒ U open) implies the conclusion

⋃
Γ open. The style of

the proof is a relaxed form of natural deduction in which some trivial steps are
skipped.

Suppose ∀U (U ∈ Γ ⇒ U open). Suppose a ∈ ⋃Γ. By definition
∃W (W ∈ Γ ∧ a ∈ W ). Let W ′ ∈ Γ ∧ a ∈ W ′. Since W ′ ∈ Γ and W ′ ∈
Γ ⇒ W ′ open, it follows that W ′ open. Since a ∈ W ′ it follows from the
definition that ∃ε∀x (|x− a| < ε ⇒ x ∈ W ′). Let ∀x (|x− a| < ε′ ⇒ x ∈ W ′).
Suppose |x − a| < ε′. Then x ∈ W ′. Since W ′ ∈ Γ ∧ x ∈ W ′, it follows
that ∃W (W ∈ Γ ∧ x ∈ W ′). Then from the definition x ∈ ⋃Γ. Thus |x −
a| < ε′ ⇒ x ∈ ⋃Γ. Since x is arbitrary, ∀x (|x − a| < ε′ ⇒ x ∈ ⋃Γ). So
∃ε∀x (|x− a| < ε⇒ x ∈ ⋃Γ). Thus a ∈ ⋃Γ⇒ ∃ε∀x (|x− a| < ε⇒ x ∈ ⋃Γ).
Since a is arbitrary, ∀a (a ∈ ⋃Γ ⇒ ∃ε∀x (|x − a| < ε ⇒ x ∈ ⋃Γ)). So by
definition

⋃
Γ open. Thus ∀U (U ∈ Γ⇒ U open)⇒ ⋃

Γ open.
In practice, the natural deduction rules are useful only for the construction

of small proofs and for verification of a proof after the fact. The way to make
progress in mathematics is find concepts that have meaningful interpretations.
In order to prove a major theorem, one prepares by proving smaller theorems
or lemmas. Each of these may have a rather elementary proof. But the choice
of the statements of the lemmas is crucial in making progress. So while the
micro structure of mathematical argument is based on the rules of proof, the
global structure is a network of lemmas, theorems, and theories based on astute
selection of mathematical concepts.

To illustrate this, here is a final version of the proof that the union of a
collection Γ of open subsets is open. The simplification is due to the notion of
open ball B(a, ε), ε > 0, and the use of set notation and facts about sets. It
allows us to say that V is open if ∀a (a ∈ V ⇒ ∃εB(a, ε) ⊂ V ).

Suppose ∀U (U ∈ Γ ⇒ U open). Suppose a ∈ ⋃Γ. By definition
∃W (W ∈ Γ ∧ a ∈ W ). Let W ′ ∈ Γ ∧ a ∈ W ′. Since W ′ ∈ Γ and W ′ ∈ Γ ⇒
W ′ open, it follows that W ′ open. Since a ∈ W ′ it follows from the definition
that ∃εB(a, ε) ⊂ W ′. Let B(a, ε′) ⊂ W ′. Use the fact that W ′ ∈ Γ implies
W ′ ⊂ ⋃

Γ. It follows that W ′ ⊂ ⋃
Γ. Conclude that B(a, ε′) ⊂ ⋃

Γ. So
∃εB(a, ε) ⊂ ⋃Γ. Thus a ∈ ⋃Γ ⇒ ∃εB(a, ε) ⊂ ⋃Γ. Since a is arbitrary,
∀a (a ∈ ⋃Γ⇒ B(a, ε) ⊂ ⋃Γ). So by definition

⋃
Γ open. Thus ∀U (U ∈ Γ⇒

U open)⇒ ⋃
Γ open.
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1.12 Supplement: Templates

Here are templates that show how to use the contradiction rule to remove the
imperfections of certain of the natural deduction rules presented above. These
templates are sometimes less convenient, but they always work to produce a
proof, if one exists.

Implication in hypothesis template

A⇒ B

Suppose ¬C

A

B

⊥
Thus C

Negation in hypothesis template

¬A
Suppose ¬C

A

⊥
Thus C

Note: The role of this rule to make use of a negated hypothesis ¬A. When
the conclusion C has no useful logical structure, but A does, then the rule
effectively switches A for C.

Or in conclusion template Replace A ∨ B in a conclusion by ¬(¬A ∧ ¬B).
Thus the template is

¬(¬A ∧ ¬B)

A ∨B.

Exists in conclusion template Replace ∃xA(x) in a conclusion by ¬(∀x¬A(x)).
Thus the template is

¬(∀x¬A(x))

∃xA(x).
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The Gödel completeness theorem says given a set of hypotheses and a con-
clusion, then either there is a proof using the natural deduction rules, or there
is an interpretation in which the hypotheses are all true and the conclusion is
false. Furthermore, in the case when there is a proof, it may be constructed via
these templates.

Whey does this theorem not make mathematics trivial? The problem is that
if there is no proof, then the unsuccessful search for one may not terminate. The
problem is with the rule for “all” in the hypothesis. This may be specialized in
more than one way, and there is not upper bound to the number of unsuccessful
attempts.

1.13 Supplement: Existential hypotheses

Most expositions of natural deduction give a different version of the rule for an
existential hypothesis. This rule displays the logical pattern much more clearly.
Unfortunately, it is not part of everyday mathematical practice.

For the record, here is the rule:
If z is a variable that does not occur free in a hypothesis in force, in ∃xA,

or in C, then

∃xA(x)
Suppose A(z)

C
Thus C exists in hypothesis

Note: The restriction on the variable could be signalled by an expression such
as “since z is arbitrary, conclude C on the basis of the existential hypothesis
∃xA(x).”

As we have seen, mathematicians tend not to use this version of the rule.
They simply suppose that some convenient variable may be used as a name for
the thing that exists. They reason with this name up to a point at which they
get a conclusion that no longer mentions it. At this point they conveniently
forget the temporary supposition.
Example: Here is a natural deduction proof of the fact that ∃x (x happy∧x rich)
logically implies that ∃xx happy ∧ ∃xx rich.

Suppose ∃x (x happy ∧ x rich)
Suppose z happy ∧ z rich
z happy
z rich
∃xx happy
∃xx rich
∃xx happy ∧ ∃xx rich

Thus ∃xx happy ∧ ∃xx rich
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Example: Here is a natural deduction proof that ∃y∀xx ≤ y gives ∀x∃y x ≤ y.
Suppose ∃y∀xx ≤ y

Suppose ∀xx ≤ y′
x′ ≤ y′
∃y x′ ≤ y

Thus ∃y x′ ≤ y
∀x∃y x ≤ y

Problems

1. Quantifiers. A sequence of functions fn converges pointwise (on some
set of real numbers) to f as n tends to infinity if ∀x∀ε∃N∀n(n ≥ N ⇒
|fn(x) − f(x)| < ε). Here the restrictions are that x is in the set and
ε > 0. Show that for fn(x) = xn and for suitable f(x) there is pointwise
convergence on the closed interval [0, 1].

2. Quantifiers. A sequence of functions fn converges uniformly (on some
set of real numbers) to f as n tends to infinity if ∀ε∃N∀x∀n(n ≥ N ⇒
|fn(x) − f(x)| < ε). Show that for fn(x) = xn and the same f(x) the
convergence is not uniform on [0, 1].

3. Quantifiers. Show that uniform convergence implies pointwise conver-
gence.

4. Quantifiers. Show that if fn converges uniformly to f and if each fn is
continuous, then f is continuous.

Hint: The first hypothesis is ∀ε∃N∀x∀n (n ≥ N ⇒ |fn(x) − f(x)| < ε).
Deduce that ∃N∀x∀n (n ≥ N ⇒ |fn(x) − f(x)| < ε′/3). Temporarily
suppose ∀x∀n (n ≥ N ′ ⇒ |fn(x)− f(x)| < ε′/3).

The second hypothesis is ∀n∀a∀ε∃δ∀x (|x− a| < δ ⇒ |fn(x)− fn(a)| < ε).
Deduce that ∃δ∀x (|x − a| < δ ⇒ |fN ′(x) − fN ′(a)| < ε′/3). Temporarily
suppose that ∀x (|x− a| < δ′ ⇒ |fN ′(x)− fN ′(a)| < ε′/3).

Suppose |x−a| < δ′. Use the temporary suppositions above to deduce that
|f(x)− f(a)| < ε′. Thus |x− a| < δ′ ⇒ |f(x)− f(a)| < ε′. This is well on
the way to the desired conclusion. However be cautious: At this point x is
arbitrary, but a is not arbitrary. (Why?) Explain in detail the additional
arguments to reach the goal ∀a∀ε∃δ∀x(|x− a| < δ ⇒ |f(x)− f(a)| < ε).

5. Quantifiers. A function f : R→ R is uniformly continuous iff ∀ε∃δ∀x∀y (|x−
y| < δ ⇒ |f(x) − f(y)| < ε). Here ε > 0 and δ > 0 are variables re-
stricted to be strictly positive. Describe the class of functions such that
∀x∀y∀ε∃δ (|x− y| < δ ⇒ |f(x)− f(y)| < ε).

6. Logical deduction. Here is a mathematical argument that shows that
there is no largest prime number. Assume that there were a largest prime
number. Call it a. Then a is prime, and for every number j with a < j,
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j is not prime. However, for every number m, there is a number k that
divides m and is prime. Hence there is a number k that divides a! + 1
and is prime. Call it b. Now every number k > 1 that divides n! + 1 must
satisfy n < k. (Otherwise it would have a remainder of 1.) Hence a < b.
But then b is not prime. This is a contradiction.

Write a complete proof in outline form to show that from pure logic it
follows that the hypotheses

∀m∃k (k prime ∧ k divides m) (1.13)

∀n∀k (k divides n! + 1⇒ n < k) (1.14)

logically imply the conclusion

¬∃n (n prime ∧ ∀j (n < j ⇒ ¬ j prime)). (1.15)

7. Logical deduction. It is a well-known mathematical fact that
√

2 is ir-
rational. In fact, if it were rational, so that

√
2 = m/n, then we would

have 2n2 = m2. Thus m2 would have an even number of factors of 2,
while 2n2 would have an odd number of factors of two. This would be a
contradiction.

Show that from logic alone it follows that

∀i i2 even-twos (1.16)

and
∀j (j even-twos⇒ ¬(2 · j) even-twos) (1.17)

give
¬∃m∃n (2 · n2) = m2. (1.18)

8. Logical deduction. If X is a set, then P (X) is the set of all subsets of
X. If X is finite with n elements, then P (X) is finite with 2n elements.
A famous theorem of Cantor states that there is no function f from X
to P (X) that is onto P (X). Thus in some sense there are more elements
in P (X) than in X. This is obvious when X is finite, but the interesting
case is when X is infinite.

Here is an outline of a proof. Consider an arbitrary function f from X
to P (X). We want to show that there exists a set V such that for each
x in X we have f(x) 6= V . Consider the condition that x /∈ f(x). This
condition defines a set. That is, there exists a set U such that for all x,
x ∈ U is equivalent to x /∈ f(x). Call this set S. Let p be arbitrary.
Suppose f(p) = S. Suppose p ∈ S. Then p /∈ f(p), that is, p /∈ S. This
is a contradiction. Thus p /∈ S. Then p ∈ f(p), that is, p ∈ S. This is a
contradiction. Thus f(p) 6= S. Since this is true for arbitrary p, it follows
that for each x in X we have f(x) 6= S. Thus there is a set that is not in
the range of f .
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Show that from logic alone it follows that from

∃U ∀x ((x ∈ U ⇒ ¬x ∈ f(x)) ∧ (¬x ∈ f(x)⇒ x ∈ U)) (1.19)

one can conclude that
∃V ∀x¬f(x) = V. (1.20)

9. Logical deduction. Here is an argument that if f and g are continuous
functions, then the composite function g◦f defined by (g◦f)(x) = g(f(x))
is a continuous function.
Assume that f and g are continuous. Consider an arbitrary point a′

and an arbitrary ε′ > 0. Since g is continuous at f(a′), there exists
a δ > 0 such that for all y the condition |y − f(a′)| < δ implies that
|g(y)− g(f(a′))| < ε′. Call it δ1. Since f is continuous at a′, there exists a
δ > 0 such that for all x the condition |x−a′| < δ implies |f(x)− f(a′)| <
δ1. Call it δ2. Consider an arbitrary x′. Suppose |x′ − a′| < δ2. Then
|f(x′)− f(a′)| < δ1. Hence |g(f(x′))− g(f(a′))| < ε′. Thus |x′ − a′| < δ2
implies |g(f(x′))− g(f(a′))| < ε′. Since x′ is arbitrary, this shows that for
all x we have the implication |x−a′| < δ2 implies |g(f(x))−g(f(a′))| < ε′.
It follows that there exists δ > 0 such that all x we have the implication
|x − a′| < δ implies |g(f(x)) − g(f(a′))| < ε′. Since ε′ is arbitrary, the
composite function g ◦ f is continuous at a′. Since a′ is arbitrary, the
composite function g ◦ f is continuous.
In the following proof the restrictions that ε > 0 and δ > 0 are implicit.
They are understood because this is a convention associated with the use
of the variables ε and δ.
Prove that from

∀a∀ε∃δ∀x (|x− a| < δ ⇒ |f(x)− f(a)| < ε) (1.21)

and
∀b∀ε∃δ∀y (|y − b| < δ ⇒ |g(y)− g(b)| < ε) (1.22)

one can conclude that

∀a∀ε∃δ∀x (|x− a| < δ ⇒ |g(f(x))− g(f(a))| < ε). (1.23)

10. Relaxed natural deduction. Take the proof that the union of open sets is
open and put it in outline form, with one formula per line. Indent at every
Suppose line. Remove the indentation at every Thus line. (However,
do not indent at a Let line.)

11. Draw a picture to illustrate the proof in the preceding problem.

12. Relaxed natural deduction. Prove that for all subsets U, V that (U open∧
V open) ⇒ U ∩ V open. Recall that U ∩ V =

⋂{U, V } is defined by
requiring that for all y that y ∈ U ∩ V ⇔ (y ∈ U ∧ y ∈ V ). It may be
helpful to use the general fact that for all t, ε1 > 0, ε2 > 0 there is an
implication t < min(ε1, ε2) ⇒ (t < ε1 ∧ t < ε2). Use a relaxed natural
deduction format. Put in outline form, with one formula per line.
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13. Draw a picture to illustrate the proof in the preceding problem.

14. Relaxed natural deduction. Recall that for all functions f , sets W , and
elements t we have t ∈ f−1[W ] ⇔ f(t) ∈ W . Prove that f continuous
(with the usual ε-δ definition) implies ∀U (U open⇒ f−1[U ] open).

15. Relaxed natural deduction. It is not hard to prove the lemma {y | |y−b| <
ε} open. Use this lemma and the appropriate definitions to prove that
∀U (U open⇒ f−1[U ] open) implies f continuous.



Chapter 2

Sets

2.1 Zermelo axioms

Mathematical objects include sets, functions, and numbers. It is natural to
begin with sets. If A is a set, the expression

t ∈ A (2.1)

can be read simply “t in A”. Alternatives are “t is a member of A, or “t is an
element of A”, or “t belongs to A”, or “t is in A”. The expression ¬t ∈ A is
often abbreviated t /∈ A and read “t not in A”.

If A and B are sets, the expression

A ⊂ B (2.2)

is defined in terms of membership by

∀t (t ∈ A⇒ t ∈ B). (2.3)

This can be read simply “A subset B.” Alternatives are “A is included in B”
or “A is a subset of B”. (Some people write A ⊆ B to emphasize that A = B
is allowed, but this is a less common convention.) It may be safer to avoid such
phrases as “t is contained in A” or “A is contained in B”, since here practice is
ambiguous. Perhaps the latter is more common.

The following axioms are the starting point for Zermelo set theory. They
will be supplemented later with the axiom of infinity and the axiom of choice.
These axioms are taken by some to be the foundations of mathematics; however
they also serve as a review of important constructions.

Extensionality A set is defined by its members. For all sets A,B

(A ⊂ B ∧B ⊂ A)⇒ A = B. (2.4)

23
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Empty set Nothing belongs to the empty set.

∀y y /∈ ∅. (2.5)

Unordered pair For all objects a, b the unordered pair set {a, b} satisfies

∀y (y ∈ {a, b} ⇔ (y = a ∨ y = b)). (2.6)

Union If Γ is a set of sets, then its union
⋃

Γ satisfies

∀x (x ∈
⋃

Γ⇔ ∃A (A ∈ Γ ∧ x ∈ A)) (2.7)

Power set If X is a set, the power set P (X) is the set of all subsets of X, so

∀A (A ∈ P (X)⇔ A ⊂ X). (2.8)

Selection Consider an arbitrary condition p(x) expressed in the language of
set theory. If B is a set, then the subset of B consisting of elements that
satisfy that condition is a set {x ∈ B | p(x)} satisfying

∀y (y ∈ {x ∈ B | p(x)} ⇔ (y ∈ B ∧ p(y))). (2.9)

2.2 Comments on the axioms

Usually in a logical language there is the logical relation symbol = and a number
of additional relation symbols and function symbols. The Zermelo axioms could
be stated in an austere language in which the only non-logical relation symbol
is ∈, and there are no function symbols. The only terms are variables. While
this is not at all convenient, it helps to give a more precise formulation of the
selection axiom. The following list repeats the axioms in this limited language.
However, in practice the other more convenient expressions for forming terms
are used.

The philosophy of Zermelo set theory is that everything is a set. However
it is helpful at times to think of a hierarchy of objects of different types. An
object whose internal structure is of no interest is a point. A set is defined by
its members, which may be points. A collection is a set whose members are
themselves sets. Sometimes a collection is called a family.

Extensionality
∀A∀B (∀t (t ∈ A⇔ t ∈ B)⇒ A = B). (2.10)

The axiom of extensionality says that a set is defined by its members.
Thus, if A is the set consisting of the digits that occur at least once in
my car’s license plate 5373, and if B is the set consisting of the odd one
digit prime numbers, then A = B is the same three element set. All that
matters are that its members are the numbers 7,3,5.
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Empty set
∃N∀y ¬y ∈ N. (2.11)

By the axiom of extensionality there is only one empty set, and in practice
it is denoted by the conventional name ∅.

Unordered pair
∀a∀b∃E∀y (y ∈ E ⇔ (y = a ∨ y = b)). (2.12)

By the axiom of extensionality, for each a, b there is only one unordered
pair {a, b}. The unordered pair construction has this name because the
order does not matter: {a, b} = {b, a}. Notice that this set can have either
one or two elements, depending on whether a = b or a 6= b. In the case
when it has only one element, it is written {a} and is called a singleton
set.

If a, b, c are objects, then there is a set {a, b, c} defined by the condition
that for all y

y ∈ {a, b, c} ⇔ (y = a ∨ y = b ∨ y = c). (2.13)

This is the corresponding unordered triple construction. The existence of
this object is easily seen by noting that both {a, b} and {b, c} exist by the
unordered pair construction. Again by the unordered pair construction
the set {{a, b}, {b, c}} exists. But then by the union construction the set⋃{{a, b}, {b, c}} exists. A similar construction works for any finite number
of objects.

Union
∀Γ∃U∀x (x ∈ U ⇔ ∃A (A ∈ Γ ∧ x ∈ A)) (2.14)

The standard name for the union is
⋃

Γ. Notice that
⋃ ∅ = ∅ and⋃

P (X) = X. A special case of the union construction is A ∪ B =⋃{A,B}. This satisfies the property that for all x

x ∈ A ∪B ⇔ (x ∈ A ∨ x ∈ B). (2.15)

Suppose that C ⊂ X is a given subset of X and that Γ is a collection of
subsets of X. Then Γ is said to be a cover of C provided C ⊂ ⋃Γ.

If Γ 6= ∅ is a set of sets, then the intersection
⋂

Γ is defined by requiring
that for all x

x ∈
⋂

Γ⇔ ∀A (A ∈ Γ⇒ x ∈ A) (2.16)

The existence of this intersection follows from the union axiom and the
selection axiom:

⋂
Γ = {x ∈ ⋃Γ | ∀A (A ∈ Γ⇒ x ∈ A)}.

There is a peculiarity in the definition of
⋂

Γ when Γ = ∅. If there is a
context where X is a set and Γ ⊂ P (X), then we can define

⋂
Γ = {x ∈ X | ∀A (A ∈ Γ⇒ x ∈ A)}. (2.17)
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If Γ 6= ∅, then this definition is independent of X and is equivalent to
the previous definition. On the other hand, by this definition

⋂ ∅ = X.
This might seem strange, since the left hand side does not depend on X.
However in most contexts there is a natural choice of X, and this is the
definition that is appropriate to such contexts. There is a nice symmetry
with the case of union, since for the intersection

⋂ ∅ = X and
⋂
P (X) = ∅.

A special case of the intersection construction is A ∩B =
⋂{A,B}. This

satisfies the property that for all x

x ∈ A ∩B ⇔ (x ∈ A ∧A ∈ B). (2.18)

If A ⊂ X, the relative complement X \ A is characterized by saying that
for all x

x ∈ X \A⇔ (x ∈ X ∧ x /∈ A). (2.19)

The existence again follows from the selection axiom: X \ A = {x ∈ X |
x /∈ A}. Sometimes when the set X is understood the complement X \A
of A is denoted Ac.

The constructions A∩B, A∪B,
⋂

Γ,
⋃

Γ, and X \A are means of produc-
ing objects that have a special relationship to the corresponding logical
operations ∧,∨,∀,∃,¬. A look at the definitions makes this apparent.

Two sets A,B are disjoint if A ∩ B = ∅. (In that case it is customary to
write the union of A and B as AtB.) More generally, a set Γ ⊂ P (X) of
sets is disjoint if for each A in Γ and B ∈ Γ with A 6= B we have A∩B = ∅.
A partition of X is a set Γ ⊂ P (X) such that Γ is disjoint and ∅ /∈ Γ and⋃

Γ = X.

Power set
∀X∃P∀A (A ∈ P ⇔ ∀t (t ∈ A⇒ t ∈ X)). (2.20)

The power set is the set of all subsets of X, and it is denoted P (X).
Since a large set has a huge number of subsets, this axiom has strong
consequences for the size of the mathematical universe.

Selection The selection axiom is really an infinite family of axioms, one for
each formula p(x) expressed in the language of set theory.

∀B∃S∀y (y ∈ S ⇔ (y ∈ B ∧ p(y))). (2.21)

The selection axiom says that if there is a set B, then one may select a
subset {x ∈ B | p(x)} defined by a condition expressed in the language
of set theory. The language of set theory is the language where the only
non-logical relation symbol is ∈. This is why it is important to realize that
in principle the other axioms may be expressed in this limited language.
The nice feature is that one can characterize the language as the one with
just one non-logical relation symbol. However the fact that the separation
axiom is stated in this linguistic way is troubling for one who believes that
we are talking about a Platonic universe of sets.
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Of course in practice one uses other ways of producing terms in the lan-
guage, and this causes no particular difficulty. Often when the set B is
understood the set is denoted more simply as {x | p(x)}. In the defining
condition the quantified variable is implicitly restricted to range over B, so
that the defining condition is that for all y we have y ∈ {x | p(x)} ⇔ p(y).
The variables in the set builder construction are bound variables, so, for
instance, {u | p(u)} is the same set as {t | p(t)}.
The famous paradox of Bertrand Russell consisted of the discovery that
there is no sensible way to define sets by conditions in a completely unre-
stricted way. The idea is to note that y ∈ x is defined for every ordered
pair of sets x, y. Consider the diagonal where y = x. Either x ∈ x or
x /∈ x. If there were a set a = {x | x /∈ x}, then a ∈ a would be equivalent
to a /∈ a, which is a contradiction.

Say that it is known that for every x in A there is another corresponding
object φ(x) in B. Then another useful notation is

{φ(x) ∈ B | x ∈ A ∧ p(x)}. (2.22)

This can be defined to be the set

{y ∈ B | ∃x (x ∈ A ∧ p(x) ∧ y = φ(x)}. (2.23)

So it is a special case. Again, this is often abbreviated as {φ(x) | p(x)}
when the restrictions on x and φ(x) are clear. In this abbreviated notion
one could also write the definition as {y | ∃x (p(x) ∧ y = φ(x))}.

2.3 Ordered pairs and Cartesian product

There is also a very important ordered pair construction. If a, b are objects,
then there is an object (a, b). This ordered pair has the following fundamental
property: For all a, b, p, q we have

(a, b) = (p, q)⇔ (a = p ∧ b = q). (2.24)

If y = (a, b) is an ordered pair, then the first coordinates of y is a and the second
coordinate of y is b.

Some mathematicians like to think of the ordered pair (a, b) as the set (a, b) =
{{a}, {a, b}}. The purpose of this rather artificial construction is to make it a
mathematical object that is a set, so that one only needs axioms for sets, and
not for other kinds of mathematical objects. However this definition does not
play much of a role in mathematical practice.

There are also ordered triples and so on. The ordered triple (a, b, c) is equal
to the ordered triple (p, q, r) precisely when a = p and b = q and c = r. If
z = (a, b, c) is an ordered triple, then the coordinates of z are a, b and c. One
can construct the ordered triple from ordered pairs by (a, b, c) = ((a, b), c). The
ordered n-tuple construction has similar properties.
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There are degenerate cases. There is an ordered 1-tuple (a). If x = (a), then
its only coordinate is a. Furthermore, there is an ordered 0-tuple ( ) = 0 = ∅.

Corresponding to these constructions there is a set construction called Carte-
sian product. If A,B are sets, then A × B is the set of all ordered pairs (a, b)
with a ∈ A and b ∈ B. This is a set for the following reason. Let U = A ∪ B.
Then each of {a} and {a, b} belongs to P (U). Therefore the ordered pair (a, b)
belongs to P (P (U)). This is a set, by the power set axiom. So by the selection
axiom A×B = {(a, b) ∈ P (P (U)) | a ∈ A ∧ b ∈ B} is a set.

One can also construct Cartesian products with more factors. Thus A×B×C
consists of all ordered triples (a, b, c) with a ∈ A and b ∈ B and c ∈ C.

The Cartesian product with only one factor is the set whose elements are
the (a) with a ∈ A. There is a natural correspondence between this somewhat
trivial product and the set A itself. The correspondence is that which associates
to each (a) the corresponding coordinate a. The Cartesian product with zero
factors is a set 1 = {0} with precisely one element 0 = ∅.

There is a notion of sum of sets that is dual to the notion of product of
sets. This is the disjoint union of two sets. The idea is to attach labels to the
elements of A and B. Thus, for example, for each element a of A consider the
ordered pair (0, a), while for each element b of B consider the ordered pair (1, b).
Then even if there are elements common to A and B, their tagged versions will
be distinct. Thus the sets {0}×A and {1}×B are disjoint. The disjoint union
of A and B is the set A+B such that for all y

y ∈ A+B ⇔ (y ∈ {0} ×A ∨ y ∈ {1} ×B). (2.25)

One can also construct disjoint unions with more summands in the obvious way.

2.4 Relations and functions

A relation R between sets A and B is a subset of A×B. A function F from A
to B is a relation with the following two properties:

∀x∃y (x, y) ∈ F. (2.26)

∀y∀y′ (∃x ((x, y) ∈ F ∧ (x, y′) ∈ F )⇒ y = y′). (2.27)

In these statements the variable x is restricted to A and the variables y, y′ are
restricted to B. A function F from A to B is a surjection if

∀y∃x (x, y) ∈ F. (2.28)

A function F from A to B is an injection if

∀x∀x′ (∃y ((x, y) ∈ F ∧ (x′, y) ∈ F )⇒ x = x′). (2.29)

Notice the same pattern in these definitions as in the two conditions that define
a function. As usual, if F is a function, and (x, y) ∈ F , then we write F (x) = y.
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In this view a function is regarded as being identical with its graph as a
subset of the Cartesian product. On the other hand, there is something to be
said for a point of view that makes the notion of a function just as fundamental
as the notion of set. In that perspective, each function from A to B would have
a graph that would be a subset of A× B. But the function would be regarded
as an operation with an input and output, and the graph would be a set that
is merely one means to describe the function.

There is a useful function builder notation that corresponds to the set builder
notation. Say that it is known that for every x in A there is another correspond-
ing object φ(x) in B. Then another useful notation is

{x 7→ φ(x) : A→ B} = {(x, φ(x)) ∈ A×B | x ∈ A}. (2.30)

This is an explicit definition of a function from A to B. This could be ab-
breviated as {x 7→ φ(x)} when the restrictions on x and φ(x) are clear. The
variables in such an expression are of course bound variables, so, for instance,
the squaring function u 7→ u2 is the same as the squaring function t 7→ t2.

2.5 Number systems

The axiom of infinity states that there is an infinite set. In fact, it is handy to
have a specific infinite set, the set of all natural numbers N = {0, 1, 2, 3, . . .}.
The mathematician von Neumann gave a construction of the natural numbers
that is perhaps too clever to be taken entirely seriously. He defined 0 = ∅,
1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, and so on. Each natural number is the set
of all its predecessors. Furthermore, the operation s of adding one has a simple
definition:

s(n) = n ∪ {n}. (2.31)

Thus 4 = 3 ∪ {3} = {0, 1, 2} ∪ {3} = {0, 1, 2, 3}. Notice that each of these sets
representing a natural number is a finite set. There is as yet no requirement
that the natural numbers may be combined into a single set.

This construction gives one way of formulating the axiom of infinity. Say
that a set I is inductive if 0 ∈ I and ∀n (n ∈ I ⇒ s(n) ∈ I). The axiom
of infinity says that there exists an inductive set. Then the set N of natural
numbers may be defined as the intersection of the inductive subsets of this set.

According to this definition the natural number system N{0, 1, 2, 3, . . .} has
0 as an element. It is reasonable to consider 0 as a natural number, since it is a
possible result of a counting process. However it is sometimes useful to consider
the set of natural numbers with zero removed. In this following we denote this
set by by N+ = {1, 2, 3, . . .}.

According to the von Neuman construction, the natural number n is defined
by n = {0, 1, 2, . . . , n−1}. This is a convenient way produce an n element index
set, but in other contexts it can also be convenient to use {1, 2, 3, . . . , n}.

This von Neumann construction is only one way of thinking of the set of
natural numbers N. However, once we have this infinite set, it is not difficult
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to construct a set Z consisting of all integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
Furthermore, there is a set Q of rational numbers, consisting of all quotients
of integers, where the denominator is not allowed to be zero. The next step
after this is to construct the set R of real numbers. This is done by a process of
completion, to be described later. The transition from Q to R is the transition
from algebra to analysis. The result is that it is possible to solve equations by
approximation rather than by algebraic means.

After that, next important number system is C, the set of complex numbers.
Each complex number is of the form a + bi, where a, b are real numbers, and
i2 = −1. Finally, there is H, the set of quaternions. Each quaternion is of
the form t + ai + bj + ck, where t, a, b, c are real numbers. Here i2 = −1, j2 =
−1, k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j. A pure
quaternion is one of the form ai+ bj+ ck. The product of two pure quaternions
is (ai+ bj+ ck)(a′i+ b′j+ c′k) = −(aa′+ bb′+ cc′) + (bc′− cb′)i+ (ca′− ac′)j+
(ab′− ba′)k. Thus quaternion multiplication includes both the dot product and
the cross product in a single operation.

In summary, the number systems of mathematics are N,Z,Q,R,C,H. The
systems N,Z,Q,R each have a natural linear order, and there are natural order
preserving injective functions from N to Z, from Z to Q, and from Q to R. The
natural algebraic operations in N are addition and multiplication. In Z they
are addition, subtraction, and multiplication. In Q,R,C,H they are addition,
subtraction, multiplication, and division by non-zero numbers. In H the multi-
plication and division are non-commutative. The number systems R,C,H have
the completeness property, and so they are particularly useful for analysis.

2.6 The extended real number system

In analysis it is sometimes useful to have an extended real number system,
consisting of R together with two extra points +∞ and−∞. The order structure
is that −∞ ≤ a ≤ +∞ for all real numbers a. The purpose of this system is
not to clarify the notion of infinity; rather it is to have an extended real number
system with a greatest element and a least element. It is possible to talk about
continuity in the extended real number system, for instance by mapping it to
[−1, 1] via the hyperbolic tangent function.

The arithmetic in [−∞,+∞] is worth some discussion. If a > 0 is an ex-
tended real number, it is natural to define a · (±∞) = ±∞. Similarly, if a < 0
is an extended real number, it is natural to define a · (±∞) = ∓∞. For zero
there is a zero times infinity convention that is often used in analysis:

0 · (±∞) = 0. (2.32)

The difficult with this convention is that it makes multiplication discontinuous.
To see, this, note that while (1/n) ·n = 1→ 1 as n→∞, the limit of 1/n times
the limit of n is 0 · (+∞) = 0.

Addition is even worse. While a + (+∞) = +∞ for all a > −∞, and a +
(−∞) = −∞ for all a < +∞, the expressions (−∞) + (+∞) and (+∞) + (−∞)
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are undefined. This infinity minus infinity problem is the source of many of the
most interesting phenomena of analysis. On the other hand, where addition is
defined, it is continuous.

For some purposes one can get around the infinity minus infinity problem
by using the systems (−∞,+∞] or by using the system [−∞,+∞). For either
of these systems both addition and multiplication are defined.

2.7 Supplement: Construction of number sys-
tems

This section gives an outline of the construction of various number systems. The
purpose of these constructions is merely to show that the existence of number
systems follows from the assumptions of set theory. There is no claim that they
explain what numbers really are.

It is assumed that there is a natural number system N with a zero 0 and a
successor operation s such that s(n) is the next integer above n. (In the von
Neumann construction 0 is the empty set and s(n) = n∪{n}.) The characteristic
feature is the induction property: If J is inductive, then N ⊂ J .

Addition in N may then be characterized inductively by m + 0 = 0 and
m+s(n) = s(m+n). Similarly, multiplication may be characterized by m ·0 = 0
and m · s(n) = m · n+m. It is a tedious process to verify the properties of the
operations by induction, but it can be done.

Next is the construction of the integers Z. Consider the product space N×N.
The intuitive idea is that each point (m,n) in this space is to define an integer
k with k = n −m. This idea leads to the following definitions. If the ordered
pairs (m,n) and (m′, n′) are in this space, then their sum is the vector sum
(m,n) + (m′, n′) = (m + m′, n + n′). The additive inverse of (m,n) is defined
(somewhat unusually) as −(m,n) = (n,m). The product of (m,n) and (m′, n′)
has components given by inner products ((m,n) · (m′, n′), (n,m) · (m′, n′)). This
works out to be (mm′ + nn′, nm′ + mn′). Two such ordered pairs (m,n) and
(m′, n′) are said to be equivalent if m+n′ = n+m′. This relation of equivalence
partitions N × N into a disjoint union of sets. Each such set of ordered pairs
defines an integer.

If we consider N × N geometrically, then each integer is the graph of a line
with slope one. The sum of two integers is determined by taking the vector sum
of any two points on the two lines. The inverse is obtained by reflecting points
across the diagonal line passing through the origin. The product is obtained by
taking a point to another point with coordinates given by the product formula
above, which only involves inner products and the reflection across the diagonal.

Thus, for example, the integer 3 is defined as the right shift 3 = {(0, 3), (1, 4), (2, 5), . . .}
on the natural numbers. The integer −5 is defined as the left shift −5 =
{(5, 0), (6, 1), (7, 2), . . .}. To add the integer 3 to the integer -5, take a rep-
resentative (1, 4) and another representative (7, 2). Add to get (8, 6), which
represents −2.
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Next is the construction of the rational numbers Q. Start with the integers
Z. Let Z∗ be Z with the integer zero removed. Consider the product space
Z∗ × Z. The intuitive idea is that each point (j, k) with j 6= 0 in this space is
to define a rational number q with q = k/j. This idea leads to the following
definitions. If the ordered pairs (j, k) and (j′, k′) are in this space, then their
product is the pointwise product (j · j′, k · k′). (Multiply the denominators;
multiply the numerators.) The multiplicative inverse of (j, k) for j, k 6= 0 is
defined as the reflection (k, j). (Interchange numerator and denominator.) Two
such ordered pairs (j, k) and (j′, k′) are said to be equivalent if j · k′ = k · j′.
This relation of equivalence partitions Z∗×Z into a disjoint union of sets. Each
such set of ordered pairs defines a rational number.

If we consider Z∗ × Z geometrically, then each rational is the graph of a
line through the origin. Thus, for example, the rational number 4/3 is defined
as 4/3 = {(3, 4), (−3,−4), (6, 8), (−6,−8), . . .}. The rational number −5/2 is
defined as −5/2 = {(2,−5), (−2, 5), (4,−10), (−4, 10), . . .}. To multiply integer
4/3 by −5/2 , take a representative (3, 4) and another representative (4,−10).
Use the multiplication rule to get (12,−40), which represents −10/3. This
discussion has left out addition of rational numbers; this dismal story is all too
well known.

The construction of the rational numbers from the integers is quite parallel
to the construction of the integers from the natural numbers. The construction
of the real numbers is quite another matter. This construction is explored in
detail in the chapter on ordered sets. However here is the short version.

Most real numbers are not rational, but it is tricky to prove that individual
real numbers are not rational. Here is an example of a real number that is
not rational. Let sn = 1 + 1 + 1/2 + 1/6 + · · · 1/n!. This is clearly a rational
number, and the real number e is the real number that is the supremum or
least upper bound of the sn. The property that makes e irrational is that it
can be approximated very closely by a rational number that is not equal to it.
Specifically, by Taylor’s theorem with remainder,

e = 1 + 1 +
1
2

+
1
6

+ · · · 1
n!

+
ecn

(n+ 1)!
, (2.33)

where 0 < cn < 1 and hence 1 < ecn < 3. This shows that e is a rational
number (the partial sum) plus a very small number (the remainder). Suppose
that e were rational, e = p/q, with integer p, q > 0. Then

n!p = qn!
[
1 + 1 +

1
2

+
1
6

+ · · · 1
n!

]
+ q

ecn

n+ 1
, (2.34)

The numbers p and q are fixed. Choose n large enough so that n+1 > 3q. Then
0 < qecn/(n+ 1) < 1. However all the other terms are integers. This leads to a
contradiction. So e is not rational.

The problem is to construct the real numbers R from the rational numbers.
This is the crucial step in the passage from algebra to analysis. In the construc-
tion each real number will be a set of rational numbers, but only certain sets
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are used. That is, the each real number will belong to the (huge) set P (Q), but
not all sets will be used.

If A is a set of rational numbers, an upper bound for A is a rational number
q such that each x in A satisfies x ≤ A. Let ↑ A be the set of all upper bounds
for A. If B is a set of rational numbers, a lower bound for B is a rational number
p such that each x in B satisfies x ≤ p. Let ↓ B be the set of all lower bounds
for B. Clearly A ⊂↓↑ A. Call a set A of rational numbers a lower Dedekind
cut if ↓↑ A ⊂ A. Then R is defined as the set of all lower Dedekind cuts A such
that A 6= ∅ and ↑ A 6= ∅.

If r is a rational number, then the set of lower bounds for r is a lower
Dedekind cut. So each rational number defines a real number. For instance, the
rational number 4/3 defines the real number consisting of all rational numbers
p with p ≤ 4/3. However there are real numbers that are not rational numbers.
For instance, let S be the set of all rational numbers of the form sn = 1 + 1 +
1/2 + 1/6 + · · · 1/n!. Let A =↓↑ S. Then A is a real number that does not come
from a rational number. The intuition is that ↑ S consists of the rational upper
bounds for e, and A =↓↑ S consists of the rational lower bounds for e.

If A and A′ are real numbers, regarded as lower Dedekind cuts, then A ≤ A′
means A ⊂ A′. This defines the order structure on real numbers. Defining the
additive structure is easy; the sum A+ A′ of two lower Dedekind cuts consists
of the set of all rational sums x + x′ with x in A and x′ in A′. Defining the
multiplicative structure is more awkward, but it can be done.

The real number system R has the property that it is boundedly complete.
That is, every non-empty subset of R that is bounded above has a supremum
(least upper bound). It is not hard to see this from the construction. Each real
number in the subset is itself a lower Dedekind cut. The union of these may or
may not be a lower Dedekind cut, but there is a smallest lower Dedekind cut of
which the union is a subset. This is the supremum.

Problems

1. Say X has n elements. How many elements are there in P (X)?

2. Say X has n elements. Denote the number of subsets of X with exactly
k elements by

(
n
k

)
. Show that

(
n
0

)
= 1 and

(
n
n

)
= 1 and that

(
n

k

)
=
(
n− 1
k − 1

)
+
(
n− 1
k

)
. (2.35)

Use this to make a table of
(
n
k

)
up to n = 7.

3. Say that X has n elements. Denote the number of partitions of X into
exactly k non-empty disjoint subsets by S(n, k). This is a Stirling number
of the second kind. Show that S(n, 1) = 1 and S(n, n) = 1 and

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k). (2.36)

Use this to make a table of S(n, k) up to n = 5.
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4. How many functions are there from an n element set to a k element set?

5. How many injective functions are there from an n element set to a k
element set?

6. How many surjective functions are there from an n element set to a k
element set?

7. Show that mn =
∑m
k=0

(
m
k

)
k!S(n, k).

8. Let Bn =
∑n
k=0 S(n, k) be the number of partitions of an n element

set. Show that Bn is equal to the expected number of functions from an
n element set to an m element set, where m has a Poisson probability
distribution with mean one. That is, show that

Bn =
∞∑
m=0

mn 1
m!
e−1. (2.37)

9. Let Bn be the number of partitions of an n element set into disjoint non-
empty sets. Thus B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, and
so on. One can try to write Bn+1 as a linear combination of B0, . . . , Bn.
For instance,

B3 = B2 + 2B1 +B0 (2.38)

and
B4 = B3 + 3B2 + 3B1 +B0 (2.39)

and
B5 = B4 + 4B3 + 6B2 + 4B1 +B0. (2.40)

Find the general pattern. Prove that it holds for arbitrary n. Hint: Con-
sider a set S with n+ 1 points, with a selected point p in it.

10. Is it possible to have sets A and B, a function f : A → B that is an
injection but not a surjection, and a function g : A→ B that is a surjection
but not an injection. Explain.

11. A totally ordered set is densely ordered if between every two distinct points
there is another point. Thus Q is densely ordered, and also R is densely
ordered. Show that between every two distinct points of Q there is a point
of R that is irrational.

12. Is it true that between every two distinct points of R there is a point of
Q? Discuss.

13. Define a map from R to P (Q) by j(x) = {r ∈ Q | r ≤ x}. Prove that j is
injective.



Chapter 3

Relations, functions,
dynamical systems

3.1 Identity, composition, inverse, intersection

A relation R between sets A and B is a subset of A × B. In this context one
often writes xRy instead of (x, y) ∈ R, and says that x is related to y by the
relation. Often a relation between A and A is called a relation on the set A.

There is an important relation IA on A, namely the identity relation relation
consisting of all ordered pairs (x, x) with x ∈ A. That is, for x and y in A, the
relation xIAy is equivalent to x = y.

Given an relation R between A and B and a relation S between B and C,
there is a relation S ◦R between A and C called the composition. It is defined
in such a way that x(S ◦R)z is equivalent to the existence of some y in B such
that xRy and ySz. Thus if R relates A to B, and S relates B to C, then S ◦R
relates A to C. In symbols,

S ◦R = {(x, z) | ∃y (xRy ∧ ySz)}. (3.1)

Notice the order in which the factors occur, which accords with the usual con-
vention for functions. For functions it is usual to use such a notation to indicate
that R acts first, and then S. This is perhaps not the most natural convention
for relations, so in some circumstances it might be convenient to define another
kind of composition in which the factors are written in the opposite order.

There are two more useful operations on relations. If R is a relation between
A and B, then there is an inverse relation R−1 between B and A. It consists
of all the (y, x) such that (x, y) is in R. That is, yR−1x is equivalent to xRy.

Finally, if R and S are relations between A and B, then there is a relation
R ∩ S. This is also a useful operation. Notice that R ⊂ S is equivalent to
R ∩ S = R.

Sometimes if X ⊂ A one writes R[X] for the image of X under R, that is,

R[X] = {y | ∃x (x ∈ X ∧ xRy)}. (3.2)

35
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Also, if a is in A, it is common to write R[a] instead of R[{a}]. Thus y is in
R[a] if aRy.

3.2 Picturing relations

There are two common ways of picturing a relation R between A and B. One
way is to draw the product space A×B and sketch the set of points (x, y) in R.
This is the graph of the relation. The other way is to draw the disjoint union
A+B and for each (x, y) in R sketch an arrow from x to y. This is the cograph
of the relation.

3.3 Equivalence relations

Consider a relation R on A. The relation R is reflexive if IA ⊂ R. The relation
R is symmetric if R = R−1. The relation R is transitive if R ◦ R ⊂ R. A rela-
tion that is reflexive, symmetric, and transitive (RST) is called an equivalence
relation.

Theorem 3.1 Consider a set A. Let Γ be a partition of A. Then there is a
corresponding equivalence relation E, such that (x, y) ∈ E if and only if for
some subset U in Γ both x in U and y in U . Conversely, for every equivalence
relation E on A there is a unique partition Γ of A that gives rise to the relation
in this way.

The sets in the partition defined by the equivalence relation are called the
equivalence classes of the relation.

3.4 Generating relations

Theorem 3.2 For every relation R on A, there is a smallest transitive relation
RT such that R ⊂ RT . This is the transitive relation generated by R.

Theorem 3.3 For every relation R on A, there is a smallest symmetric and
transitive relation RST such that R ⊂ RST . This is the symmetric and transitive
relation generated by R.

Theorem 3.4 For every relation R on A, there is a smallest equivalence rela-
tion E = RRST such that R ⊂ E. This is the equivalence relation generated by
R.

Proof: The proofs of these theorems all follow the same pattern. Here is
the proof of the last one. Let R be a relation on A, that is, let R be a subset of
A×A. Let ∆ be the set of all equivalence relations S with R ⊂ S. Then since
A×A ∈ ∆, it follows that ∆ is non-empty. Let E =

⋂
∆. Now note three facts.

The intersection of a set of transitive relations is transitive. The intersection of
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a set of symmetric relations is symmetric. The intersection of a set of reflexive
relations is reflexive. It follows that E is transitive, reflexive, and symmetric.
This is the required equivalence relation. �

This theorem shows that by specifying a relation R one also specifies a cor-
responding equivalence relation E. This can be a convenient way of describing
an equivalence relation.

3.5 Ordered sets

A relation R on A is antisymmetric if R ∩ R−1 ⊂ IA. This just says that
∀x∀y ((x ≤ y ∧ y ≤ x)⇒ x = y). A ordering of A is a relation that is reflexive,
antisymmetric, and transitive (RAT). Ordered sets will merit further study.
Here is one theorem about how to describe them.

Theorem 3.5 Consider a relation R such that there exists an order relation S
with R ⊂ S. Then there exists a smallest order relation P = RRT with R ⊂ P .

Proof: Let R be a relation on A that is a subset of some order relation.
Let ∆ be the set of all such order relations S with R ⊂ S. . By assumption
∆ 6= ∅. Let P =

⋂
∆. Argue as in the case of an equivalence relation. A subset

of an antisymmetric relation is antisymmetric. (Note that for an non-empty set
of sets the intersection is a subset of the union.) The relation P is the required
order relation. �

The above theorem gives a convenient way of specifying an order relation P .
For example, if A is finite, then P is generated by the successor relation R.

A totally ordered (or linearly ordered) set is an ordered set such that the order
relation satisfies R∪R−1 = A×A. Thus just says that ∀x∀y (x ≤ y∨y ≤ x). A
well-ordered set is a linearly ordered set with the property that each non-empty
subset has a least element.

A rooted tree is an ordered set with a least element, the root, such that for
each point in the set, the elements below the point form a well-ordered set.

3.6 Functions

A relation F from A to B is a total relation if IA ⊂ F−1 ◦ F . It is a partial
function if F ◦ F−1 ⊂ IB . It is a function if it is both a total relation and a
partial function (that is, it is a total function).

Proposition 3.6 A relation F from A to B is total if and only if for each
S ⊂ A

S ⊂ F−1[F [S]]. (3.3)

This is true if and only if for every S ⊂ A and T ⊂ B we have

F [S] ⊂ T ⇒ S ⊂ F−1[T ]. (3.4)
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Proof: A relation F is total if and only if for each a in A there exists a b
in B with aFb. The first result comes from noting that c is in F−1[F [S]] if and
only if there is an a in S and a b such that cFb and aFb. The second result
follows from the first. �

Proposition 3.7 A relation F from A to B is a partial function if and only if
for each T ⊂ B

F [F−1[T ]] ⊂ T. (3.5)

This is true if and only if for every S ⊂ A and T ⊂ B we have

S ⊂ F−1[T ]⇒ F [S] ⊂ T. (3.6)

Proof: A relation F is a partial function if and only if for every b in B and
d in B for which there exists a in A with aFb and aFd we have d = b. The first
result comes from noting that d is in F [F−1[T ] if and only if there exists b in T
and a such that aFb and aFd. The second result follows from the first. �

These two propositions above combine to give the following remarkable char-
acterization of what it means for a relation to be a function. This property is
used throughout analysis.

Proposition 3.8 A relation F from A to B is a function if and only if for
every S ⊂ A and T ⊂ B we have

F [S] ⊂ T ⇔ S ⊂ F−1[T ]. (3.7)

A function F is an injective function if it is a function and F−1 is a partial
function. A function F is a surjective function if it is a function and also F−1

is a total relation. It is a bijective function if it is both an injective function
and a surjective function. For a bijective function F the inverse relation F−1 is
a function from B to A, in fact a bijective function.

3.7 Relations inverse to functions

Lemma 3.9 Let F be a relation that is a function from A to B, and let F−1

be the inverse relation. Then the sets F−1[b] for b in the range of F form a
partition of A, and F−1[b] = ∅ for b not in the range of F . If V is a subset of
B, then F−1[V ] is the union of the disjoint sets F−1[b] for b in V .

This lemma immediately gives the following remarkable and important the-
orem on inverse images. Contrast this theorem with the proposition on images
that follows.

Theorem 3.10 Let F be a relation that is a function from A to B, and let
F−1 be the inverse relation. Then F−1 respects the set operations of union,
intersection, and complement. Thus:

1. If Γ is a set of subsets of B, then F−1[
⋃

Γ] =
⋃{F−1[V ] | V ∈ Γ}.
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2. If Γ is a set of subsets of B, then F−1[
⋂

Γ] =
⋂{F−1[V ] | V ∈ Γ}.

3. If V is a subset of B, then F−1[B \ V ] = A \ F−1[V ].

Proposition 3.11 Let F be a relation from A to B. Then the action of F on
subsets respects the union operation. Thus:

1. If Γ is a set of subsets of B, then F [
⋃

Γ] =
⋃{F [V ] | V ∈ Γ}.

One can ask why the inverse image operation on sets has better properties
than the image operation. Part of the reason is as follows. Let f : A → B
be a function. Suppose that T ⊂ B. To check that x ∈ f−1[T ] we just have
to check that f(x) ∈ T , which requires a function evaluation. On the other
hand, suppose that S ⊂ A. To check that y ∈ f [S] we need to check that
∃x ∈ S f(x) = y, and this requires showing that an equation has a solution.

3.8 Dynamical systems

Consider a function F from A to A. Such a function is often called a dynamical
system. Thus if a is the present state of the system, at the next stage the state
is F (a), and at the following stage after that the state is F (F (a)), and so on.

The orbit of a point a in A is FRT [a], the image of a under the relation FRT .
This is the entire future history of the system (including the present), when it
is started in the state a. Each orbit S is invariant under F , that is, F [S] ⊂ S.
If b is in the orbit of a, then we say that a leads to b.

The simplest way to characterize the orbit of a is as the set {a, F (a), F (F (a)), F (F (F (a))), . . .},
that is, the set of F (n)(a) for n ∈ N, where F (n) is the nth iterate of F . (The
nth iterate of F is the composition of F with itself n times.)

Theorem 3.12 Let F : A→ A be a function. Each orbit of a under F is either
finite and consists of a sequence of points that eventually enters a periodic cycle,
or it is an infinite sequence of distinct points.

In the finite case the orbit may be described as having the form of a lasso.
Special cases of the lasso are a cycle and a single point.

3.9 Picturing dynamical systems

Since a dynamical system is a function F : A → A, there is a peculiarity that
the domain and the target are the same space. However this gives a nice way
of picturing orbits.

One method is to plot the graph of F as a subset of A×A, and use this to
describe the dynamical system as acting on the diagonal. For each x in the orbit,
start with the point (x, x) on the diagonal. Draw the vertical line from (x, x)
to (x, F (x)) on the graph, and then draw the horizontal line from (x, F (x)) to
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(F (x), F (x)) back on the diagonal. This process gives a broken line curve that
gives a picture of the dynamical system acting on the diagonal.

A method that is more compatible with the cograph point of view is to look
at the set A and draw an arrow from x to F (x) for each x in the orbit.

3.10 Structure of dynamical systems

Let F : A→ A be a function. Then A is a disjoint union of equivalence classes
under the equivalence relation FRST generated by F . The following theorem
gives a more concrete way of thinking about this equivalence relation.

Theorem 3.13 Let F : A → A be a function. Say that aEb if and only if the
orbit of a under F has a non-empty intersection with the orbit of b under F .
Then E is an equivalence relation, and it is the equivalence relation generated
by F .

Proof: To show that E is an equivalence relation, it is enough to show that
it is reflexive, symmetric, and transitive. The first two properties are obvious.
To prove that it is transitive, consider points a, b, c with aEb and bEc. Then
there are m,n with F (m)(a) = F (n)(b) and there are r, s with F (r)(b) = F (s)(c).
Suppose that n ≤ r. Then F (m+r−n)(a) = F (r)(b) = F (s)(c). Thus in that case
aEc. Instead suppose that r ≤ n. A similar argument shows that aEc. Thus it
follows that aEc.

It is clear that E is an equivalence relation with F ⊂ E. Let E′ be an
arbitrary equivalence relation with F ⊂ E′. Say that aEb. Then there is a
c with aFRT c and bFRT c. Then aE′c and bE′c. Since E′ is an equivalence
relation, it follows that cE′b and hence aE′b. So E ⊂ E′. This shows that E is
the smallest equivalence relation E′ with F ⊂ E′. That is, E is the equivalence
relation generated by F . �

Each equivalence class of a dynamical system F is invariant under F . Thus
to study a dynamical system one needs only to look at what happens on each
equivalence class.

One can think of a dynamical system as reversible if the function is bijective,
as conservative if the function is injective, and as dissipative in the general case.
The following theorem describes the general case. There are two possibilities.
Either there is eventually stabilization at a periodic cycle. Or the dissipation
goes on forever.

Theorem 3.14 Let F : A → A be a function. Then on each equivalence class
F acts in one of two possible ways. Case 1. Each point in the class has a finite
orbit. In this case there is a unique cycle with some period n ≥ 1 included in the
class. Furthermore, the class itself is partitioned into n trees, each rooted at a
point of the cycle, such that the points in each tree lead to the root point without
passing through other points of the cycle. Case 2. Each point in the class has
an infinite orbit. Then the points that lead to a given point in the class form a
tree rooted at the point.
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Proof: If a and b are equivalent, then they each lead to some point c. If a
leads to a cycle, then c leads to a cycle. Thus b leads to a cycle. So if one point
in the equivalence class leads to a cycle, then all points lead to a cycle. There
can be only one cycle in an equivalence class.

In this case, consider a point r on the cycle. Say that a point leads directly
to r if it leads to r without passing through other points on the cycle. The point
r together with the points that lead directly to r form a set T (r) with r as the
root. A point q in T (r) is said to be below a point p in T (r) when p leads to
q. There cannot be distinct points p, q on T (r) with q below p and p below q,
since then there would be another cycle. Therefore T (r) is an ordered set. If
p is in T (r), the part of T (r) below p is a finite linearly ordered set, so T (r) is
a tree. Each point a in the equivalence class leads directly to a unique point r
on the cycle. It follows that the trees T (r) for r in the cycle form a partition of
the equivalence class.

The other case is when each point in the class has an infinite orbit. There
can be no cycle in the equivalence class. Consider a point r in the class. The
same kind of argument as in the previous case shows that the set T (r) of points
that lead to r is a tree. �

The special case of conservative dynamical systems given by an injective
function is worth special mention. In that case there can be a cycle, but no tree
can lead to the cycle. In the case of infinite orbits, the tree that leads to a point
has only one branch (infinite or finite).

Corollary 3.15 Let F : A→ A be an injective function. Then on each equiva-
lence class F acts either like a shift on Zn for some n ≥ 1 (a periodic cycle) or
a shift on Z or a right shift on N.

The above theorem shows exactly how an injection F can fail to be a bijec-
tion. A point p is not in the range of F if and only if it is an initial point for
one of the right shifts.

Finally, the even more special case of a reversible dynamical systems given
by a bijective function is worth recording. In that case there can be a cycle, but
no tree can lead to the cycle. In the case of infinite orbits, the tree that leads
to a point has only one branch, and it must be infinite.

Corollary 3.16 Let F : A → A be a bijective function. Then on each equiva-
lence class F acts either like a shift on Zn for some n ≥ 1 (a periodic cycle) or
a shift on Z.

A final corollary of this last result is that every permutation of a finite set
is a product of disjoint cycles.

The following discussion uses the concept of cardinal number. A countable
infinite set has cardinal number ω0. A set that may be placed in one-to-one
correspondence with an interval of real numbers has cardinal number c.
Example: Consider the set [0, 1] of real numbers and the function f : [0, 1] →
[0, 1] given by f(x) = (1/2)x4 + (1/2). This is an injection with range [1/2, 1].
It has two fixed points, at 1 and at some c with 1/2 < c < 1. Each starting
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point in [0, 1/2) defines a different N equivalence class. The other points in
[1/2, c) lie on these equivalence classs. The starting points in (c, 1) define Z
equivalence classs. Each of these N equivalence classs and Z equivalence classs
are countable, that is, have cardinality ω0. The number of N equivalence classs
has the cardinality c of the continuum. The number of Z equivalence classs also
has cardinality c.

3.11 Isomorphism of dynamical systems

The above results depend implicitly on the notion of isomorphism of dynamical
systems, but this notion deserves an explicit definition. The concept of isomor-
phism of sets is easy: An isomorphism from A to B is a bijection h : A → B.
However a dynamical system is more than a set; it is a set A together with a
specified function f : A→ A.

Let A, f and B, g be dynamical systems. An mapping h from the first system
to the second system is a function h : A→ B such that h ◦ f = g ◦h. It follows,
of course, that for each x in A we have h(fk(x)) = gk(h(x)) for k = 0, 1, 2, 3, . . ..
The mapping is an isomorphism if h is a bijection. Intuitively this says that g
acts on B in the same way that f acts on A.

Problems

1. Show that a relation is reflexive if and only if ∀xxRx.

2. Show that a relation is symmetric if and only if ∀x∀y (xRy ⇒ yRx).

3. Here are two possible definitions of a transitive relation. This first is
∀x∀y∀z ((xRy ∧ yRz) ⇒ xRz). The second is ∀x∀z (∃y(xRy ∧ yRz) ⇒
xRz). Which is correct? Discuss.

4. Let F be a function. Describe FT [a] (the forward orbit of a under F ).

5. Let F be a function. Describe FRT [a] (the orbit of a under F ).

6. Let F be a function. Is it possible that FT [a] = FRT [a]? Discuss in detail.

7. My social security number is 539681742. This defines a function defined
on 123456789. It is a bijection from a nine point set to itself. What are
the cycles? How many are they? How many points in each cycle?

8. Describe the structure of the equivalence classes generated by the dynam-
ical system f : [0, 1]→ [0, 1] given by f(x) =

√
1− x2.

9. Let f : R → R be defined by f(x) = x + 1. What are the equivalence
classes, and what type are they (Zn,Z,N)? How many are there (cardinal
number) of each type?
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10. Recall that for a dynamical system two points are equivalent if their orbits
overlap. Let f : [0,+∞)→ [0,+∞) be defined by f(x) = x2. Then f is a
bijection with two fixed points and lots of Z equivalence classes. However
instead let h : R→ R be defined by h(x) = x2. Describe the equivalence
classes of h.

11. Let f : R→ R be defined by f(x) = 2 arctan(x). (Recall that the deriva-
tive of f(x) is f ′(x) = 2/(1 + x2) > 0, so f is strictly increasing.) What
is the range of f? How many points are there in the range of f (cardi-
nal number)? What are the equivalence classes, and what type are they
(Zn,Z,N)? How many are there (cardinal number) of each type? Hint:
It may help to use a calculator or draw a graph.

12. Let f : A → A be an injection with range R ⊂ A. Let R′ be a set with
R ⊂ R′ ⊂ A. Show that there is an injection j : A → A with range R′.
Hint: Use the structure theorem for injective functions.

13. Bernstein’s theorem. Let g : A → B be an injection, and let h : B → A
be an injection. Prove that there is a bijection k : A→ B. Hint: Use the
result of the previous problem.
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Chapter 4

Functions, cardinal number

4.1 Functions

A function f : A → B with domain A and target (or codomain) B assigns to
each element x of A a unique element f(x) of B.

Here is a note about terminology. The word function is commonly used in a
very general sense. However a function is often called a map or mapping. Yet
another term is transformation. The terms map, mapping, and transformation
often suggest that the function is from one set to another set of the same general
kind. In particular, when the set has some extra structure, such as a topological
structure, then a term such as mapping may suggest that the structure is pre-
served. In the case of a topological structure this would mean that the mapping
was continuous. In such a context the term function sometimes takes on a more
special connotation, as meaning a function whose target is R (or possibly C).
It is safest, however, to refer to this explicitly as a real function (or complex
function).
Example: Say that φ : X → Y is a (continuous) mapping from the topological
space X to the topological space Y . Then if f is a (real) function on Y , then
the composition f ◦ φ is a (real) function on X.

The set of values f(x) for x in A is called the range of f or the image of A
under f . In general for S ⊂ A the set f [S] of values f(x) in B for x in A is
called the image of S under f . On the other hand, for T ⊂ B the set f−1[T ]
consisting of all x in A with f(x) in T is the inverse image of T under f . In
this context the notation f−1 does not imply that f has an inverse function;
instead it refers to the inverse relation.

The function is injective (or one-to-one) if f(x) uniquely determines x, and
it is surjective (or onto) if each element of B is an f(x) for some x, that is, the
range is equal to the target. The function is bijective if it is both injective and
surjective. In that case it has an inverse function f−1 : B → A.

If f : A→ B and g : B → C are functions, then the composition g ◦ f : A→
C is defined by (g ◦ f)(x) = g(f(x)) for all x in A.

45



46 CHAPTER 4. FUNCTIONS, CARDINAL NUMBER

Say that r : A → B and s : B → A are functions and that r ◦ s = IB , the
identity function on B. That is, say that r(s(b)) = b for all b in B. In this
situation when r is a left inverse of s and s is a right inverse of r, the function
r is called a retraction and the function s is called a section.

Theorem 4.1 If r has a right inverse, then r is a surjection.

Theorem 4.2 If s has a left inverse, then s is an injection.

Theorem 4.3 Suppose s : B → A is an injection. Assume that B 6= ∅. Then
there exists a function r : A→ B that is a left inverse to s.

Suppose r : A → B is a surjection. The axiom of choice says that there is
a function s that is a right inverse to r. Thus for every b in N there is a set of
x with r(x) = b, and since r is a surjection, each such set is non-empty. The
function s makes a choice s(b) of an element in each set.

The notion of surjection is related to the notion of equivalence relation and
equivalence classes. If f : A→ B is a surjection, then the elements of B are in
one-to-one correspondence to the equivalence classes of A that are induced by
f . On the other hand, just giving the equivalence classes does not specify the
surjection.

4.2 Picturing functions

Each function f : A→ B has a graph that is a subset of the product A×B. It
also has a cograph illustrated by the disjoint union A + B and an arrow from
each element of A to the corresponding element of B. The term cograph is
suggested by category theory: cograph is dual to graph in the same sense that
disjoint union is dual to product.

Sometimes there is a function f : I → B, where I is an index set or parameter
set that is not particularly of interest. Then the function f is called a indexed
set or indexed family. Sometime a term like parameterized set is used. Each
indexed set determines a subset S of B, the image of I under f . It is usually
this image subset S = f [I] that is of principal interest, hence the term indexed
set. It is common to depict the indexed set by drawing this image. On the other
hand, different indexed sets may have the same image.
Example: Consider the set B = {p, q, r, s}. Index it by I = {1, 2, 3}. Send 1 to
q and 2 to s and 3 to q. Then the subset S = {q, s} is the image whose elements
have been successfully indexed. However knowing S does not determine the
indexing.

Another situation is when there is a function f : A→ J , where J is an label
set or index set. In that case it might be natural to call A with f a classified set.
The function induces a partition Γ of A, but the partition does not have labels.
Thus different classified sets can induce the same partition. The elements of the
partition may be called contour sets. It is common to picture a such function
through its contour sets.
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Example: Consider the set A = {a, b, c, d}. Label the elements by colors
J = {R, Y,B,G}. Send a to G and b to R and c to B and d to R. The
corresponding partition is {{a}, {c}, {b, d}}. Knowing the partition does not
determine the colors of the elements.

4.3 Indexed sums and products

Let A be a set-valued function defined on an index set I. Then the union of A
is the union of the range of A and is written

⋃
t∈I At. Similarly, when I 6= ∅ the

intersection of A is the intersection of the range of A and is written
⋂
t∈I At.

Let A be a set-valued function defined on an index set I. Let S =
⋃
t∈I At.

The disjoint union or sum of A is
∑

t∈I
At = {(t, a) ∈ I × S | a ∈ At}. (4.1)

For each j ∈ I there is a natural mapping {a 7→ (j, a) : Aj →
∑
tAt}. This is the

injection of the jth summand into the disjoint union. Notice that the disjoint
union may be pictured as something like the union, but with the elements
labelled to show where they come from.

Similarly, there is a natural Cartesian product of A given by
∏

t∈I
At = {f ∈ SI | ∀t f(t) ∈ At}. (4.2)

For each j in I there is a natural mapping {f 7→ f(j) :
∏
tAt → Aj}. This is

the projection of the product onto the jth factor. The Cartesian product should
be thought of as a kind of rectangular box in a high dimensional space, where
the dimension is the number of points in the index set I. The jth side of the
box is the set Aj .

Theorem 4.4 The product of an indexed family of non-empty sets is non-
empty.

This theorem is another version of the axiom of choice. Suppose that each
At 6= ∅. The result says that there is a function f such that for each t it makes
an arbitrary choice of an element f(t) ∈ At.

Proof: Define a function r :
∑
t∈I At → I by r((t, a)) = t. Thus r takes

each point in the disjoint union and maps it to its label. The condition that
each At 6= ∅ guarantees that r is a surjection. By the axiom of choice r has
a right inverse s with r(s(t)) = t for all t. Thus s takes each label into some
point of the disjoint union corresponding to that label. Let f(t) be the second
component of the ordered pair s(t). Then f(t) ∈ At. Thus f takes each label
to some point in the set corresponding to that label. �

Say that f is a function such that f(t) ∈ At for each t ∈ I. Then the function
may be pictured as a single point in the product space

∏
t∈I At. This geometric

picture of a function as a single point in a space of high dimension is a powerful
conceptual tool.
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4.4 Cartesian powers

The set of all functions from A to B is denoted BA. In the case when A = I is
an index set, the set BI is called a Cartesian power. This is the special case of
Cartesian product when the indexed family of sets always has the same value B.
This is a common construction in mathematics. For instance, Rn is a Cartesian
power.

Write 2 = {0, 1}. Each element of 2A is the indicator function of a subset
of A. There is a natural bijective correspondence between the 2A and P (A). If
χ is an element of 2A, then χ−1[1] is a subset of A. On the other hand, if X is
a subset of A, then the indicator function 1X that is 1 on X and 0 on A \ X
is an element of 2A. Sometimes an indicator function is called a characteristic
function, but this term has other uses.

Say that φ is a map from A to B, and f is a real function on B. Then the
real function

φ∗(f) = f ◦ φ (4.3)

is a real function on A, called the pullback of f . The map φ∗ sends real functions
on B to real functions on A. It is the natural mapping on real functions coming
from the mapping φ on points.

Consider the special case when f = 1S is an indicator function of a subset
S of B. Then we have the identity.

1S ◦ φ = 1φ−1[S]. (4.4)

This helps to explain why taking the inverse image φ−1[S] of a subset S is an
operation with such nice properties. It is a special kind of pullback.

4.5 Cardinality and Cantor’s theorem on power
sets

Say that a set A is countable if A is empty or if there is a surjection f : N→ A.

Theorem 4.5 If A is countable, then there is an injection from A→ N.

Proof: This can be proved without the axiom of choice. For each a ∈ A,
define g(a) to be the least element of N such that f(g(a)) = a. Then g is the
required injection. �

There are sets that are not countable. For instance, P (N) is such a set. This
follows from the following theorem of Cantor.

Theorem 4.6 (Cantor) Let X be a set. There is no surjection from X to
P (X).

The proof that follows is a diagonal argument. Suppose that f : X → P (X).
Form an array of ordered pairs (a, b) with a, b in X. One can ask whether
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b ∈ f(a) or b /∈ f(a). The trick is to look at the diagonal a = b and construct
the set of all a where a /∈ f(a).

Proof: Assume that f : X → P (X). Let S = {x ∈ X | x /∈ f(x)}.
Suppose that S were in the range of f . Then there would be a point a in X
with f(a) = S. Suppose that a ∈ S. Then a /∈ f(a). But this means that a /∈ S.
This is a contradiction. Thus a /∈ S. This means a /∈ f(a). Hence a ∈ S. This
is a contradiction. Thus S is not in the range of f . �

One idea of Cantor was to associate to each set A, finite or infinite, a cardinal
number #A. The important thing is that if there is a bijection between two
sets, then they have the same cardinal number. If there is no bijection, then the
cardinal numbers are different. That is, the statement that #A = #B means
simply that there is a bijection from A to B.

The two most important infinite cardinal numbers are ω0 = #N and c =
#P (N). The Cantor theorem shows that these are different cardinal numbers.

4.6 Bernstein’s theorem for sets

If there is an injection f : A → B, then it is natural to say that #A ≤ #B.
Thus, for example, it is easy to see that ω0 ≤ c. In fact, by Cantor’s theorem
ω0 < c. The following theorem was proved in an earlier chapter as an exercise.

Theorem 4.7 (Bernstein) If there is an injection f : A→ B and there is an
injection g : B → A, then there is a bijection h : A→ B.

It follows from Bernstein’s theorem that #A ≤ #B and #B ≤ #A together
imply that #A = #B. This result gives a way of calculating the cardinalities
of familiar sets.

Theorem 4.8 The set N2 = N× N has cardinality ω0.

Proof: It is sufficient to construct a bijection f : N2 → N. Let

f(m,n) =
r(r + 1)

2
+m, r = m+ n. (4.5)

The inverse function g(s) is given by finding the largest value of r ≥ 0 with
r(r + 1)/2 ≤ s. Then m = s− r(r + 1)/2 and n = r −m. Clearly 0 ≤ m. Since
s < (r+ 1)(r+ 2)/2, it follows that m < r+ 1, that is, m ≤ r. Thus also 0 ≤ n.
�

Since the values of the inverse function run along the anti-diagonals con-
sisting of m,n with m + n = r, the proof could be called an “anti-diagonal”
argument”. There is a lovely picture that makes this obvious.

Corollary 4.9 A countable union of countable sets is countable.

Proof: Let Γ be a countable collection of countable sets. Then there exists
a surjection u : N → Γ. For each S ∈ Γ there is a non-empty set of surjections
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from N to S. By the axiom of choice, there is a function that assigns to each S
in Γ a surjection vS : N → S. Let w(m,n) = vu(m)(n). Then v is a surjection
from N2 to

⋃
Γ. It is a surjection because each element q of

⋃
Γ is an element

of some S in Γ. There is an m such that u(m) = S. Furthermore, there is an
n such that vS(n) = q. It follows that w(m,n) = q. However once we have the
surjection w : N2 → ⋃

Γ we also have a surjection N→ N2 → ⋃
Γ. �

Theorem 4.10 The set Z of integers has cardinality ω0.

Proof: There is an obvious injection from N to Z. On the other hand, there
is also a surjection (m,n) 7→ m − n from N2 to Z. There is a bijection from N
to N2 and hence a surjection from N to Z. Therefore there is an injection from
Z to N. This proves that #Z = ω0. �

Theorem 4.11 The set Q of rational numbers has cardinality ω0.

Proof: There is an obvious injection from Z to Q. On the other hand,
there is also a surjection from Z2 to Q given by (m,n) 7→ m/n when n 6= 0
and (m, 0) 7→ 0. There is a bijection from Z to Z2. (Why?) Therefore there
is a surjection from Z to Q. It follows that there is an injection from Q to Z.
(Why?) This proves that #Q = ω0. �

Theorem 4.12 The set R of real numbers has cardinality c.

Proof: First we give an injection f : R→ P (Q). In fact, we let f(x) = {q ∈
Q | q ≤ x}. This maps each real number x to a set of rational numbers. If x < y
are distinct real numbers, then there is a rational number r with x < r < y.
This is enough to establish that f is an injection. From this it follows that there
is an injection from R to P (N).

Recall that there is a natural bijection between P (N) (all sets of natural
numbers) and 2N (all sequences of zeros and ones). For the other direction, we
give an injection g : 2N → R. Let

g(s) =
∞∑
n=0

2sn
3n+1

. (4.6)

This maps 2N as an injection with range equal to the Cantor middle third set.
This completes the proof that #R = c. �

Theorem 4.13 The set RN of infinite sequences of real numbers has cardinality
c.

Proof: Map RN to (2N)N to 2N×N to 2N. �
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Problems

1. What is the cardinality of the set NN of all infinite sequences of natural
numbers? Prove that your answer is correct.

2. What is the cardinality of the set of all finite sequences of natural numbers?
Prove that your answer is correct.

3. What is the cardinality of the set of all infinite sequences of rational num-
bers? Justify your answer.

4. Let C(R) be the set of continuous real functions on R. What is the
cardinality of this set? Justify your answer.

5. Define the function g : 2N → R by

g(s) =
∞∑
n=0

2sn
3n+1

. (4.7)

Prove that it is an injection.

6. Define the function g : 2N → R by

g(s) =
∞∑
n=0

sn
2n+1

. (4.8)

What is its range? Is it an injection?

7. Let A be a set and let f : A → A be a function. Then f is a relation
on A that generates an equivalence relation. Can there be uncountably
many equivalence classes? Explain. Can there be a single equivalence
class that is uncountable? Explain. What is the situation if the function
is an injection? How about if it is a surjection?

8. The notion of product space comes up in elementary algebra in a natural
way. Let I be a finite index set and t 7→ At be a family of finite sets
indexed by I. Let S =

⋃
tAt and z : S → R. The claim is that

∏

t∈I

∑

a∈Ft
z(a) =

∑

f∈Qt Ft

∏

t∈I
z(f(t)). (4.9)

The right hand side is a sum over the product space. What is this identity;
what is its role in algebra? Note: The identity in this general form is highly
useful in combinatorics.
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Chapter 5

Ordered sets and order
completeness

5.1 Ordered sets

The main topic of this chapter is ordered sets and order completeness. A general
reference for this topic is the book of Schröder [18]. Ordered sets may also be
considered in the setting of category theory; this approach is explained in an
encyclopedia volume contribution by Wood [22].

The motivating example is the example of the set W of rational numbers
r such that 0 ≤ r ≤ 1. Consider the subset S of rational numbers r that also
satisfy r2 < 1/2. The upper bounds of S consist of rational numbers s that also
satisfy s2 > 1/2. (There is no rational number whose square is 1/2.) There is
no least upper bound of S. Contrast this with the example of the set L of real
numbers x such that 0 ≤ x ≤ 1. Consider the subset T of real numbers x that
also satisfy x2 < 1/2. The upper bounds of T consists of real numbers y that
also satisfy y2 ≥ 1/2. The number

√
2 is the least upper bound of T . So know

whether you have an upper bound of T is equivalent to knowing whether you
have an upper bound of

√
2. As far as upper bounds are concerned, the set T

is represented by a single number.
Completeness is equivalent to the existence of least upper bounds. This

is the property that says that there are no missing points in the ordered set.
The theory applies to many other ordered sets other than the rational and real
number systems. So it is worth developing in some generality.

An pre-ordered set is a set W and a binary relation ≤ that is a subset of
W ×W . The pre-order relation ≤ must satisfy the first two of the following
properties:

1. ∀p p ≤ p (reflexivity)

2. ∀p∀q∀r((p ≤ q ∧ q ≤ r)⇒ p ≤ r) (transitivity)

3. ∀p∀q ((p ≤ q ∧ q ≤ p)⇒ p = q). (antisymmetry)

55
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If it also satisfies the third property, then it is an ordered set. An ordered set is
often called a partially ordered set or a poset. In an ordered set we write p < q
if p ≤ q and p 6= q. Once we have one ordered set, we have many related order
sets, since each subset of an ordered set is an ordered set in a natural way.

In an ordered set we say that p, q are comparable if p ≤ q or q ≤ p. An ordered
set is linearly ordered (or totally ordered) if each two points are comparable.
(Sometime a linearly ordered set is also called a chain.)

Some standard examples of linearly ordered sets are obtained by looking
at the ordering of number systems. Thus we shall denote by N a set that is
ordered in the same way as N or N+. Thus it has a discrete linear order with
a least element but no greatest element. Similarly, Z is a set ordered the same
way as the integers. It has a discrete linear order but without either greatest or
least element. The set Qb is ordered like the rationals. It is a countable densely
ordered set with no greatest or least element. Finally, R is a set ordered like the
reals. It is an uncountable densely ordered set with no greatest or least element.

Examples:

1. The ordered sets N, Z, Q, and R are linearly ordered sets.

2. Let I be a set and let W be an ordered set. Then W I with the pointwise
ordering is an ordered set.

3. In particular, RI , the set of all real functions on I, is an ordered set.

4. In particular, Rn is an ordered set.

5. If X is a set, the power set P (X) with the subset relation is an ordered
set.

6. Since 2 = {0, 1} is an ordered set, the set 2X with pointwise ordering is
an ordered set. (This is the previous example in a different form.)

5.2 Positivity

This is a good place to record certain conventions for real numbers and real
functions. We refer to a real number x ≥ 0 as positive, and a number x > 0 as
strictly positive. A sequence s of real numbers is increasing if m ≤ n implies
sm ≤ sn, while it is strictly increasing if m < n implies sm < sn. Note that
many authors prefer the terminology non-negative or non-decreasing for what
is here called positive or increasing. In the following we shall often write sn ↑
to indicate that sn is increasing in our sense.

The terminology for real functions is more complicated. A function with
f(x) ≥ 0 for all x is called positive (more specifically, pointwise positive), and
we write f ≥ 0. Correspondingly, a function f with f ≥ 0 that is not the zero
function is called positive non-zero. While it is consistent with the conventions
for ordered sets to write f > 0, this may risk confusion. Sometimes a term like
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positive semi-definite is used. In other contexts, one needs another ordering on
functions. Thus the condition that either f is the zero function or f(x) > 0
for all x might be denoted f ≥≥ 0, though this is far from being a standard
notation. The corresponding condition that f(x) > 0 for all x is called pointwise
strictly positive, and a suitable notation might be f >> 0. An alternative is to
say that f > 0 pointwise or f > 0 everywhere. Sometimes a term like positive
definite is used.

The main use of the term positive definite is in connection with quadratic
forms. A quadratic form is always zero on the zero vector, so it is reasonable
to restrict attention to non-zero vectors. Then according to the writer posi-
tive semi-definite can mean positive or positive non-zero, while positive definite
would ordinarily mean pointwise strictly positive. However some authors use
the word positive definite in the least restrictive sense, that is, to indicate merely
that the quadratic form is positive. A reader must remain alert to the definition
in use on a particular occasion.

A related notion that will be important in the following is the pointwise
ordering of functions. We write f ≤ g to mean that for all x there is an
inequality f(x) ≤ g(x). Similarly, we write fn ↑ to indicate an increasing
sequence of functions, that is, m ≤ n implies fm ≤ fn. Also, fn ↑ f means that
fn ↑ and fn converges to f pointwise.

5.3 Greatest and least; maximal and minimal

Let W be an ordered set, and let S be a subset of W . We write p ≤ S to mean
∀q (q ∈ S ⇒ p ≤ q). In this case we say that p is a lower bound for S. Similarly,
S ≤ q means ∀p (p ∈ S ⇒ p ≤ q). Then q is an upper bound for S.

We write ↑ S for the set of all upper bounds for S. Similarly, we write ↓ S
for the set of all lower bounds for S. If S = {r} consists of just one point we
write the set of upper bounds for r as ↑ r and the set of lower bounds for r as
↓ r.

An element p of S is the least element of S if p ∈ S and p ≤ S. Equivalently,
p ∈ S and S ⊂↑ p. As a set theory identity ↓ S ∩S = {p}. An element q of S is
the greatest element of S if q ∈ S and S ≤ q. Equivalently, q ∈ S and S ⊂↓ q.
As a set theory identity ↑ S ∩ S = {q}.

An element p of S is a minimal element of S if ↓ p ∩ S = {p}. An element
q of S is a maximal element of S if ↑ q ∩ S = {q}.

Theorem 5.1 If p is the least element of S, then p is a minimal element of S.
If q is the greatest element of S, then a is a maximal element of S.

In a linearly ordered set a minimal element is a least element and a maximal
element is a greatest element.
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5.4 Supremum and infimum; order complete-
ness

A point p is the infimum or greatest lower bound of S if ↓ S =↓ p. The infimum
of S is denoted inf S or

∧
S. A point q is the supremum or least upper bound of

S if ↑ S =↑ q. The supremum of S is denoted supS or
∨
S. The reader should

check that p = inf S if and only if p is the greatest element of ↓ S. Thus p ∈↓ S
and ↓ S ≤ p. Similarly, q = supS if and only if q is the least element of ↑ S.
Thus q ∈↑ S and q ≤↑ S.

An ordered set L is a lattice if every pair of points p, q has an infimum p∧ q
and a supremum p ∨ q. An ordered set L is a complete lattice if every subset S
of L has an infimum

∧
S and a supremum

∨
S. The most important example

of a linearly ordered complete lattice is the closed interval [−∞,+∞] consisting
of all extended real numbers. An example that is not linearly ordered is the set
P (X) of all subsets of a set X. In this case the infimum is the intersection and
the supremum is the union.

Examples:

1. If [a, b] ⊂ [−∞,+∞] is a closed interval, then [a, b] is a complete lattice.

2. Let I be a set and letW be a complete lattice. ThenW I with the pointwise
ordering is a complete lattice.

3. In particular, [a, b]I , the set of all extended real functions on I with values
in the closed interval [a, b] is an complete lattice.

4. In particular, [a, b]n is a complete lattice.

5. If X is a set, the power set P (X) with the subset relation is a complete
lattice.

6. Since 2 = {0, 1} is a complete lattice, the set 2X with pointwise ordering
is a complete lattice. (This is the previous example in a different form.)

5.5 Sequences in a complete lattice

In general a function from an ordered set to another ordered set s said to be
increasing (or order preserving) if it preserves the order relation. Thus one
requires that x ≤ y implies f(x) ≤ f(y). The function is strictly increasing if
x < y implies f(x) < f(y).

Two ordered sets are said to be isomorphic if there is an increasing bijection
from one to the other whose inverse function is also an increasing bijection.
Such an isomorphism is automatically strictly increasing.

Similarly, a function is decreasing if it reverses the order. There is a corre-
sponding definition of strictly decreasing. Sometimes it is said to be monotone
if it is increasing or if it is decreasing.
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Each of these definitions applies in particular to an ordered sequence, that
is, a function from N to another ordered set.

Let r : N → L be a sequence of points in a complete lattice L. Let sn =
supk≥n rk. Then the decreasing sequence sn itself has an infimum. Thus there
is an element

lim sup
k→∞

rk = inf
n

sup
k≥n

rk. (5.1)

Similarly, the increasing sequence sn = infk≥n rk has a supremum, and there is
always an element

lim inf
k→∞

rk = sup
n

inf
k≥n

rk. (5.2)

It is not hard to see that lim infk→∞ rk ≤ lim supk→∞ rk.
The application of this construction to the extended real number system

is discussed in a later section. However here is another situation where it is
important. This situation is quite common in probability. Let Ω be a set, and
let P (Ω) be the set of all subsets. Now sup and inf are union and intersec-
tion. Let A : N → P (Ω) be a sequence of subsets. Then lim infk→∞Ak and
lim supk→∞Ak are subsets of Ω, with the first a subset of the second. The
interpretation of the first one is that a point ω ∈ lim infk→∞Ak if and only if
ω is eventually in the sets Ak as k goes to infinity. The interpretation of the
second one is ω is in lim supk→∞Ak if and only if ω is in Ak infinitely often as
k goes to infinity.

5.6 Order completion

Consider an ordered set. For each subset S define its downward closure as ↓↑ S.
These are the points that are below every upper bound for S. Thus S ⊂↓↑ S,
that is, S is a subset of its downward closure. A subset A is a lower Dedekind
cut if it is its own downward closure: A =↓↑ A. This characterizes a lower
Dedekind cut A by the property that if a point is below every upper bound for
A, then it is in A.

Lemma 5.2 For each subset S the subset ↓ S is a lower Dedekind cut. In fact
↓↑↓ S =↓ S.

Proof: Since for all sets T we have T ⊂↓↑ T , it follows by taking T =↓ S
that ↓ S ⊂↓↑↓ S. Since for all sets S ⊂ T we have ↓ T ⊂↓ S, we can take
T =↑↓ S and get ↓↑↓ S ⊂↓ S. �

Theorem 5.3 If L is an ordered set in which each subset has a supremum, then
L is a complete lattice.

Proof: Let S be a subset of L. Then ↓ S is another subset of L. Let r be
the supremum of ↓ S. This says that ↑↓ S =↑ r. It follows that ↓↑↓ S =↓↑ r.
This is equivalent to ↓ S =↓ r. Thus r is the infimum of S. �



60 CHAPTER 5. ORDERED SETS AND ORDER COMPLETENESS

Theorem 5.4 An ordered set L is a complete lattice if and only if for each
lower Dedekind cut A there exists a point p with A =↓ p.

Proof: Suppose L is complete. Let A be a lower Dedekind cut and p be the
infimum of ↑ A. Then ↓↑ A =↓ p. Thus A =↓ p.

On the other hand, suppose that for every lower Dedekind cut A there exists
a point p with A =↓ p. Let S be a subset. Then ↓ S is a lower Dedekind cut.
It follows that ↓ S =↓ p. Therefore p is the infimum of S. �

The above theorem might justify the following terminology. Call a lower
Dedekind cut a virtual point. Then the theorem says that a lattice is complete
if and only if every virtual point is given by a point. This is the sense in which
order completeness says that there are no missing points.

Theorem 5.5 Let W be an ordered set. Let L be the ordered set of all subsets
of W that are lower Dedekind cuts. The ordering is set inclusion. Then L is
a complete lattice. Furthermore, the map p 7→↓ p is an injection from W to L
that preserves the order relation.

Proof: To show that L is a complete lattice, it is sufficient to show that
every subset Γ of L has a supremum. This is not so hard: the supremum is
the downward closure of

⋃
Γ. To see this, we must show that for every lower

Dedekind cut B we have ↓↑ ⋃Γ ⊂ B if and only if for every A in Γ we have
A ⊂ B. The only if part is obvious from the fact that each A ⊂ ⋃Γ ⊂↓↑ ⋃Γ.
For the if part, suppose that A ⊂ B for all A in Γ. Then

⋃
A ⊂ B. It follows

that ↓↑ ⋃A ⊂↓↑ B = B. The properties of the injection are easy to verify. �

Examples:

1. Here is a simple example of an ordered set that is not a lattice. Let W be
an ordered set with four points. There are elements b, c each below each
of x, y. Then W is not complete. The reason is that if S = {b, c}, then
↓ S = ∅ and ↑ S = {x, y}.

2. Here is an example of a completion of an ordered set. Take the previous
example. The Dedekind lower cuts are A = ∅, B = {b}, C = {c}, M =
{b, c}, X = {b, c, x}, Y = {b, c, y}, Z = {b, c, x, y}. So the completion L
consists of seven points A,B,C,M,X, Y, Z. This lattice is complete. For
example, the set {B,C} has infimum A and supremum M .

5.7 The Knaster-Tarski fixed point theorem

Theorem 5.6 (Knaster-Tarski) Let L be a complete lattice and f : L → L
be an increasing function. Then f has a fixed point a with f(a) = a.

Proof: Let S = {x | f(x) ≤ x}. Let a = inf S. Since a is a lower bound
for S, it follows that a ≤ x for all x in S. Since f is increasing, it follows that
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f(a) ≤ f(x) ≤ x for all x in S. It follows that f(a) is a lower bound for S.
However a is the greatest lower bound for S. Therefore f(a) ≤ a.

Next, since f is increasing, f(f(a)) ≤ f(a). This says that f(a) is in S.
Since a is a lower bound for S, it follows that a ≤ f(a). �

5.8 The extended real number system

The extended real number system [−∞,+∞] is a complete lattice. In fact, one
way to construct the extended real number system is to define it as the order
completion of the ordered set Q of rational numbers. That is, the definition
of the extended real number system is as the set of all lower Dedekind cuts of
rational numbers. (Note that in many treatments Dedekind cuts are defined
in a slightly different way, so that they never have a greatest element. The
definition used here seems most natural in the case of general lattices.)

The extended real number system is a linearly ordered set. It follows that the
supremum of a set S ⊂ [−∞,+∞] is the number p such that S ≤ p and for all
a < p there is an element q of S with a < q. There is a similar characterization
of infimum.

Let s : N → [−∞,+∞] be a sequence of extended real numbers. Then s is
said to be increasing if m ≤ n implies sm ≤ sn. For an increasing sequence the
limit exists and is equal to the supremum. Similarly, for a decreasing sequence
the limit exists and is equal to the infimum.

Now consider an arbitrary sequence r : N→ [−∞,∞]. Then lim supk→∞ rk
and lim infk→∞ rk are defined.

Theorem 5.7 If lim infk→∞ rk = lim supk→∞ rk = a, then limk→∞ rk = a.

Theorem 5.8 If r : N → R is a Cauchy sequence, then lim infk→∞ rk =
lim supk→∞ rk = a, where a is in R. Hence in this case limk→∞ rk = a. Every
Cauchy sequence of real numbers converges to a real number.

This result shows that the order completeness of [−∞,+∞] implies the met-
ric completeness of R.

5.9 Supplement: The Riemann integral

The Riemann integral illustrates notions of order. Let X be a set. Let L be a
vector lattice of real functions on X. That is, L is a vector space of functions
that is also a lattice of functions under the pointwise order.

An example to keep in mind is when X = R and L consists of step functions.
These are functions that are finite linear combinations of indicator functions of
intervals (−a, b], where a and b are each real numbers. Notice that each such
function is bounded and vanishes outside of a bounded set.

Suppose that µ is a linear order-preserving function from L to R. For exam-
ple, we could define µ on indicator functions 1(a,b] by µ(1(a,b] = b − a. This is
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of course just the length of the interval. This function is extended by linearity
to the step functions. So if f is a step function, µ(f) is the usual sum used as
a preliminary step in the definition of an integral.

Here is an abstract version of one of the standard constructions of the Rie-
mann integral. Let g be a real function on X. Define the upper integral

µ∗(g) = inf{µ(h) | h ∈ L, g ≤ h}. (5.3)

Similarly, define the lower integral

µ∗(g) = sup{µ(f) | f ∈ L, f ≤ g}. (5.4)

The upper integral is order preserving and subadditive: µ∗(g1 + g2) ≤
µ∗(g1) + µ∗(g2). This is because if g1 ≤ h1 and g2 ≤ h2, with h1, h2 both
in L, then g1 + g2 ≤ h1 + h2 with h1 + h2 in L. So µ∗(g1 + g2) ≤ µ(h1 + h2) =
µ(h1) +µ(h2). The subadditivity is established taking the infimum on the right
hand side.

Similarly, the lower integral is order preserving and superadditive: µ∗(g1 +
g2) ≥ µ∗(g1) + µ∗(g2). Furthermore, µ∗(g) ≤ µ∗(g) for all g.

Define R1(X,µ) to be the set of all g : X → R such that both µ∗(g) and
µ∗(g) are real, and

µ∗(g) = µ∗(g). (5.5)

Let their common value be denoted µ̃(g). This µ̃ is the Riemann integral on
the space R1 = R1(X,µ) of µ absolutely Riemann integrable functions.

Alternatively, a function g is in R1 if for every ε > 0 there is a function f
in L and a function h in L such that f ≤ g ≤ h, µ(f) and µ(h) are finite, and
µ(h)− µ(f) < ε.

It is evident that the Riemann integral is order preserving, but the fact
that it is linear is less obvious. However this is true. In fact, since it is both
subadditive and superadditive, it must be additive.

It may be shown that every continuous real function that vanishes outside of
a bounded subset is Riemann integrable. However there are also discontinuous
functions that have a Riemann integral.

A somewhat more general integral, the Riemann-Stieltjes integral, may be
defined by starting with a given increasing right-continuous function F : R→ R.
Interpret F (b) − F (a) ≥ 0 as the mass in the interval (a, b]. Then define µ on
indicator functions 1(a,b] by µ(1(a,b] = F (b)−F (a). If g is a real function on R,
then g(x) may be interpreted as the economic value of something found at x.
Thus if g is Riemann-Stieltjes integrable, then µ(g) is the total economic value
corresponding to all the mass. truction of the Lebesgue integral.

Note: Some authors extend the definition of Riemann integral to certain
functions that are not absolutely integrable, but such integrals require special
consideration and are not considered here. The special consideration comes from
the fact that an integral that is not absolutely convergent may be rearranged
to have an arbitrary value. This has nothing to do with the distinction between
Riemann integral and Lebesgue integral. Conditionally convergent sums and
integrals are inherently treacherous in all cases.
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5.10 Supplement: The Bourbaki fixed point the-
orem

In the appendices to this chapter it is shown that the axiom of choice implies
Zorn’s lemma. It is quite easy to show that Zorn’s lemma implies the axiom of
choice.

Consider a non-empty ordered set. Suppose that every non-empty linearly
ordered subset has an upper bound. Zorn’s lemma is the assertion that the set
must have a maximal element.

In a sense, Zorn’s lemma is an obvious result. Start at some element of the
ordered set. Take a strictly larger element, then another, then another, and
so on. Of course it may be impossible to go on, in which case one already
has a maximal element. Otherwise one can go through an infinite sequence of
elements. These are linearly ordered, so there is an upper bound. Take a strictly
larger element, then another, then another, and so on. Again this may generate
a continuation of the linearly ordered subset, so again there is an upper bound.
Continue in this way infinitely many times, if necessary. Then there is again an
upper bound. This process is continued as many times as necessary. Eventually
one runs out of set. Either one has reached an element from a previous element
and there is not a larger element after that. In that case the element that was
reached is maximal. Or one runs at some stage through an infinite sequence,
and this has an upper bound, and there is nothing larger than this upper bound.
In this case the upper bound is maximal.

Notice that this argument involves an incredible number of arbitrary choices.
But the basic idea is simple: construct a generalized orbit that is linearly or-
dered. Keep the construction going until a maximal element is reached, either
as the result of a previous point in the orbit, or as the result of an previous
sequence in the orbit.

The key lemma that makes this rigorous is the Bourbaki fixed point theorem.
This is a theorem about a dynamical system defined by a function that sends
points upward in an ordered set. (The orbits of this dynamical system may be
thought of as increasing functions from ordinal numbers to the ordered set.) The
theorem itself does not itself depend on the axiom of choice. However together
with the axiom of choice it will lead to a proof of Zorn’s lemma.

Theorem 5.9 (Bourbaki) Let A be a non-empty ordered set. Suppose that
every non-empty linearly ordered subset has a supremum. Let f : A → A be a
function such that for all x in A we have x ≤ f(x). Then f has a fixed point.

Proof: The function f : A → A is a dynamical system. Since A is non-
empty, we can choose a in A as a starting point. Let B ⊂ A. We say that B is
admissible if a ∈ B, f [B] ⊂ B, and whenever T ⊂ B is linearly ordered, then
supT ∈ B. Thus f restricted to B is itself a dynamical system.

Let M be the intersection of all admissible subsets of A. It is not difficult
to show that M is itself an admissible subset and that a is the least element of
M . Thus f restricted to M is a dynamical system. We want to show that there
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is a sense in which M is a kind of generalized orbit of f starting at a. More
precisely, we want to show that M is linearly ordered. The rest of the proof is
to establish that this is so. Then the fixed point will just be the supremum of
this linearly ordered set. In other word, the system starts at a and follows this
generalized orbit until forced to stop.

Let E ⊂M be the set of points c ∈M such that for all x in M , the condition
x < c implies f(x) ≤ c. Such a point c will be called a “choke point,”, for a
reason that will be soon apparent.

Let c ∈ E. Let Mc ⊂ M be the set of points x in M such that x ≤ c
or f(c) ≤ x. These are the points that can be compared unfavorably to c or
favorably to f(c).

First we check that Mc is admissible. First, it is clear that a is in Mc.
Second, f maps the set of elements x ≤ c in Mc to Mc (since x < c implies
f(x) ≤ c and x = c implies f(c) ≤ f(x)) , and f maps the set of elements x in
Mc with f(c) ≤ x to itself. Third, if T ⊂Mc is linearly ordered with supremum
b, then either x ≤ c for all x ∈ T implies b ≤ c (since b is the least upper bound),
or f(c) ≤ x for some x in T implies f(c) ≤ b (since b is an upper bound). Thus
b is also in Mc.

So M ⊂ Mc, in fact they are equal. This works for arbitrary c in E. The
conclusion is that c in E, x in M implies x ≤ c or f(c) ≤ x. Thus each choke
point c of M splits M into a part unfavorable to c or favorable to f(c). This
justifies the term “choke point.”

Next we check that the set of all choke points E is admissible. First, it is
vacuously true that a is in E. Second, consider an arbitrary c in E, so that for
x in M we have x < c implies f(x) ≤ c. Suppose that x is in M and x < f(c).
Since M ⊂Mc, it follows that x ≤ c or f(c) ≤ x. However the latter possibility
is ruled out, so x ≤ c. If x < c, then f(x) ≤ c ≤ f(c), and if x = c then again
f(x) ≤ f(c). This is enough to imply that f(x) ≤ f(c). Thus for x in M we
have that x < f(c) implies f(x) ≤ f(c). This shows that f(c) is in E. In other
words, f leaves E invariant. Third, let T be a linearly ordered subset of E
with supremum b. Suppose x is in M with x < b. Since for all c in E we have
M ⊂ Mc, either f(c) ≤ x for all c in T , or x ≤ c for some c in T . In the first
case x is an upper bound for T , and so the least upper bound b ≤ x. This is
a contradiction. In the remaining second case x ≤ c for some c in T . If x < c,
then f(x) ≤ c ≤ b, otherwise x = c is in E and since b ≤ x is ruled out, again
we have f(x) ≤ b. Thus for all x in M we have that x < b implies f(x) ≤ b.
Hence b is in E.

So M ⊂ E, in fact they are equal. Every point of M is an choke point.

Now we are done. Suppose that x and y are in M . Since M ⊂ E, it follows
that x is in E. Since M ⊂ Mx, it follows that y is in Mx. Thus y ≤ x or
f(x) ≤ y. Hence y ≤ x or x ≤ y. This proves that M is linearly ordered.
Therefore it has a supremum b. However b ≤ f(b) ≤ b. So b is a fixed point of
f . �
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5.11 Supplement: Zorn’s lemma

The following is an optional topic. It is the proof that the axiom of choice
applies Zorn’s lemma.

Theorem 5.10 (Hausdorff maximal principle) Every ordered set has a max-
imal linearly ordered subset.

Proof: Let W be the ordered set. Consider the set A of all linearly ordered
subsets of W . Suppose that T is a non-empty linearly ordered subset of A. Then⋃
T is a linearly ordered subset of A, and it is the supremum of T . Suppose

there is no maximal element of A. Then for each x in A the set of Ux of linearly
ordered subsets y of W with x ⊂ y and x 6= y is non-empty. By the axiom of
choice there is a function f : A→ A such that f(x) ∈ Ux. This f does not have
a fixed point. This contradicts the Bourbaki fixed point theorem. �

Theorem 5.11 (Zorn’s lemma) Consider a non-empty ordered set such that
every non-empty linearly ordered subset has an upper bound. Then the set has
a maximal element.

Proof: Let W be the ordered set. By the Hausdorff maximal principle there
is a maximal linearly ordered subset X. Since W is not empty, X is not empty.
Therefore there is a maximal element m in X. Suppose there were an element
p with m 6= p and m < p. Then we could adjoin p to X and get a strictly larger
linearly ordered subset. This is a contradiction. So m is maximal in W . �

5.12 Supplement: Ordinal numbers

This section is an informal supplement meant to contrast cardinal numbers with
ordinal numbers. As we shall see, cardinal numbers classify sets up to isomor-
phism, while ordinal numbers classify well-ordered sets up to isomorphism.

A cardinal number is supposed to describe how many elements there are
in a set. Two sets have the same cardinal number precisely when there is
a bijection between the two sets. Addition of cardinal numbers corresponds to
disjoint unionA+B of sets, while multiplication of cardinal numbers corresponds
to Cartesian product A × B of sets. It may be proved using the axiom of
choice that for infinite cardinal numbers κ, λ we have κ + λ = max(κ, λ) and
κ · λ = max(κ, λ). Thus addition and multiplication are not very interesting.
On the other hand, the exponential of cardinal numbers corresponds to the
Cartesian power BA of sets. Cardinal exponentiation has many mysteries.

A linearly ordered set is well-ordered if every non-empty subset has a least
element. It follows from Zorn’s lemma that every non-empty set has a well-
ordering. An initial segment of a well-ordered set X is a set of the form Ix =
{y ∈ X | y < x}.
Theorem 5.12 (Transfinite induction) Let X be a well-ordered set. Let A
be a subset of X. Suppose that for each x in A the condition Ix ⊂ A implies
x ∈ A. Then A = X.
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It may be shown [5] that given two well-ordered sets X,Y , either X is iso-
morphic to Y , or X is isomorphic to an initial segment of Y , or Y is isomorphic
to an initial segment of X.

The idea of ordinal number is that it characterizes a well-ordered set up to
order isomorphism. If α, β are ordinal numbers, then α < β means that a set
corresponding to α is an initial segment of a set corresponding to β. Thus for
two ordinals, either α = β, or α < β, or β < α.

There is also an arithmetic of ordinal numbers. This comes form correspond-
ing operations on well-ordered sets. Suppose A and B are each well-ordered sets.
Their disjoint sum A+B can be well-ordered by taking each element of the copy
of B after each element of the copy of A. Also their Cartesian product A × B
may be well-ordered by taking the (a, b) pairs in the order in (a, b) ≤ (a′, b′)
when b < b′ or when b = b′ and a ≤ b. In other words, line up copies of A
according to the ordering of B.

Finally, denote the least element of B by 0. Consider the space B(A) of all
functions from A to B that each have the value 0 on all but finitely many points
of A. (When A is infinite this is only a small part of the Cartesian power.)
Suppose f and g are two such functions. If f = g then certainly f ≥ g. If
f 6= g, then there are finitely many elements x of A with f(x) 6= g(x). Let a be
maximal among these. Then f ≤ g in B(A) is to hold provided that f(a) < g(a)
in B.

The ordinal numbers are supposed to classify the well-ordered sets. Thus
the sum α + β is defined by the disjoint union construction, the product α · β
is defined by the Cartesian product construction, and the exponential αβ is
defined by the function space construction. For more details see [16].

The first few ordinal numbers are 0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . . , ω ·
2, ω · 2 + 1, ω · 2 + 2, ω · 2 + 3, . . . , ω · 2 +ω, ω · 2 +ω+ 1, ω · 2 +ω+ 2, . . .. Notice
that ω · 2 = ω + ω, since both represent two copies of ω lined up one after the
other.

These operations are not commutative. Notice that 1+ω = ω, but ω < ω+1.
Also 2 · ω = ω, but ω < ω · 2.

The examples given do not exhaust the ordinals. After ω · 2, . . . , ω · 3, . . .
and so on comes ω2 = ω · ω. This represents countably many copies of ω lined
up one after the other. Then after ω2, . . . , ω2 · 2, . . . , ω2 · 3, . . . comes ω3. So a
typical ordinal in this range might take the form ω2 ·2+ω ·7+4. This represents
countably many copies of ω in order, followed by the same thing, followed by
seven copies of ω, followed by four individual elements.

Even larger ordinals include ω3 + 1, ω3 + 2, . . . , ω4, . . . and so on, up to
ωω, ωω + 1, ωω + 2, . . .. This is just the beginning of a long and complicated
process that eventually leads to ω1, the first uncountable ordinal. Each ordinal
less than this ordinal correspond to a countable well-ordered set. So while from
the cardinal point of view all countable infinite sets look the same, from the
ordinal point of view there is a rather complicated story.
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Problems

1. Consider the sequence of real numbers sn = (−1)n n+2
n+1 . State the defini-

tion of lim supn→∞ sn in terms of the concepts of supremum and infimum,
and evaluate using the definition for this particular sequence.

2. Let X = (0,+∞) and for each ε > 0 define fε : X → [0,+∞] by fε(x) =
1
ε2 (ε− x) ∨ 0. Consider the complete lattice [0,+∞]X .

(a) Find h = sup{fε | ε > 0}. Hint: Maximize fε(x) for fixed x.

(b) Find
∫∞

0
fε(x) dx. Find

∫∞
0
h(x) dx.

3. Does the ordered set R \Q of irrational numbers form a boundedly com-
plete lattice? Explain.

4. Let L be a complete lattice. There is a map from the power set P (L) to
itself given by S 7→ supS. There is also a map from L to P (L) given by
y 7→↓ y. Show that these maps are adjoint, in the sense that supS ≤ y ≡
S ⊂↓ y.

5. Show that S 6= ∅ implies inf S ≤ supS.

6. Show that supS ≤ inf T implies S ≤ T (every element of S is ≤ every
element of T ).

7. Show that S ≤ T implies supS ≤ inf T .

8. Let L be a linearly ordered complete lattice. Show that p is the supremum
of S if and only if p is an upper bound for S and for all r < p there is an
element q of S with r < q.

9. Let L be a complete lattice. Suppose that p is the supremum of S. Does
it follow that for all r < p there is an element q of S with r < q? Give a
proof or a counterexample.

10. Let Sn be the set of symmetric real n by n matrices. Each A in Sn defines
a real quadratic form x 7→ xTAx : Rn → R. Here xT is the row vector that
is the transpose of the column vector x. Since the matrix A is symmetric,
it is its own transpose: AT = A. The order on Sn is the pointwise order
defined by the real quadratic forms. Show that S2 is not a lattice. Hint:
Let P be the matrix with 1 in the upper left corner and 0 elsewhere. Let
Q be the matrix with 1 in the lower right corner and 0 elsewhere. Let
I = P +Q. Show that P ≤ I and Q ≤ I. Show that if P ∨Q exists, then
P ∨ Q = I. Let W be the symmetric matrix that is 4/3 on the diagonal
and 2/3 off the diagonal. Show that P ≤ W and Q ≤ W , but I ≤ W is
false.

11. Let L = [0, 1] and let f : L → L be an increasing function. Can a fixed
point be found by iteration? Discuss.
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12. An ordered set is said to be boundedly complete if every non-empty subset
that has an upper bound has a supremum (least upper bound). Prove that
if an ordered set is boundedly complete, then every non-empty subset that
has a lower bound has an infimum (greatest lower bound).

13. Suppose that an ordered set is boundedly complete. Show that its comple-
tion is order isomorphic to the same set with appropriate top or bottom
elements adjoined (if they are missing).

14. Consider the set of natural numbers N = {0, 1, 2, 3, . . .}. Define an unusual
order relation by taking m <= n to mean that there is a k in N with the
product m · k = n. Is this a complete lattice? If it is, give a proof. If not,
describe its completion.

15. Consider the infinite binary tree. This consists of all functions p such
that for some n in N, n = {0, 1, 2, . . . , n − 1} we have p : n → {0, 1}.
The ordering is extension. (In other words, the tree consists of all finite
sequences of 0s and 1s; a larger point has more 0s and 1s tacked on at the
end.) Is this a complete lattice? If it is, give a proof. If not, describe its
completion.

16. Use the Knaster-Tarski fixed point theorem to prove that the equation
2 + ln(x) = x has a solution in the interval [2, 4]. Where does this proof
use the continuity of the logarithm function?



Chapter 6

Structured sets

6.1 Structured sets and structure maps

A structured set is a set together with additional information. In addition,
given two such structured sets, there is a notion of structure map that relates
the information in one structured set to an other structured set in a natural
way. Such notions are dealt with in great generality in category theory [14].
However here we confine ourselves to elementary examples that may be of use
in analysis.
Example: Consider a set X with a distinguished subset A. In algebraic topology
this is called a pair. A structure map from X,A to X ′, A′ is a function φ : X →
X ′ such that φ[A] ⊂ A′, or, what is the same, A ⊂ φ−1[A′]. This is called a
map of pairs.

A structure isomorphism between structured sets is a bijection between the
underlying sets that preserves the additional information. The notion of struc-
ture map should satisfy the requirement that if φ : X → X ′ is a structure map
such that its inverse function φ−1 is also a structure map, then φ is a structure
isomorphism.
Example: Consider again the example of pairs consisting of a set X and a
distinguished subset A. Then an isomorphism is a bijection φ : X → X ′ such
that φ restricts to a bijection from A to A′.

6.2 Subset of the product space

If X is a set, then we may consider its product X2 = X × X with itself. If
X ′ is another such set, then there is a map φ2 : X × X → X ′ × X ′ given by
φ2(x, y) = (φ(x), φ(y)).
Example: Consider a structured set consisting of a set X together with a
distinguished relation R ⊂ X2. A structure map from X,R to X ′, R′ is a
function φ : X → X ′ such that φ2[R] ⊂ R′. Thus if x is related to y by R, then
φ(x) is related to φ(y) by R′.

69
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The ordered set concept is a special case of this example. In this case the
relation must satisfy the order axioms. A structure map in this case is just an
order preserving map.

A dynamical system is another special case of this example. In this case
the structured set is X, f , where f : X → X. We write (x, y) ∈ R when
y = f(x). Then a structure map from (X, f) to (X ′, f ′) is when y = f(x)
implies φ(y) = f ′(φ(x)). This says that φ ◦ f = f ′ ◦ φ.

If X is a set, then we may consider its product X3 = X×X×X with itself.
If X ′ is another such set, then there is a corresponding map φ3 : X ×X ×X →
X ′ ×X ′ ×X ′.
Example: Consider a structured set consisting of a set X together with a
distinguished subset G ⊂ X3. A structure map from X,G to X ′, G′ is a function
φ : X → X ′ such that φ3[G] ⊂ G′.

This kind of example occurs in many algebraic structures. Typically G is
the graph of a function f : X2 → X. In this case the structured set is X, f ,
where f : X2 → X may be thought of as some kind of multiplication. We write
(x, y, z) ∈ G when z = f(x, y). Then a structure map from (X, f) to (X ′, f ′) is
when z = f(x, y) implies φ(z) = f ′(φ(x, y)). This says that φ ◦ f = f ′ ◦ φ2.
Example: Instead of taking a subset of a product space, one can take a function
on the product space. In this case a structured set is of the form X, d, where
d : X2 → [0,+∞] may be thought of as a distance function. A structure map
from X, d to X ′, d′ is a function φ : X → X ′ such that d′ ◦ φ2 ≤ d. This means
that for each ordered pair x, y we have d′(φ(x), φ(y)) ≤ d(x, y). In other words,
the structure map is a contraction.

Notice that an isomorphism is a contraction in both directions, so it preserves
distances exactly.

A metric space is of this kind. However the framework is general enough to
include the example of X,R, where R is a relation. Take d(x, y) = 0 for (x, y)
in R and d(x, y) = +∞ otherwise. It follows that a structure map from X,R to
X ′, R′ has the property that (x, y) ∈ R implies (φ(x), φ(y)) ∈ R′.

6.3 Subset of the power set

Another class of examples come from considering a subset of the power set
P (X). If φ : X → X ′ is a function, then φ−1 : P (X ′) → P (X) is defined by
taking inverse images under the function. This map has the wonderful property
of preserving unions, intersections, and complements.
Example: Consider a structured set consisting of an set X and a distinguished
subset Γ ⊂ P (X). A structure map from X,Γ to X ′,Γ′ is a function φ : X → X ′

such that φ−1[Γ′] ⊂ Γ. In other words, for each A in P (X ′) we have that A ∈ Γ′

implies φ−1[A] ∈ Γ.
Again there is a natural notion of isomorphism. In this setting an isomor-

phism is given by a bijection φ from X to X ′ whose action on subsets produces
a bijection between Γ and Γ′.



6.4. STRUCTURED SETS IN ANALYSIS 71

This example includes the usual definition of topological space and con-
tinuous map and also includes the usual definition of measurable space and
measurable map.
Example: Consider a structured set consisting of an set X and a distinguished
subset M⊂ RX . A structure map from X,M to X ′,M′ is a function φ : X →
X ′ such that for each f : X → R we have that f in M′ implies f ◦ φ ∈M.

The second example gives a framework for an alternate definition of measur-
able space and measurable map. It is also general enough to include the previous
example. Take functions with values in {0, 1}, these are indicator functions of
sets. Note that 1A ◦ φ = 1φ−1[A]. Thus a structure map from a structured set
X,Γ to a structured set X ′,Γ′ is a map φ : X → X ′ such that A ∈ Γ′ implies
φ−1[A] ∈ Γ.

6.4 Structured sets in analysis

As a preview of things to come, here are some important structures in analysis.

• Ordered set X,≤. The relation ≤ satisfies the order axioms.

• Metric space X, d. The distance function d satisfies the metric space ax-
ioms.

• Topological space X, T . The collection T of subsets is closed under unions
and finite intersections.

• Measurable space X,F . The collection F of subsets is closed under count-
able unions, countable intersections, and complements.

There are also important relations between these structures. For instance,
the open subsets of a metric space X, d form a collection T such that X, T is
a topological space. Also, the Borel subsets of a topological space X, T form a
collection F such that X,F is a measurable space.

Problems

1. Consider a structured set consisting of a set and an equivalence relation.
Show that a structure map gives a natural way of mapping equivalence
classes to equivalence classes. Show that this mapping on equivalence
classes mail fail to be injective and may also fail to be surjective.

2. Consider a set labelled by the set L, that is, a set X together with a given
function g : X → L. Such a set is naturally partitioned into equivalence
classes. Define the structure map φ : X → X ′ by requiring that g′ ◦φ = g.
Show that a structure map gives a natural way of mapping equivalence
classes to equivalence classes. Show that this mapping on equivalence
classes is injective. Show that this mapping on equivalence classes may
fail to be surjective.
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Chapter 7

Measurable spaces

7.1 σ-algebras of subsets

The purpose of the first two chapters of this part is to define concepts that are
fundamental in the real analysis: measurable space and measure space. The
actual construction of these objects will take place in subsequent chapters. The
most important point in this chapter is that there are two concepts, that of
σ-algebra of subsets and of σ-algebra of real functions, but these are entirely
equivalent.

Similarly, there is a concept of measurable space. It may be thought of as a
set together with a σ-algebra of sets. Alternatively, it may be thought of as a
set together with a σ-algebra of real functions. Again, it makes no difference. In
fact, it will be convenient to keep this as a free choice and consider a measurable
space as a set together with a specified σ-algebra (of either kind).

Let X be a non-empty set. A σ-algebra of subsets of X is a subcollection F
of P (X) with the following three properties:

1. If Γ ⊂ F is countable, then
⋃

Γ ∈ F .

2. If Γ ⊂ F is countable, then
⋂

Γ ∈ F .

3. If A ∈ F , then X \A ∈ F .

In other words F must be closed under countable unions, countable intersec-
tions, and complements. The empty set ∅ and the space X must also belong to
the σ-algebra.

A measurable space X,F is a non-empty set X together with a specified
σ-algebra of subsets F . A measurable subset is a subset that is in the given
σ-algebra. When the particular σ-algebra under discussion is understood from
context, then a measurable space X is often denoted by its underlying set X.

Examples:

75
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1. The first and simplest standard example is when X is a countable set, and
the σ-algebra consists of all subsets of X.

2. The second standard example is when X = R and the σ-algebra is the
smallest σ-algebra that contains all the open intervals (a, b) with a < b. We
shall see that this example is the Borel σ-algebra. A variant of this example
is when the set R is replaced by [0, 1], and the σ-algebra is relativized to
this subset.

7.2 Measurable maps

A map φ : X → Y between measurable spaces is a measurable map if the inverse
image of each measurable set is measurable.

If Γ ⊂ P (Y ) is an arbitrary collection of subsets of Y , then there is a least
σ-algebra F of subsets of Y such that Γ ⊂ F . This is the σ-algebra of subsets
generated by Γ.

For example, say that Γ = {U, V }, where U ⊂ Y and V ⊂ Y . Then the
σ-algebra of sets generated by Γ can have up to 16 subsets in it.

Theorem 7.1 Say that X and Y are measurable spaces. Suppose also that Γ
generates the σ-algebra of sets F for Y . Suppose that f : X → Y and that for
every set B in the generating set Γ the inverse image f−1[B] is a measurable
set. Then f is a measurable map.

Proof: Consider the collection of all measurable subsets B of Y such that
φ−1[B] is a measurable subset of X. This is easily seen to be a σ-algebra. By
assumption it includes every set in Γ. It follows that every measurable subset
of Y belongs to the collection. �

7.3 Metric spaces

A metric space is a set M together with a function d : M ×M → [0,+∞) such
that for all x, y, z

1. d(x, x) = 0.

2. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

3. d(x, y) = d(y, x) (symmetry).

4. d(x, y) = 0 implies x = y (separatedness).

For the present purpose the example to keep in mind is Rn with the Euclidean
distance.

In a metric space M the open ball centered at x of radius ε > 0 is defined
to be B(x, ε) = {y | d(x, y) < ε}. A subset U of a metric space M is open if
∀x (x ∈ U ⇒ ∃εB(x, ε) ⊂ U). A subset F is closed if it is the complement of
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an open subset. Properties of metric spaces that are defined entirely in terms
of the open and closed subsets are called topological properties.

We take it as known that if X and Y are metric spaces, then a function
f : X → Y is continuous if and only if the inverse image of every open subset
of Y is an open subset of X. So continuity is a topological property.

It takes some time to get a good intuition of open and close subsets of metric
spaces. However in the case of the real line R with the usual metric there is a
particularly transparent characterization: a subset U is open if and only if it is
a countable union of open intervals.
Example: The Cantor space X = 2N+ is the set of all infinite sequences of 0s
and 1s. There is an injection g : X → [0, 1] defined by g(x) =

∑∞
n=1

2xn
3n . The

range of this injection is the middle third Cantor set. The Cantor space inherits
its metric from this set. Thus X may be thought of as a metric space with the
metric d(x, y) = |g(x)− g(y)|.

This metric has the property that if x1 = y1, . . . , xm = ym, the d(x, y) ≤
1/3m. On the other hand, if d(x, y) < 1/3m, then x1 = y1, . . . , xm = ym. So
two sequences are close in this metric if they agree on finite initial segments.

7.4 The Borel σ-algebra

If X is a metric space, then it determines a measurable space by taking F as
the Borel σ-algebra of subsets. This is the smallest σ-algebra BoX that contains
all the open sets of the metric space. Since it is closed under complements, it
also contains all the closed sets. The subsets in this σ-algebra are said to be
Borel measurable subsets.

Perhaps the most important example is when X = Rn with its usual metric.
Then the Borel σ-algebra is large enough so that most subsets that one encoun-
ters in practical situations are in this σ-algebra. (However it may be shown that
there are many subsets that do not belong to the Borel σ-algebra; it is just that
they are somewhat complicated to construct.)

Proposition 7.2 Suppose X is a measurable space and Y is a metric space, and
Y has the Borel σ-algebra making it also a measurable space. Let φ : X → Y be
a map from X to Y such that the inverse image of every open set is measurable.
Then φ is a measurable map.

This proposition is a special case of the theorem on measurable maps. If X
is also a metric space with the Borel σ-algebra, then one important consequence
is that every continuous map is measurable. Notice, however, that it is possible
to have a map φ : X → Y that is measurable or even continuous but such that
the image φ[X] is not a Borel subset of Y .

Examples:

1. Recall that the Cantor space X = 2N+ may be considered as a metric
space. Let 0 ≤ n and let z be a sequence of n zeros and ones. Let Fn;z
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be the set of all sequences x in 2N+ that agree with z in the first n places.
This consists of all coin tosses that have a particular pattern of successes
and failures in the first n trials, without regard to what happens in later
trials. Let F be the smallest σ-algebra such that each set Fn;z is in F . It
may be shown that this is the Borel σ-algebra. The Cantor space, when
regarded as a measurable space with this σ-algebra rather than as a metric
space, could also be called the coin-tossing space.

2. Let Y = [0, 1] be the closed unit interval. For this example take the Borel
σ-algebra Bo.
Let 0 ≤ n and let z be a sequence of n zeros and ones. Let tn;z =∑n
k=1 zk/2

k. Define the closed interval In;z = [tn;z, tn;z + 1/2n]. This
clearly belongs to the Borel σ-algebra.

3. There is a relation between the above examples. Let φ : 2N+ → [0, 1] be
defined by φ(x) =

∑∞
i=1 xi/2

n. Then φ is a measurable map. In fact, it is
even continuous. This is because if d(x, y) < 1/3m, then x and y agree in
their first m places, and so |φ(x)− φ(y)| ≤ 1/2m.

One useful property of the measurable map φ is that it gives a relation
between the subsets Fn;z of the coin-tossing space and the intervals In;z.
In fact, the relation is that φ−1[In;z] = Fn;z.

Example: There are situations when it is useful to consider several σ-algebras
at once. For instance, let X = Rn. For each k = 1, . . . , n let σ(x1, . . . , xk) be
the σ-algebra of subsets of Rn consisting of all sets of the form A = {(x, y) |
x ∈ Rk, y ∈ Rn−k, x ∈ B} for some Borel subset B of Rk. In other words, the
definition of the set depends only on the first k coordinates.

In probability one thinks of {1, . . . , n} as n time steps, and σ(x1, . . . , xk)
corresponds to all questions that can be answered with the information available
at time k. That is, as the experimental unfolds, initially there is no information,
then the first coordinate is revealed, then also the second, and so on.

7.5 Measurable functions

Let X be a measurable space. Let f : X → R be a real function. Then f is said
to be a measurable function if the inverse image of every Borel subset of R is a
measurable subset of X. That, is, a measurable function is a measurable map
where the target is R with its Borel σ-algebra.

Lemma 7.3 A real function f is a measurable function if for every real a the
set of points where f > a is a measurable subset.

Proof: Since the subset of X where f ≥ a is the intersection of the subsets
where f > a − 1/n, it follows that it is also a measurable set. By taking
complements, we see that the sets where f ≤ a and where f < a are measurable
sets. By taking the intersection, we see that the set where a < f ≤ b is a



7.5. MEASURABLE FUNCTIONS 79

measurable set. Since every open set is a union of intervals, the inverse image
of every open subset is a measurable subset. It follows that f is a measurable
function. �

A set of real functions L is called a vector space of functions if the zero
function is in L, f in L and g ∈ L imply that f + g is in L, and a in R and
f in L imply that af is in L. A set of real functions L is called a lattice of
functions if f in L and g in L imply that the infimum f ∧ g is in L and that the
supremum f ∨ g is in L. The set L is called a vector lattice of functions if it is
both a vector space and a lattice.

Notice that if f is in a vector lattice L, then the absolute value given by the
formula |f | = f ∨ 0− f ∧ 0 is in L.

Theorem 7.4 The collection of measurable functions forms a σ-algebra of func-
tions. That is, it is a vector lattice of functions that contains the constant
functions and is closed under pointwise monotone limits of sequences.

Proof: First we prove that the collection of measurable functions is a lattice.
That is, we prove that if f and g are measurable functions, then f ∨ g and f ∧ g
are measurable functions. But f ∨ g ≤ a precisely where f ≤ a and g ≤ a. This
is the intersection of two measurable subsets, so it is measurable. A similar
argument works for the f ∧ g.

Next we prove that the collection of measurable functions is a vector space.
That is we prove that if f and g are measurable, then so are f + g and cf . The
proof for f + g is not completely obvious, but there is a trick that works. It
is to note that f + g > a if and only if there is a rational number r such that
f > a − r and g > r. Since this is a countable union, we get a measurable
subset. The proof for cf is easy and is left to the reader.

Next we prove that the constant functions are measurable. This is because
the space X and the empty set ∅ are always measurable subsets.

Finally we prove that the collection of measurable functions is closed under
pointwise monotone convergence of sequences. In fact, it is closed under the
operation of taking the supremum of a sequence. This is because if fn is a
sequence of functions, then the set where supn fn ≤ a is the intersection of the
sets where fn ≤ a. Similarly, it is closed under the taking the infimum of a
sequence. �

The σ-algebra F of measurable subsets thus gives rise to a σ-algebra F of
real functions. This in turn determines the original σ-algebra of subsets. In fact,
a subset A is measurable if and only if the indicator function 1A is a measurable
function.

For later use, notice that the the collection F+ of positive measurable func-
tions is not a vector space, but it is a cone. This means that F+ is a non-empty
set of functions such that if f, g are in the F+, then f + g is in F+, and if also
a ≥ 0, then af is in F+.
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7.6 σ-algebras of functions

The previous theorem suggests a variant definition of measurable space. A
measurable space X is a set X together with a givenσ-algebra F of real functions
on X. That is, there is a given vector lattice F of real functions that contains
the constant functions and that is closed under increasing pointwise limits of
sequences. That is, if fn ↑ f with pointwise convergence, and each fn is in F ,
then f is in F . A function in this space is called a measurable function.

Of course, if the vector lattice F is closed under increasing pointwise limits of
sequence, then it is also closed under decreasing pointwise limits of sequence. In
fact, then the vector lattice F is closed under all pointwise limits of sequences.
Suppose that fn → f pointwise, where each fn is in F . Fix k and m. Since F is a
lattice, we see that gkm = supk≤n≤m fn is in F . However gkm ↑ gk = supk≤n fn
as m → ∞, so gk is also in F . Then gk ↓ lim supn fn as k → ∞. Since
f = lim supn f , we are done.

Examples:

1. The first and simplest standard example is when X is a countable set, and
the σ-algebra consists of all real functions on X.

2. The second standard example is when X = R and the σ-algebra is the
smallest σ-algebra that contains all the continuous real functions on the
metric space R. We shall see that this example is the Borel σ-algebra. A
variant of this example is when R is replaced by[0, 1].

A σ-algebra F of real functions gives rise to a corresponding σ-algebra of
measurable sets, consisting of the sets A such that 1A is in F .

Theorem 7.5 Consider a set X and a σ-algebra F of real functions. Define the
σ-algebra FX of sets to consist of those subsets of X whose indicator functions
belong to F . Then F consists of those functions that are measurable with respect
to this σ-algebra FX .

Proof: Consider a real function f in F and a real number a. Then f −f ∧a
is also in F . The sequence of function hn = n(f −f ∧a)∧1 converges pointwise
to 1f>a. So 1f>a is in F . Thus f > a is in the σ-algebra of sets. This is enough
to prove that f is measurable with respect to this σ-algebra.

Consider on the other hand a real function f that is measurable with respect
to the σ-algebra of subsets. Then f > a is a subset in the σ-algebra. This
says that 1f>a is in F . Then if a < b, then 1a<f≤b = 1f>a − 1f>b is also
in F . Consider the numbers cnk = k/2n for n ∈ N and k ∈ Z. Then fn =∑
k cnk1cnk<f≤cn k+1 is also in F . However fn ↑ f as n→∞. So f is in F . �

Proposition 7.6 Let F be a σ-algebra of functions. If f is in F , then so is
f2.
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Proof: Since F is a lattice, f in F implies |f | in F . For a ≥ 0 the condition
f2 > a is equivalent to the condition |f | > √a. On the other hand, for a < 0
the conditionf2 > a is always satisfied. �

Theorem 7.7 Let F be a σ-algebra of functions. If f , g are in F , then so is
the pointwise product fg.

Proof: Since F is a vector space, it follows that f + g and f − g are in F .
However 4fg = (f + g)2 − (f − g)2. �

This last theorem shows that F is not only closed under addition, but also
under multiplication. Thus F deserves to be called an algebra. It is called a
σ-algebra because of the closure under pointwise sequential limits.
Example: There are situations when it is useful to consider several σ-algebras
at once. For instance, let X = Rn. For each k = 1, . . . , n let σ(x1, . . . , xk) be
the σ-algebra of real functions on Rn consisting of all Borel functions of the
coordinates x1, . . . , xk. In other words, the function depends only on the first k
coordinates.

This is the same example of unfolding information as before. However then
the set point of view led to thinking of σ(x1, . . . , xk) as the collection of ques-
tions that are answered by time k. The function point of view instead views
σ(x1, . . . , xk) as the collection of experimental quantities whose values are known
at time k.

Proposition 7.8 A map φ : X → Y is a measurable map if and only if for
each measurable real function f on Y the composition f ◦φ is a measurable real
function on X.

7.7 Borel functions

Consider the important special case when X is a metric space equipped with
its Borel σ-algebra BoX of subsets. Then the corresponding σ-algebra Bo of
real measurable functions consists of the Borel functions. Such functions are
said to be Borel measurable functions. It is clear that the space C(X) of real
continuous functions is a subset of Bo.

Theorem 7.9 If X is a metric space, then the smallest σ-algebra including
C(X) is the Borel σ-algebra Bo.

Proof: Consider the σ-algebra of subsets that consists of the inverse images
of Borel subsets under continuous real functions. It is sufficient to show that
every subset in BoX is in this σ-algebra. To prove this, it is sufficient to show
that every closed set is in it. Let F be a closed subset. Then the function
f(x) = d(x, F ) is a continuous function that vanishes precisely on F . That is,
the inverse image of {0} is F . �
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7.8 Supplement: Generating sigma-algebras

This section is devoted to a fundamental fact: A Borel function of a measurable
function is a measurable function. So a class of measurable functions is closed
under just about any reasonable operation one can perform on the ranges of the
functions.

If we are given a set S of functions, then the σ-algebra of functions σ(S)
generated by this set is the smallest σ-algebra of functions that contains the
original set. The Borel σ-algebra Bo of functions on R is generated by the single
function x. Similarly, the Borel σ-algebra of functions on Rk is generated by the
coordinates x1, . . . , xk. The following theorem shows that measurable functions
are closed under nonlinear operations in a very strong sense.

Theorem 7.10 Let f1, . . . , fk be functions on X. Let Bo be the σ-algebra of
Borel functions on Rk. Let

G = {φ(f1, . . . , fk) | φ ∈ Bo}. (7.1)

The conclusion is that σ(f1, . . . , fk) = G. That is, the σ-algebra of functions
generated by f1, . . . , fk consists of the Borel functions of the functions in the
generating set.

Proof: First we show that G ⊂ σ(f1, . . . , fk). Let B′ be the set of functions
φ such that φ(f1, . . . , fk) ∈ σ(f1, . . . , fk). Each coordinate function xj of Rn
is in B′, since this just says that fj is in σ(f1, . . . , fk). Furthermore, B′ is a
σ-algebra. This is a routine verification. For instance, here is how to check
upward monotone convergence. Suppose that φn is in B′ for each n. Then
φn(f1, . . . , fk) ∈ σ(f1, . . . , fk) for each n. Suppose that φn ↑ φ pointwise. Then
φn(f1, . . . , fk) ↑ φ(f1, . . . , fk), so φ(f1, . . . , fk) ∈ σ(f1, . . . , fk). Thus φ is in
B′. Since B′ is a σ-algebra containing the coordinate functions, it follows that
Bo ⊂ B′. This shows that G ⊂ σ(f1, . . . , fk).

Now we show that σ(f1, . . . , fk) ⊂ G. It is enough to show that G contains
f1, . . . , fk and is a σ-algebra of functions. The first fact is obvious. To show that
G is a σ-algebra of functions, it is necessary to verify that it is a vector lattice
with constants and is closed under monotone convergence. The only hard part
is the monotone convergence. Suppose that φn(fn, . . . , fk) ↑ g pointwise. The
problem is to find a Borel function φ such that g = φ(f1, . . . , fk). There is no
way of knowing whether the Borel functions φn converge on all of Rk. However
let G be the subset of Rk on which φn converges. Then G also consists of the
subset of Rk on which φn is a Cauchy sequence. So

G =
⋂

j

⋃

N

⋂

m≥N

⋂

n≥N
{x | |φm(x)− φn(x)| < 1/j} (7.2)

is a Borel set. Let φ be the limit of the φn on G and φ = 0 on the complement
of G. Then φ is a Borel function. Next note that the range of f1, . . . , fk is a
subset of G. So φn(f1, . . . , fk) ↑ φ(f1, . . . , fk) = g. �
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Corollary 7.11 Let f1, . . . , fn be in a σ-algebra F of measurable functions. Let
φ be a Borel function on Rn. Then φ(f1, . . . , fn) is also in F .

Proof: From the theorem φ(f1, . . . , fn) ∈ σ(f1, . . . , fn). Since F is a
σ-algebra and f1, . . . , fn are in F , it follows that σ(f1, . . . , fn) ⊂ F . Thus
φ(f1, . . . , fn) ∈ F . �

This discussion illuminates the use of the term measurable for elements of a
σ-algebra. The idea is that there is a starting set of functions S that are regarded
as those quantities that may be directly measured in some experiment. The σ-
algebra σ(S) consists of all functions that may be computed as the result of
the direct measurement and other mathematical operations. Thus these are all
the functions that are measurable. Notice that the idea of what is possible in
mathematical computation is formalized by the concept of Borel function.

This situation plays a particularly important role in probability theory. For
instance, consider the σ-algebra of functions σ(S) generated by the functions in
S. There is a concept of conditional expectation of a random variable f given S.
This is a numerical prediction about f when the information about the values of
the functions in S is available. This conditional expectation will be a function
in σ(S), since it is computed by the mathematical theory of probability from
the data given by the values of the functions in S.

Problems

1. The most standard examples of σ-algebras are the σ-algebra of all subsets
of a countable set and the σ-algebra of all Borel subsets of the line. There
are also more exotic examples. Here is a relatively small one. Let X be
an uncountable set. Describe the smallest σ algebra that contains all the
one point subsets of X.

2. Let Bo be the smallest σ-algebra of real functions on R containing the
function x. This is called the σ-algebra of Borel functions. Show by a
direct construction that every continuous function is a Borel function.

3. Show that every monotone function is a Borel function.

4. Can a Borel function be discontinuous at every point?

5. Let σ(x2) be the smallest σ-algebra of functions on R containing the func-
tion x2. Show that σ(x2) is not equal to Bo = σ(x). Which algebra of
measurable functions is bigger (that is, which one is a subset of the other)?

6. Consider the σ-algebras of functions generated by cos(x), cos2(x), and
cos4(x). Compare them with the σ-algebras in the previous problem and
with each other. (Thus specify which ones are subsets or proper subsets
of other ones.)



84 CHAPTER 7. MEASURABLE SPACES



Chapter 8

Integrals

8.1 Measures and integrals

In this chapter the important concepts are integral and measure. An integral is
defined on the positive elements of a σ-algebra of functions. A measure is defined
on a σ-algebra of subsets. We shall see that an integral always determines a
measure in a simple way. Conversely, there is a construction that can take us
from a measure to an integral. So these are equivalent concepts.

A measure space is a set together with a given σ-algebra of functions and
integral or a given σ-algebra of subsets and measure. While it is seldom that an
integral is called a measure, it is quite common in many mathematical contexts
to refer to an integral as a measure. Thus it is convenient to think of a measure
space as consisting of a set, a σ-algebra, and a measure. This leaves a free choice
of framework.

Consider a σ-algebra of measurable functions F on a set X. There is an
associated cone F+ of positive measurable functions. An integral is a function

µ : F+ → [0,+∞] (8.1)

such that

1. µ(0) = 0,

2. For each real a > 0 we have µ(af) = aµ(f),

3. µ(f + g) = µ(f) + µ(g),

4. If fn ↑ f pointwise, then µ(fn) ↑ µ(f).

The last condition is often called monotone convergence. Sometimes it is also
called countable additivity. This is because if we have fn =

∑n
k=1 wk and f =∑∞

k=1 wk with each wk ≥ 0, then µ(f) = limn µ(fn) says that

µ(
∞∑

k=1

wk =
∞∑

k=1

µ(wk). (8.2)

85
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Sometimes such a general integral is called an abstract Lebesgue integral. This is
because it is a generalization of the usual translation-invariant Lebesgue integral
defined for functions on the line or on Rn.

Consider a σ-algebra FX of subsets of X. Define the measure µ(B) of subsets
by µ(B) = µ(1B). Then

1. µ(∅) = 0,

2. If A ∩B = ∅, then µ(A ∪B) = µ(A) + µ(B),

3. If An ↑ A, then µ(An) ↑ µ(A).

Monotone convergence in this case is more often called countable additivity.
This is because if we have An =

⋃n
k=1Bk for disjoint subsets Bk, then

µ(
∞⋃

k=1

Bk) =
∑

k

µ(Bk). (8.3)

Sometimes such a general measure is called an abstract Lebesgue measure. This is
because it is a generalization of the usual translation-invariant Lebesgue measure
defined for subsets of the line or of Rn.

Theorem 8.1 Consider an integral µ associated with a σ-algebra F of real
functions on X. Then the restriction of this integral to indicator functions in
F determines a measure on the associated σ-algebra FX of subsets of X. The
measure uniquely determines the integral.

Proof: The fact that an integral determines a corresponding measure is
obvious. The uniqueness follows from writing cnk = k/2n for n ∈ N and k ∈ N
and representing

fn =
∑

k

cnk1cnk<f≤cn k+1 . (8.4)

Then by countable additivity

µ(fn) =
∑

k

cnkµ(cnk < f ≤ cn k+1). (8.5)

This gives an approximation to the integral in terms of the measure. Then

µn(f) = lim
n→∞

µ(fn) (8.6)

gives the integral itself. �
It is shown in many books on real analysis that there is a converse: Each

measure on a σ-algebra of subsets uniquely determines an integral on the as-
sociated σ-algebra of real measurable functions. The notions of integral and
measure are thus totally equivalent.

A measure space is a triple X,F , µ, where X is a set, F is a σ-algebra of
sets or of functions, and µ is a measure or integral. When the σ-algebra is clear
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from context, then sometimes a measure space is denoted X,µ. Sometimes even
the measure is taken for granted; then the measure space becomes simply X. In
many contexts the word measure is used to mean integral. So one could describe
a measure space as a set, a σ-algebra, and a measure. This does not prevent
us from thinking of the measure as an integral acting on measurable functions,
and often this point of view gives a simpler and more uniform description.

The notion of measure of subsets has an intuitive appeal, since we can think
of the measure of a subset A as a mass. For instance, if we have sand distributed
in space, then µ(A) is the amount of sand in the regionA of space. This also gives
a way of thinking about an integral. Say that the sand has a concentration of
gold that varies from point to point. Consider f as a real function that describes
the economic value of the sand at each particular location. Then µ(f) is the
total economic value of the sand at all locations.

Consider a set X and a σ-algebra F of real functions on X. Consider an
integral µ defined on F+, or the corresponding measure µ defined by µ(A) =
µ(1A). The integral or measure is called finite if the integral µ(1) is finite. This
is the same as requiring that the measure µ(X) is finite. This number is called
the total mass of the measure.

In the case when the total mass of a measure is equal to one, the mea-
sure is called a probability measure, and the corresponding integral is called an
expectation.

Examples:

1. The simplest standard example is when X is a countable set. The σ-
algebra of subsets consists of all subsets; the σ-algebra of real functions
consists of all real functions. The integral is

∑
, that is, summation of a

function over the set. It can be written as
∑

f =
∑

x∈X
f(x). (8.7)

The corresponding measure is called counting measure. The measure of a
subset A ⊂ X is the number of points #(A) in the subset.

Another integral constructed from summation is a weighted sum

µ(f) =
∑

fw =
∑

x∈X
f(x)w(x), (8.8)

where w ≥ 0 is a given positive real function on X.

2. The second standard example is when X = R. In this example we take
the σ-algebra of subsets to consist of all Borel subsets. Correspondingly,
the σ-algebra of real functions consists of all Borel functions. The integral
is the Lebesgue integral λ given by

λ(f) =
∫ ∞
−∞

f(x) dx. (8.9)
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The corresponding measure is called Lebesgue measures.

Another integral constructed from this example would be a weighted in-
tegral

µ(f) = λ(fw) =
∫ ∞
−∞

f(x)w(x) dx, (8.10)

where w ≥ 0 is a given positive real Borel function.

3. The third standard example is when X = [0, 1]. Again we use the Borel
σ-algebra. The integral is the Lebesgue uniform distribution integral λ1

given by

λ1(g) =
∫ 1

0

g(x) dx. (8.11)

The corresponding measure λ1 defined on Borel measurable subsets of [0, 1]
is called the uniform probability measure on the unit interval, or Lebesgue
measure on the unit interval. It has the property that λ(In;z) = 1/2n.

4. Here is a variant of the third standard example. There is a measure µ de-
fined on measurable subsets of 2N+ with the property that µ(Fn,z) = 1/2n.
This is called the fair coin-tossing probability measure. The corresponding
integral is called the expectation for fair coin-tossing.

Proposition 8.2 If 0 ≤ f ≤ g, then 0 ≤ µ(f) ≤ µ(g).

Proof: Clearly (g−f)+f = g. So µ(g−f)+µ(f) = µ(g). But µ(g−f) ≥ 0.
�

If f in F is a measurable function, then its positive part f+ = f ∨ 0 ≥ 0
and its negative part f− = −(f ∧ 0) = −f ∨ 0 ≥ 0. So they each have integrals.
If either µ(f+) < +∞ or µ(f−) < +∞, then we may define the integral of
f = f+ − f− to be

µ(f) = µ(f+)− µ(f−). (8.12)

In this case we say that f is a definitely integrable function. (This is not standard
terminology, but it seems helpful to have a word to fix the concept.) The possible
values for this integral are real, +∞, or −∞. There is no ambiguity of any kind.

If both µ(f+) = +∞ and µ(f−) = +∞, then the integral is not defined.
The expression (+∞) − (+∞) = (+∞) + (−∞) is in general quite ambiguous!
This is the major flaw in the theory, and it is responsible for most challenges in
applying the theory of integration.

Of course in certain instances it may be possible to give a finite value to an
integral by a limiting process. Thus while sin(x)/x is not definitely integrable,
it is true that

lim
a→∞

∫ a

−a

sin(x)
x

dx = π. (8.13)

In such situations one has to be rather fussy about how one takes the limit.
The difficulty with the definition of integral should be contrasted with the

situation in the case of measure. The measure of a measurable subset is always
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defined; it may be infinite. In the sand analogy, this says that the amount
of sand in a region of space is a definite physical quantity. Suppose now that
f is a real function that represents the economic value of the sand at each
point. This economic value may be positive (a valuable mineral) or negative
(radioactive waste). If f is not definitely integrable, it says that we are in such
a heady economic context that we are trying to balance infinite positive gains
with infinite negative gains. So we are no longer in the domain of physics, but
instead of a variant on Pascal’s wager.

Theorem 8.3 Suppose that µ(f−) < +∞ and µ(g−) < +∞. Then µ(f + g) =
µ(f) + µ(g).

Proof: Let h = f + g. Then h+ ≤ f+ + g+ and h− ≤ f− + g−. So under
the hypothesis of the theorem µ(h−) < +∞. Furthermore, from h+ − h− =
f+ − f− + g+ − g− it follows that h+ + f− + g− = h− + f+ + g+. Since these
are all positive functions µ(h+) + µ(f−) + µ(g−) = µ(h−) + µ(f+) + µ(g+).
However then µ(h+)−µ(h−) = µ(f+)−µ(f−) +µ(g+)−µ(g−). This is allowed
because the terms that are subtracted are not infinite. The conclusion is that
µ(h) = µ(f) + µ(g). �
Theorem 8.4 If f is in F and µ(|f |) = µ(f+) + µ(f−) < ∞, then µ(f) =
µ(f+)− µ(f−) is defined, and

|µ(f)| ≤ µ(|f |). (8.14)

If f is in F , then f is said to be an absolutely integrable function with respect
to µ if

µ(|f |) = µ(f+) + µ(f−) < +∞. (8.15)

The collection of absolutely integrable functions is called L1(X,F , µ). So

µ : L1(X,F , µ)→ R (8.16)

is well-defined.
An absolutely integrable function must be definitely integrable. A definitely

integrable function is absolutely integrable if and only if its integral is finite.
Note: In many treatments of integration theory an absolutely integrable

function is called an integrable function, and there is no term for definitely
integrable function. As mentioned before, in some contexts an integral is said
to exist and be finite even when it is not definitely integrable; but this situation
always involves a delicate limiting definition of integral, outside the scope of the
present theory.

Consider a vector lattice L of real functions. Suppose that there is a real
function µ : L → R that is linear and order preserving and satisfies the following
integral bounded monotone convergence closure property: If fn is a sequence in
L with fn ↑ f as n→∞, and if there is a real constant M such that for each n
we have µ(fn) ≤ M , then f is in L and µ(fn) ↑ µ(f). Then this µ is called an
absolute integral. While this term is not standard, the following theorem states
that the restriction of an integral to the absolutely integrable functions is an
absolute integral, and so it seems a reasonable concept.
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Theorem 8.5 Consider a σ-algebra F of real functions and an integral µ :
F+ → [0,+∞]. Then the associated µ : L1(X,F , µ)→ R is an absolute integral.

8.2 Borel measures

For every metric space (or even topological space) there is a distinguished σ-
algebra of subsets called the Borel σ-algebra, generated by the open subsets. A
measure defined on the Borel σ-algebra is called a Borel measure.

The most obvious example is the usual Lebesgue measure on the Borel sub-
sets of the line. It is possible for a Borel set with Lebesgue measure zero to
have a subset that is not in the Borel σ-algebra. Therefore some authors like to
consider a much larger σ-algebra, called the Lebesgue σ-algebra, and to define
the completed Lebesgue measure on this larger domain. This has the property
that every subset of a set of measure zero is also measurable.

The Borel σ-algebra has the advantage that it is defined independent of
a particular measure, and so it is the potential domain for many measures.
Furthermore, it is already large enough for most purposes. Therefore in most
concrete applications in the present treatment the measures are defined on the
Borel σ-algebra or on even smaller σ-algebras.

The Lebesgue-Stieltjes measures are Borel measures that generalize Lebesgue
measure. Each such measure is defined by an increasing right continuous func-
tion F : R → R. This function is called a distribution function. The measure
associated to F is σF , and it is characterized by the property that σF ((a, b]) =
F (b) − F (a). Lebesgue measure is then the special case when F (x) = x. The
corresponding Lebesgue-Stieltjes integral is denoted

σF (g) =
∫ ∞
−∞

g(x)dF (x). (8.17)

Notice that if c < d and F (c) = F (d), then the measure σF ((c, d]) = 0.
There are subsets of the interval (c, d] that are not Borel measurable. It may be
shown that there are even subsets of (c, d] that are not Lebesgue measurable.
One could try to extend the domain of the measure to such subsets, but this is
usually not necessary. Borel measures suffice for most purposes.

The other extreme is that the distribution function has a jump discontinuity
at some point p. In that case, the measure of the one point set {p} is the size
of the jump.

If w ≥ 0 is a positive real Borel function, then it may be regarded as a weight
function that defines a measure µ by µ(f) = λ(fw). Suppose that w has a finite
integral over every bounded interval. Then this measure is a Lebesgue-Stieltjes
measure with distribution function F satisfying by

F (b)− F (a) =
∫ b

a

w(x) dx. (8.18)

The function F is said to be a distribution function with density w. However
it is possible to have a distribution function that is not given by integrating a
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density. For instance, a distribution function with a jump discontinuity has this
feature. Thus not every Lebesgue-Stieltjes measure is given by a density.

8.3 Image measures and image integrals

Given an integral µ defined on F+, and given a measurable map φ : X → Y ,
there is an integral φ[µ] defined on G+. It is given by

φ[µ](g) = µ(g ◦ φ). (8.19)

It is called the image of the integral µ under φ.
The same construction works for measures. Since the measure µ(A) is the

same as the integral µ(1A), the image measure is given by φ[µ][1A] = µ(1A ◦φ).
However 1A ◦ φ = 1φ−1[A]. So for measures

φ[µ](A) = µ(φ−1[A]). (8.20)

Example: Let φ : 2N+ → [0, 1] be defined by φ(x) =
∑∞
k=1 xk/2

k. Let µ be
the fair coin tossing probability measure, and let λ1 be the uniform probability
measure. Then φ[µ] = λ1. This is consistent with the fact that λ1(In;z) =
µ(φ−1[In,z]) = µ(Fn;z) = 1/2n.

Problems

1. Let X be the unit interval [0, 1]. Consider the smallest σ algebra of sub-
sets that contains all the one point subsets of X. Restrict the Lebesgue
probability measure λ1 to this σ-algebra. Prove that every measurable
subset has measure zero or has measure one.

2. Let X be an uncountable set. First consider the σ-algebra of all subsets
with counting measure. (The corresponding integral is just summation
over X.) Second, consider the σ-algebra generated by the one point sub-
sets and the restriction of counting measure to this smaller σ-algebra.
Prove that every absolutely integrable function with respect to the first
σ-algebra is actually measurable with respect to the second smaller σ-
algebra.
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Chapter 9

Elementary integrals

9.1 Stone vector lattices of functions

The purpose of this chapter is to explore the concept of a elementary integral
on a Stone vector lattice of real functions. In the following chapter we shall see
each such elementary integral will give to an integral defined with respect to a
σ-algebra of real functions.

Recall that a set of real functions L is called a vector lattice of real func-
tions if it is both a vector space and a lattice (under the pointwise operations).
Sometimes a vector lattice may have the function 1 in it, and hence have every
constant function in it. However this is not required. A weaker condition often
suffices. A vector lattice of real functions L is a Stone vector lattice of functions
if it is a vector lattice and satisfies the property: f ∈ L implies f ∧ 1 ∈ L.

It the following we shall often use the notion of the support of a real function.
This is the closure of the set on which it is non-zero.

Examples:

1. The space L = C([0, 1]) of real continuous functions on the unit interval
is a Stone vector lattice, in fact 1 belongs to L.

2. The space L = Cc(R) of real continuous functions on the line, each with
compact support, is a Stone vector lattice.

3. A rectangular function is an indicator function of an interval (a, b] of real
numbers. Here a and b are real numbers, and the interval (a, b] consists
of all real numbers x with a < x ≤ b. The convention that the interval is
open on the left and closed on the right is arbitrary but convenient. The
nice thing about these intervals is that their intersection is an interval
of the same type. Furthermore, the union of two such intervals is a finite
union of such intervals. And the relative complement of two such intervals
is a finite union of such intervals.

93
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A step function is a finite linear combination of rectangular functions. In
fact, each step function may be represented as a finite linear combination
of rectangular functions that correspond to disjoint subsets. The space
L of real step functions (finite linear combinations of rectangle functions)
defined on the line is a Stone vector lattice.

4. Consider the coin-tossing space Ω = 2N+ of all sequences of zeros and
ones indexed by N+ = {1, 2, 3, . . .}. This is thought of as a sequences of
tails and heads, or of failures and successes. Each element ω is called an
outcome of the coin tossing experiment. For n ≥ 0, let Fn be the set of
real functions on Ω that depend at most on the first n coordinates.

A random variable is a function f from Ω to R (satisfying certain technical
conditions, to be specified later). A random variable is a prescription for
determining an experimental number, since the number f(ω) depends on
the actual result ω of the experiment. Each function in Fn is a random
variable. These are the random variables that may be determined only
knowing the results of the first n coin tosses.

One important function in Fn is the binary function fn;z defined for 0 ≤ n
and a finite sequence z of zeros and ones. Then fn;z is equal to one on
every sequence ω that agrees with z in the first n places. Then the fn;z

for 0 ≤ k < 2n form a basis for the 2n dimensional vector space Fn. The
binary function is one precisely for those coin tosses that have a particular
pattern of successes and failures in the first n trials, without regard to what
happens in later trials.

An important infinite dimensional vector space is

L =
∞⋃
n=0

Fn. (9.1)

This is the space of all random variables that each depend only on some
finite number of trials. Each function in L is a continuous function on Ω.
The space L is a Stone vector lattice, in fact, the function 1 is in L.

Each of the vector lattices L in the above examples defines a corresponding
σ-algebra σ(L).

Examples:

1. When L = C([0, 1]) the corresponding σ-algebra σ(L) is the the smallest
σ-algebra including the continuous functions. Since [0, 1] is a metric space,
this is the Borel σ-algebral Bo of all real Borel functions on [0, 1].

2. When L = Cc(R) the corresponding σ-algebra σ(L) is the Borel σ-algebra
Bo of all real Borel functions on R. This is perhaps less obvious. However it
is not difficult to see that each continuous real function on R is a pointwise
limit of of a sequence of continuous functions with compact support. Since
the continuous functions generate the Borel functions, the result is again
the Borel σ-algebra.
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3. When L consists of step functions on the line the corresponding σ-algebra
σ(L) is the Borel σ-algebra Bo of all real Borel functions on R. This follows
from the fact that each continuous real function on R is a pointwise limit
of a sequence of step functions.

4. When L consists of functions on the Cantor space that each depend on
only finitely many coordinates, then the corresponding σ-algebra σ(L) is
the Borel σ-algebra of all real Borel functions on the Cantor space. In
order to see this, recall that the Cantor space is a metric space with the
product metric that defines pointwise convergence. Each real function
on the Cantor space that depends on only finitely many coordinates is
continuous. On the other hand, let f be a continuous function on the
Cantor space. Let fn(ω) = f(ω̄n), where ω̄n agrees with ω in the first
n coordinates and is zero in the remaining coordinates. Since ωn → ω
as n → ∞ in the product metric, it follows that fn → f pointwise as
n→∞. This shows that the continuous functions are in σ(L). It follows
that σ(L) = Bo.

In each case this Borel σ algebra Bo of functions is huge; in fact, it is difficult
to think of a real function that does not belong to Bo. However it is possible to
show that the cardinality of Bo is c, while the cardinality of the σ algebra of all
real functions is 2c.

9.2 Elementary integrals

Let X be a non-empty set. Let L be a vector lattice of real functions on X.
Then µ is an elementary integral on L provided that

1. µ : L→ R is linear;

2. µ : L→ R is order preserving;

3. µ satisfies monotone convergence within L.

To say that µ satisfies monotone convergence within L is to say that if each
fn is in L, and fn ↑ f , and f is in L, then µ(fn) ↑ µ(f).

Proposition 9.1 Suppose that gn in L and gn ↓ 0 imply µ(gn) ↓ 0. Then µ
satisfies monotone convergence within L.

Proof: Suppose that fn is in L and fn ↑ f and f is in L. Since L is a
vector space, it follows that gn = f − fn is in L. Furthermore gn ↓ 0. Therefore
µ(gn) ↓ 0. This says that µ(fn) ↑ µ(f). �

Examples:

1. For the L = C([0, 1]), the continuous real functions on [0, 1] one can
take the Riemann integral (or even the regulated integral defined using
extension by uniform continuity). The fact that this is an elementary
integral follows from Dini’s theorem in the following section.
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2. For the continuous functions Cc(R) of continuous real functions on R, each
with compact support, we can again take the Riemann integral (or the
regulated integral). Because the support of each function is compact there
is no nonsense about integrals that are not absolutely convergent. Again
the fact that this is an elementary integral follows from Dini’s theorem.

3. For the space L of step functions the elementary integral is just the integral
of a finite linear combination of rectangle functions. Thus all one has
to do is to add the areas of rectangles, with appropriate signs. This
elementary integral is indeed elementary. On the other hand, the proof
that it satisfies monotone convergence requires a more complicated version
of Dini’s theorem, presented in a later section of this chapter.

4. Let Ω = {0, 1}N+ be the set of all infinite sequences of zeros and ones
indexed by N+ = {1, 2, 3, . . .}. For each k = 0, 1, 2, 3, . . . consider the
set Fk of functions f on Ω that depend only on the first k elements of
the sequence, that is, such that f(ω) = g(ω1, . . . , ωk) for some function
g on Rk. This is a vector lattice with dimension 2k. The vector lattice
under consideration will be the space L that is the union of all the Fk for
k = 0, 1, 2, 3, . . .. If the function f is in Fk, let

µ(f) =
1∑

ω1=0

· · ·
1∑

ωk=0

f(ω)
1
2k
. (9.2)

This is a consistent definition, since if f is regarded as being in Fj for k < j,
then the definition involves sums over 2j sequences, but the numerical
factor is 1/2j , and the result is the same. This example describes the
expectation for a function of the result of independent tosses of a fair
coin. The fact that this defines an elementary integral follows from Dini’s
theorem.

9.3 Dini’s theorem

Theorem 9.2 (Dini’s theorem) Suppose K is compact. If fn is a sequence
of continuous functions on K and fn ↓ 0 pointwise as n → ∞, then fn → 0
uniformly.

Proof: Let K be compact. Suppose each fn is in C(K) and fn ↓ 0 pointwise.
Let ε > 0. Let An be the closed set where fn ≥ ε. Consider arbitrary a in K.
Since fn(a) ↓ 0, it follows that for large n the point a is not in An. Hence it
is not in the intersection

⋂
nAn. Thus

⋂
nAn = ∅. By the finite-intersection

property, there exists an N so that n ≥ N implies An = ∅. Thus for n ≥ N we
have fn < ε at each point. It follows that fn ↓ 0 uniformly. �

Dini’s theorem will have several applications. The first is to continuous
functions with compact support. Consider the space of continuous real functions
on the real line, each with compact support. Dini’s theorem says that within
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this space monotone pointwise convergence to zero implies uniform convergence
to zero.

9.4 Dini’s theorem for step functions

A general step function can have arbitrary values at the end points of the inter-
vals. It is sometimes nicer to make a convention that makes the step functions
left continuous (or right continuous). This will eventually make things easier
when dealing with more general integrals where individual points count.

If f is a step function, then its integral λ(fn) is defined in a completely
elementary way.

Theorem 9.3 For each function

f =
m∑

k=1

ck1(ak,bk] (9.3)

define

λ(f) =
m∑

k=1

ck(bk − ak). (9.4)

If fn ↓ 0 pointwise, then µ(fn) ↓ 0.

Proof: Say that fn → 0, where each fn is such a function. Notice that all the
fn have supports in the interior of a fixed compact interval [p, q]. Furthermore,
they are all bounded by some fixed constant M . Write fn =

∑mn
k=1 cnk1(ank,bnk].

For each n and k choose an interval Ink = (ank, a′nk] such that the corresponding
length a′nk)− ank is bounded by ε/(2nmk). Let In be the union of the intervals
Ink, so the total length associated with In is ε/2n. For each x in [p, q] let nx be
the first n such that fn(x) < ε. Choose an open interval Vx about x such that
y in Vx and y not in Inx implies fnx(y) < ε. Now let Vx1 , . . . , Vxj be a finite
open subcover of [p, q]. Let N be the maximum of nx1 , . . . , nxj . Then since the
sequence of functions is monotone decreasing, y in [p, q] but y not in the union
of the Inxi implies f(y) < ε. So λ(fN ) is bounded by the total length q − p
times the upper bound ε on the values plus a length at most ε times the upper
bound M on the values. �

9.5 Supplement: Monotone convergence with-
out topology

This section presents a proof of the monotone convergence property for the
Cantor space (coin tossing space) that does not use topological notions. This
is conceptually important, since measure and integral should be a subject that
can be developed independent of topology. Once we have the measure on the
Cantor space, we can get Lebesgue measure on the unit interval by sending the
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binary expansion of a real number to the real number. So this gives an approach
to the Lebesgue integral that requires no mention of compactness.

Let Ω = {0, 1}N+ be the set of all infinite sequences of zeros and ones indexed
by N+ = {1, 2, 3, . . .}. For each k = 0, 1, 2, 3, . . . consider the set Fk of functions
f on Ω that depend only on the first k elements of the sequence, that is, such
that f(ω) = g(ω1, . . . , ωk) for some function g on Rk. This is a vector lattice
with dimension 2k. The vector lattice under consideration will be the space L
that is the union of all the Fk for k = 0, 1, 2, 3, . . .. In the following, we suppose
that we have an elementary integral µ on L.

A subset A of Ω is said to be an Fk set when its indicator function 1A is in
Fk. In such a case we write µ(A) for µ(1A) and call µ(A) the measure of A.
Thus measure is a special case of integral.

In the following we shall need a few simple properties of measure. First, note
that µ(∅) = 0. Second, the additivity of the integral implies the corresponding
property µ(A∪B) +µ(A∩B) = µ(A) +µ(B). In particular, if A∩B = ∅, then
µ(A ∪B) = µ(A) + µ(B). This is called the additivity of measure. Finally, the
order preserving property implies that A ⊂ B implies µ(A) ≤ µ(B).

Here is an example. If the function f is in Fk, let

µ(f) =
1∑

ω1=0

· · ·
1∑

ωk=0

f(ω)
1
2k
. (9.5)

This is a consistent definition, since if f is regarded as being in Fj for k < j,
then the definition involves sums over 2j sequences, but the numerical factor
is 1/2j , and the result is the same. This example describes the expectation
for independent of tosses of a fair coin. Suppose A is a subset of Ω whose
definition depends only on finitely many coordinates. Then A defines an event
that happens or does not happen according to information about finitely many
tosses of the coin. The measure µ(A) = µ(1A) is the probability of this event.

The following results shows that such an example automatically satisfies the
monotone convergence property and thus gives an elementary integral. The
remarkable thing about the proof that follows is that it uses no notions of
topology: it is pure measure theory.

Lemma 9.4 Suppose that L is a vector lattice consisting of bounded functions.
Suppose that 1 is an element of L. Suppose furthermore that for each f in L and
each real α the indicator function of the set where f ≥ α is in L. Suppose that
µ : L → R is linear and order preserving. If µ satisfies monotone convergence
for sets, then µ satisfies monotone convergence for functions.

Proof: Suppose that µ satisfies monotone convergence for sets, that is,
suppose that An ↓ ∅ implies µ(An) ↓ 0. Suppose that fn ↓ 0. Say f1 ≤M . Let
ε > 0. Choose α > 0 so that αµ(1) < ε/2. Let An be the set where fn ≥ α > 0.
Then fn ≤ α+M1An . Hence µ(fn) ≤ αµ(1) +Mµ(An). Since An ↓ ∅, we can
choose n so that Mµ(An) < ε/2. Then µ(fn) < ε. Since ε > 0 is arbitrary, this
shows that µ(fn) ↓ 0. Thus µ satisfies monotone convergence for functions. �
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Theorem 9.5 Let Ω = {0, 1}N+ be the set of all infinite sequences of zeros
and ones. Let L =

⋃∞
k=0 Fk be the vector lattice of all functions f on Ω that

each depend only on the first k elements of the sequence for some k. Suppose
that µ : L → R is linear and order preserving. Then µ satisfies monotone
convergence within L.

Proof: By the lemma, it is enough to show that if An ↓ ∅ is a sequence of
sets, each of which is an Fk set for some k, then µ(An) ↓ 0. The idea is to prove
the contrapositive. Suppose then that there is an ε > 0 such that µ(An) ≥ ε for
all n.

Let ω̄[k] = (ω̄1, . . . , ω̄k) be a finite sequence of k zeros and ones. Let

Bω̄[k] = {ω | ω1 = ω̄1, . . . , ωk = ω̄k} (9.6)

This is the binary set of all sequences in Ω that agree with ω̄[k] in the first k
places. It is an Fk set. (For k = 0 we may regard this as the set of all sequences
in Ω.)

The main step in the proof is to show that there is a consistent family of
sequences ω̄[k] such that for each n

µ(An ∩Bω̄[k]) ≥ ε
1
2k
. (9.7)

The proof is by induction. The statement is true for k = 0. Suppose the
statement is true for k. By additivity

µ(An ∩Bω̄[k]) = µ(An ∩Bω̄[k]0) + µ(An ∩Bω̄[k]1). (9.8)

Here ω̄[k]0 is the sequence of length k + 1 consisting of ω̄[k] followed by a 0.
Similarly, ω̄[k]1 is the sequence of length k + 1 consisting of ω̄[k] followed by a
0. Suppose that there is an n1 such that the first term on the right is less than
ε/2k+1. Suppose also that there is an n2 such that the second term on the right
is less than ε/2k+1. Then, since the sets are decreasing with n, there exists an
n such that both terms are less than ε/2k+1. But then the measure on the left
would be less than ε/2k for this n. This is a contradiction. Thus one of the two
suppositions must be false. This says that one can choose ω̄[k + 1] with ω̄k+1

equal to 1 or to 0 so that for all n we have µ(An ∩ Bω̄[k+1]) ≥ ε/2k+1. This
completes the inductive proof of the main step.

The consistent family of finite sequences ω[k] defines an infinite sequence
ω̄. This sequence ω̄ is in each An. The reason is that for each n there is a k
such that An is an Fk set. Each Fk set is a disjoint union of a collection of
binary sets, each of which consists of the set of all sequences where the first k
elements have been specified in some way. The set Bω̄[k] is such a binary set.
Hence either An ∩ Bω̄[k] = ∅ or Bω̄[k] ⊂ An. Since µ(An ∩ Bω̄[k]) > 0 the first
possibility is ruled out. We conclude that

ω̄ ∈ Bω̄[k] ⊂ An. (9.9)

The last argument proves that there is a sequence ω̄ that belongs to each
An. Thus it is false that An ↓ ∅. This completes the proof of the contrapositive.
�
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Problems

1. Lebesgue measure on the Hilbert cube. Consider the Hilbert cube [0, 1]N+ .
Consider the vector lattice of all real functions f on the Hilbert cube
such that there exists k and continuous F : [0, 1]k → R with f(x) =
F (x1, . . . , xk). Define the elementary integral by

λ(f) =
∫ 1

0

· · ·
∫ 1

0

F (x1, . . . , xk) dx1 · · · dxk. (9.10)

Prove that in fact it satisfies monotone convergence.

2. Let f ≥ 0. Prove the most elementary version of the Chebyshev inequality
between measure and integral: For each t > 0

µ(f ≥ t) ≤ µ(f)
t
. (9.11)

3. Let g(z) = 1√
2π
e−

z2
2 .

(a) Prove that ∫ ∞
−∞

∫ ∞
−∞

g(z)g(w) dz dw = 1. (9.12)

Hint: Polar coordinates.
(b) Prove the famous Gaussian integral

∫ ∞
−∞

g(z) dz = 1. (9.13)

Hint: Use the previous result.
(c) Prove that ∫ ∞

−∞
z2g(z) dz = 1. (9.14)

Hint: Integrate by parts.
(d) Evaluate ∫ ∞

−∞
z4g(z) dz. (9.15)

4. Gaussian measure on R∞. Consider functions on [−∞,+∞]N+ that each
depend on finitely many coordinates through a continuous function. De-
fine the elementary Gaussian integral as follows. Suppose that f is a
function such that there exists k and F : [−∞,+∞]k → R such that
f(x) = F (x1, . . . , xk). Define

µ(f) =
∫ ∞
−∞
· · ·
∫ ∞
−∞

F (z1, . . . , zk) g(z1) · · · g(zk) dz1 · · · dzk. (9.16)

Verify monotone convergence to show that this defines an elementary in-
tegral.
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5. Prove that this elementary Gaussian integral on functions of n variables
for large n is mainly concentrated near the sphere of radius

√
n, in the

sense that for each ε > 0

µ(|z2
1 + · · ·+ z2

n − n| ≥ εn) ≤ 2
ε2n

. (9.17)

Hint: µ([
∑n
k=1(z2

k − 1)]2 ≥ ε2n2) ≤ µ([
∑n
k=1(z2

k − 1)]2)/(ε2n2).

6. Take as known that this elementary Gaussian integral extends to an inte-
gral. Show that each cube centered at the origin has measure zero. Show
that `∞ has measure zero. Show that `2 has measure zero.
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Chapter 10

Existence of integrals

10.1 The abstract Lebesgue integral: Daniell con-
struction

The purpose of this chapter is to show that an elementary integral µ on a Stone
vector lattice L of real functions gives rise an integral µ on a σ-algebra of real
functions. The σ-algebra Mµ produced in the construction is depends on the
integral µ. However it includes the σ-algebra σ(L) generated by the original
vector lattice, which only depends on L.

This section is an outline of the Daniell construction of the abstract Lebesgue
integral. This is a two stage process. Let L ↑ consist of the functions h : X →
(−∞,+∞] such that there exists a sequence hn in L with hn ↑ h pointwise.
These are the upper functions. Similarly, let L ↓ consist of the functions f :
X → [−∞,+∞) such that there exists a sequence fn in L with fn ↓ f pointwise.
These are the lower functions. The first stage of the construction is to extend
the integral to upper functions and to lower functions.

This terminology of upper functions and lower functions is quite natural, but
it may not be ideal in all respects. If L is vector lattice of continuous functions,
then the upper functions are lower semicontinuous, while the lower functions
are upper semicontinuous.

Lemma 10.1 There is a unique extension of µ from L to the upper functions
L ↑ that satisfies the upward monotone convergence property: if hn is in L ↑
and hn ↑ h, then h is in L ↑ and µ(hn) ↑ µ(h). Similarly, there is a unique
extension of µ from L to the lower functions L ↓ that satisfies the corresponding
downward monotone convergence property.

The second stage of the process is to extend the integral to functions that
are approximated by upper and lower functions in a suitable sense. Let g be a
real function on X. Define the upper integral

µ∗(g) = inf{µ(h) | h ∈ L ↑, g ≤ h}. (10.1)

103



104 CHAPTER 10. EXISTENCE OF INTEGRALS

Similarly, define the lower integral

µ∗(g) = sup{µ(f) | f ∈ L ↓, f ≤ g}. (10.2)

Lemma 10.2 The upper integral is order preserving and subadditive: µ∗(g1 +
g2) ≤ µ∗(g1) + µ∗(g2). Similarly, the lower integral is order preserving and
superadditive: µ∗(g1 + g2) ≥ µ∗(g1) + µ∗(g2). Furthermore, µ∗(g) ≤ µ∗(g) for
all g.

Define L1(X,µ) to be the set of all g : X → R such that both µ∗(g) and
µ∗(g) are real, and

µ∗(g) = µ∗(g). (10.3)

Let their common value be denoted µ̃(g). This µ̃ is the integral on the space
L1 = L1(X,µ) of µ absolutely integrable functions.

We shall see that this extended integral is in fact an absolute integral. This
says that it satisfies the integral bounded monotone convergence closure prop-
erty. The upward version says that if fn is a sequence in L1 and fn ↑ f pointwise
and the µ̃(fn) are bounded above, then f is in L1 and µ̃(fn) ↑ µ̃(f). There is
a similar downward version. The remarkable thing is that the fact that the
limiting function f is in L1 is not a hypothesis but a conclusion.

Theorem 10.3 (Daniell construction) Let µ be an elementary integral on a
vector lattice L of functions on X. Then the corresponding space L1 = L1(X,µ)
of µ absolutely integrable functions is a vector lattice, and the extension µ̃ is an
absolute integral on it.

If an indicator function 1A is in L1, then µ̃(1A) is written µ̃(A) and is called
the measure of the set A. In the following we shall often write the integral of f
in L1 as µ(f) and the measure of A with 1A in L1 as µ(A).

In the following corollary we consider a vector lattice L. Let L ↑ consist
of pointwise limits of increasing limits from L, and let L ↓ consist of pointwise
limits of decreasing sequences from L. Similarly, let L ↑↓ consist of pointwise
limits of decreasing sequences from L ↑, and let L ↓↑ consist of pointwise limits
of increasing sequences from L ↓.

Corollary 10.4 Let L be a vector lattice and let µ be an elementary integral.
Consider its extension µ̃ to L1. Then for every g in L1 there is a f in L ↓↑ and
an h in L ↑↓ with f ≤ g ≤ h and µ̃(g − f) = 0 and µ̃(h− g) = 0.

This corollary says that if we identify functions in L̃1 when the integral of
the absolute value of the difference is zero, then all the functions that we ever
will need may be taken, for instance, from L ↑↓. However this class is not closed
under pointwise limits.

The proof of the theorem has a large number of routine verifications. How-
ever there are a few key steps. These will be outlined in the following sections.
For more detailed accounts there are several excellent references. A classic brief
account is Chapter III of the book of Loomis[12]. Chapter VIII of the recent
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book by Stroock[21] gives a particularly careful presentation. We shall see in
the following section that it is possible to extend the integral to much larger
σ-algebras. See Chapter 16 of Royden’s book [17] for a related approach to this
result.

10.2 Stage one

Begin with a vector lattice L and an elementary integral µ. Let L ↑ be the set of
all pointwise limits of increasing sequences of elements of L. These functions are
allowed to take on the value +∞. Similarly, let L ↓ be the set of all pointwise
limits of decreasing sequences of L. These functions are allowed to take on the
value −∞. Note that the functions in L ↓ are the negatives of the functions in
L ↑.

For h in L ↑, take hn ↑ h with hn in L and define µ(h) = limn µ(hn). The
limit of the integral exists because this is a monotone sequence of numbers.
Similarly, if f in L ↓, take fn ↓ f with fn in L and define µ(f) = limn µ(fn).

Lemma 10.5 The definition of µ(h) for h in L ↑ is independent of the sequence.
There is a similar conclusion for L ↓.

Proof: Say that hm is in L with hm ↑ h and kn is in L with kn ↑ k and
h ≤ k. We will show that limm µ(hm) ≤ limn µ(kn). This general fact is enough
to establish the uniqueness. In fact, if h = k, then we can define µ(h) by either
limm µ(hm) or by limn µ(kn).

Suppose that hm is in L with hm ↑ h and kn is in L with kn ↑ k and h ≤ k.
All we know about h and k are that they are in L ↑. But

hm ∧ kn ↑ hm ∧ k = hm (10.4)

as n→∞, and hm is in L. By monotone convergence within L it follows that

µ(hm ∧ kn) ↑ µ(hm) (10.5)

as n → ∞. But µ(hm ∧ kn) ≤ µ(kn) ≤ µ(k). So µ(hm) ≤ µ(k). Now take
m→∞; it follows that µ(h) ≤ µ(k). �

Lemma 10.6 Upward monotone convergence holds for L ↑. Similarly, down-
ward monotone convergence holds for L ↓.

Proof: Here is the argument for upward monotone convergence. Say that
the hn are in L ↑ and hn ↑ h as n → ∞. For each n, let gnm be a sequence
of functions in L such that gnm ↑ hn as m → ∞. The idea is to use this to
construct a single sequence un of elements of L with un ↑ h.

Let un = g1n ∨ g2n ∨ · · · ∨ gnn. Then un is in L and un ≤ hn ≤ h, and so
un ↑ u for some u in L↑. There is a squeeze inequality

gin ≤ un ≤ hn (10.6)
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for 1 ≤ i ≤ n. As n → ∞ the gin ↑ hi and the hn ↑ h. So hi ≤ u ≤ h.
Furthermore, as i → ∞ the hi ↑ h. By the squeeze inequality h ≤ u ≤ h, that
is, un ↑ h.

Again from the squeeze inequality we get

µ(gin) ≤ µ(un) ≤ µ(hn) (10.7)

for 1 ≤ i ≤ n. Since un ↑ h with each un in L, the preceding lemma gives
µ(un) ↑ µ(h) as n → ∞. So µ(hi) ≤ µ(h) ≤ limn µ(hn). Then we can take
i → ∞ and get limi µ(hi) ≤ µ(h) ≤ limn µ(hn). This shows that the integrals
converge to the correct value. �

10.3 Stage two

The integral µ(g) is the supremum of all the µ(f) for f in L ↓ with f ≤ g and
is also the infimum of all the µ(h) for h in L ↑ with g ≤ h. Alternatively, a
function g is in L1 if for every ε > 0 there is a function f in L ↓ and a function
h in L ↑ such that f ≤ g ≤ h, µ(f) and µ(h) are finite, and µ(h)− µ(f) < ε.

It is not hard to show that the set L1 of absolutely integrable functions is a
vector lattice and that µ is a positive linear functional on it. The crucial point
is that there is also a monotone convergence theorem. This theorem says that
if the gn are absolutely integrable functions with µ(gn) ≤M <∞ and if gn ↑ g,
then g is absolutely integrable with µ(gn) ↑ µ(g).

Lemma 10.7 The integral on L1 satisfies the monotone convergence property.

Proof: We may suppose that g0 = 0. Let wn = gn − gn−1 ≥ 0 for n ≥ 1 be
the increment. Since the absolutely integrable functions L1 are a vector space,
each wn is absolutely integrable. So

gn =
n∑

i=1

wi (10.8)

is a sum of positive absolutely integrable functions.
Consider ε > 0. Each wi may be approximated above by some hi in L ↑. In

fact, we may choose hi in L ↑ for i ≥ 1 such that wi ≤ hi and such that

µ(hi) ≤ µ(wi) +
ε

2i
. (10.9)

Let

sn =
n∑

i=1

hi (10.10)

be the corresponding sum of functions in L ↑. Then gn ≤ sn. Also sn ↑ s in
L ↑, and g ≤ s. This is the s in ↑ that we want to use to approximate g from
above.
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To deal with the integrals, note that

µ(sn) ≤ µ(gn) + ε ≤M + ε. (10.11)

By monotone convergence for L ↑

µ(s) ≤ lim
n
µ(gn) + ε ≤M + ε. (10.12)

Pick m so large that gm ≤ g satisfies µ(s) < µ(gm) + 3
2ε. Use the fact that this

gm may be approximated from below by some r in L ↓. Thus pick r in L ↓ with
r ≤ gm so that µ(gm) ≤ µ(r) + 1

2ε. Then r ≤ g ≤ s with µ(s)−µ(r) < 2ε. Since
ε is arbitrary, this proves that g is absolutely integrable.

Since gn ≤ g, it is clear that limn µ(gn) ≤ µ(g). On the other hand, the
argument has shown that for each ε > 0 we can find s in L ↑ with g ≤ s and
µ(g) ≤ µ(s) ≤ limn µ(gn) + ε. Since ε is arbitrary, we conclude that µ(g) ≤
limn µ(gn). This proves that µ(gn) ↑ µ(g). �

The proof of the monotone convergence theorem for the functions in L ↑
and for the functions in L ↓ is natural within the context of ordered steps.
However the proof of the monotone convergence theorem for the functions in
L1 has a remarkable and deep feature: it uses in a critical way the fact that the
sequence of functions is indexed by a countable set of n. Thus the errors in the
approximations can be estimated by ε/2n, and these sum to the finite value ε.

Technically a function in L ↑ or L ↓ with finite integral need not be in L1,
because of the possible of infinite values (+∞ in the case of L ↑, and −∞ in the
case of L ↓. This is because according to our definition functions in L1 have only
real values. However in later developments we shall see that this technicality
does not present serious problems.

10.4 Extension to measurable functions

Proposition 10.8 If L is a Stone vector lattice, then the corresponding L1 in
the Daniell construction is also a Stone vector lattice.

Proof: Suppose that L is a Stone vector lattice. Thus f ∈ L implies
f ∧ 1 ∈ L. It follows by taking monotone increasing limits that f ∈ L ↑ ∩L
implies f ∧ 1 in L↑ ∩ L. Then it follows by taking monotone decreasing limits
that f ∈ L ↑↓ ∩L implies f ∧ 1 ∈ L ↑↓ ∩L. Now consider g ∈ L1. Find f in
L↑ ↓ ∩L1 with g ≤ f and µ(f − g) = 0. Then g ≤ f implies g ∧ 1 ≤ f ∧ 1.
Furthermore, 0 ≤ f ∧ 1 − g ∧ 1 ≤ f − g. It follows that f ∧ 1 − g ∧ 1 is in L1

with integral zero. The conclusion is that g∧ 1 is in L1. So L1 is a Stone vector
lattice. �

Let µ : L → R be an elementary integral defined on a vector lattice L. By
definition of elementary integral, if fn is in L with fn ↑ f pointwise, and if f
is assumed to be in L, then µ(fn) → µ(f). The monotone convergence closure
property is much more powerful: it says that if fn is in L with fn ↑ f pointwise,
and if the µ(fn) are bounded above, then f is in L and µ(fn)→ µ(f).
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Recall that an absolute integral is an integral on a vector lattice that satisfies
the integral bounded monotone convergence closure property.

Theorem 10.9 Let µ : L → R be an absolute integral defined on a Stone vector
lattice L. Then there exists a σ-algebra M of real functions with L ⊂ M and
such that µ extends to an integral on M+.

Proof: For technical reasons it is best to construct first a σ-algebra of subsets
MX . A subset E of X is in MX provided that it is locally measurable: for
each A with 1A in L it is also the case that 1E ∧ 1A = 1E∩A is in L.

It is routine to verify that M is indeed an algebra of subsets. To check
countable additivity, it is enough to check that if En is in MX and En ↑ E,
then E is in MX . Suppose that each En ∈ MX . Consider 1A in L. Then
1En∩A ↑ 1E∩A. Since the integral of 1En∩A is bounded by the integral of 1A,
we can conclude from the monotone convergence closure property that 1E∩A is
indeed in L.

A σ-algebra of subsets MX always determines a σ-algebra M of real func-
tions. A function f is in M provided that for every real a the set f > a is in
MX .

Next we need to establish that each f in L is also inM. Since every function
f in L has a decomposition f = f+ − f− into a positive and a negative part,
it is enough to verify this for positive functions. So consider a function f ≥ 0
in L. Consider a ≥ 0. Since L is a Stone vector lattice, the function f ∧ a is
in L. Hence also f − f ∧ a is in L. Consider a subset A with 1A in L. Then
n(f − f ∧ a) ∧ 1A is in L. These functions all have integral bounded by the
integral of 1A. As n → ∞ they converge to 1f>a ∧ 1A. So from the monotone
convergence property this is a function in L. This shows that the set where
f > a is in MX .

Finally, we need to extend µ to all of M+. One method is to define µ(f) =
+∞ if f ≥ 0 is in M+ but not in L. �

Proposition 10.10 The elements f ≥ 0 of M+ in the construction are char-
acterized by the property that f ∈M+ if and only if g ∈ L implies f ∧ g ∈ L.

Proof: To say that f ≥ 0 is in M+ is to say that it is measurable. Clearly
if it is measurable and g is in L1, then f ∧ g is measurable, and it follows easily
that f ∧ g is in L1. For the other direction, consider f ≥ 0. Suppose that g ∈ L
implies f ∧ g ∈ L. Consider c > 0. Take g = c1A where 1A is in L1. Then
f ∧ c1A is in L and hence is in M. It follows that the set where f ∧ c1A ≥ c
is measurable. But this is the intersection of the set where f ≥ c with A. It
follows that the set where f ≥ c is a measurable set. Thus f is a measurable
function. �

Remark: The initial construction starts with an elementary integral and
produces an absolute integral on a very large domain. The present construction
then produces a very large σ-algebraM of locally measurable functions. In the
following we shall often write it asMµ, in order to emphasize that this σ-algebra
of real functions depends on the integral µ. In the following we shall most often
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restrict the integral to F = σ(L), the σ-algebra generated by L. This is much
smaller, but it already large enough for just about every practical purpose.
Example: Let L consists of all continuous real functions with compact support
on the line. Take the elementary integral λ to be the Riemann integral. The σ-
algebra Mλ constructed in this theorem is known as the σ-algebra of Lebesgue
measurable functions. It is huge: much larger than the Borel σ-algebra σ(L) =
Bo generated by L. However there is no harm in most instances in restricting
the integral to the Borel functions; there are already plenty of these.

10.5 Example: The Lebesgue integral

Consider the vector lattice L of real step functions on the line R. The integral
λ of such a function is given by a finite sum. By Dini’s theorem for step func-
tions this satisfies monotone convergence and hence is an elementary integral.
Therefore it has an extension to an integral λ defined for the σ-algebra Mλ of
Lebesgue measurable functions. In most of the following we shall find it suf-
ficient to regard this integral as defined for the smaller σ-algebra Bo of Borel
measurable functions. In either case, the integral λ is written

λ(f) =
∫ ∞
−∞

f(x) dx (10.13)

and is called the Lebesgue integral. The associated measure defined on Borel
subsets of the line is called Lebesgue measure.

One can show directly from the definition of the integral that that the
Lebesgue measure of a countable set Q is 0. This will involve a two-stage
process. Let qj , j = 1, 2, 3, . . . be an enumeration of the points in Q. Fix ε > 0.
For each j, find a n interval Bj of length less than ε/2j such that qj is in the in-
terval. The indicator function 1Bj of each such interval is in L. Let h =

∑
j 1Bj .

Then h is in L ↑ and λ(h) ≤ ε. Furthermore, 0 ≤ 1Q ≤ h. This is the first stage
of the approximation. Now consider a sequence of ε > 0 values that approach
zero, and construct in the same way a sequence of hε such that 0 ≤ 1Q ≤ hε
and λ(hε) ≤ ε. This is the second stage of the approximation. This shows that
the integral of 1Q is zero.

Notice that this could not have been done in one stage. There is no way to
cover Q by finitely many binary intervals of small total length. It was necessary
first to find infinitely many binary intervals that cover Q and have small total
length, and only then let this length approach zero.

10.6 Example: The expectation for coin tossing

An example to which this result applies is the space Ω of the coin tossing exam-
ple. Recall that the elementary integral is defined on the space L =

⋃∞
n=0 Fn,

where Fn consists of the functions that depend only on the first n coordinates.
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Thus L consists of functions each of which depends only on finitely many co-
ordinates. A subset S of Ω is said to be an Fn set if its indicator function 1S
belongs to Fn. This just means that the definition of the set depends only on
the first n coordinates. In the same way, S is said to be an L set if 1S is in L.

Consider the elementary integral for fair coin tossing. The elementary inte-
gral µ(f) of a function f in Fn may be calculated by a finite sum involving at
most 2n terms. It is just the sum of the values of the function for all of the 2n

possibilities for the first n coin flips, divided by 2n. Similarly, the elementary
measure µ(S) of an Fn set is the number among the 2n possibilities of the first
n coin flips that are satisfied by S, again weighted by 1/2n.

Thus consider for example the measure of the uncountable set S consisting
of all ω such that ω1 + ω2 + ω3 = 2. If we think of S as an F3 set, its measure
is 3/23 = 3/8. If we think of S as an F4 set, its measure is still 6/24 = 3/8.

The elementary integral on L extends to an integral. The integral of a
function f is denoted µ(f). This is interpreted as the expectation of the random
variable f . Consider a subset S of Ω. The measure µ(S) of S is the integral
µ(1S) of its indicator function 1S . This is interpreted as the probability of the
event S in the coin tossing experiment.

Proposition 10.11 Consider the space Ω for infinitely many tosses of a coin,
and the associated integral for tosses of a fair coin. Then each subset with
exactly one point has measure zero.

Proof: Consider such a set {ω̄}. Let Bk be the set of all ω in Ω such that ω
agrees with ω̄ in the first k places. The indicator function of Bk is in L. Since
{ω̄} ⊂ Bk, we have 0 ≤ µ({ω̄}) ≤ µ(Bk) = 1/2k for each k. Hence µ({ω̄}) = 0.
�

Proposition 10.12 Consider the space Ω for infinitely many tosses of a coin,
and the associated integral that gives the expectation for tosses of a fair coin.
Let S ⊂ Ω be a countable subset. Then the measure of S is zero.

Proof: Here is a proof from the definition of the integral. Let j 7→ ω(j) be
an enumeration of S. Let ε > 0. For each j let B(j) be a set with indicator
function in L such that ω(j) ∈ B(j) and µ(B(j)) < ε

2j . For instance, one can
take B(j) to be the set of all ω that agree with ω(j) in the first k places, where
1/2k ≤ ε/2j . Then

0 ≤ 1S ≤ 1S
j B

(j) ≤
∑

j

1B(j) . (10.14)

The right hand side of this equation is in L↑ and has integral bounded by ε.
Hence 0 ≤ µ(S) ≤ ε. It follows that µ(S) = 0. �

Proof: Here is a proof from the monotone convergence theorem. Let j 7→
ω(j) be an enumeration of S. Then

∑

j

1ω(j) = 1S . (10.15)
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By the previous proposition each term in the integral has integral zero. Hence
each partial sum has integral zero. By the monotone convergence theorem the
sum has integral zero. Hence µ(S) = 0. �

Corollary 10.13 Consider the space Ω for infinitely many tosses of a coin,
and the associated integral that gives the expectation for tosses of a fair coin.
Let S ⊂ Ω be the set of all sequences that are eventually either all zeros or all
ones. Then the measure of S is zero.

Examples:

1. As a first practical example, consider the function bj on Ω defined by
bj(ω) = ωj , for j ≥ 1. This scores one for a success in the jth trial.
It is clear that bj is in Fj and hence in L. It is easy to compute that
µ(bj) = 1/2 for the fair coin µ.

2. A more interesting example is cn = b1 + · · ·+ bn, for n ≥ 0. This random
variable counts the number of successes in the first n trials. It is a function
in Fn and hence in L. The fair coin expectation of cn is n/2. In n coin
tosses the expected number of successes is n/2.

3. Consider the set defined by the condition cn = k for 0 ≤ k ≤ n. This is
an Fn set, and its probability is µ(cn = k) =

(
n
k

)
1/2n. This is the famous

binomial probability formula. These probabilities add to one:

n∑

k=0

(
n

k

)
1
2n

= 1. (10.16)

This formula has a combinatorial interpretation: the total number of sub-
sets of an n element set is 2n. However the number of subsets with k
elements is

(
n
k

)
. The formula for the expectation of cn gives another iden-

tity:
n∑

k=0

k

(
n

k

)
1
2n

=
1
2
n. (10.17)

This also has a combinatorial interpretation: the total number of ordered
pairs consisting of a subset and a point within it is the same as the number
of ordered pairs consisting of a point and a subset of the complement, that
is, n2n−1. However the number of ordered pairs consisting of a k element
set and a point within it is

(
n
k

)
k.

4. Let u1(ω) be the first k such that ωk = 1. This waiting time random
variable is not in L, but for each m with 1 ≤ m < ∞ the event u1 = m
is an Fm set and hence an L set. The probability of u1 = m is 1/2m.
The event u1 = ∞ is not an L set, but it is a one point set, so it has
zero probability. This is consistent with the fact that the sum of the
probabilities is a geometric series with

∑∞
m=1 1/2m = 1.
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5. The random variable u1 =
∑∞
m=1m1u1=m is in L ↑. Its expectation is

µ(u1) =
∑∞
m=1m/2

m = 2. This says that the expected waiting time to
get a success is two tosses.

6. Let tn(ω) for n ≥ 0 be the nth value of k such that ωk = 1. (Thus t0 = 0
and t1 = u1.) Look at the event that tn = k for 1 ≤ k ≤ n, which is
an Fk set. This is the same as the event ck−1 = n − 1, bk = 1 and so
has probability

(
k−1
n−1

)
1/2k−11/2 =

(
k−1
n−1

)
1/2k. These probabilities add to

one, but this is already not such an elementary fact. However the event
tn =∞ is a countable set and thus has probability zero. So in fact

∞∑

k=n

(
k − 1
n− 1

)
1
2k

= 1. (10.18)

This is an infinite series; a combinatorial interpretation is not apparent.

7. For n ≥ 1 let un = tn − tn−1 be the nth waiting time. It is not hard to
show that the event tn−1 = k, un = m has probability µ(tn−1 = k)1/2m,
and hence that the event un = m has probability 1/2m. So un also is a
geometric waiting time random variable, just like u1. In particular, it has
expectation 2.

8. We have tn = u1 + · · · + un. Hence the expectation µ(tn) = 2n. The
expected total time to wait until the nth success is 2n. This gives another
remarkable identity

∞∑

k=n

k

(
k − 1
n− 1

)
1
2k

= 2n. (10.19)

It would not make much sense without the probability intuition.

Problems

1. Let k → rk be an enumeration of the rational points in [0, 1]. Define
g(x) =

∑
k 2k1{rk}(x). Evaluate the Lebesgue integral of g directly from

the definition in terms of integrals of step functions, integrals of lower and
upper functions, and integrals of functions squeezed between lower and
upper functions.

2. The Cantor set C is the subset of [0, 1] that is the image of Ω = {0, 1}N+

under the injection

c(ω) =
∞∑
n=1

2ωn
3n

. (10.20)

The complement of the Cantor set in [0, 1] is an open set obtained by
removing middle thirds. Show that the indicator function of the comple-
ment of the Cantor set is a function in L ↑. Find the Lebesgue measure of
the complement of the Cantor set directly from the definition. Then find
the Lebesgue measure of the Cantor set.
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3. Let c be the cardinality of the continuum. Show that the cardinality of
the set of all real functions on [0, 1] is cc. Show that cc = 2c.

4. Show that the cardinality of the set of real functions on [0, 1] with finite
Lebesgue integral is 2c. Hint: Think about the Cantor set.

5. The Lebesgue integral may be defined starting with the elementary inte-
gral λ defined on L = C([0, 1]). Show that L ↑ consists of lower semicon-
tinuous functions, and L ↓ consists of upper semicontinuous functions.
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Chapter 11

Uniqueness of integrals

11.1 σ-rings

We have seen that there is a correspondence between the notions of σ-algebra
of subsets and σ-algebra of real functions. The purpose of this section is to
introduce slightly more general concepts, with ring replacing algebra. Thus
there will be a correspondence between the notions of σ-ring of subsets and σ-
algebra of real functions. It is possible to carry out the entire theory of measure
and integration in this more general σ-ring context. However, the only use we
shall have for this concept is for uniqueness results. Thus only some main fact
are stated; details are in Halmos [7]. For convenient the ring and algebra cases
are presented in parallel.

Let X be a set. A ring of subsets is a collection of subsets R such that the
empty set is in R and such that R is closed under the operations of finite union
and relative complement.

A ring of sets A is an algebra of subsets if in addition the set X belongs to
A. Thus the empty set belongs to A and it is closed under the operations of
finite union and complement. To get from a ring of sets to an algebra of sets, it
is enough to put in the complements of the sets in the ring.

An example of a ring of sets is the ring R of subsets of R generated by the
intervals (a, b] with a < b. This consists of the collection of sets that are finite
unions of such intervals. Another example is the ring R0 of sets generated by
the intervals (a, b] such that either a < b < 0 or 0 < a < b. None of the sets in
this ring have the number 0 as a member.

Recall the Stone condition: If f is in the vector lattice, then so is f ∧1. This
does not require that 1 is in the vector lattice. However, if 1 is in the vector
lattice, then it is automatically a Stone vector lattice.

Proposition 11.1 Let R be a ring of sets. Then the set of finite linear combi-
nations of indicator functions 1A with A in R is a Stone vector lattice.

Proposition 11.2 Let A be a algebra of sets. Then the set of finite linear

115
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combinations of indicator functions 1A with A in A is a vector lattice including
the constant functions.

A ring of sets is a σ-ring of subsets if it is closed under countable unions.
Similarly, an algebra of sets is a σ-algebra of subsets if it is closed under count-
able unions.

An example of a σ-ring of sets that is not a σ-algebra of sets is the set of all
countable subsets of an uncountable set X. The smallest σ-algebra including
this σ-ring consists of all subsets that are either countable or have countable
complement.

A standard example of a σ-algebra of sets is the Borel σ-algebra Bo of subsets
of R generated by the intervals (a,+∞) with a ∈ R. A corresponding standard
example of a σ-ring that is not a σ-algebra is the σ-ring Bo0 consisting of all
Borel sets A such that 0 /∈ A.

A σ-ring of real functions F0 is a vector lattice that is closed under monotone
convergence and that is also a Stone vector lattice.

A σ-algebra of real functions F on X is a vector lattice that is closed under
monotone convergence and that includes the constant functions.

Every σ-algebra of functions is a σ-ring of functions. A simple example of
a σ-ring of functions that is not a σ-algebra of functions is given by the set
of all real functions on X that are each non-zero on a countable set. If X is
uncountable, then the constant functions do not belong to this σ-ring.

A σ-ring of functions or a σ-algebra of functions is automatically closed not
only under the vector space and lattice operations, but also under pointwise mul-
tiplication. In addition, there is closure under pointwise limits (not necessarily
monotone).

Proposition 11.3 Let F0 be a σ-ring of real functions on X. Then the sets A
such that 1A are in F0 form a σ-ring R0 of subsets of X.

Proposition 11.4 Let F be a σ-algebra of real functions on X. Then the sets
A such that 1A are in F form a σ-algebra R of subsets of X.

Let R0 be a σ-ring of subsets of X. Let f : X → R be a function. Then f is
said to be measurable with respect to R0 if for each B in B0 the inverse image
f−1[B] is in R0.

Similarly, let R be a σ-algebra of subsets of X. Let f : X → R be a function.
Then f is said to be measurable with respect to R if for each B in Bo the inverse
image f−1[B] is in R.

To check that a function is measurable, it is enough to check the inverse
image property with respect to a generating class. For Bo this could consist of
the intervals (a,+∞) where a is in R. Thus to prove a function f is measurable
with respect to a σ-algebra R, it would be enough to show that for each real
a the set where f > a is in R. For B0 a generating class could consist of the
intervals (a,+∞) with a > 0 together with the intervals (−∞, a) with a < 0.
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Proposition 11.5 Let R0 be a σ-ring of subsets of X. Then the collection F0

of real functions on X that are measurable with respect to R0 is a σ-ring of
functions on X.

Proposition 11.6 Let R be a σ-algebra of subsets of X. Then the collection
F0 of real functions on X that are measurable with respect to R is a σ-algebra
of functions on X.

11.2 The uniqueness theorem

If S is a set of functions, then the smallest σ-algebra including S is denoted
σ(S). Correspondingly, the smallest σ-ring including S is denoted σ0(S). (This
may not be standard notation, but it seems reasonable.)

Theorem 11.7 Let L be a Stone vector lattice. Let m be an elementary integral
on L. Let F0 = σ0(L) be the σ-ring of functions generated by L. Then the
extension µ of m to F+

0 is unique.

The proof of this theorem is presented in a later section of this chapter.

Corollary 11.8 Let L be a Stone vector lattice. Let m be an elementary integral
on L. Let F = σ(L) be the σ-algebra generated by L. Suppose that the σ-ring
F0 = σ0(L) of functions generated by L contains the constant functions, so that
F0 = F . Then the extension µ of m to an integral on F+ is unique.

This corollary applies in many examples. If 1 is in L there is of course no
problem. However even if 1 is not in L, it may be a pointwise limit of functions
in L. This is the case, for example, for the real continuous functions on R, each
with compact support. It is also the case for the real step functions on R.

This integral is not unique in every case. A trivial example is to take L to
consist only of the zero function, and m the elementary integral that assigns
the number zero to this function. Then for each c with 0 ≤ c ≤ +∞ there is an
integral defined by µ(a) = ca.

This example might seem trivial, since the functions in L do not separate
points. However another example is to take L to be all functions defined on
a fixed uncountable set, each function having finite support. Again take the
elementary integral to be zero for each of these functions. Then F0 consists of
all functions with countable support. Each of these functions has integral zero.
Again for each c with 0 ≤ c ≤ +∞ there is an integral defined by µ(a) = ca.

11.3 σ-finite integrals

An integral is σ-finite if there is a sequence 0 ≤ un ↑ 1 of measurable functions
with each µ(un) < +∞. If this is the case, define En as the set where un ≥ 1/2.
By Chebyshev’s inequality the measure µ(En) ≤ 2µ(un) < +∞. Furthermore,
En ↑ X as n → ∞. Suppose on the other hand that there exists an increasing
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sequence En of measurable subsets of X such that each µ(En) < +∞ and
X =

⋃
nEn. Then it is not difficult to show that µ is σ-finite. In fact, it suffices

to take un to be the indicator function of En.

Theorem 11.9 Let F be a σ-algebra of real functions on X. Let µ : F+ →
[0,+∞] be an integral. Then µ is σ-finite if and only if there exists a Stone
vector lattice L such that the restriction of µ to L has only finite values and
such that the smallest σ-ring including L is F .

The proof of this theorem is presented in a later section of this chapter.

11.4 Summation

The familiar operation of summation is a special case of integration. Let X
be a set. Then there is an integral

∑
: [0,+∞)X → [0,+∞]. It is defined for

f ≥ 0 by
∑
f = supW

∑
j∈W f(j), where the supremum is over all finite subsets

W ⊂ X. Since each f(j) ≥ 0, the result is a number in [0,+∞]. As usual, the
sum is also defined for functions that are not positive, but only provided that
there is no (+∞)− (+∞) problem.

Suppose f ≥ 0 and
∑
f < +∞. Let Sk be the set of j in X such that

f(j) ≥ 1/k. Then Sk is a finite set. Let S be the set of j in X such that
f(j) > 0. Then S =

⋃
k Sk, so S is countable. This argument proves that the

sum is infinite unless f vanishes off a countable set. So a finite sum is just the
usual sum over a countable index set.

The
∑

integral is σ-finite if and only if X is countable. This is because
whenever f ≥ 0 and

∑
f < +∞, then f vanishes off a countable set S. So if

each fn vanishes off a countable set Sn, and fn ↑ f , then f vanishes off S =
⋃
Sn,

which is also a countable set. This shows that f cannot be a constant function
a > 0 unless X is a countable set.

One could define
∑

on a smaller σ-algebra of functions. The smallest one
that seems natural consists of all functions of the form f = g + a, where the
function g is zero on the complement of some countable subset of X, and a is
constant. If f ≥ 0 and a = 0, then

∑
f =

∑
g is a countable sum. On the

other hand, if f ≥ 0 and a > 0 then
∑
f = +∞.

One can also look at summation from the measure point of view. The sum
of an indicator function just counts the points in the associated subset. So in
this perspective the measure is called counting measure.

11.5 Regularity

Recall that if L is a vector lattice of real functions, then the upper functions
L ↑ consist of the increasing limits of sequences functions in L, and the lower
functions L ↓ consist of the decreasing limits of sequences of functions in L. It
is helpful to keep in mind that if L consists of continuous functions on some
topological space, then L ↑ consists of lower semicontinuous functions, while L ↓
consists of upper semicontinuous functions.
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Theorem 11.10 Let F be a σ-algebra of real functions and µ be an integral
associated with F . Let L be a Stone vector lattice, and assume that the σ-ring
generated by L is F . Suppose that µ is finite on L. Then µ is upper regular, in
the sense that for each g in L1 we have µ(g) = inf{µ(h | g ≤ h, h ∈ L ↑}. Also,
µ is lower regular, in the sense that for each g in L1 we have µ(g) = sup{µ(f) |
f ≤ g, f ∈ L ↓}.

Proof: This follows from the construction of the integral and the uniqueness
theorem. The restriction of the integral to L is an elementary integral, and so
we may construct an integral on L1 by using upper and lower functions. By the
uniqueness theorem this is the original integral. �

Notice that in the topological context the theorem above might be inter-
preted as saying that each absolutely integrable function is both uppper LSC
regular and lower USC regular.

Consider a subset G to be an outer subset if it is of the form h > a for some
h in L↑ and some real number a. Similarly, consider a subset F to be an inner
subset if it is of the form f ≥ a for some f in L ↓ and a real. Notice that the
outer subsets and the inner subsets are complements of each other. In the case
when L consists of continuous functions, then the subsets G in L ↑ are open
subsets, while the sets F in L ↓ are closed subsets.

Theorem 11.11 Let F be a σ-algebra of real functions and µ be a measure
associated with F . Let L be a Stone vector lattice, and assume that the σ-ring
generated by L is F . Suppose that µ is finite on L. Then µ is outer regular, in
the sense that for each subset E of finite measure we have µ(E) = inf{µ(G) |
E ⊂ G,Gouter}. Suppose now in addition that the measure space is finite. Then
also µ is inner regular, in the sense that for each subset E of finite measure we
have µ(e) = sup{µ(F ) | F ⊂ E,F inner}.

Proof: The first part is the outer regularity. Consider ε > 0. From the
previous theorem there is a function h in L↑ such that 1E ≤ h and µ(h) ≤
µ(E) + ε/2. Let Gn be the set where h > 1− 1/n. Then Gn is an inner subset,
and E ⊂ Gn. Furthermore, µ(Gn) ≤ µ(h)/(1− 1/n) ≤ (µ(E) + ε/2)/(1− 1/n).
For n sufficiently large we have µ(Gn) ≤ µ(E) + ε.

The other part is the inner regularity. When the measure space is finite this
follows by applying the outer regularity to the complements. �

In the topological context the theorem above might be interpreted as saying
that the subsets are both outer open regular and inner closed regular.

11.6 Density

Theorem 11.12 Let F be a σ-algebra of real functions and µ be an integral
associated with F . Let L be a Stone vector lattice, and assume that the σ-ring
generated by L is F . Suppose that µ is finite on L. Then L is dense in the
pseudo-metric space L1.
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Proof: Since bounded functions in L1 are dense in L1, it is enough to
approximate a bounded function g by an element of L. Consider ε > 0. By
upper regularity one can take h in L↑ with g ≤ h and µ(h) − µ(g) < ε/2.
Furthermore, h can also be taken bounded. It follows that h does not assume
the value +∞, and so it is itself in L1. Then one can take f in L with f ≤ h
such that µ(h)− µ(f) < ε/2. Since f, g, h are all in L1 we have

µ(|g − f |) ≤ µ(|g − h|) + µ(|h− f |). (11.1)

Thus
µ(|g − f |) ≤ µ(h)− µ(g) + µ(h)− µ(f) < ε. (11.2)

This is the required approximation. �

11.7 Monotone classes

A set of real functions F is a monotone class if it satisfies the following two
properties. Whenever fn ↑ f is an increasing sequence of functions fn in F with
pointwise limit f , then f is also in F . Whenever fn ↓ f is a decreasing sequence
of functions fn in F with pointwise limit f , then f is also in F .

Theorem 11.13 Let L be a vector lattice of real functions. Let F be the small-
est monotone class of which L is a subset. Then F is a vector lattice.

Proof: The task is to show that F is closed under addition, scalar multipli-
cation, sup, and inf. Begin with addition. Let f be in L. Consider the set M(f)
of functions g such that f + g is in F . This set includes L and is closed under
monotone limits. So F ⊂M(f). Thus f in L and g in F imply f + g ∈ F . Now
let g be in F . Consider the set M̃(g) of functions f such that f + g is in F .
This set includes L and is closed under monotone limits. So F ⊂ M̃(g). Thus
f and g in F implies f + g in F . The proof is similar for the other operations.
�

Theorem 11.14 Let L be a Stone vector lattice of real functions. Let F be
the smallest monotone class of which L is a subset. Then F is a Stone vector
lattice.

Theorem 11.15 Let L be a Stone vector lattice of real functions. Let F0 be
the smallest monotone class of which F is a subset. Then F0 is a σ-ring of
functions.

A set of real functions F is a vector lattice with constants of functions if it is
a vector lattice and each constant function belongs to F . The following theorem
is trivial, but it may be worth stating the obvious.

Theorem 11.16 Let L be a vector lattice with constants. Let F be the smallest
monotone class of which L is a subset. Then F is a vector lattice with constants.
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We shall now see that a monotone class is closed under all pointwise limits.

Theorem 11.17 Let F be a monotone class of functions. Let fn be in F for
each n. Suppose that lim infn fn and lim sup fn are finite. Then they are also
in F .

Proof: Let n < m and let hnm = fn ∧ fn+1 ∧ · · · ∧ fm. Then hnm ↓ hn as
m→∞, where hn is the infimum of the fk for k ≥ n. However hn ↑ lim infn fn.
�

The trick in this proof is to write a general limit as an increasing limit
followed by a decreasing limit. We shall see in the following that this is a very
important idea in integration.

11.8 Generating monotone classes

The following theorem says that if L is a vector lattice that generates F by
monotone limits, then the positive functions L+ generate the positive functions
F+ by monotone limits.

Theorem 11.18 Let L be a vector lattice of real functions. Suppose that F is
the smallest monotone class that includes L. Let L+ be the positive elements of
L, and let F+ be the positive elements of F . Then F+ is the smallest monotone
class that includes L+.

Proof: It is clear that F+ includes L+. Furthermore, F+ is a monotone
class. So all that remains to show is that if G is a monotone class that includes
L+, then F+ is a subset of G. For that it is sufficient to show that for each f
in F the positive part f ∨ 0 is in G.

Consider the set M of f in F such that f ∨ 0 is in G. The set L is a subset
of M , since f in L implies f ∨ 0 in L+. Furthermore, M is a monotone class.
To check this, note that if each fn is in M and fn ↑ f , then fn ∨ 0 is in G and
fn ∨ 0 ↑ f ∨ 0, and so f ∨ 0 is also in G, that is, f is in M . The argument is the
same for downward convergence. Hence F ⊂M . �

A real function f is said to be L-bounded if there is a function g in L+ with
|f | ≤ g. Say that L consists of bounded functions. Then if f is L-bounded,
then f is also bounded. Say on the other hand that the constant functions are
in L. Then if f is bounded, it follows that f is L-bounded. However there are
also cases when L consists of bounded functions, but the constant functions are
not in L. In such cases, being L-bounded is more restrictive.

A set of real functions H is an L-bounded monotone class if it satisfies the
following two properties. Whenever fn ↑ f is an increasing sequence of L-
bounded functions fn inH with pointwise limit f , then f is also inH. Whenever
fn ↓ f is a decreasing sequence of L-bounded functions fn in H with pointwise
limit f , then f is also in H. Notice that the functions in H do not have to be
L-bounded.

The following theorem says that if L+ generates F+ by monotone limits,
then L+ generates F+ using only monotone limits of L-bounded functions.
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Theorem 11.19 Let L be a vector lattice of bounded real functions that includes
the constant functions. Let F+ be the smallest monotone class of which L+ is
a subset. Let H be the smallest L-bounded monotone class of which L+ is a
subset. Then H = F+.

Proof: It is clear that H ⊂ F+. The task is to prove that F+ ⊂ H.
Consider g ≥ 0 be in L+. Let M(g) be the set of all f in F+ such that f ∧ g

is in H. It is clear that L+ ⊂ M(g). If fn ↑ f and each fn is in M(g), then
fn ∧ g ↑ f ∧ g. Since each fn ∧ g is in H and is L-bounded, it follows that f ∧ g
is in H. Thus M(g) is closed under upward monotone convergence. Similarly,
M(g) is closed under downward monotone convergence. Therefore F+ ⊂M(g).
This establishes that for each f in F+ and g in L+ it follows that f ∧ g is in H.

Now consider the set of all f in F such that there exists h in L ↑ with
f ≤ h. Certainly L belongs to this set. Furthermore, this set is monotone.
This is obvious for downward monotone convergence. For upward monotone
convergence, it follows from the fact that L ↑ is closed under upward monotone
convergence. It follows that every element in F is in this set.

Let f be in F+. Then there exists h in L ↑ such that f ≤ h. There exists
hn in L+ with hn ↑ h. Then f ∧ hn is in H, by the first part of the proof.
Furthermore, f ∧ hn ↑ f . It follows that f is in H. This completes the proof
that F+ ⊂ H. �

11.9 Proof of the uniqueness theorem

Theorem 11.20 (improved monotone convergence) If µ(f1) > −∞ and
fn ↑ f , then µ(fn) ↑ µ(f). Similarly, if µ(h1) < +∞ and hn ↓ h, then µ(hn) ↓
µ(h).

Proof: For the first apply monotone convergence to fn− f1. For the second
let fn = −hn. �

Proof: Let µ1 and µ2 be two integrals on F+ that each agree with m on
L+. Let H be the smallest L-monotone class such that L+ ⊂ H. Let G be
the set of all functions in F+ on which µ1 and µ2 agree. The main task is
to show that H ⊂ G. It is clear that L ⊂ G. Suppose that hn is in G and
hn ↑ h. If µ1(hn) = µ2(hn) for each n, then µ1(h) = µ2(h). Suppose that fn
is in G and is L-bounded for each n and fn ↓ f . If µ1(fn) = µ2(fn) for all n,
then by improved monotone convergence µ1(f) = µ2(f). This shows that G is
a L-monotone class such that L+ ⊂ G. It follows that H ⊂ G. However the
earlier result on L-monotone classes showed that H = F+. So F+ ⊂ G. �

11.10 Proof of the σ-finiteness theorem

Proof: Suppose that µ is σ-finite. Let L = L1(X,F , µ). Consider the monotone
class generated by L. Since µ is σ-finite, the constant functions belong to this
monotone class. So it is a σ-algebra. In fact, this monotone class is equal to
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F . To see this, let En be a family of finite measure sets that increase to X.
Consider a function g in F . For each n the function gn = g1En1|g|≤n is in L.
Then g = limn gn is in the monotone class generated by L.

Suppose on the other hand that there exists such a vector lattice L. Consider
the class of functions f for which there exists h in L ↑ with f ≤ h. This class
includes L and is monotone, so it is includes all of F .

Take f in F+. Then there exists h in L ↑ with f ≤ h. Take hn ∈ L+ with
hn ↑ h. Then un = f ∧hn ↑ f . Thus there is a sequence of L-bounded functions
un in F+ such that un ↑ f . Each of these functions un has finite integral. In
the present case F is a σ-algebra, so we may take take f = 1. This completes
the proof that µ is σ-finite. �

The only if part of the theorem gives the existence of a vector lattice, but not
necessarily the one originally used to generate the σ-algebra. Recall the example
of the trivial vector lattice L with only the zero function. The monotone class it
generates is still trivial. However, the elementary integral on L has an extension
to a finite integral on the σ-algebra of constant functions.

11.11 Supplement: Completion of an integral

Suppose µ is an integral defined with respect to σ-algebra F of functions. A
function f in F is called a null function if µ(|f |) = 0. A function g is called a
null-dominated function if |g| ≤ f for some null function f . A null-dominated
function need not be in F .

Let F̄µ be the σ-algebra of functions generated by F together with its null-
dominated functions. This is called the completion of the σ-algebra. It may be
shown that the integral µ extends uniquely to an integral µ̄ with respect to F̄µ.
This is called the completion of the integral.

The standard example is when λ is the Lebesgue integral defined for Borel
measurable functions Bo. The completion λ̄ is defined with respect to the mea-
surable functions B̄oλ. The space B̄oλ is customarily called the space of Lebesgue
measurable functions.

The space of Lebesgue measurable functions is much larger than the space of
Borel measurable functions. In fact, the space of Borel measurable functions has
cardinality c, while the space of Lebesgue measurable functions has cardinality
2c = cc, which is a large as the cardinality of the space RR of all functions. So
it would seem that this completed Lebesgue integral with its extremely huge
domain of definition would be just the right thing.

As a matter of fact, it is seldom needed, and in fact could be somewhat of
a nuisance. The Borel functions are already a huge class of functions, and it is
difficult to give an example of a function that is not Borel, though such functions
may be constructed. The Lebesgue measurable functions are an extremely huge
class of functions, and it is impossible to give a specific example of a function that
is not Lebesgue measurable, at least not without using the axiom of choice. But
all those extra null-dominated functions play little role in practical problems;
after all, they have extended Lebesgue integral equal to zero.
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There is a good case for staying with the Borel functions. This is because
they are defined independent of the integral. Suppose, as is common, that one
wants to talk of two different integrals in the same context. If the common do-
main of definition consists of positive Borel functions, then it is easy to compare
them. However their completions may have different domains, and that could
lead to considerations that have nothing to do with any concrete problem.

Problems

1. Let X be a set. Let L be the vector lattice of functions that are non-
zero only on finite sets. The elementary integral m is defined by m(f) =∑
x∈S f(x) if f 6= 0 on S. Find the σ-ring of functions F0 generated by

L. When is it a σ-algebra? Extend m to an integral µ on the smallest
σ-algebra generated by L. Is the value of µ on the constant functions
uniquely determined?

2. Consider the previous problem. The largest possible σ-algebra of functions
on X consists of all real functions on X. For f ≥ 0 in this largest σ-algebra
define the integral µ by µ(f) =

∑
x∈S f(x) if f is non-zero on a countable

set S. Otherwise define µ(f) = +∞. Is this an integral?

3. Let X be a set. Let A be a countable subset of X, and let p be a function
on A with p(x) ≥ 0 and

∑
x∈A p(x) = 1. Let L be the vector lattice of

functions that are non-zero only on finite sets. The probability sum is
defined for f in L by µ(f) =

∑
x∈A∩S f(x)p(x) if f 6= 0 on S. Let F0 be

the σ-ring of functions generated by L. Show that if X is uncountable,
then µ has more than one extension to the σ-algebra F consisting of the
sum of functions in F0 with constant functions. Which extension is natural
for probability theory?



Chapter 12

Mapping integrals

12.1 Comparison of integrals

This chapter presents some interesting integrals. In order to compare integrals,
it is useful to have a common domain. Thus, for example, let X be a non-empty
set and let L be a Stone vector lattice of real functions on X. Then a suitable
domain for integrals might be σ(L), the smallest σ-algebra of real functions
including L.

Consider, for example, the situation when X is a metric space and L consists
of continuous functions. It may be that every continuous function on X is a
pointwise limit of a sequence of functions in L. In that case, σ(L) = Bo, the
Borel σ-algebra of real functions on X.

There are many integrals that one could consider. One surprisingly useful
class of examples are the integrals δp, where p is a point in X. This is defined by
δp(f) = f(p). It is called the unit point mass at p, or the Dirac delta measure
at p.

In general mass is a word that is used informally for measure. The idea is
that the measure µ(S) of a subset S is the amount of mass in the region S. Thus
the point mass at a describes a situation where a total mass of 1 is concentrated
at the point a. This is because the measure δp(S) is 1 if a is in S and is 0
otherwise. In other words, all the mass is sitting at p.

Linear combinations of integrals with positive coefficients are also integrals.
So this gives a way of generating new integrals from old. For example

∑
j cjδpj

describes masses cj > 0 sitting at the points pj . The term for a single term cδp
with c > 0 is point mass with mass c. A sum of point masses is called a discrete
measure. On the other hand, a measure that assigns measure zero to each one
point set is called a continuous measure.

125
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12.2 Probability and expectation

An integral is a probability integral (or expectation) provided that µ(1) = 1.
This of course implies that µ(c) = c for every real constant c. In this context
there is a special terminology. The set on which the functions are defined is
called Ω. A point ω in Ω is called an outcome.

A measurable function f : Ω→ R is called a random variable. The value f(ω)
is regarded as an experimental number, the value of the random variable when
the outcome of the experiment is ω. The integral µ(f) is the expectation of the
random variable, provided that the integral exists. For a bounded measurable
function f the expectation µ(f) always exists.

A subset A ⊂ Ω is called an event. When the outcome ω ∈ A, the event
A is said to happen. The measure µ(A) of an event is called the probability of
the event. The probability µ(A) of an event A is the expectation µ(1A) of the
random variable 1A that is one if the event happens and is zero if the event does
not happen.

Theorem 12.1 Let Ω = {0, 1}N+ be the set of all infinite sequences of zeros and
ones. Fix p with 0 ≤ p ≤ 1. If the function f on Ω is in the space Fk of functions
that depend only on the first k values of the sequence, let f(ω) = h(ω1, . . . , ωk)
and define

µp(f) =
1∑

ω1=0

· · ·
1∑

ωk=0

h(ω1, . . . , ωk)pω1(1− p)1−ω1 · · · pωk(1− p)1−ωk . (12.1)

This defines an elementary integral µp on the vector lattice L that is the union
of the Fk for k = 0, 1, 2, 3, . . .. Let F be the σ-algebra generated by L. Then
the elementary integral extends to an integral µp on F+, and this integral is
uniquely defined.

This theorem describes the expectation for a sequence of independent coin
tosses where the probability of heads on each toss is p and the probability of
tails on each toss is 1 − p. The special case p = 1/2 describes a fair coin. The
proof of the theorem follows from previous considerations. It is not difficult to
calculate that µ is consistently defined on L. It is linear and order preserving on
the coin tossing vector lattice L, so it is automatically an elementary integral.
Since L contains the constant functions, the integral extends uniquely to the
σ-algebra F .

This family of integrals has a remarkable property. For each p with 0 ≤ p ≤ 1
let Fp ⊂ Ω be defined by

Fp = {ω ∈ Ω | lim
n→∞

ω1 + · · ·+ ωn
n

= p}. (12.2)

It is clear that for p 6= p′ the sets Fp and Fp′ are disjoint. This gives an
uncountable family of disjoint measurable subsets of Ω. The remarkable fact is
that for each p we have that the probability µp(Fp) = 1. (This is the famous
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strong law of large numbers.) It follows that for p′ 6= p we have that the
probability µp(Fp′) = 0. Thus there are uncountably many expectations µp.
These are each defined with the same set Ω of outcomes and the same σ-algebra
F of random variables. Yet they are concentrated on uncountably many different
sets.

12.3 Image integrals

There are several ways of getting new integrals from old ones. One is by using
a weight function. For instance, if

λ(f) =
∫ ∞
−∞

f(x) dx (12.3)

is the Lebesgue integral defined for Borel functions f , and if w ≥ 0 is a Borel
function, then

µ(f) =
∫ ∞
−∞

f(x)w(x) dx (12.4)

is another integral. In applications w can be a mass density, a probability
density, or the like.

In general it is very common to denote

µ(f) =
∫
f dµ (12.5)

or even

µ(f) =
∫
f(x) dµ(x). (12.6)

This notation is suggestive in the case when there is more than one integral
in play. Say that ν is an integral, and w ≥ 0 is a measurable function. Then
the integral µ(f) = ν(fw) is defined. We would write this as

∫
f(x) dµ(x) =

∫
f(x)w(x)dν(x). (12.7)

So the relation between the two integrals would be dµ(x) = w(x)dν(x). This
suggests that w(x) plays the role of a derivative of one integral with respect to
the other.

A more important method is to map the integral forward. For instance, let
y = φ(x) = x2. Then the integral µ described just above maps to an integral
ν = φ[µ] given by

ν(g) =
∫ ∞
−∞

g(x2)w(x) dx. (12.8)

This is a simple and straightforward operation. Notice that the forward mapped
integral lives on the range of the mapping, that is, in this case, the positive real
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axis. The trouble begins only when one wants to write this new integral in terms
of the Lebesgue integral. Thus we may also write

ν(g) =
∫ ∞

0

g(y)
1

2
√
y

[w(
√
y) + w(−√y)] dy. (12.9)

Here is the same idea in a general setting. Let F be a σ-algebra of measurable
functions on X. Let G be a σ-algebra of measurable functions on Y . A function
φ : X → Y is called a measurable map if for every g in G the composite function
g ◦ φ is in F .

Given an integral µ defined on F , and given a measurable map φ : X → Y ,
there is an integral φ[µ] defined on G. It is given by

φ[µ](g) = µ(g ◦ φ). (12.10)

It is called the image integral of the integral µ under φ. Since integrals determine
measures and are often even called measures, this construction is also called the
image measure.

There is another, more abstract, way of thinking of this. Let φ∗ be a map
from real functions on Y to real functions on X defined by φ∗(f) = f ◦ φ.
Sometimes this is called the pullback map. Then define the map on measures
by φ[µ] by φ[µ] = µ ◦ φ∗. Then φ[µ](f) = µ(φ∗(f)) = µ(f ◦ φ) as before. It
might seem reasonable to call this map on measures the pushforward map.

This construction is important in probability theory. Let Ω be a measure
space equipped with a σ-algebra of functions F and an expectation µ defined on
F+. If φ is a random variable, that is, a measurable function from Ω to R with
the Borel σ-algebra, then it may be regarded as a measurable map. The image
of the expectation µ under φ is an integral ν = φ[µ] on the Borel σ-algebra
called the distribution of φ. We have the identity.

µ(h(φ)) = ν(h) =
∫ ∞
−∞

h(x) dν(x). (12.11)

Sometimes the calculations do not work so smoothly. The reason is that
there are really two theories of integration. The integral in real analysis acts on
functions and maps forward under measurable maps. The integral in geometry
and calculus pairs differential forms with oriented geometrical objects, and the
differential forms maps backward under smooth maps. For instance, the dif-
ferential form g(y) dy maps backward to the differential form g(φ(x))φ′(x) dx.
Thus a differential form calculation with oriented integrals like

∫ b

a

g(φ(x))φ′(x) dx =
∫ φ(b)

φ(a)

g(y) dy (12.12)

works very smoothly. The oriented interval maps forward; the differential form
maps backward. On the other hand, the calculation of an integral in the sense
of real analysis, even with a smooth change of variable with φ′(x) 6= 0, gives

∫

[a,b]

g(φ(x)) dx =
∫

φ([a,b])

g(y)
∣∣∣∣

1
φ′(φ−1(y))

∣∣∣∣ dy (12.13)
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which involves an unpleasant denominator. The problem is not with the inte-
gral, which is perfectly well defined by the left hand side with no restrictions
on the function φ other than measurability. The integral maps forward; the
function maps backward. The difficulty comes when one tries to express the
image integral as a Lebesgue integral with a weight function. It is only at this
stage that the differential form calculations play a role.

The ultimate source of this difficulty is that integrals (or measures) and
differential forms are different kinds of objects. An integral assigns a number
to a function. Functions map backward, so integrals map forward. Thus g
pulls back to g ◦ φ, so µ pushes forward to φ[µ]. The value of φ[µ] on g is the
value of µ on g ◦ φ. (It makes no difference if we think instead of measures
defined on subsets, since subsets map backwards and measures map forward.)
A differential form assigns a number to an oriented curve. Curves map forward,
so differential forms map backward. Thus a curve from a to b pushes forward
to a curve from φ(a) to φ(b). The differential form g(y) dy pulls back to the
differential form g(φ(x))φ′(x) dx. The value of g(φ(x)φ′(x) dx over the curve
from a to b is the value of g(y) dy over the curve from φ(a) to φ(b).

12.4 The Lebesgue integral

The image construction may be used to relate measures on the coin-tossing
space to measures on the unit interval.

Theorem 12.2 Let 0 ≤ p ≤ 1. Define the expectation µp for coin tossing on
the set Ω of all infinite sequences ω : N+ → {0, 1} as in the theorem. Here p is
the probability of heads on each single toss. Let

φ(ω) =
∞∑

k=1

ωk
1
2k
. (12.14)

Then the image expectation φ[µp] is an expectation νp defined for Borel functions
on the unit interval [0, 1].

The function φ in this case is a random variable that rewards the nth coin
toss by 1/2n if it results in heads, and by zero if it results in tails. The random
variable is the sum of all these rewards. Thus νp is the distribution of this
random variable.

When p = 1/2 (the product expectation for tossing of a fair coin) the ex-
pectation λ1 = ν 1

2
is the Lebesgue integral for functions on [0, 1]. However note

that there are many other integrals, for the other values of p. We have the
following amazing fact. For each p there is an integral νp defined for functions
on the unit interval. If p 6= p′ are two different parameters, then there is a
measurable set that has measure 1 for the νp measure and measure 0 for the
νp′ measurable. The set comes from the set of coin tosses for which the sample
means converge to the number p. This result shows that these measures each
live in a different world.
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Now start with Lebesgue integral for Borel functions on the unit interval
[0, 1] given by

λ1(f) =
∫ 1

0

f(u) du. (12.15)

The image construction then gives many new integrals.
Consider the map x = ψ(u) = ln(u/(1− u)) from the open interval (0, 1) to

R. This is a bijection. It has derivative dx/du = 1/(u(1−u)). The inverse is u =
1/(1− e−x) with derivative u(1− u) = 1/(2 + 2 cosh(x)). It is a transformation
that is often used in statistics to relate problems on the unit interval (0, 1) and
on the line (−∞,+∞). The image of the Lebesgue integral for [0, 1] under this
map is also a probability integral. It is given by

ψ[λ](f) =
∫ 1

0

f(ln
(

u

1− u
)

) du =
∫ ∞
−∞

f(x)
1
2

1
1 + cosh(x)

dx. (12.16)

A variation of this idea may be used to obtain the usual Lebesgue integral
for Borel functions defined on the real line R. Let

σ(h) =
∫ 1

0

h(u)
1

u(1− u)
du. (12.17)

This is not a probability integral. The image under ψ is

ψ[σ](f) =
∫ 1

0

f(ln(
u

1− u ))
1

u(1− u)
du =

∫ ∞
−∞

f(x) dx = λ(f). (12.18)

This calculation shows that the dx integral is the image of the 1/(u(1− u)) du
integral under the transformation x = ln(u/(1 − u)). It could be taken as
the final step in a multi-step construction that starts with the fair coin-tossing
expectation µ 1

2
and ends with the Lebesgue integral λ for functions on the line.

12.5 Lebesgue-Stieltjes integrals

Once we have the Lebesgue integral defined for Borel functions on the line, we
can construct a huge family of other integrals, also defined on Borel functions
on the line. These are called Lebesgue-Stieltjes integrals. Often when several
integrals are being discussed, the integrals are referred to as measures. Of course
an integral defined on functions does indeed define a measure on subsets.

The class of measures under consideration consists of those measures defined
on Borel functions on the line (or on Borel subsets of the line) that give finite
measure to compact Borel subsets.

Examples:

1. The first example is given by taking a function w ≥ 0 such that w in
absolutely integrable over each bounded Borel set. The measure is then
µ(f) = λ(fw) =

∫∞
∞ f(x)w(x) dx. Such a measure is called absolutely

continuous with respect to Lebesgue measure. Often the function w is
called the relative density (of mass or probability).
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2. Another kind of example is of the form µ(f) =
∑
p∈S cpf(p), where S

is a countable subset of the line, and each cp > 0. This is called the
measure that assigns point mass cp to each point p in S. We require that∑
a<p≤b cp <∞ for each a, b with −∞ < a < b < +∞. Often the measure

that assigns mass one to a point p is denoted δp, so δp(f) = f(p). With
this notation the measure µ of this example is µ =

∑
p∈S cpδp.

Suppose that µ is a Borel measure finite on compact subsets, so that the
measure of each set (a, b] for a ≤ b real is finite. Define F (x) = µ((0, x])
for x ≥ 0 and F (x) = −µ((x, 0]) for x ≤ 0. Then F ((a, b]) = F (b) − F (a)
for all a ≤ b. The function F is increasing and right continuous. With this
normalization F (0) = 0, but one can always add a constant to F and still get
the property that F ((a, b]) = F (b) − F (a). This nice thing about this is that
the increasing right continuous function F gives a rather explicit description of
the measure µ. It is often called the distribution function of the measure µ.

Examples:

1. For the absolutely continuous measure F (b) − F (a) =
∫ b
a
w(x) dx. The

function F is a continuous function. However not every continuous func-
tion is absolutely continuous.

2. For the point mass measure F (b)−F (a) =
∑
p∈(a,b] cp. The function F is

continuous except for jumps at the points p in S.

Theorem 12.3 Let F be an increasing right continuous function on R. Then
there exists a measure σF defined on the Borel σ-algebra Bo, finite on compact
subsets, such that

σF ((a, b]) = F (b)− F (a). (12.19)

Furthermore, this measure may be obtained as the image of Lebesgue measure
on an interval under a map G.

Proof: Let m = inf F and let M = supF . For m < y < M let

G(y) = sup{x | F (x) < y}. (12.20)

We can compare the least upper bound G(y) with an arbitrary upper bound c.
Thus G(y) ≤ c is equivalent to the condition that for all x, F (x) < y implies
x ≤ c. This in turn is equivalent to the condition that for all x, c < x implies
y ≤ F (x). Since F is increasing and right continuous, it follows that this in
turn is equivalent to the condition that y ≤ F (c).

It follows that a < G(y) ≤ b is equivalent to F (a) < y ≤ F (b). Thus G is a
kind of inverse to F .

Let c = M −m and let λc be Lebesgue measure on the interval (m,M) with
total mass c. Let σF = G[λc] be the image of λc under G. Then

σF ((a, b]) = λc({y | a < G(y) ≤ b}) = λc({y | F (a) < y ≤ F (b)}) = F (b)−F (a),
(12.21)
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so σF is the desired measure. �
The above proof says that every Borel measure, finite on compact subsets,

and with a certain total mass M −m may be obtained from Lebesgue measure
with the same mass. The forward mapping G just serves to redistribute the
mass.

Often the Lebesgue-Stieltges integral is written

σF (h) =
∫ ∞
−∞

h(x) dF (x). (12.22)

This is reasonable, since if F were smooth with smooth inverse G we would have
F (G(y)) = y and F ′(G(y))G′(y) = 1 and so

σF (h) = λ(h◦G) =
∫ M

m

h(G(y)) dy =
∫ M

m

h(G(y))F ′(G(y))G′(y) dy =
∫ ∞
−∞

h(x)F ′(x) dx.

(12.23)
However in general it is not required that F be smooth, or that it have an
inverse function.

These increasing functions F give a relatively concrete description of the
Borel measures, finite on compact subsets. There are three qualitatively differ-
ent situations. If the function F (x) is the indefinite integral of a function w(x),
then F and σF are said to be absolutely continuous with respect to Lebesgue
measure. (In this case, it is reasonable to write w(x) = F ′(x). However F (x)
need not be differentiable at each point x. The example when w(x) is a rect-
angle function provides an example.) If the function F is constant except for
jumps at a countable set of points, F and σF are said to have point masses.
The third situation is intermediate and rather strange: the function F has no
jumps, but it is constant except on a set of measure zero. In this case F and
σF are said to be singular continuous.

The classification into absolutely continuous, singular continuous, and point
mass is very useful. In some contexts, such as the abstract characterization of
measures, one wants to group the first two together and speak of continuous
measure versus point mass measure. In situations where the existence of a
density is crucial, the grouping is absolutely continuous measure versus singular
measure.

Notice that in all cases the Lebesgue-Stieltjes measures are automatically
both outer open regular and inner closed regular. In fact, they are even inner
compact regular, in the sense that a measure µ is inner compact regular if for
every Borel subset E we have µ(F ) = sup{µ(K) | K ⊂ F,Kcompact}. This
may be proved by approximating the measure of the subset by the measure of
its intersection with a large bounded closed interval.

The conclusion of this discussion is that there are many regular Borel mea-
sures on Borel subsets of the line. However there is a kind of unity, since each
of these is an image of Lebesgue measure on some interval.
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12.6 The Cantor measure and the Cantor func-
tion

Here is an example of the singular continuous case. Let µ 1
2

be the fair coin mea-
sure on the space Ω of all sequences of zeros and ones. Let χ(ω) =

∑∞
n=1 2ωn/3n.

Then χ maps Ω bijectively onto the Cantor set. Thus χ[µ 1
2
] is a probability mea-

sure on the line that assigns all its weight to the Cantor set. This is the Cantor
measure. The function F that goes with this measure is called the Cantor
function. It is a continuous function that increases from zero to one, yet it is
constant except on the Cantor set, which has measure zero.

The Cantor function F is the distribution function of the random variable χ,
that is, F (x) = µ 1

2
(χ ≤ x). It also has a simple non-probabilistic description. To

see this, recall that φ defined by φ(ω) =
∑∞
n=1 ωn/2

n has a uniform distribution
on [0, 1]. This says that µ 1

2
(φ ≤ y) = y for all y in [0, 1]. For x in the Cantor

set there is a unique χ−1(x) in Ω and a corresponding y = φ(χ−1(x)) in [0, 1].
The set where φ ≤ y is the same as the set where χ ≤ x, up to a set of measure
zero. Therefore F (x) = µ 1

2
(χ ≤ x) = µ 1

2
(φ ≤ y) = y. The conclusion is that F

restricted to the Cantor set is φ ◦ χ−1, and F is constant elsewhere.
The map φ ◦ χ−1 from the the middle third Cantor set to the unit interval

has a rather concrete description. Take a real number in the Cantor set and
consider its base three expansion. This will have only 0 and 2 coefficients. Look
at the base 2 expansion with 0 and 1 coefficients in the corresponding places.
This converges to a real number in the unit interval.

Consider two such base 3 expansions that agree in the first n − 1 places,
but such that one has a 0 in the nth place and the other has a 2 in the nth
place. Then they differ by at least 1/3n. The interval between the largest
one with a 0 (which subsequently has all 2s) and the smallest one with a 2
(which subsequently has all 0s) is an interval of constancy of the Cantor function
of length 1/3n. The numbers in the interior of this interval all have base 3
expansions with a 1 in the nth place. The end points of the interval map into
the same number. This number has two base 2 expansions, one with a 0 in the
nth place followed by all 1s, and the other with a 1 in the nth place followed by
all 0s. So it is a rational number of the form k/2n. Since the Cantor function
is increasing, the points in the interior of the interval also map to this same
number. Such numbers are the values of the Cantor function on the intervals of
constancy.

12.7 Change of variable

This section presents a statement of the change of variable formula in n dimen-
sions. See Folland [5] for a proof.

Theorem 12.4 (Change of variable) Let U ⊂ Rn be an open subset. Let g
be a C1 injective function from U to Rn. Then |det g′|, the absolute value of
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the determinant of the matrix of partial derivatives, is a C1 function from U to
[0,+∞). Let ν be the integral defined for functions on U by ν(f) = λ(f | det g′|).
Thus ν has density J with respect to Lebesgue measure on U . Then the image
measure g[ν] is Lebesgue measure on g[U ]. In other words,

λ((f ◦ g)| det g′|) = λ(f). (12.24)

Let C be the set where det g′ = 0, and set f = 1C ◦ g−1 = 1g[C]. It follows
that the Lebesgue measure of g[C] is zero. Also, the function | det g′| ◦ g−1

is zero only on g[C]. So we may apply the change of variable formula to the
function f = h/(| det g′)| ◦ g−1). This gives the following corollary.

Corollary 12.5 (Image of Lebesgue measure) Let U ⊂ Rn be an open sub-
set. Let g be a C1 injective function from U to Rn. Then |det g′|, the absolute
value of the determinant of the matrix of partial derivatives, is a C1 func-
tion from U to [0,+∞). Let µ be the integral defined for functions on g[U ] by
µ(h) = λ(h/(| det g′|◦g−1). Then if λ is Lebesgue measure on U , then the image
measure g[λ] is µ. In other words,

g[λ](h) = λ(h ◦ g) = λ(h
1

| det g′| ◦ g−1
. (12.25)

12.8 Supplement: Direct construction of the Lebesgue-
Stieltjes measure

It is also possible to give a direct construction of the Lebesgue-Stieltjes measure
corresponding to an increasing right continuous function F . This is because the
following Dini lemma for step functions has a direct self-contained proof. Once
the lemma is established, then the general construction of an integral from an
elementary integral applies.

Lemma 12.6 Let F : R → R be an increasing right continuous function. For
each function

f =
m∑

k=1

ck1(ak,bk] (12.26)

define

σF (f) =
m∑

k=1

ck(F (bk)− F (ak)). (12.27)

If fn ↓ 0 pointwise, then µ(fn) ↓ 0.

Proof: Say that fn → 0, where each fn is such a function. Notice that all the
fn have supports in the interior of a fixed compact interval [p, q]. Furthermore,
they are all bounded by some fixed constant M . Write fn =

∑mn
k=1 cnk1(ank,bnk].

For each n and k choose an interval Ink = (ank, a′nk] such that the corresponding
mass F (a′nk)− F (ank) is bounded by ε/(2nmk). This can be done by using the
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right continuity of F at each ank. Let In be the union of the intervals Ink, so
the total mass associated with In is ε/2n. For each x in [p, q] let nx be the first n
such that fn(x) < ε. Choose an open interval Vx about x such that y in Vx and
y not in Inx implies fnx(y) < ε. Now let Vx1 , . . . , Vxj be a finite open subcover
of [p, q]. Let N be the maximum of nx1 , . . . , nxj . Then since the sequence of
functions is monotone decreasing, y in [p, q] but y not in the union of the Inxi
implies f(y) < ε. So σF (fN ) is bounded by the total mass F (q) − F (p) times
the upper bound ε on the values plus a mass at most ε times the upper bound
M on the values. �

Problems

1. Suppose the order preserving property f ≤ g implies µ(f) ≤ µ(g) is
known for positive measurable functions. Show that it follows for all
measurable functions, provided that the integrals exist. Hint: Decompose
the functions into positive and negative parts.

2. Consider the space Ω = {0, 1}N+ with the measure µ that describes fair
coin tossing. Let S3 be the random variable given by S3(ω) = ω1 +ω2 +ω3

that describes the number of heads in the first three tosses. Draw the
graph of the corresponding function on the unit interval. Find the area
under the graph, and check that this indeed gives the expectation of the
random variable.

3. Let µ be an integral defined for Borel measurable functions on the real
line. Let φ be a measurable map from the real line to itself. Then there
is an image integral φ[µ] defined by φ[µ](f) = µ(f ◦ φ). Let φ be defined
by φ(x) = 3. Find the image of Lebesgue measure λ under φ.

4. Consider the Gaussian (or normal) probability measure with expectation
given by

µ(f) =
∫ ∞
−∞

f(z)
1√
2π
e
−z2

2 dz. (12.28)

Let c be in R. Define φc(z) = ecz. For each c, find the forward image
φc[µ]. (Note: This is called a log normal probability measure.)

(a) If for some c this forward image has a density with respect to Lebesgue
measure, find it.

(b) If for some c it does not have a density with respect to Lebesgue
measure, explain why not.

(c) Are there distinct values of c that give the same forward image? Ex-
plain.

5. An integral is σ-finite provided that there is a sequence of positive func-
tions fn with finite integral such that fn ↑ 1. Must the image of a σ-finite
integral under a measurable map φ be σ-finite? Discuss.
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6. Let
µ(g) =

∫ ∞
−∞

g(t)w(t) dt (12.29)

be a integral defined by a density w(t) ≥ 0 with respect to Lebesgue
measure dt. Let s = φ(t) define a smooth function that is piecewise strictly
increasing or strictly decreasing or constant on open intervals separated
by isolated points. Show that the image integral

φ[µ](f) =
∫ ∞
−∞

f(s)h(s) ds+
∑
s∗
f(s∗)c(s∗) (12.30)

is given by a density h(s) and perhaps also some point masses c(s∗)δs∗ .
Here

h(s) =
∑

φ(t)=s

w(t)
1

|φ′(t)| (12.31)

and
c(s∗) =

∫

φ(t)=s∗
w(t) dt. (12.32)

7. What is the increasing right continuous function that defines the integral

µ(g) =
∫ ∞
−∞

g(x)
1
π

1
1 + x2

dx (12.33)

involving the Cauchy density?

8. What is the increasing right continuous function that defines the δa inte-
gral given by δa(g) = g(a)?

9. A subset of the line has Lebesgue measure zero if for every ε > 0 it is
a subset of a countable union of intervals of total length bounded by ε.
Prove that if φ : [0, L] → R is a C2 function, and S = {x | φ′(x) = 0},
then the image φ[S] of the subset S under φ has measure zero. (This does
not mean that S has measure zero.) Hint: Suppose that for each t we
have |φ′′(t)| ≤ M , so |φ(x′) − φ(x) − φ′(x)(x′ − x)| ≤ (1/2)M(x′ − x)2.
Divide [0, L] into n closed subintervals each of length L/n. If y = φ(x) is
in φ[S], then x is in one of the intervals, and φ′(x) = 0. What can you
say about the size of the image of this interval?



Chapter 13

Convergence theorems

13.1 Convergence theorems

The most fundamental convergence theorem is improved monotone convergence.
This was proved in the last chapter, but it is well to record it again here.

Theorem 13.1 (improved monotone convergence) If µ(f1) > −∞ and fn ↑ f ,
then µ(fn) ↑ µ(f). Similarly, if µ(h1) < +∞ and hn ↓ h, then µ(hn) ↓ µ(h).

The next theorem is a consequence of monotone convergence that applies to
a sequence of functions that is not monotone.

Theorem 13.2 (Fatou’s lemma) Suppose each fn ≥ 0. Let f = lim infn→∞ fn.
Then

µ(f) ≤ lim inf
n→∞

µ(fn). (13.1)

Proof: Let rn = infk≥n fk. It follows that 0 ≤ rn ≤ fk for each k ≥ n. So
0 ≤ µ(rn) ≤ µ(fk) for each k ≥ n. This gives the inequality

0 ≤ µ(rn) ≤ inf
k≥n

µ(fk). (13.2)

However 0 ≤ rn ↑ f . By monotone convergence 0 ≤ µ(rn) ↑ µ(f). Therefore
passing to the limit in the inequality gives the result. �

Fatou’s lemma says that in the limit one can lose positive mass density, but
one cannot gain it.

Examples:

1. Consider functions fn = n1(0,1/n) on the line. It is clear that λ(fn) = 1
for each n. On the other hand, fn → 0 pointwise, and λ(0) = 0. The
density has formed a spike near the origin, and this does not produce a
limiting density.

137
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2. Consider functions fn = 1(n,n+1). It is clear that λ(fn) = 1 for each n.
On the other hand, fn → 0 pointwise, and λ(0) = 0. The density has
moved off to +∞ and is lost in the limit.

It is natural to ask where the mass has gone. The only way to answer this
is to reinterpret the problem as a problem about measure. Define the measure
νn(φ) = λ(φfn). Take φ bounded and continuous. Then it is possible that
νn(φ) → ν(φ) as n to ∞. If this happens, then ν may be interpreted as a
limiting measure that contains the missing mass. However this measure need
not be given by a density.

Examples:

1. Consider functions nfn = 1(0,1/n) on the line. In this case νn(φ) =
λ(φfn) → φ(0) = δ0(φ). The limiting measure is a point mass at the
origin.

2. Consider functions fn = 1(n,n+1). Suppose that we consider continuous
functions with right and left hand limits at +∞ and −∞. In this case
νn(φ) = λ(φfn) → φ(+∞) = δ+∞(φ). The limiting measure is a point
mass at +∞.

Theorem 13.3 (dominated convergence) Let |fn| ≤ g for each n, where g
is in L1(X,F , µ), that is, µ(g) < ∞. Suppose fn → f pointwise as n → ∞.
Then f is in L1(X,F , µ) and µ(fn)→ µ(f) as n→∞.

This theorem is amazing because it requires only pointwise convergence. The
only hypothesis is the existence of the dominating function

∀n∀x |fn(x)| ≤ g(x) (13.3)

with ∫
g(x) dµ(x) < +∞. (13.4)

Then pointwise convergence

∀x lim
n→∞

fn(x) = f(x) (13.5)

implies convergence of the integrals

lim
n→∞

∫
fn(x) dµ(x) =

∫
f(x) dµ(x). (13.6)

Proof: We have |fk| ≤ g, so −g ≤ fk ≤ g. Let rn = infk≥n fk and
sn = supk≥n fk. Then

−g ≤ rn ≤ fn ≤ sn ≤ g. (13.7)
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This gives the inequality

−∞ < −µ(g) ≤ µ(rn) ≤ µ(fn) ≤ µ(sn) ≤ µ(g) < +∞. (13.8)

However rn ↑ f and sn ↓ f . It follows from improved monotone convergence that
µ(rn) ↑ µ(f) and µ(sn) ↓ µ(f). It follows from the inequality that µ(fn)→ µ(f).
�

Corollary 13.4 Let |fn| ≤ g for each n, where g is in L1(X,F , µ). It follows
that each fn is in L1(X,F , µ). Suppose fn → f pointwise as n → ∞. Then f
is in L1(X,F , µ) and fn → f in the sense that µ(|fn − f |)→ 0 as n→∞.

Proof: It suffices to apply the dominated convergence theorem to |fn−f | ≤
2g. �

In applying the dominated convergence theorem, the function g ≥ 0 must
be independent of n and have finite integral. However there is no requirement
that the convergence be uniform or monotone.

Here is a simple example. Consider the sequence of functions fn(x) =
cosn(x)/(1 + x2). The goal is to prove that λ(fn) =

∫∞
−∞ fn(x) dx → 0 as

n → ∞. Note that fn → 0 as n → ∞ pointwise, except for points that are a
multiple of π. At these points one can redefine each fn to be zero, and this will
not change the integrals. Apply the dominated convergence to the redefined fn.
For each n we have |fn(x)| ≤ g(x), where g(x) = 1/(1 + x2) has finite integral.
Hence λ(fn)→ λ(0) = 0 as n→∞.

The following examples show what goes wrong when the condition that the
dominating function has finite integral is not satisfied.

Examples:

1. Consider functions fn = n1(0,1/n) on the line. These are dominated by
g(x) = 1/x on 0 < x ≤ 1, with g(x) = 0 for x ≥ 0. This is independent
of n. However λ(g) =

∫ 1

0
1/x dx = +∞. The dominated convergence does

not apply, and the integral of the limit is not the limit of the integrals.

2. Consider functions fn = 1(n,n+1). Here the obvious dominating function
is g = 1(0,+∞). However again λ(g) = +∞. Thus there is nothing to
prevent mass density being lost in the limit.

13.2 Measure

If E is a subset of X, then 1E is the indicator function of E. Its value is 1
for every point in E and 0 for every point not in E. The set E is said to be
measurable if the function 1E is measurable. The measure of such an E is µ(1E).
This is often denoted µ(E).

Theorem 13.5 An integral is uniquely determined by the corresponding mea-
sure.
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Proof: Let f ≥ 0 be a measurable function. Define

fn =
∞∑

k=0

k

2n
1 k

2n<f≤ k+1
2n
. (13.9)

The integral of fn is determined by the measures of the sets where k
2n < f ≤ k+1

2n .
However fn ↑ f , and so the integral of f is determined by the corresponding
measure. �

This theorem justifies a certain amount of confusion between the notion of
measure and the notion of integral. In fact, this whole subject is sometimes
called measure theory.

Sometimes we denote a subset of X by a condition that defines the subset.
Thus, for instance, {x | f(x) > a} is denoted f > a, and its measure is µ(f > a).

Theorem 13.6 If the set where f 6= 0 has measure zero, then µ(|f |) = 0.

Proof: For each n the function |f | ∧ n ≤ n1|f |>0 and so has integral µ(|f | ∧
n) ≤ n · 0 = 0. However |f | ∧ n ↑ |f | as n→∞. So from monotone convergence
µ(|f |) = 0. �

The preceding theorem shows that changing a function on a set of measure
zero does not change its integral. Thus, for instance, if we change g1 to g2 =
g1 + f , then |µ(g2)− µ(g1)| = |µ(f)| ≤ µ(|f |) = 0, so µ(g1) = µ(g2).

There is a terminology that is standard in this situation. If a property of
points is true except on a subset of µ measure zero, then it is said to hold almost
everywhere with respect to µ. Thus the theorem would be stated as saying that
if f = 0 almost everywhere, then its integral is zero. Similarly, if g = h almost
everywhere, then g and h have the same integral.

In probability the terminology is slightly different. Instead of saying that a
property holds almost everywhere, on says that the event happens almost surely
or with probability one.

The convergence theorems hold even when the hypotheses are violated on a
set of measure zero. For instance, the dominated convergence theorem can be
stated: If |g| ≤ g almost everywhere with respect to µ and µ(g) < +∞, then
fn → f almost everywhere with respect to µ implies µ(fn)→ µ(f).

Theorem 13.7 (Chebyshev inequality) Let f be a real measurable function
and a be a real number. Let φ be an increasing real function on [a,+∞) with
φ(a) > 0 and φ ≥ 0 on the range of f . Then

µ(f ≥ a) ≤ 1
φ(a)

µ(φ(f)). (13.10)

Proof: This follows from the pointwise inequality

1f≥a ≤ 1φ(f)≥φ(a) ≤
1

φ(a)
φ(f). (13.11)
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At the points where f ≥ a we have φ(f) ≥ φ(a) and so the right hand size is
one or greater. In any case the right hand size is positive. Integration preserves
the inequality. �

The Chebyshev inequality is used in practice mainly in certain important
special cases. Thus for a > 0 we have

µ(|f | ≥ a) ≤ 1
a
µ(|f |) (13.12)

and
µ(|f | ≥ a) ≤ 1

a2
µ(f2). (13.13)

Another important case is when t > 0 and

µ(f ≥ a) ≤ 1
eta

µ(etf ). (13.14)

Theorem 13.8 If µ(|f |) = 0, then the set where f 6= 0 has measure zero.

Proof: By the Chebyshev inequality, for each n we have µ(1|f |>1/n) ≤
nµ(|f |) = n · 0 = 0. However as n → ∞, the functions 1|f |>1/n ↑ 1|f |>0. So
µ(1|f |>0) = 0. �

The above theorem also has a statement in terms of an almost everywhere
property. It says that if |f | has integral zero, then f = 0 almost everywhere.

13.3 Extended real valued measurable functions

In connection with Tonelli’s theorem it is natural to look at functions with values
in the set [0,+∞]. This system is well behaved under addition. In the context
of measure theory it is useful to define 0 · (+∞) = (+∞) · 0 = 0. It turns out
that this is the most useful definition of multiplication.

Let X be a non-empty set, and let F be a σ-algebra of real functions on
X. A function f : X → [0,+∞] is said to be measurable with respect to F if
there is a sequence fn of functions in F with fn ↑ f pointwise. A function is
measurable in this sense if and only if there is a measurable set A with f = +∞
on A and f coinciding with a function in F on the complement Ac.

An integral µ : F+ → [0,+∞] is extended to such measurable functions f
by monotone convergence. Notice that if A is the set where f = +∞, then we
can set fn = n on A and f on Ac. Then µ(fn) = nµ(A) + µ(f1Ac). If we take
n → ∞, we get µ(f) = (+∞)µ(A) + µ(f1Ac). For the monotone convergence
theorem to hold we must interpret (+∞) · 0 = 0. Notice that if µ(f) < +∞,
then it follows that µ(A) = 0.

13.4 Fubini’s theorem for sums and integrals

Theorem 13.9 (Tonelli for sums of functions) If wk ≥ 0, then

µ(
∞∑

k=1

wk) =
∞∑

k=1

µ(wk). (13.15)
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Proof: This theorem says that for positive functions integrals and sums may
be interchanged. This is the monotone convergence theorem in disguise. That
is, let fn =

∑n
k=1 wk. Then fn ↑ f =

∑∞
k=1 wk. Hence µ(fn) =

∑n
k=1 µ(wk) ↑

µ(f). �

Theorem 13.10 (Fubini for sums of functions) Suppose that the condition∑∞
k=1 µ(|wk|) < +∞ is satisfied. Set g =

∑∞
k=1 |wk|. Then g is in L1(X,F , µ)

and so the set Λ where g < +∞ has µ(Λc) = 0. On this set Λ let

f =
∞∑

k=1

wk (13.16)

and on Λc set f = 0. Then f is in L1(X,F , µ) and

µ(f) =
∞∑

k=1

µ(wk). (13.17)

In other words, ∫

Λ

∞∑

k=1

wk dµ =
∞∑

k=1

∫
wk dµ. (13.18)

Proof: This theorem says that absolute convergence implies that inte-
grals and sums may be interchanged. Here is a first proof. By the hypoth-
esis and Tonelli s theorem µ(g) < +∞. It follows that g < +∞ on a set Λ
whose complement has measure zero. Let fn =

∑n
k=1 1Λwk. Then |fn| ≤ g

for each n. Furthermore, the series defining f is absolutely convergent on
Λ and hence convergent on Λ. Thus fn → f as n → ∞. Furthermore
µ(fn) =

∑n
k=1 µ(1Λwk) =

∑n
k=1 µ(wk). The conclusion follows by the dom-

inated convergence theorem. �
Proof: Here is a second proof. Decompose each wj = w+

j − w−j into a
positive and negative part. Then by Tonelli’s theorem µ(

∑∞
j=1 w

±
j ) < +∞. Let

Λ be the set where both sums
∑∞
j=1 w

±
j < +∞. Then µ(Λc) = 0. Let f =∑∞

j=1 wj on Λ and f = 0 on Λc. Then f =
∑∞
j=1 1Λw

+
j −

∑∞
j=1 1Λw

−
j . There-

fore µ(f) = µ(
∑∞
j=1 1Λw

+
j ) − µ(

∑∞
j=1 1Λw

−
j ) =

∑∞
j=1 µ(w+

j ) −∑∞j=1 µ(w−j ) =∑∞
j=1(µ(w+

j )− µ(w−j )) =
∑∞
j=1 µ(wj). The hypothesis guarantees that there is

never a problem with (+∞)− (+∞). �

13.5 Fubini’s theorem for sums

The following two theorems give conditions for when sums may be interchanged.
Usually these results are applied when the sums are both over countable sets.
However the case when one of the sums is uncountable also follows from the
corresponding theorems in the preceding section.
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Theorem 13.11 (Tonelli for sums) If wk(x) ≥ 0, then

∑
x

∞∑

k=1

wk(x) =
∞∑

k=1

∑
x

wk(x). (13.19)

Theorem 13.12 (Fubini for sums) Suppose that the condition
∑∞
k=1

∑
x |wk(x)| <

+∞ is satisfied. Then for each x the series
∑∞
k=1 wk(x) is absolutely summable,

and ∑
x

∞∑

k=1

wk(x) =
∞∑

k=1

∑
x

wk(x). (13.20)

Here is an example that shows why absolute convergence is essential. Let
g : N × N → R be defined by g(m,n) = 1 if m = n and g(m,n) = −1 if
m = n+ 1. Then

∞∑
n=0

∞∑
m=0

g(m,n) = 0 6= 1 =
∞∑
m=0

∞∑
n=0

g(m,n). (13.21)

Problems

1. Can the plane be represented as a countable union of circles (of varying
radii)? Justify your answer.

2. This problem is to show that one can get convergence theorems when the
family of functions is indexed by real numbers. Prove that if ft → f
pointwise as t→ t0, |ft| ≤ g pointwise, and µ(g) <∞, then µ(ft)→ µ(f)
as t→ t0.

3. Show that if f is a Borel function and
∫∞
−∞ |f(x)| dx < ∞, then F (b) =∫ b

−∞ f(x) dx is continuous.

4. Must the function F in the preceding problem be differentiable at every
point? Discuss.

5. Show that ∫ ∞
0

sin(ex)
1 + nx2

dx→ 0 (13.22)

as n→∞.

6. Show that ∫ 1

0

n cos(x)
1 + n2x

3
2
dx→ 0 (13.23)

as n→∞.

7. Evaluate
lim
n→∞

∫ ∞
a

n

1 + n2x2
dx (13.24)

as a function of a.
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8. Consider the integral ∫ ∞
−∞

1√
1 + nx2

dx. (13.25)

Show that the integrand is monotone decreasing and converges pointwise
as n → ∞, but the integral of the limit is not equal to the limit of the
integrals. How does this relate to the monotone convergence theorem?

9. Let f ≥ 0 satisfy
∫∞

0
f(x) dx < +∞. Evaluate

lim
n→∞

∫ ∞
0

xnf(x) dx. (13.26)

There are several possible answers: discuss all cases.

10. Let g be a Borel function with
∫ ∞
−∞
|g(x)| dx <∞ (13.27)

and ∫ ∞
−∞

g(x) dx = 1 (13.28)

Let
gε(x) = g(

x

ε
)
1
ε
. (13.29)

Let φ be bounded and continuous. Show that
∫ ∞
−∞

gε(y)φ(y) dy → φ(0) (13.30)

as ε→ 0. This problem gives a very general class of functions gε(x) such
that integration with gε(x) dx converges to the Dirac delta integral δ0
given by δ0(φ) = φ(0).

11. Let f be bounded and continuous. Show that for each x the convolution
∫ ∞
−∞

gε(x− z)f(z) dz → f(x) (13.31)

as ε→ 0.

12. Prove countable subadditivity :

µ(
∞⋃
n=1

An) ≤
∞∑
n=1

µ(An). (13.32)

Show that if the An are disjoint this is an equality (countable additivity).
Hint: 1S∞

n=1 An
≤∑∞n=1 1An .
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13. Egoroff’s theorem. Let n 7→ fn be a sequence of measurable functions
defined on a finite measure space X,µ. Suppose that fn → f pointwise
as n → ∞. Show that for every a > 0 there is a set E with measure
µ(E) ≥ µ(X) − a and a sequence k 7→ Nk defined for k = 1, 2, 3, . . . such
that for each x in E we have ∀k ∀n ≥ Nk |fn(x)− f(x)| < 1/k. Since Nk
depends only on k, the result says that fn → f uniformly on E.

Hint: Let EkN = {x | ∀n ≥ N |fn(x)−f(x)| < 1/k. Consider a > 0. Prove
that limN→∞ µ(EkNk = 1; be explicit about what convergence theorem
you use. Then for N sufficiently large µ(EkN ) ≥ 1−a/2k. Define Nk with
µ(EkNk) ≥ a/2k.
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Chapter 14

Fubini’s theorem

14.1 Introduction

As an introduction, consider the Tonelli and Fubini theorems for Borel functions
of two variables.

Theorem 14.1 (Tonelli) If f(x, y) ≥ 0, then
∫ ∞
−∞

[∫ ∞
−∞

f(x, y) dx
]
dy =

∫ ∞
−∞

[∫ ∞
−∞

f(x, y) dy
]
dx. (14.1)

Theorem 14.2 (Fubini) If
∫ ∞
−∞

[∫ ∞
−∞
|f(x, y)| dx

]
dy < +∞, (14.2)

then ∫ ∞
−∞

[∫ ∞
−∞

f(x, y) dx
]
dy =

∫ ∞
−∞

[∫ ∞
−∞

f(x, y) dy
]
dx. (14.3)

A slightly more careful statement of Fubini’s theorem would acknowledge
that the inner integrals may not be defined. However let

Λ1 = {x |
∫ ∞
−∞
|f(x, y)| dy < +∞} (14.4)

and
Λ2 = {y |

∫ ∞
−∞
|f(x, y)| dx < +∞} (14.5)

Then the inner integrals are well-defined on these sets. Furthermore, by the
hypothesis of Fubini’s theorem and by Tonelli’s theorem, the complements of
these sets have measure zero. So a more precise statement of the conclusion of
Fubini’s theorem is that

∫

Λ2

[∫ ∞
−∞

f(x, y) dx
]
dy =

∫

Λ1

[∫ ∞
−∞

f(x, y) dy
]
dx. (14.6)

147
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This just amounts to replacing the undefined inner integrals by zero on the
troublesome sets that are the complements of Λ1 and Λ2. It is quite fortunate
that these sets are of measure zero.

The Tonelli and Fubini theorems may be formulated in a way that does not
depend on writing the variables of integration explicitly. Consider for example
Tonelli’s theorem, which applies to a positive measurable function f on the
plane. Let f |1 be the function on the line whose value at a real number is
obtained by holding the first variable fixed at this number and looking at f
as a function of the second variable. Thus the value f |1(x) is the function
y 7→ f(x, y). Similarly, let f |2 be the function on the line whose value at a
real number is obtained by holding the second variable fixed at this number
and looking at f as a function of the first variable. The value f |2(y) is the
function x 7→ f(x, y). Then the inner integrals are (λ ◦ f |2)(y) = λ(f |2(y)) =∫∞
−∞ f(x, y) dx and (λ ◦ f |1)(x) = λ(f |1(x)) =

∫∞
−∞ f(x, y) dy. So λ ◦ f |2 and

λ ◦ f |1 are each a positive measurable function on the line. The conclusion of
Tonelli’s theorem may then be stated as the equality λ(λ ◦ f |2) = λ(λ ◦ f |1).

Here is rather interesting example where the hypothesis and conclusion of
Fubini’s theorem are both violated. Let σ2 > 0 be a fixed diffusion constant.
Let

u(x, t) =
1√

2πσ2t
exp(− x2

2σ2t
). (14.7)

This describes the diffusion of a substance that has been created at time zero
at the origin. For instance, it might be a broken bottle of perfume, and the
molecules of perfume each perform a kind of random walk, moving in an irregular
way. The motion is so irregular that the average squared distance that a particle
moves in time t is only x2 = σ2t.

As time increases the density gets more and more spread out. Then u satisfies

∂u

∂t
=
σ2

2
∂2u

∂x2
. (14.8)

Note that
∂u

∂x
= − x

σ2t
u (14.9)

and
∂2u

∂x2
=

1
σ2t

(
x2

σ2t
− 1)u. (14.10)

This says that u is increasing in the space time region x2 > σ2t and decreasing
in the space-time region x2 < σ2t.

Fix s > 0. It is easy to compute that
∫ ∞
s

∫ ∞
−∞

∂u

∂t
dx dt =

σ2

2

∫ ∞
s

∫ ∞
−∞

∂2u

∂x2
dx dt = 0 (14.11)

and ∫ ∞
−∞

∫ ∞
s

∂u

∂t
dt dx = −

∫ ∞
−∞

u(x, s) dx = −1. (14.12)
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One can stop at this point, but it is interesting to look at the mechanism
of the failure of the Fubini theorem. It comes from the fact that the time
integral is extended to infinity, and in this limit the density spreads out more
and more and approaches zero pointwise. So mass is lost in this limit, at least
if one tries to describe it as a density. A description of the mass as a measure
might lead instead to the conclusion that the mass is sitting at x = ±∞ in the
limit t → ∞. Even this does not capture the essence of the situation, since
the diffusing particles do not go to infinity in any systematic sense; they just
wander more and more.

The Tonelli and Fubini theorems are true for the Lebesgue integral defined
for Borel functions on the line. However they are not true for arbitrary integrals
that are not required to be σ-finite. Here is an example based on the example
of summation over an uncountable set.

Let λ(g) =
∫ 1

0
g(x) dx be the usual uniform Lebesgue integral on the interval

[0, 1]. Let
∑
h =

∑
y h(y) be summation indexed by the points in the interval

[0, 1]. The measure
∑

is not σ-finite, since there are uncountably many points
in [0, 1]. Finally, let δxy = 1 if x = y, and δxy = 0 for x 6= y. Now for each x,
the sum

∑
y δxy = 1. So the integral over x is also 1. On the other hand, for

each y the integral
∫ 1

0
δxy dx = 0, since the integrand is zero except for a single

point of λ measure zero, where it has the value one. So the sum over y is also
zero. Thus the two orders of integration give different results.

14.2 Product sigma-algebras

This section defines the product σ-algebra. Let X1 and X2 be non-empty sets.
Then their product X1 × X2 is another non-empty set. There are projections
π1 : X1 × X2 → X1 and π2 : X1 × X2 → X2. These are of course define by
π1(x, y) = x and π2(x, y) = y.

Suppose that F1 is a σ-algebra of real functions on X1 and F2 is a σ-algebra
of real functions on X2. Then there is a product σ-algebra F1

⊗F2 of real
functions on X1 ×X2. This is the smallest σ-algebra of functions on F1 × F2

such that the projections π1 and π2 are measurable maps.
The condition that the projections π1 and π2 are measurable maps is the

same as saying that for each g in F1 the function g ◦ π1 is measurable and for
each h in F2 the function h ◦ π2 is measurable. In other words, the functions
(x, y) 7→ g(x) and (x, y) 7→ h(y) are required to be measurable functions. This
condition determines the σ-algebra of measurable functions F1

⊗F2.
If g is a real function on X1 and h is a real function on X2, then there is a

real function g ⊗ h on X defined by

(g ⊗ h)(x, y) = g(x)h(y). (14.13)

This is sometimes called the tensor product of the two functions. Such func-
tions are called decomposable. Another term is separable, as in “separation
of variables.” The function g ⊗ h could be define more abstractly as g ⊗ h =
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(g ◦π1)(h◦π2). This identity could also be stated as g⊗h = (g⊗1)(1⊗h). It is
easy to see that F1

⊗F2 may also be characterized as the σ-algebra generated
by the functions g ⊗ h with g in F1 and h in F2.

Examples:

1. If Bo is the Borel σ-algebra of functions on the line, then Bo⊗Bo is the
Borel σ-algebra of functions on the plane.

2. Take the two sigma-algebras to be the Borel σ-algebra of real functions on
[0, 1] and the σ-algebra R[0,1] of all real functions on [0, 1]. These are the
σ-algebras relevant to the counterexample with λ and

∑
. The product σ-

algebra then consists of all functions f on the square such that x 7→ f(x, y)
is a Borel function for each y. The diagonal function δ is measurable, but∑

is not σ-finite, so Tonelli’s theorem does not apply.

3. Take the two sigma-algebras to be the Borel σ-algebra of real functions on
[0, 1] and the σ-algebra consisting of all real functions y 7→ a+h(y) on [0, 1]
that differ from a constant function a on a countable set. These are the
σ-algebras relevant to the counterexample with λ and

∑
, but in the case

when we restrict
∑

to the smallest σ-algebra for which it makes sense.
The product σ-algebra is generated by functions of the form (x, y) 7→ g(x)
and (x, y) 7→ a+h(y), where h vanishes off a countable set. This is a rather
small σ-algebra; the diagonal function δ used in the counterexample does
not belong to it. Already for this reason Tonelli’s theorem cannot be used.

Lemma 14.3 Let X1 be a set with σ-algebra F1 of functions and σ-finite in-
tegral µ1. Let X2 be another set with a σ-algebra F2 of functions and σ-finite
integral µ2. Let F1

⊗F2 be the product σ-algebra of functions on X1×X2. Let
L consist of finite linear combinations of indicator functions of products of sets
of finite measure. Then L is a vector lattice, and the smallest monotone class
including L is F1

⊗F2.

Proof: Let L ⊂ F1

⊗F2 be the set of all finite linear combinations

f =
∑

i

ci1Ai×Bi =
∑

i

ci1Ai ⊗ 1Bi , (14.14)

where Ai and Bi each have finite measure. The space L is obviously a vector
space. The proof that it is a lattice is found in the last section of the chapter.

Let En be a sequence of sets of finite measure that increase to X1. Let Fn
be a sequence of sets of finite measure that increase to X2. Then the En × Fn
increase to X1 × X2. This is enough to show that the the constant functions
belong to the monotone class generated by L. Since L is a vector lattice and
the monotone class generated by L has all constant functions, it follows that
the monotone class generated by L is a σ-algebra. To show that this σ-algebra
is equal to all of F1

⊗F2, it is sufficient to show that each g ⊗ h is in the σ-
algebra generated by L. Let gn = g1En and hn = h1Fn . It is sufficient to show



14.3. THE PRODUCT INTEGRAL 151

that each gn ⊗ hn is in this σ-algebra. However gn may be approximated by
functions of the form

∑
i ai1Ai with Ai of finite measure, and hn may also be

approximated by functions of the form
∑
j bj1Bj with Bj of finite measure. So

gn ⊗ hn is approximated by
∑
i

∑
j aibj1Ai ⊗ 1Bj =

∑
i

∑
j aibj1Ai×Bj . These

are indeed functions in L. �

14.3 The product integral

This section gives a proof of the uniqueness of the product of two σ-finite inte-
grals.

Theorem 14.4 Let F1 be a σ-algebra of measurable functions on X1, and let
F2 be a σ-algebra of measurable functions on X2. Let µ1 : F+

1 → [0,+∞] and
µ2 : F+

2 → [0,+∞] be corresponding σ-finite integrals. Consider the product
space X1 × X2 and the product σ-algebra of functions F1

⊗F2. Then there
exists at most one σ-finite integral ν : (F1

⊗F2)+ → [0,+∞] with the property
that if A and B each have finite measure, then ν(A×B) = µ1(A)µ2(B).

Proof: Let L be the vector lattice of the preceding lemma. The integral ν is
uniquely defined on L by the explicit formula. Since the smallest monotone class
including L is F1

⊗F2, it follows that the smallest L-monotone class including
L+ is (F1

⊗F2)+. Say that ν and ν′ were two such integrals. Then they agree
on L, since they are given by an explicit formula. However the set of functions
on which they agree is an L-monotone class. Therefore the integral is uniquely
determined on all of F+. �

The integral ν described in the above theorem is called the product integral
and denoted µ1×µ2. The corresponding measure is called the product measure.
The existence of the product of σ-finite integrals will be a byproduct of the
Tonelli theorem. This product integral ν has the more general property that if
g ≥ 0 is in F1 and h ≥ 0 is in F2, then

ν(g ⊗ h) = µ1(g)µ2(h). (14.15)

The product of integrals may be of the form 0 · (+∞) or (+∞) · 0. In that
case the multiplication is performed using 0 · (+∞) = (+∞) · 0 = 0. The
characteristic property (µ1 × µ2)(g ⊗ h) = µ1(g)µ2(h) may also be written in
the more explicit form

∫
g(x)h(y) d(µ1 × µ2)(x, y) =

∫
g(x) dµ1(x)

∫
h(y) dµ2(y). (14.16)

The definition of product integral does not immediately give a useful way to
compute the integral of functions that are not written as sums of decomposable
functions. For this we need Tonelli’s theorem and Fubini’s theorem.
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14.4 Tonelli’s theorem

Let X1 and X2 be two sets. Let f : X1 ×X2 → R be a function on the product
space. For each x in X1 there is a section (or slice) function y 7→ f(x, y). Then
there is a function f |1 from X1 to RX2 defined by saying that the value f |1(x)
is the function y 7→ f(x, y). In other words, f |1 is f with the first variable
temporarily held constant.

Similarly, for each y in X2 there is a section function x 7→ f(x, y). Hence
there is a function f |2 from X2 to RX1 defined by saying that the value f |2(y)
is the function x 7→ f(x, y). In other words, f |2 is f with the second variable
temporarily held constant.

Lemma 14.5 Let f : X1 × X2 → [0,+∞] be a F1

⊗F2 measurable function.
Then for each x the function f |1(x) is a F2 measurable function on X2. Also,
for each y the function f |2(y) is a F1 measurable function on X1.

Explicitly, this lemma says that the functions

y 7→ f(x, y) (14.17)

with fixed x and
x 7→ f(x, y) (14.18)

with fixed y are measurable functions.
Proof: Let L be the space of finite linear combinations of indicator functions

of products of sets of finite measure. Consider the class S of functions f for
which the lemma holds. If f is in L, then f =

∑
i ci1Ai×Bi , where each Ai

is an F1 set and each Bi is a F2 set. Then for fixed x consider the function
y 7→ ∑

i ci1Ai(x)1Bi(y). This is clearly in F2. This shows that L ⊂ S. Now
suppose that fn ↑ f and each fn is in S. Then for each x we have that fn(x, y)
is measurable in y and increases to f(x, y) pointwise in y. Therefore f(x, y) is
measurable in y. This proves S is closed under upward monotone convergence.
The argument for downward monotone convergence is the same. Thus S is a
monotone class. Since F1

⊗F2 is the smallest monotone class including L, this
establishes the result. �

Lemma 14.6 Let µ1 be a σ-finite integral defined on F+
1 . Also let µ2 be a

σ-finite integral defined on F+
2 . Let f : X1 × X2 → [0,+∞] be a F1

⊗F2

measurable function. Then the function µ2 ◦ f |1 is an F1 measurable function
on X1 with values in [0,+∞]. Also the function µ1 ◦ f |2 is an F2 measurable
function on X2 with values in [0,+∞].

Explicitly, this lemma says that the functions

x 7→
∫
f(x, y) dµ2(y) (14.19)

and
y 7→

∫
f(x, y) dµ1(y) (14.20)
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are measurable functions.
Proof: The previous lemma shows that the integrals are well defined. Con-

sider the class S of functions f for which the first assertion of the lemma holds.
If f is in L+, then f =

∑
i ci1Ai×Bi , where each Ai is an F1 set and each Bi is

a F2 set. Then for fixed x consider the function y 7→∑
i ci1Ai(x)1Bi(y). Its µ2

integral is
∑
i ci1Ai(x)µ(Bi). This is clearly in F1 as a function of x. This shows

that L ⊂ S. Now suppose that fn is a sequence of L-bounded functions, that
fn ↑ f , and each fn is in S. Then we have that

∫
fn(x, y) dµ2(y) is measurable

in x. Furthermore, for each x it increases to
∫
f(x, y) dµ2(y), by the mono-

tone convergence theorem. Therefore
∫
f(x, y) dµ2(y) is measurable in x. This

proves S is closed under upward monotone convergence of L-bounded functions.
The argument for downward monotone convergence uses the improved mono-
tone convergence theorem; here it is essential that each fn be an L-bounded
function. Thus S is an L-bounded monotone class including L+. It follows that
(F1

⊗F2)+ ⊂ S. �

Lemma 14.7 Let f : X1 ×X2 → [0,+∞] be a F1

⊗F2 measurable function .
Then ν12(f) = µ2(µ1 ◦ f |2) defines an integral ν12. Also ν21(f) = µ1(µ2 ◦ f |1)
defines an integral ν21.

Explicitly, this lemma says that the iterated integrals

ν12(f) =
∫ (∫

f(x, y) dµ1(x)
)
dµ2(y) (14.21)

and

ν21(f) =
∫ (∫

f(x, y) dµ2(y)
)
dµ1(x) (14.22)

are defined.
Proof: The previous lemma shows that the integral ν12 is well defined. It

is easy to see that ν12 is linear and order preserving. The remaining task is
to prove upward monotone convergence. Say that fn ↑ f pointwise. Then by
the monotone convergence theorem for µ1 we have that for each y the integral∫
fn(x, y) dµ1(x) ↑ ∫ f(x, y) dµ1(x). Hence by the monotone convergence the-

orem for µ2 we have that
∫ ∫

fn(x, y) dµ1(x) dµ2(y) ↑ ∫ f(x, y) dµ1(x) dµ2(y).
This is the same as saying that ν12(fn) ↑ µ12(f). �

Theorem 14.8 (Tonelli’s theorem) . Let F1 be a σ-algebra of real functions
on X1, and let F2 be a σ-algebra of real functions on X2. Let F1

⊗F2 be the
product σ-algebra of real functions on X1 × X2. Let µ1 : F+

1 → [0,+∞] and
µ2 : F+

2 → [0,+∞] be σ-finite integrals. Then there is a unique σ-finite integral

µ1 × µ2 : (F1

⊗
F2)+ → [0,+∞] (14.23)

such that (µ1 × µ2)(g ⊗ h) = µ1(g)µ2(h) for each g in F+
1 and h in F+

2 . Fur-
thermore, for f in (F1

⊗F2)+ we have

(µ1 × µ2)(f) = µ2(µ1 ◦ f |2) = µ1(µ2 ◦ f |1). (14.24)
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In this statement of the theorem f |2 is regarded as a function on X2 with
values that are functions on X1. Similarly, f |1 is regarded as a function on X1

with values that are functions on X2. Thus the composition µ1◦f |2 is a function
on X2, and the composition µ2 ◦ f |1 is a function on X1.

The theorem may be also be stated in a version with bound variables:
∫
f(x, y) d(µ1×µ2)(x, y) =

∫ [∫
f(x, y) dµ1(x)

]
dµ2(y) =

∫ [∫
f(x, y) dµ2(y)

]
dµ1(x).

(14.25)
Proof: The integrals ν12 and ν21 agree on L+. Consider the set S of

f ∈ (F1

⊗F2)+ such that ν12(f) = ν21(f). The argument of the previous
lemma shows that this is an L-monotone class. Hence S is all of (F1

⊗F2)+.
Define ν(f) to be the common value ν12(f) = ν21(f). Then ν is uniquely defined
by its values on L+. This ν is the desired product measure µ1 × µ2. �

The integral ν is called the product integral and is denoted by µ1 × µ2. Let
F 2 : RX1×X2 → (RX1)X2 be given by f 7→ f |2, that is, F2 says to hold the
second second variable constant. Similarly, let F 1 : RX1×X2 → (RX2)X1 be
given by f 7→ f |1, that is, F 1 says to hold the first variable constant. Then the
Tonelli theorem says that the product integral µ1 × µ2 : (F1 ×F2)+ → [0,+∞]
satisfies

µ1 × µ2 = µ2 ◦ µ1 ◦ F 2 = µ1 ◦ µ2 ◦ F 1. (14.26)

14.5 Fubini’s theorem

Recall that for an arbitrary non-empty set X, σ-algebra of functions F , and
integral µ, the space L1(X,F , µ) consists of all real functions f in F such
that µ(|f |) < +∞. For such a function µ(|f |) = µ(f+) + µ(f−), and µ(f) =
µ(f+)− µ(f−) is a well-defined real number.

Let f be in L1(X×Y,F1⊗F2, µ1×µ2). Let Λ1 be the set of all x with f |1(x)
in L1(X2,F2, µ2) and let Λ2 be the set of all y with f |2(y) in L1(X1,F1, µ1).
Then µ1(Λc1) = 0 and µ2(Λc2) = 0. Define the partial integral µ2(f | 1) by
µ2(f | 1)(x) = µ2(f |1(x)) for x ∈ Λ1 and µ2(f | 1)(x) = 0 for x ∈ Λc1. Define
the partial integral µ1(f | 2) by µ1(f | 2)(y) = µ1(f |2(y)) for y ∈ Λ2 and
µ1(f | 2)(y) = 0 for y ∈ Λc2.

Theorem 14.9 (Fubini’s theorem) Let F1 be a σ-algebra of real functions
on X1, and let F2 be a σ-algebra of real functions on X2. Let F1

⊗F2 be
the product σ-algebra of real functions on X1 × X2. Let µ1 and µ2 be σ-finite
integrals, and consider the corresponding functions

µ1 : L1(X,F1, µ1)→ R (14.27)

and
µ2 : L1(X2,F2, µ2)→ R. (14.28)

The product integral µ1 × µ2 defines a function

µ1 × µ2 : L1(X1 ×X2,F1

⊗
F2, µ1 × µ2)→ R. (14.29)
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Let f be in L1(X×Y,F1⊗F2, µ1×µ2). Then the partial integral µ2(f | 1) is in
L1(X1,F1, µ1), and the partial integral µ1(f | 2) is in L1(X2,F2, µ2). Finally,

(µ1 × µ2)(f) = µ1((µ2(f | 1)) = µ2(µ1(f | 2)). (14.30)

In this statement of the theorem µ2(f | 1) is the µ2 partial integral with the
first variable fixed, regarded after integration as a function on X1. Similarly,
µ1(f | 2) is the µ1 partial integral with the second variable fixed, regarded after
integration as a function on X2.

Fubini’s theorem may also be stated with bound variables:
∫
f(x, y) d(µ1×µ2)(x, y) =

∫

Λ1

[∫
f(x, y) dµ2(x)

]
dµ1(x) =

∫

Λ2

[∫
f(x, y) dµ1(x)

]
dµ2(y).

(14.31)
Here as before Λ1 and Λ2 are sets where the inner integral converges absolutely.
The complement of each of these sets has measure zero.

Proof: By Tonelli’s theorem we have that µ2 ◦ |f |1| is in L1(X1,F1, µ1) and
that µ1 ◦ |f |2| is in L2(X2,F2, µ2). This is enough to show that µ2(Λc1) = 0 and
µ1(Λc2) = 0. Similarly, by Tonelli’s theorem we have

(µ1×µ2)(f) = (µ1×µ2)(f+)−(µ1×µ2)(f−) = µ1(µ2◦f |1+ )−µ1(µ2◦f |1− ). (14.32)

Since Λ1 and Λ2 are sets whose complements have measure zero, we can also
write this as

(µ1 × µ2)(f) = µ1(1Λ1(µ2 ◦ f |1+ ))− µ1(1Λ1(µ2 ◦ f |1− )). (14.33)

Now for each fixed x in Λ1 we have

µ2(f |1(x)) = µ2(f |1+ (x))− µ2(f |1− (x)). (14.34)

This says that
µ2(f | 1) = 1Λ1(µ2 ◦ f |1+ )− 1Λ1(µ2 ◦ f |1− ). (14.35)

Each function on the right hand side is a real function in L1(X1,F1, µ1). So

(µ1 × µ2)(f) = µ1(µ2(f | 1)). (14.36)

�
Tonelli’s theorem and Fubini’s theorem are often used together to justify an

interchange of order of integration. Here is a typical pattern. Say that one can
show that the iterated integral with the absolute value converges:

∫ [∫
|h(x, y)| dν(y)

]
dµ(x) <∞. (14.37)

By Tonelli’s theorem the product integral also converges:
∫
|h(x, y)| d(µ× ν)(x, y) <∞. (14.38)
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Then from Fubini’s theorem the integrated integrals are equal:
∫ [∫

h(x, y) dν(y)
]
dµ(x) =

∫ [∫
h(x, y) dµ(x)

]
dν(y). (14.39)

The outer integrals are each taken over a set for which the inner integral con-
verges absolutely; the complement of this set has measure zero.

14.6 Supplement: Semirings and rings of sets

This section supplies the proof that finite linear combinations of indicator func-
tions of rectangles form a vector lattice. It may be omitted on a first reading.
The first and last results in this section are combinatorial lemmas that are
proved in books on measure theory. See Chapter 3 of the text by Dudley [4].

Let X be a set. A ring R of subsets of X is a collection such that ∅ is in R
and such that A and B in R imply A ∩B is in R and such that A and B in R
imply that A \B is in R.

A semiring D of subsets of X is a collection such that ∅ is in D and such
that A and B in D imply A∩B is in D and such that A and B in D imply that
A \B is a finite union of disjoint members of D.

Proposition 14.10 Let D be a semiring of subsets of X. Let R be the ring
generated by D. Then R consists of all finite unions of members of D.

Proposition 14.11 Let D be a semiring of subsets of a set X. Let Γ be a finite
collection of subsets in D. Then there exists a finite collection ∆ of disjoint
subsets in D such that each set in Γ is a finite union of some subcollection of
∆.

Proof: For each non-empty subcollection Γ′ of Γ consider the set AΓ′ that
is the intersection of the sets in Γ′ with the intersection of the complements of
the sets in Γ \Γ′. The sets AΓ′ are in R and are disjoint. Furthermore, each set
C in Γ is the finite disjoint union of the sets AΓ′ such that C ∈ Γ′. The proof
is completed by noting that by the previous proposition each of these sets AΓ′

is itself a finite disjoint union of sets in D. �

Theorem 14.12 Let D be a semiring of subsets of X. Let L be the set of all
finite linear combinations of indicator functions of sets in D. Then L is a vector
lattice.

Proof: The problem is to prove that L is closed under the lattice operations.
Let f and g be in L. Then f is a finite linear combination of indicator functions
of sets in D. Similarly, g is a finite linear combination of indicator functions of
sets in D. Take the union Γ of these two collections of sets. These sets may
not be disjoint, but there is a collection ∆ of disjoint sets in D such that each
set in the union is a disjoint union of sets in ∆. Then f and g are each linear
combinations of indicator functions of disjoint sets in ∆. It follows that f ∧ g
and f ∨ g also have such a representation. �
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Theorem 14.13 Let X1 and X2 be non-empty sets, and let D1 and D2 be
semirings of subsets. Then the set of all A × B with A ∈ D1 and B ∈ D2 is a
semiring of subsets of X1 ×X2.

In the application to product measures the sets D1 and D2 consist of sets of
finite measure. Thus each of D1 and D2 is a ring of subsets. It follows from the
last theorem that the product sets form a semiring of subsets of the product
space. The previous theorem then shows that the finite linear combinations
form a vector lattice.

Problems

1. Let g be a real Borel function on the line that is in L1. Thus

‖g‖1 =
∫ ∞
−∞
|g(x)| dx < +∞. (14.40)

Let f be another such function. Show that there is a subset Λ of the real
line such that for each x in Λ the function y 7→ g(x− y)f(y) is in L1, and
such that the complement of Λ has measure zero.

Define

h(x) =
∫ ∞
−∞

g(x− y)f(y) dy (14.41)

for x in Λ, and define h(x) = 0 for x in the complement of Λ. Prove that
h is in L1 and that ‖h‖1 ≤ ‖g‖1‖f‖1.

2. In the previous problem, show by example that it is possible that Λ is a
proper subset of the real line.

3. Let µ and ν be σ-finite measures, and let k be a measurable function on
the product space. Suppose that

sup
y

∫ ∞
−∞
|k(x, y)| dµ(x) = M < +∞. (14.42)

Let f be absolutely integrable with respect to ν. (Thus f is measurable
and its absolute value has finite ν integral.) For each f define

h(x) =
∫
k(x, y)f(y) dν(y). (14.43)

Show using the same reasoning as in the first problem that

‖h‖1 ≤M‖f‖1. (14.44)
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4. Let µ and ν be σ-finite measures, and let k ≥ 0 be a measurable function
on the product space. Suppose that for each y

∫
k(x, y) dµ(x) = 1. (14.45)

Let f ≥ 0 be absolutely integrable, and define

h(x) =
∫
k(x, y)f(y) dν(y). (14.46)

Show that
‖h‖1 = ‖f‖1. (14.47)

The interpretation is that f is an initial probability density, and k(x, y)
is the transition probability density from y to x. Then h is the final
probability density.

5. Show that if µ is not required to be σ-finite, then it is possible to have
‖f‖1 = 1 and ‖h‖1 = 0. Hint: Take the transition to go from each point
to the same point.



Chapter 15

Probability

15.1 Coin-tossing

A basic probability model is that for coin-tossing. The set of outcomes of the
experiment is Ω = 2N+ . Let bj be the jth coordinate function. Let fnk be
the indicator function of the set of outcomes that have the k pattern in the
first n coordinates. Here 0 ≤ k < 2n, and the pattern is given by the binary
representation of k. If S is the subset of {1, . . . , n} where the 1s occur, and Sc

is the subset where the 0s occur, then

fnk =
∏

j∈S
bj
∏

j∈Sc
(1− bj). (15.1)

The expectation µ is determined by

µ(fnk) = pjqn−j , (15.2)

where j is the number of 1s in the binary expansion of k, or the number of
points in S. It follows that if S and T are disjoint subsets of {1, . . . , n}, then

µ(
∏

j∈S
bj
∏

j∈T
(1− bj)) = pjq`, (15.3)

where j is the number of elements in S, and ` is the number of elements in T .
It follows from these formulas that the probability of success on one trial is

µ(bj) = p and the probability of failure on one trial is µ(1−bj) = q. Similarly, for
two trials i < j the probabilities of two successes is µ(bibj) = p2, the probability
of success followed by failure is µ(bi)(1 − bj)) = pq, the probability of failure
followed by success is µ((1 − bi)bj = qp, and the probability of two failures is
µ((1− bi)(1− bj)) = q2.

159
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15.2 Weak law of large numbers

Theorem 15.1 (Weak law of large numbers) Let

sn = b1 + · · ·+ bn (15.4)

be the number of successes in the first n trials. Then

µ(sn) = np (15.5)

and
µ((sn − np)2) = npq. (15.6)

Proof: Expand (sn−np)2 =
∑n
i=1

∑n
j=1(bi−p)(bj−p). The expectation of

each of the cross terms vanishes. The expectation of each of the diagonal terms
is (1− p)2p+ (0− p)2q = q2p+ p2q = pq. �

Corollary 15.2 (Weak law of large numbers) Let

fn =
b1 + · · ·+ bn

n
(15.7)

be the proportion of successes in the first n trials. Then

µ(fn) = p (15.8)

and
µ((fn − p)2) =

pq

n
≤ 1

4n
. (15.9)

The quantity that is usually used to evaluate the error is the standard de-
viation, which is the square root of this quantity. The version that should be
memorized is thus √

µ((fn − p)2) =
√
pq√
n
≤ 1

2
√
n
. (15.10)

This 1/
√
n factor is what makes probability theory work (in the sense that it is

internally self-consistent).

Corollary 15.3 Let

fn =
b1 + · · ·+ bn

n
(15.11)

be the proportion of successes in the first n trials. Then

µ(|fn − p| ≥ ε) =
pq

nε2
≤ 1

4nε2
. (15.12)

This corollary follows immediately from Chebyshev’s inequality. It gives a
perhaps more intuitive picture of the meaning of the weak law of large numbers.
Consider a tiny ε > 0. Then it says that if n is sufficiently large, then, with
probability very close to one, the experimental proportion fn differs from p by
less than ε.
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15.3 Strong law of large numbers

Theorem 15.4 Let
sn = b1 + · · ·+ bn (15.13)

be the number of successes in the first n trials. Then

µ(sn) = np (15.14)

and
µ((sn − np)4) = n(pq4 + qp4) + 3n(n− 1)(pq)2. (15.15)

This is bounded by (1/4)n2 for n ≥ 4.

Proof: Expand (sn − np)4 =
∑n
i=1

∑n
j=1

∑n
k=1

∑n
l=1(bi − p)(bj − p)(bk −

p)(bl − p). The expectation of each of the terms vanishes unless all four indices
coincide or there are two pairs of coinciding indices. The expectation for the case
when all four indices coincide is (1− p)4p+ (0− p)4q = q4p+ p4q = pq(q3 + p3).
There are n such terms. The expectation when there are two pairs of coinciding
indices works out to be (pq)2. There are 3n(n− 1) such terms.

The inequality then follows from npq(q3 +p3)+3n2(pq)2 ≤ n/4+3/(16)n2 ≤
(1/4)n2 for n ≥ 4. �

Corollary 15.5 Let

fn =
b1 + · · ·+ bn

n
(15.16)

be the proportion of successes in the first n trials. Then

µ(fn) = p (15.17)

and
µ((fn − p)4) ≤ 1

4n2
(15.18)

for n ≥ 4.

Corollary 15.6 (Strong law of large numbers) Let

fn =
b1 + · · ·+ bn

n
(15.19)

be the proportion of successes in the first n trials. Then

µ(
∞∑

n=k

(fn − p)4) ≤ 1
4(k − 1)

(15.20)

for k ≥ 4.

This corollary has a remarkable consequence. Fix k. The fact that the
expectation is finite implies that the sum converges almost everywhere. In
particular, the terms of the sum approach zero almost everywhere. This means
that fn → p as n → ∞ almost everywhere. This is the traditional formulation
of the strong law of large numbers.
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Corollary 15.7 (Strong law of large numbers) Let

fn =
b1 + · · ·+ bn

n
(15.21)

be the proportion of successes in the first n trials. Then for k ≥ 4

µ(sup
n≥k
|fn − p| ≥ ε) ≤ 1

4(k − 1)ε4
. (15.22)

Proof: This corollary follows from the trivial fact that supn≥k |fn − p|4 ≤∑∞
n=k(fn − p)4 and Chebyshev’s inequality. �
This corollary give a perhaps more intuitive picture of the meaning of the

strong law of large numbers. Consider a tiny ε > 0. Then it says that if k is
sufficiently large, then, with probability very close to one, for the entire future
history of n ≥ k the experimental proportions fn differ from p by less than ε.

15.4 Random walk

Let wj = 1− 2bj , so that bj = 0 gives wj = 1 and bj = 1 gives wj = −1. Then
the sequence xn = w1 + · · ·wn is called random walk starting at zero. In the
case when p = q = 1/2 this is called symmetric random walk.

Theorem 15.8 Let ρ01 be the probability that the random walk starting at zero
ever reaches 1. Then this is a solution of the equation

qρ2 − ρ+ p = (qρ− p)(ρ− 1) = 0. (15.23)

In particular, if p = q = 1/2, then ρ01 = 1.

Proof: Let ρ = ρ01. The idea of the proof is to break up the computation
of ρ into the case when the first step is positive and the case when the first step
is negative. Then the equation

ρ = p+ qρ2 (15.24)

is intuitive. The probability of succeeding at once is p. Otherwise there must
be a failure followed by getting from −1 to 0 and then from 0 to 1. However
getting from −1 to 0 is of the same difficulty as getting from 0 to 1.

To make this intuition precise, lett τ1 be the first time that the walk reaches
one. Then

ρ = µ(τ1 < +∞) = µ(w1 = 1, τ1 < +∞) + µ(w1 = −1, τ1 < +∞). (15.25)

The value of the first term is p.
The real problem is with the second term. Write it as

µ(w1 = −1, τ1 < +∞) =
∞∑

k=2

µ(w1 = −1, τ0 = k, τ1 < +∞) =
∞∑

k=2

qµ(τ1 = k−1)ρ = qρ2.

(15.26)
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This gives the conclusion. It may be shown that when p < q the correct solution
is ρ = p/q. �

Notice the dramatic fact that when p = q = 1/2 the probability that the
random walk gets to the next higher point is one. It is not hard to extend this
to show that the probability that the random walk gets to any other point is
also one. So the symmetric random walk must do a lot of wandering.

Theorem 15.9 Let m01 be the expected time until the random walk starting at
zero reaches 1. Then m01 is a solution of

m = 1 + 2qm. (15.27)

In particular, when p = q = 1/2 the solution is m = +∞.

Proof: Let m = m01. The idea of the proof is to break up the computation
of ρ into the case when the first step is positive and the case when the first step
is negative. Then the equation

m = p+ q(1 + 2m). (15.28)

is intuitive. The probability of succeeding at once is p, and this takes time 1.
Otherwise τ1 = 1 + (τ0 − 1) + (τ1 − τ0). However the average of the time τ0 − 1
to get from −1 to 0 is the same as the average of the time τ1 − τ0 to get from 0
to 1.

A more detailed proof is to write

m = µ(τ1) = µ(τ11w1=1) + µ(τ11w1=−1). (15.29)

The value of first term is p.
The second term is

µ(τ11w1=−1) = µ((1+(τ0−1)+(τ1−τ0))1w1=−1) = q+qµ(τ1)+qµ(τ1) = q(1+2m).
(15.30)

It may be shown that when p > q the correct solution is m = 1/(p− q). �
When p = q = 1/2 the expected time for the random walk to get to the next

higher point is infinite. This is because there is some chance that the symmetric
random walk wanders for a very long time on the negative axis before getting
to the points above zero.

Problems

1. Consider a random sample of size n from a very large population. The
experimental question is to find what proportion p of people in the popu-
lation have a certain opinion. The proportion in the random sample who
have the opinion is fn. How large must n be so that the standard devi-
ation of fn in this type of experiment is guaranteed to be no larger than
one percent?
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2. Recall that fn(x) → f(x) as n → ∞ means ∀ε > 0∃N ∀n ≥ N |fn(x) −
f(x)| < ε. Show that fn → f almost everywhere is equivalent to

µ({x | ∃ε > 0∀N ∃n ≥ N |fn(x)− f(x)| ≥ ε}) = 0. (15.31)

3. Show that fn → f almost everywhere is equivalent to for all ε > 0

µ({x | ∀N ∃n ≥ N |fn(x)− f(x)| ≥ ε}) = 0. (15.32)

4. Suppose that the measure of the space is finite. Show that fn → f almost
everywhere is equivalent to for all ε > 0

lim
N→∞

µ({x | ∃n ≥ N |fn(x)− f(x)| ≥ ε}) = 0. (15.33)

Show that this is not equivalent in the case when the measure of the
space may be infinite. Note: Convergence almost everywhere occurs in
the strong law of large numbers.

5. Say that fn → f in measure if for all ε > 0

lim
N→∞

µ({x | |fN (x)− f(x)| ≥ ε}) = 0. (15.34)

Show that if the measure of the space is finite, then fn → f almost
everywhere implies fn → f in measure. Note: Convergence in measure
occurs in the weak law of large numbers.
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Chapter 16

Metric spaces

16.1 Metric space notions

A metric space M,d is a set M together with a distancefunction d : M ×M →
[0,+∞] such that for all x, y, z

1. d(x, x) = 0.

2. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

3. d(x, y) = d(y, x) (symmetry).

4. d(x, y) = 0 implies x = y (separatedness).

5. d(x, y) < +∞ (finiteness).

The crucial properties are the first two, particularly the triangle inequality.
There are generalizations where some of these properties are allowed to fail[13].
If the finiteness condition is allowed to fail, then we have an extended metric. If
the separateness condition is allowed to fail, then we have a pseudo-metric. If
the symmetry condition is allowed to fail, then we have a quasi-metric. The most
general situation, where only properties 1 and 2 hold, is that of an extended
pseudo-quasimetric, or what I shall call a Lawvere metric. Such structures are
natural and important, as we shall see at the end of the chapter.

When the metric is understood from context, it is common to refer to a
metric space M,d by the underlying set M . Every subset of a metric space is
itself a metric space with the relative metric obtained by restriction. In that
case, the subset with its metric is called a subspace.

Proposition 16.1 Let M be a metric space. Then For all x, y, z in M we have
|d(x, z)− d(y, z)| ≤ d(x, y).

Proof: From the triangle inequality d(x, z) ≤ d(x, y) + d(y, z) we obtain
d(x, z) − d(y, z) ≤ d(x, y). On the other hand, from the triangle inequality we
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also have d(y, z) ≤ d(y, x) + d(x, z) which implies d(y, z) − d(x, z) ≤ d(y, x) =
d(x, y). �

In a metric space M the open ball centered at x of radius ε > 0 is defined
to be B(x, ε) = {y | d(x, y) < ε}. The closed ball centered at x of radius ε > 0
is defined to be B(x, ε) = {y | d(x, y) ≤ ε}. The sphere centered at x of radius
ε > 0 is defined to be S(x, ε) = {y | d(x, y) = ε}.

Sometimes one wants to speak of the distance of a point from a non-empty
set. This is defined to be d(x,A) = infy∈A d(x, y).

16.2 Normed vector spaces

One common way to get a metric is to have a norm on a vector space. A norm
on a real vector space V is a function from V to [0,+∞) with the following
three properties:

1. For all x we have ‖x‖ = 0 if and only if x = 0.

2. For all x, y we have ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

3. For all x and real t we have ‖tx‖ = |t|‖x‖.

The corresponding metric is then d(x, y) = ‖x− y‖. Again the crucial property
in the definition is the triangle inequality. The classic example, of course, is
Euclidean space Rn with the usual square root of sum of squares norm. In the
following we shall see that this `2n norm is just one possibility among many.

16.3 Spaces of finite sequences

Here are some possible metrics on Rn. The most geometrical metric is the `2n
metric given by the `2n norm. This is d2(x, y) = ‖x− y‖2 =

√∑n
k=1(xk − yk)2.

It is the metric with the nicest geometric properties. A sphere in this metric is
a nice round sphere.

Sometimes in subjects like probability one wants to look at the sum of abso-
lute values instead of the sum of squares. The `1n metric is d1(x, y) = ‖x−y‖1 =∑n
k=1 |xk − yk|. A sphere in this metric is actually a box with corners on the

coordinate axes.
In other areas of mathematics it is common to look at the biggest or worst

case. The `∞n metric is d∞(x, y) = ‖x − y‖∞ = max1≤k≤n |xk − yk|. A sphere
in this metric is a box with the flat sides on the coordinate axes.

Comparisons between these metrics are provided by

d∞(x, y) ≤ d2(x, y) ≤ d1(x, y) ≤ nd∞(x, y). (16.1)

The only one of these comparisons that is not immediate is d2(x, y) ≤ d1(x, y).
But this follows from d2(x, y) ≤

√
d1(x, y)d∞(x, y) ≤ d1(x, y).
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16.4 Spaces of infinite sequences

A sequence is often taken to be a function defined on N = {0, 1, 2, 3, . . .}, but it is
sometimes also convenient to regard a sequence as defined on N+ = {1, 2, 3, . . .}.
Often all that matters is that there is an ordered set N that is order isomorphic
to either of these. In fact, in some cases even the order is not important. For
instance, there are cases when the natural index set is Z.

The `2 metric is defined on the set of all infinite sequences such that ‖x‖22 =∑∞
k=1 |xk|2 <∞. The metric is d2(x, y) = ‖x− y‖2 =

√∑∞
k=1(xk − yk)2. This

is again a case with wonderful geometric properties. It is a vector space with
a norm called real Hilbert space. The fact that the norm satisfies the triangle
inequality is the subject of the following digression.

Lemma 16.2 (Schwarz inequality) Suppose the inner product of two real se-
quences is to be defined by

〈x, y〉 =
∞∑

k=1

xkyk. (16.2)

If the two sequences x, y are in `2, then this inner product is absolutely conver-
gent and hence well-defined, and it satisfies

|〈x, y〉| ≤ ‖x‖2‖y‖2. (16.3)

This well-known Schwarz inequality says that if we define the cosine of the
angle between two non-zero vectors by 〈x, y〉 = ‖x‖2‖y‖2 cos(θ), then −1 ≤
cos(θ) ≤ 1, and so the cosine has a reasonable geometrical interpretation. If we
require the angle to satisfy 0 ≤ θ ≤ π, then the angle is also well-defined and
makes geometrical sense.

The Schwarz inequality is just what is needed to prove the triangle inequality.
The calculation is

‖x+y‖22 = 〈x+y, x+y〉 = 〈x, x〉+2〈x, y〉+〈y, y〉 ≤ ‖x‖22+2‖x‖2‖y‖2+‖y‖22 = (‖x‖2+‖y‖2)2.
(16.4)

The `1 metric is defined on the set of all infinite sequences x with ‖x‖1 =∑∞
k=1 |xk| < ∞. The metric is d1(x, y) =

∑∞
k=1 |xk − yk|. This is the natural

distance for absolutely convergence sequences. It is again a vector space with a
norm. In this case it is not hard to prove the triangle inequality for the norm
using elementary inequalities.

The `∞ metric is defined on the set of all bounded sequences. The metric
is d∞(x, y) = sup1≤k<∞ |xk − yk|. That is, d∞(x, y) is the least upper bound
(supremum) of the |xk − yk| for 1 ≤ k < ∞. This is yet one more vector
space with a norm. The fact that this is a norm requires a little thought. The
point is that for each k we have |xk + yk| ≤ |xk|+ |yk| ≤ ‖x‖∞ + ‖y‖∞, so that
‖x‖∞+‖y‖∞ is an upper bound for the set of numbers |xk+yk|. Since ‖x+y‖∞
is the least upper bound for these numbers, we have ‖x+ y‖∞ ≤ ‖x‖∞+ ‖y‖∞.
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Comparisons between two of these these metrics are provided by

d∞(x, y) ≤ d2(x, y) ≤ d1(x, y). (16.5)

As sets `1 ⊂ `2 ⊂ `∞. This is consistent with the fact that every absolutely
convergent sequence is bounded. The proof of these inequalities is almost the
same as for the finite-dimensional case. However the `∞ metric is defined by
a supremum rather than by a maximum. So to bound it, one finds an upper
bound for the set of all |xk− yk and then argues that ‖x− y‖∞ is the least such
upper bound.

Yet another possibility is to try to define a metric on the product space RN

of all sequences of real numbers. We shall often refer to this space as R∞. This is
the biggest possible metric space of sequences. In order to do this, it is helpful to
first define a somewhat unusual metric on R by db(s, t) = |s−t|/(1+ |s−t|). We
shall see below that the space R with this new metric is uniformly equivalent to
the space R with its usual metric d(s, t) = |s− t|. However db has the advantage
that it is a metric that is bounded by one.

The metric on R∞ is dp(x, y) =
∑∞
k=1

1
2k
db(xk, yk). This is called the prod-

uct metric. The comparison between these metrics is given by the inequality

dp(x, y) ≤ d∞(x, y). (16.6)

The dp metric is an example of a metric on a vector space that is not given by
a norm.

Two important subspaces of R∞ are the Hilbert cube [0, 1]∞ and the Cantor
space {0, 1}∞. For these two it is sometimes more convenient to use the norm
dp(x, y) =

∑∞
k=1 |xk − yk|/2k. The function g : {0, 1}∞ → R defined by g(x) =∑∞

k=1 2xk/3k is a bijection from the Cantor space to the Cantor middle third
set.

There are other kinds of product space that come up from time to time. Let
T be the usual circle of circumference 2π. Then T 2 is the product of two circles,
so it is an ordinary torus. The space T∞ is thus a kind of generalized torus.

16.5 Spaces of bounded continuous functions

Here is another example. Let X be a set. Let B(X) be the set of all bounded
functions on X. If f and g are two such functions, then |f − g| is bounded, and
so we can define the uniform metric by d(f, g) = ‖f − g‖sup, where

‖f‖sup = sup
s
|f(s)| (16.7)

is the supremum norm. This again is a normed vector space.
Suppose that X is a metric space. A continuous real function is a map from

X to R that is continuous. Let C(X) be the set of real continuous functions
on X. Let BC(X) be the set of bounded continuous real functions on X.
This is the appropriate metric space for formulating the concept of uniform
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convergence of a sequence of continuous functions to a continuous function.
Thus, the uniform convergence of fn to g as n→∞ is equivalent to the condition
limn→∞ dsup(fn, g) = 0.

It should be remarked that all these examples have complex versions, where
the only difference is that sequences of real numbers are replaced by sequences
of complex numbers. So there is a complex Hilbert space, a space of bounded
continuous complex functions, and so on. The version that is intended should be
specified. Our default will be the real version, except in the context of Hilbert
space and Fourier analysis.

16.6 Open and closed sets

A subset U of a metric space M is open if ∀x (x ∈ U ⇒ ∃εB(x, ε) ⊂ U). The
following results are well-known facts about open sets.

Theorem 16.3 Let Γ be a set of open sets. Then
⋃

Γ is open.

Proof: Let x be a point in
⋃

Γ. Then there exists some S in Γ such that
x ∈ S. Since S is open there exists ε > 0 with B(x, ε) ⊂ S. However S ⊂ ⋃Γ.
So B(x, ε) ⊂ ⋃Γ. Hence

⋃
Γ is open. �

Notice that
⋃ ∅ = ∅, so the empty set is open.

Theorem 16.4 Let Γ be a finite set of open sets. Then
⋂

Γ is open.

Proof: Let x be a point in
⋂

Γ. Then x is in each of the sets Sk in Γ. Since
each set Sk is open, for each Sk there is an εk > 0 such that B(x, εk) ⊂ Sk. Let
ε be the minimum of the εk. Since Γ is finite, this number ε > 0. Furthermore,
B(x, ε) ⊂ Sk for each k. It follows that B(x, ε) ⊂ ⋂Γ. Hence

⋂
Γ is open. �

Notice that under our conventions
⋂ ∅ = M , so the entire space M is open.

A subset F of a metric space is closed if ∀x (∀εB(x, ε) ∩ F 6= ∅ ⇒ x ∈ F ). Here
are some basic facts about closed sets.

Theorem 16.5 The closed subsets are precisely the complements of the open
subsets.

Proof: Let U be a set and F = M \ U be its complement. Then x ∈ U ⇒
∃εB(x, ε) ⊂ U is logically equivalent to ∀ε¬B(x, ε) ⊂ U ⇒ x /∈ U . But this says
∀εB(x, ε) ∩ F 6= ∅ ⇒ x ∈ F . From this it is evident that F is closed precisely
when U is open. �

Theorem 16.6 A set F in a metric space is an closed subset if and only if
every convergent sequence s : N→M with values sn ∈ F has limit s∞ ∈ F .

Proof: Suppose that F is closed. Let s be a convergent sequence with
sn ∈ F for each n. Let ε > 0. Then for n sufficiently large d(sn, s∞) < ε, that
is, sn ∈ B(s∞, ε). This shows that B(s∞, ε) ∩ F 6= ∅. Since ε > 0 is arbitrary,
it follows that s∞ ∈ F .
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For the other direction, suppose that F is not closed. Then there is a point
x /∈ F such that ∀εB(x, ε)∩F 6= ∅. Then for each n we have B(x, 1/n)∩F 6= ∅.
By the axiom of choice, we can choose sn ∈ B(x, 1/n)∩F . Clearly sn converges
to s∞ = x as n→∞. Yet s∞ is not in F . �

Given an arbitrary subset A of M , the interior Ao of A is the largest open
subset of A. Similarly, the closure Ā of A is the smallest closed superset of A.
The set A is dense in M if Ā = M .

16.7 Topological spaces

A topological space is a set X together with a collection of subsets that is closed
under unions and under finite intersections. These are the open subsets of X.
More officially, a topology is a collection T ⊂ P (X) with the properties that
Γ ⊂ T implies

⋃
Γ ∈ T and that Γ ⊂ T , Γ finite, implies

⋂
Γ ∈ T .

Notice that it follows from the definition that
⋃ ∅ = ∅ ∈ T and that

⋂ ∅ =
X ∈ T . (This last uses the convention that X is the universe to which the
intersection applies.) That is, the empty set and the whole space X are always
open subsets of X.

Every metric space defines a topological space. A property of a metric space
that can be defined only in terms of the topology (the collection of open subsets)
is called a topological property.

If Y is a subset of a toplogical space X, then the relative topology of Y
consists of all the sets U ∩ Y , where U is an open subset of X. Thus every
subset of a topological space is a topological space.

If X is a metric space, and Y is a subset of X, then Y is also a metric space.
The relative topology of Y is then the same as the metric topology of Y .

A topological space is said to be metrizable if there is a metric that defines
its topology.

Theorem 16.7 (Urysohn’s lemma (metric case)) If X is a metrizable topo-
logical space, then then for every pair A,B of disjoint closed subsets there is a
function g : X → [0, 1] that is zero on A and one on B.

Proof: let A,B be disjoint closed sets. Then x 7→ d(x,A) and x 7→ d(x,B)
are continuous functions that vanish precisely on A and on B. Furthermore,
d(x,A) + d(x,B) > 0 for every x. Let

g(x) =
d(x,A)

d(x,A) + d(x,B)
. (16.8)

Then g is a continuous function from X to [0, 1] that is zero on A and 1 on B.
�

A topological space is Hausdorff if every pair of points is separated by a
pair of disjoint open sets. It is clear that every metrizable topological space is
Hausdorff.
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A Hausdorff topological space is regular if every pair consisting of a closed
set and a point not in the set is separated by a pair of disjoint open sets. A
Hausdorff topological space is normal if every pair of disjoint closed sets is
separated by a pair of disjoint open sets. It follows from the theorem that every
metrizable topological space is normal. (Take the sets where g < 1/3 and where
g > 2/3.)

A base for a topological space X is a collection Γ of open set such that every
open set is a union of sets in Γ. In a metric space the balls B(x, ε) for x in X
and ε > 0 form a base.

A topological space X is second countable if it has a countable base.
If X is a topological space and S is a subset, then S is dense in X if its

closure is X.
A topological space X is separable provided that there is a countable subset

S with closure S̄ = X. In other words, X is separable if it has a countable dense
subset.

Theorem 16.8 If X is a second countable topological space, then X is separa-
ble.

Proof: Let Γ be a countable base for the open subsets of X. Let Γ′ = Γ\{∅}.
Then Γ′ consists of non-empty sets. For each U in Γ′ choose x in U . Let S be
the set of all such x. Let V = X \ S̄. Since V is open, it is the union of those of
its subsets that belong to Γ. Either there are no such subsets, or there is only
the empty set. In either case, it must be that V = ∅. This proves that S̄ = X.
�

Theorem 16.9 If X is a separable metrizable topological space, then X is sec-
ond countable.

Thus for metrizable spaces being separable is the same as being second
countable. For a general topological space the most useful notion is that of
being second countable. It is not true in general that a separable topological
space is second countable.

The reason for introducing these concepts is that for second countable topo-
logical spaces it is relatively easy to characterize which spaces are metrizable.
The Urysohn metrization theorem states that every second countable regular
topological space is metrizable. A proof of this theorem may be found in Kelley
[10]. Metrizable topological spaces are relatively common, and so it is reasonable
to focus initially on them.

There are two reasons that a topological space might not be metrizable: it
might not be second countable, or it might not regular. In later chapters it
will become apparent that there are important examples of topological spaces
that are not metrizable because they are very big, that is, not second countable.
(A typical example is an uncountable product space.) However there are also
simple and useful examples where where the space is not metrizable because it
is not regular, or even Hausdorff.
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Example: Here is an example of a topology that us useful in the theory of lower
semicontinuous functions and hence in optimization. The underlying space for
this topology is the set (−∞,+∞]. An non-trivial open set in this topology is
defined to be an interval (a,+∞], where a ∈ R. This topology is not metrizable.
It is not even Hausdorff. Yet is is useful when describing a situation when y is
to be regarded as close to y when either y > x or y is close to x in the usual
sense.
Example: Another simple example of how non-Hausdorff topological spaces
is classification. Say that a topological space X is classified into categories by
some equivalence relation E. The quotient space X/E consists of the equivalence
classes. There is a classifying function q : X → X/E that sends each point of
X to its corresponding equivalence class. The topology on the quotient space
X/E is such that U is an open subset of X/E precisely when q−1[U ] is an open
subset of X.

As an example, say that one wants to classify the real numbers R into three
categories: strictly negative, zero, strictly positive. The quotient space may be
identified with the three points −, 0,+. There are 23 = 9 subsets of this space,
of which 6 are open. This space is not Hausdorff. The point is that although
0 is separated from each other real number, it is not separated from the set of
strictly positive real numbers (or from the set of strictly negative real numbers).

This example looks less silly if one thinks of the problem of classifying the
asymptotic behavior of the differential equation dy/dt = −ky with k > 0. There
are three kinds of asymptotic behaviors, depending on whether the initial value
is strictly negative, zero, or strictly positive.

16.8 Continuity

Let f be a map from a metric space A to another metric space B. Then f is
said to be continuous at a if for every ε > 0 there exists δ > 0 such that for all
x we have that d(x, a) < δ implies d(f(x), f(a)) < ε. O

Let f be a map from a metric space A to another metric space B. Then
there are various notions of how it can respect the metric.

1. f is a contraction if for all x, y we have d(f(x), f(y)) ≤ d(x, y).

2. f is Lipschitz (bounded slope) if there exists M <∞ such that for all x, y
we have d(f(x), f(y)) ≤Md(x, y).

3. f is uniformly continuous if for every ε > 0 there exists δ > 0 such that
for all x, y we have that d(x, y) < δ implies d(f(x), f(y)) < ε.

4. f is continuous if for every y and every ε > 0 there exists δ > 0 such that
for all x we have that d(x, y) < δ implies d(f(x), f(y)) < ε.

Clearly contraction implies Lipschitz implies uniformly continous implies con-
tinuous. The converse implications are false.
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Let A and B be metric spaces. Suppose that there is a function f : A→ B
with inverse function f−1 : B → A. There are various notions of equivalence of
metric spaces.

1. The metric spaces are isometric if f and f−1 are both contractions.

2. The metric spaces are Lipschitz equivalent if f and f−1 are both Lipschitz.

3. The metric spaces are uniformly equivalent if f and f−1 are both uniformly
continuous.

4. The metric spaces are topologically equivalent or topologically isomorphic
or homeomorphic) if f and f−1 are both continuous.

Again there is a chain of implications for the various kinds of equivalence: iso-
metric implies Lipschitz implies uniform implies topological.

The following theorem shows that continuity at a point is a topological
property.

Theorem 16.10 Let A and B be metric spaces. Then f : A→ B is continuous
at a if and only if for each open set V ⊂ B with f(a) ∈ V there is an open subset
U ⊂ A with a ∈ U such that f [U ] ⊂ V , or, what is the same, U ⊂ f−1[V ].

Proof: Suppose f continuous at a. Consider an open set V with f(a) ∈ V .
Since V is open, there is a ball B(f(a), ε) ⊂ V . Since f is continuous, there is
a ball U = B(a, δ) such that B(a, δ) ⊂ f−1[B(f(a), ε)] ⊂ f−1[V ].

Suppose that the relation f−1 satisfies the condition of the theorem at a.
ε > 0. The set V = B(f(a), ε) is open, so there is an open subset U with
a ∈ U ⊂ f−1[B(f(a), ε). Since U is open there is a δ > 0 such that B(a, δ) ⊂
U ⊂ f−1[B(f(a), ε)]. This shows that f is continuous at a. �

The following theorem gives a particularly elegant description of continuity
that shows that it is a topological property. It follows that the property of
topological equivalence is also a topological property.

Theorem 16.11 Let A and B be metric spaces. Then f : A→ B is continuous
if and only if for each open set V ⊂ B, the set f−1[V ] = {x ∈ A | f(x) ∈ V } is
open.

Proof: Suppose f continuous. Then it is continuous at each point. Consider
an open set V whose inverse image under f is not empty. Let a be in f−1[V ].
Since f is continuous at a and V is open, there is an open subset U with
a ∈ U ⊂ f−1[V ]. The union of the subsets U for all a in f−1[U ] is f−1[V ]. So
f−1[U ] is open.

Suppose that the relation f−1 maps open sets to open sets. Consider an a
and an open set V with f(a) ∈ V . The set U = f−1[V ] is open with a ∈ U .
This shows that f is continuous at a. Since this works for each a, it follows that
f is continuous. �
Example: As an example, let f : X → (−∞,+∞] be a real function, but
take the topology for R to be the unusual one where the only non-trivial open
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sets are intervals (a,+∞), with a real. The condition that f is continuous in
this sense is equivalent to the usual definition that f is a lower semicontinuous
function. Such functions are important in optimization problems. For instance,
a lower semicontinuous function on a non-empty compact space always assumes
its minimum (but not necessarily its maximum).

16.9 Uniformly equivalent metrics

Consider two metrics on the same set A. Then the identity function from
A with the first metric to A with the second metric may be a contraction,
Lipschitz, uniformly continuous, or continuous. There are corresponding notions
of equivalence of metrics: the metrics may be the same, they may be Lipschitz
equivalent, they may be uniformly equivalent, or they may be topologically
equivalent.

For metric spaces the notion of uniform equivalence is particularly important.
The following result shows that given a metric, there is a bounded metric that
is uniformly equivalent to it. In fact, such a metric is

db(x, y) =
d(x, y)

1 + d(x, y)
. (16.9)

The following theorem puts this in a wider context.

Theorem 16.12 Let φ : [0,+∞) → [0,+∞) be a continuous function that
satisfies the following three properties:

1. φ is increasing: s ≤ t implies φ(s) ≤ φ(t)

2. φ is subadditive: φ(s+ t) ≤ φ(s) + φ(t)

3. φ(t) = 0 if and only if t = 0.

Then if d is a metric, the metric d′ defined by d′(x, y) = φ(d(x, y)) is also a
metric. The identity map from the set with metric d to the set with metric d′ is
uniformly continuous with uniformly continuous inverse.

Proof: The subadditivity is what is needed to prove the triangle inequality.
The main thing to check is that the identity map is uniformly continuous in
each direction.

Consider ε > 0. Since φ is continuous at 0, it follows that there is a δ > 0
such that t < δ implies φ(t) < ε. Hence if d(x, y) < δ it follows that d′(x, y) < ε.
This proves the uniform continuity in one direction.

The other part is also simple. Let ε > 0. Let δ = φ(ε) > 0. Since φ is
increasing, t ≥ ε⇒ φ(t) ≥ δ, so φ(t) < δ ⇒ t < ε. It follows that if d′(x, y) < δ,
then d(x, y) < ε. This proves the uniform continuity in the other direction. �

In order to verify the subadditivity, it is sufficient to check that φ′(t) is
decreasing. For in this case φ′(s+ u) ≤ φ′(s) for each u ≥ 0, so

φ(s+ t)− φ(s) =
∫ t

0

φ′(s+ u) du ≤
∫ t

0

φ′(u) du = φ(t). (16.10)
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This works for the example φ(t) = t/(1+ t). The derivative is φ′(t) = 1/(1+ t)2,
which is positive and decreasing.

16.10 Sequences

Consider a sequence s : N → B, where B is a metric space. Then the limit of
sn as n→∞ is s∞ provided that ∀ε > 0∃N∀n (n ≥ N ⇒ d(sn, s∞) < ε).

Theorem 16.13 If A and B are metric spaces, then f : A→ B is continuous
if and only if whenever s is a sequence in A converging to s∞, it follows that
f(s) is a sequence in B converging to f(s∞).

Proof: Suppose that f : A→ B is continuous. Suppose that s is a sequence
in A converging to s∞. Consider arbitrary ε > 0. Then there is a δ > 0 such
that d(x, s∞) < δ implies d(f(x), f(s∞)) < ε. Then there is an N such that
n ≥ N implies d(sn, s∞) < δ. It follows that d(f(sn), f(s∞)) < ε. This is
enough to show that f(s) converges to f(s∞).

The converse is not quite so automatic. Suppose that for every sequence
s converging to some s∞ the corresponding sequence f(s) converges to f(s∞).
Suppose that f is not continuous at some point a. Then there exists ε > 0 such
that for every δ > 0 there is an x with d(x, a) < δ and d(f(x), f(a)) ≥ ε. In
particular, the set of x with d(x, a) < 1/n and d(f(x), f(a)) ≥ ε is non-empty.
By the axiom of choice, for each n there is an sn in this set. Let s∞ = a. Then
d(sn, s∞) < 1/n and d(f(sn), f(s∞)) ≥ ε. This contradicts the hypothesis that
f maps convergent sequences to convergent sequences. Thus f is continuous at
every point. �

One way to make this definition look like the earlier definitions is to define
a metric on N+. Set

d∗(m,n) =
∣∣∣∣

1
m
− 1
n

∣∣∣∣ . (16.11)

We may extend this to a metric on N+ ∪ {∞} if we set 1/∞ = 0.

Theorem 16.14 With the metric d∗ on N+ ∪ {∞} defined above, the limit of
sn as n→∞ is s∞ if and only if the function s is continuous from the metric
space N+ ∪ {∞} to B.

Proof: The result is obvious if we note that n > N is equivalent to
d∗(n,∞) = 1/n < δ, where δ = 1/N . �

Another important notion is that of Cauchy sequence. A sequence s : N→ B
is a Cauchy sequence if ∀ε∃N∀m∀n ((m ≥ N ∧ n ≥ N)⇒ d(sm, sn) < ε).

Theorem 16.15 If we use the d∗ metric on N+ defined above, then for every
sequence s : N+ → B, s is a Cauchy sequence if and only if s is uniformly
continuous.
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Proof: Suppose that s is uniformly continuous. Then ∀ε > 0∃δ > 0(|1/m−
1/n| < δ ⇒ d(sm, sn) < ε). Temporarily suppose that δ′ is such that |1/m −
1/n| < δ ⇒ d(sm, sn) < ε). Take N with 2/δ′ < N . Suppose m ≥ N and
n ≥ N . Then |1/m − 1/n| ≤ 2/N < δ′. Hence d(sm, sn) < ε. Thus (m ≥
N ∧ n ≥ N) ⇒ d(sm, sn) < ε. From this it is easy to conclude that s is a
Cauchy sequence.

Suppose on the other hand that s is a Cauchy sequence. This means that
∀ε > 0∃N∀m∀n ((m ≥ N ∧ n ≥ N) ⇒ d(sm, sn) < ε). Temporarily suppose
that N ′ is such that ∀m∀n ((m ≥ N ′ ∧ n ≥ N ′) ⇒ d(sm, sn) < ε). Take
δ = 1/(N ′(N ′ + 1)). Suppose that |1/m − 1/n| < δ. Either m < n or n < m
or m = n. In the first case, 1/(m(m+ 1)) = 1/m− 1/(m + 1) < 1/m− 1/n <
1/(N ′(N ′ + 1)), so m > N ′, and hence also n > N ′. So d(sm, sn) < ε Similarly,
in the second case both m > N ′ and n > N ′, and again d(sm, sn) < ε. Finally,
in the third case m = n we have d(sm, sn) = 0 < ε. So we have shown that
|1/m− 1/n| < δ ⇒ d(sm, sn) < ε. �

16.11 Supplement: Lawvere metrics and semi-
continuity

There is a generalization of the notion of metric space that includes both pseu-
dometric spaces and ordered sets. The fundamental idea is that of a Law-
vere metric. A Lawvere metric space is a set M together with a function
d : M ×M → [0,+∞] with the following two properties:

1. For all x we have d(x, x) = 0

2. For all x, y, z we have d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

This is a considerable generalization of the notion of pseudometric space. In
fact, what we have is an extended pseudo-quasimetric. Not only are the values
0 and +∞ allowed as distances, but also the symmetry property is dropped.

Lawvere metric is not the usual name for this concept. In various places it
is called a generalized metric or a quasi-pseudometric or an extended pseudo-
quasimetric. Unfortunately the terms “generalized” and “quasi” are used in
other ways in various branches of mathematics. The term Lawvere metric seems
appropriate, since Lawvere [11] recognized the significance of this notion in the
context of category theory.

Each Lawvere metric defines a notion of open ball. The ball B(x, ε) consists
of all y with d(x, y) < ε. There is also a corresponding topology, where the open
sets are unions of open balls.

The notion of Lawvere metric includes the notion of ordered set. Let d(x, y) =
0 if x ≤ y. Otherwise let d(x, y) = +∞. Then the Lawvere metric axioms are
satisfied. This shows a Lawvere metric space is a quantitative versions of an
ordered set. From this point of view an open ball in an ordered set is an interval
of the form {y | x ≤ y}.
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There are yet other important examples of Lawvere metrics. Consider the
interval of extended real numbers [−∞,+∞). Define the upper Lawvere metric
on this interval by dU (x, y) = y − x if x ≤ y, otherwise dU (x, y) = 0 if y ≤ x.
Thus it costs the usual amount to go upward, but going downward is free. The
epsilon ball about x is the set of all y with dU (x, y) < ε. This is just the set of
all y with y < x+ ε.

Similarly, consider the interval of extended real numbers (−∞,+∞], and
define the lower Lawvere metric by dL(x, y) = x − y if y ≤ x and dL(x, y) = 0
for x ≤ y. Now one pays a price for going downward.

A function from a metric space M to [−∞,+∞) is said to be upper semi-
continuous if for every u and every ε > 0 there is a δ > 0 such that all v with
d(u, v) < δ satisfy dU (f(u), f(v)) < ε, that is, f(v) < f(u)+ε. An example of an
upper semicontinuous function is one that is continuous except where it jumps
up at a single point. It is easy to fall from this peak. The indicator function of
a closed set is upper semicontinuous. The infimum of a non-empty collection of
upper semicontinuous functions is upper semicontinuous. This generalizes the
statement that the intersection of a collection of closed sets is closed.

There is a corresponding notion of lower semicontinuous function from M
to (−∞,+∞]. An example of a lower semicontinuous function is one that is
continuous except where jumps down at a single point. The indicator function
of an open set is lower semicontinuous. The supremum of a non-empty collection
of lower semicontinuous functions is lower semicontinuous. This generalizes the
fact that the union of a collection of open sets is open.

Problems

1. In this problem `p denotes the space of real functions x defined on the
strictly positive natural numbers with ‖x‖pp =

∑∞
n=1 |xn|p < +∞. Sup-

pose that n 7→ cn = nan is in `2. Show that n 7→ an is in `1.

2. Here [0, 1] is the closed interval of real numbers. Consider [0, 1]N+ with
uniform metric d∞ (a subset of the metric space `∞). Also, consider
the Hilbert cube [0, 1]N+ with product metric dp given by dp(x, y) =∑∞
n=1 |xn−yn|/2n. Is the identity function ι1 from [0, 1]N+ , d∞ to [0, 1]N+ , dp

continuous? Is the identity function ι2 from [0, 1]N+ , dp to [0, 1]N+ , d∞
continuous? In each case answer yes or no, and provide a proof or a
counterexample.

3. Regard `2 as a subset of R∞. Find a sequence of points in the unit sphere
of `2 that converges in the R∞ sense to zero.

4. Let X be a metric space. Give a careful proof using precise definitions
that BC(X) is a closed subset of B(X).

5. Give four examples of bijective functions from R to R: an isometric equiv-
alence, a Lipschitz but not isometric equivalence, a uniform but not Lip-
schitz equivalence, and a topological but not uniform equivalence.
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6. Show that for F a linear transformation of a normed vector space to itself,
F continuous at zero implies F Lipschitz (bounded slope).

7. Let K be an infinite matrix with ‖K‖1,∞ = supn
∑
m |Kmn| < ∞. Show

that F (x)m =
∑
nKmnxn defines a Lipschitz function from `1 to itself.

8. Let K be an infinite matrix with ‖K‖∞,1 = supm
∑
n |Kmn| < ∞. Show

that F (x)m =
∑
nKmnxn defines a Lipschitz function from `∞ to itself.

9. Let K be an infinite matrix with ‖K‖22,2 =
∑
m

∑
n |Kmn|2 < ∞. Show

that F (x)m =
∑
nKmnxn defines a Lipschitz function from `2 to itself.

10. Let K be an infinite matrix with ‖K‖1,∞ < ∞ and ‖K‖∞,1 < ∞. Show
that F (x)m =

∑
nKmnxn defines a Lipschitz function from `2 to itself.

11. Let X be a topological space. Say that X is connected if there is no
partition of X into two open subsets. A subset A of X is connected if A
is connected with respect to the relative topology (where a subset of A is
open if it is the intersection of an open set of X with A). Show that if A
is connected, then Ā is connected.

12. Let X be a topological space. Say p ∼ q, or p is connected to q, if there
exists a connected subset A of X with p ∈ A and q ∈ A. This is an
equivalence relation, and the equivalence classes are called the connected
components of X. If p is in X, let Cp be the connected component with
p ∈ Cp. Show that Cp is connected. Show that Cp is the largest connected
set with p ∈ C. Show that Cp is closed.

13. Let X be a topological space. Say p↔ q if there there is no open partition
U, V of X with p ∈ U and q ∈ X. (We might say in this case that p is
“allied” with q.) This is also an equivalence relation. Show that p ∼ q
implies p↔ q.

14. Let g : {0, 1}N+ → R be given by g(x) =
∑∞
k=1 2xk/3k. This is a bijection

from the Cantor space to the middle third Cantor set. Let dp(x, y) =∑∞
k=1 |xk − yk|/2k be the metric on the Cantor space. Show that the

Cantor space and the Cantor set are uniformly equivalent. Hint: Show
that |g(x) − g(y)| ≤ 2dp(x, y). Show that if |g(x) − g(y)| < 1/3m, then
dp(x, y) ≤ 1/2m−1.

15. Consider the Cantor space or the Cantor set. Show that each pair of
distinct points is disconnected. Hint: Show that the points are not allied.

16. A Gδ subset of a topological space is a countable intersection of open
subsets. What is the cardinality of the collection of Gδ subsets of Rn?
Establish your result by giving upper and lower estimates.



Chapter 17

Metric spaces and metric
completeness

17.1 Completeness

Let A be a metric space. Then A is complete means that every Cauchy sequence
with values in A converges. In this section we give an alternative perspective
on completeness that makes this concept seem particularly natural.

If z is a point in a metric space A, then z defines a function fz : A→ [0,+∞)
by

fz(x) = d(z, x). (17.1)

This function has the following three properties:

1. fz(y) ≤ fz(x) + d(x, y)

2. d(x, y) ≤ fz(x) + fz(y)

3. inf fz = 0.

Say that a function f : A → [0,+∞) is a virtual point if it has the three
properties:

1. f(y) ≤ f(x) + d(x, y)

2. d(x, y) ≤ f(x) + f(y)

3. inf f = 0.

We shall see that a metric space is complete if and only if every virtual point is
a point. That is, it is complete iff whenever f is a virtual point, there is a point
z in the space such that f = fz.

It will be helpful later on to notice that the first two conditions are equiv-
alent to |f(y) − d(x, y)| ≤ f(x). Also, it follows from the first condition and
symmetry that |f(x) − f(y)| ≤ d(x, y). Thus virtual points are contractions,
and in particular they are continuous.

181
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Theorem 17.1 A metric space is complete if and only if every virtual point is
given by a point.

Proof: Suppose that every virtual point is a point. Let s be a Cauchy
sequence of points in A. Then for each x in A, d(sn, x) is a Cauchy sequence
in R. This is because |d(sm, x) − d(sn, x)| ≤ d(sm, sn). However every Cauchy
sequence in R converges. Define f(x) = limn→∞ d(sn, x). It is easy to verify
that f is a virtual point. By assumption it is given by a point z, so f(x) =
fz(x) = d(z, x). But d(sn, z) converges to f(z) = d(z, z) = 0, so this shows that
sn → z as n→∞.

Suppose on the other hand that every Cauchy sequence converges. Let f
be a virtual point. Let sn be a sequence of points such that f(sn) → 0 as
n→∞. Then d(sm, sn) ≤ f(sm) + f(sn)→ 0 as m,n→∞, so sn is a Cauchy
sequence. Thus it must converges to a limit z. Since f is continuous, f(z) = 0.
Furthermore, |f(y)− d(z, y)| ≤ f(z) = 0, so f = fz. �

Theorem 17.2 Let A be a dense subset of the metric space Ā. Let M be a
complete metric space. Let f : A → M be uniformly continuous. Then there
exists a unique uniformly continuous function f̄ : Ā→M that extends f .

Proof: Regard the function f as a subset of Ā ×M . Define the relation f̄
to be the closure of f . If x is in Ā, let sn ∈ A be such that sn → x as n→∞.
Then sn is a Cauchy sequence in A. Since f is uniformly continuous, it follows
that f(sn) is a Cauchy sequence in M . Therefore f(sn) converges to some y in
M . This shows that (x, y) is the relation f̄ . So the domain of f̄ is Ā.

Let ε > 0. By uniform continuity there is a δ > 0 such that for all x, u′ in A
we have that d(x′, u′) < δ implies d(f(x′), f(u′)) < ε/3.

Now let (x, y) ∈ f̄ and (u, v) ∈ f̄ with d(x, u) < δ/3. There exists x′ in
A such that f(x′) = y′ and d(x′, x) < δ/3 and d(y′, y) < ε/3. Similarly, there
exists u′ in A such that f(u′) = v′ and d(u′, u) < δ/3 and d(v′, v) < ε/3.
It follows that d(x′, u′) ≤ d(x′, x) + d(x, u) + d(u, u′) < δ. Hence d(y, v) ≤
d(y, y′) + d(y′, v′) + d(v′, v) < ε. Thus d(x, u) < δ/3 implies d(y, v) < ε. This is
enough to show that f̄ is a function and is uniformly continuous. �

A normed vector space is a vector space with a norm. A Banach space is a
vector space with a norm that is a complete metric space. Here are examples of
complete metric spaces. All of them except for R∞ are Banach spaces. Notice
that `∞ is the special case of B(X) when X is countable. For BC(X) we take
X to be a metric space, so that the notion of continuity is defined.

Examples:

1. Rn with either the `1n, `2n, or `∞n metric.

2. `1.

3. `2.

4. `∞.
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5. R∞ with the product metric.

6. B(X) with the uniform metric.

7. BC(X) with the uniform metric.

In these examples the points of the spaces are real functions. There are obvi-
ous modifications where one instead uses complex functions. Often the same
notation is used for the two cases, so one must be alert to the distinction.

17.2 Uniform equivalence of metric spaces

Theorem 17.3 Let A be a metric space, and let M be a complete metric space.
Suppose that there is a uniformly continuous bijection f : A→M such that f−1

is continuous. Then A is complete.

Proof: Suppose that n 7→ sn is a Cauchy sequence with values in A. Since
f is uniformly continuous, the composition n 7→ f(sn) is a Cauchy sequence in
M . Since M is complete, there is a y in M such that f(sn)→ y as n→∞. Let
x = f−1(y). Since f−1 is continuous, it follows that sn → x as n→∞. �

Corollary 17.4 The completeness property is preserved under uniform equiv-
alence.

It is important to understand that completeness is not a topological invari-
ant. For instance, take the function g : R→ (−1, 1) defined by g(x) = sinh(x).
This is a topological equivalence. Yet R is complete, while (−1, 1) is not com-
plete.

It is customary to define a metric on [−∞,+∞] that makes it a complete
metric space. One way to do this is to define the map h : [−∞,+∞]→ [−1, 1] by
h(x) = sinh(x) for x in R, while h(∞) = −1 and h(+∞) = 1. Then the distance
between two points in [−∞,+∞] is the usual distance between their images
under h. However, one must be careful. With this metric on [−∞,+∞] the
subset (−∞,+∞) has its usual topology, but does not inherit its usual metric.
In fact, the subset (−∞,+∞) is not complete with respect to the inherited
metric.

17.3 Completion

Theorem 17.5 Every metric space is densely embedded in a complete metric
space.

This theorem says that if A is a metric space, then there is a complete metric
space F and an isometry from A to F with dense range.

Proof: Let F consist of all the virtual points of A. These are continuous
functions on A. The distance d̄ between two such functions is the usual sup
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norm d̄(f, g) = supx∈A d(f(x), g(x)). It is not hard to check that the virtual
points form a complete metric space of continuous functions. The embedding
sends each point z in a into the corresponding fz. Again it is easy to verify
that this embedding preserves the metric, that is, that d̄(fz, fw) = d(z, w).
Furthermore, the range of this embedding is dense. The reason for this is that
for each virtual point f and each ε > 0 there is an x such that f(x) < ε. Then
|f(y)− fx(y)| = |f(y)− d(x, y)| ≤ f(x) < ε. This shows that d̄(f, fx) ≤ ε. �

The classic example is the completion of the rational number system Q. A
virtual point of Q is a function whose graph is in the general shape of a letter V.
When the bottom tip of the V is at a rational number, then the virtual point is
already a point. However most of these V functions have tips that point to a gap
in the rational number system. Each such gap in the rational number system
corresponds to the position of an irrational real number in the completion.

17.4 The Banach fixed point theorem

If f is a Lipschitz function from a metric space to another metric space, then
there is a constant C < +∞ such that for all x and y we have d(f(x), f(y)) ≤
Cd(x, y). The set of all C is a set of upper bounds for the quotients, and so
there is a least such upper bound. This is called the least Lipschitz constant of
the function.

A Lipschitz function is a contraction if its least Lipschitz constant is less
than or equal to one. It is a strict contraction if its least Lipschitz constant is
less than one.

Theorem 17.6 (Banach fixed point theorem) Let A be a complete metric
space. Let f : A → A be a strict contraction. Then f has a unique fixed point.
For each point in A, its orbit converges to the fixed point.

Proof: Let a be a point in A, and let sk = f (k)(a). Then by induction
d(sk, sk+1) ≤Mkd(s0, s1). Then again by induction d(sm, sm+p)) ≤

∑p−1
k=mM

kd(s0, s1) ≤
Km/(1−K)d(s0, s1). This is enough to show that s is a Cauchy sequence. By
completeness it converges to some s∞. Since f is continuous, this is a fixed
point. �

Recall that a Banach space is a complete normed vector space. The Banach
fixed point theorem applies in particular to a linear transformations of a Banach
space to itself that is a strict contraction.

For instance, consider one of the Banach spaces of sequences. Let f(x) =
Kx + u, where K is a matrix, and where u belongs to the Banach space. The
function f is Lipschitz if and only if multiplication by K is Lipschitz. If the
Lipschitz constant is strictly less than one, then the Banach theorem gives the
solution of the linear system x−Kx = u.

To apply this, first look at the Banach space `∞. Define ‖K‖∞→∞ to be the
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least Lipschitz constant. Define

‖K‖∞,1 = sup
m

∞∑
n=1

|Kmn|. (17.2)

Then it is not difficult to see that ‖K‖∞→∞ = ‖K‖∞,1.
For another example, consider the Banach space `1. Define ‖K‖1→1 to be

the least Lipschitz constant. Define

‖K‖1,∞ = sup
n

∞∑
m=1

|Kmn|. (17.3)

Then it is not difficult to see that ‖K‖1→1 = ‖K‖1,∞.
The interesting case is the Hilbert space `2. Define ‖K‖2→2 to be the least

Lipschitz constant. Define

‖K‖2,2 =

√√√√
∞∑
m=1

∞∑
n=1

K2
mn. (17.4)

Then an easy application of the Schwarz inequality will show that ‖K‖2→2 ≤
‖K‖2,2. However this is usually not an equality!. A somewhat more clever ap-
plication of the Schwarz inequality will show that ‖K‖2→2 ≤

√‖K‖1,∞‖K‖∞,1.
Again this is not in general an equality. Finding the least Lipschitz constant is
a non-trivial task. However one or the other of these two results will often give
useful information.

17.5 Coerciveness

A continuous function defined on a compact space assumes its minimum (and
its maximum). This result is both simple and useful. However in general the
point where the minimum is assumed is not unique. Furthermore, the condition
that the space is compact is too strong for many applications. A result that
only uses completeness could be helpful, and the following is one of the most
useful results of this type.

Theorem 17.7 Let M be a complete metric space. Let f be a continuous real
function on M that is bounded below. Let a = inf{f(x) | x ∈M}. Suppose that
there is an increasing function φ from [0,+∞) to itself such that φ(t) = 0 only
for t = 0 with the coercive estimate

a+ φ(d(x, y)) ≤ f(x) + f(y)
2

. (17.5)

Then there is a unique point p where f(p) = a. That is, there exists a unique
point p where F assumes its minimum value.
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Proof: Let sn be a sequence of points such that f(sn) → a as n → ∞.
Consider ε > 0. Let δ = φ(ε) > 0. Since φ is increasing, φ(t) < δ implies
t < ε. For large enough m,n we can arrange that φ(d(sm, sn)) < δ. Hence
d(sm, sn) < ε. Thus sn is a Cauchy sequence. Since M is complete, the sequence
converges to some p in M . By continuity, f(p) = a. Suppose also that f(q) = a.
Then from the inequality d(p, q) = 0, so p = q. �

This theorem looks impossible to use in practice, because it seems to requires
a knowledge of the infimum of the function. However the following result shows
that there is a definite possibility of a useful application.

Corollary 17.8 Let M be a closed convex subset of a Banach space. Let f be
a continuous real function on M . Say that a = infx∈M f(x) is finite and that
there is a c > 0 such that the strict convexity condition

c‖x− y‖2 ≤ f(x) + f(y)
2

− f(
x+ y

2
) (17.6)

is satisfied. Then there is a unique point p in M with f(p) = a.

Proof: Since M is convex, (x+ y)/2 is in M , and so a ≤ f((x+ y)/2). �

17.6 Supplement: The regulated integral

The traditional integral used in rigorous treatments of calculus is the Riemann
integral. This may be developed using ideas involving order. By contrast, the
regulated integral is based on metric space ideas. It is even simpler, but it is
sufficient for many purposes. The functions that are integrable in this sense are
known as regulated functions. Each continuous function is regulated, so this
notion of integral is good for many calculus application. Furthermore, it works
equally well for integrals with values in a Banach space.

Let [a, b] ⊂ R be a closed interval. Consider a partition a ≤ a0 < a1 < . . . <
an = b of the interval. A general step function is a function f from [a, b] to R
that is constant on each open interval (ai, bi+1) of such a partition. For each
general step function f there is an integral λ(f) that is the sum

λ(f) =
∫ b

a

f(x) dx =
n−1∑

i=0

f(ci)(ai+1 − ai), (17.7)

where ai < ci < ai+1.
Let R([a, b]) be the closure of the space S of general step functions in the

complete metric space B([a, b]) consisting of all bounded real functions. This
called the space of regulated functions. Since every continuous function is a
regulated function, we have C([a, b]) ⊂ R([a, b]).

The function λ defined on the space S of general step functions is a Lipschitz
function with Lipschitz constant b− a. In particular it is uniformly continuous,
and so it extends by uniform continuity to a function on the closure R([a, b]).
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This extended function is also denoted by λ and is the regulated integral. In
particular, the regulated integral is defined on C([a, b]) and agrees with the
integral for continuous functions that is used in elementary calculus.

Problems

1. The usual definition of Cauchy sequence ∀ε > 0∃N∀m ≥ N∀n ≥ N d(sm, sn) <
ε involves four quantifiers. It is proposed to replace this with a new defini-
tion involving three quantifiers of the form ∀ε > 0∃N∀n ≥ N d(sN , sn) <
ε. Is this equivalent? For each direction of the implication, give a proof
or give a counterexample.

2. Consider the space `2 of real sequences j 7→ sj for which the norm ‖s‖2 =√∑∞
j=1 s

2
j < +∞. Let δn be the unit basis vector determined by δnj = 1

if j = n, zero otherwise. Let n 7→ an be a sequence in R∞. Let S be
the subset consisting of the points anδn. Give necessary and sufficient
conditions for S to be totally bounded, with proof.

3. Let c0 be the subset of `∞ consisting of all sequences that converge to
zero. Show that c0 is a complete metric space.

4. A sequence s with values on a metric space M is said to be fast Cauchy
if
∑∞
n=1 d(sn, sn+1) < +∞. Prove that every Cauchy sequence has a fast

Cauchy subsequence. Prove that M is complete if and only if every fast
Cauchy sequence is convergent. Note: A sequence is exponentially fast
Cauchy if d(sn, sn+1 ≤ 1/2n+1. This is more concrete, and the same
results hold.

5. A map f : M → N of metric spaces is said to be open map if for every x
in M and every ε > 0 there exists a δ > 0 such that we have B(f(x), δ) ⊂
f [B(x, ε)]. Prove that if f is open if and only if it sends open subsets of
M to open subsets of N .

6. A map f : M → N of metric spaces is said to be uniformly open if
for every ε > 0 there exists a δ > 0 such that for all x ∈ N we have
B(f(x), δ) ⊂ f [B(x, ε)]. Prove that if M is complete and f : M → N
is continuous, uniformly open, and surjective, then N is complete. Hint:
Let n 7→ yn be a Cauchy sequence in N . Constructive inductively an
exponentially fast Cauchy sequence k 7→ xk in M such that f(xk) = yNk .

7. Let A be a dense subset of the metric space Ā. Let M be a complete
metric space. Let f : A→M be continuous. It does not follow in general
that there is a continuous function f̄ : Ā → M that extends f . (a) Give
an example of a case when the closure f̄ of the graph is a function on A
but is not defined on Ā. (b) Give an example when the closure f̄ of the
graph is a relation defined on Ā but is not a function.
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8. Let C([0, 1]) be the space of continuous real functions on the closed unit
interval. Give it the metric d1(f, g) =

∫ 1

0
|f(x) − g(x)| dx. Let h be a

discontinuous step function equal to 0 on half the interval and to 1 on the
other half. Show that the map f 7→ ∫ 1

0
|f(x)−h(x)| dx is a virtual point of

C([0, 1]) (with the d1 metric) that does not come from a point of C([0, 1]).

9. Let E be a complete metric space. Let f : E → E be a strict contraction
with constant C < 1. Consider z in E and r with r ≥ d(f(z), z)/(1− C).
Then f has a fixed point in the ball consisting of all x with d(x, z) ≤ r.
Hint: First show that this ball is a complete metric space.

10. Prove: A metric space M is complete if and only if for every sequence Bi
of epsilon balls in M the conditions 1) for each i the ball Bi+1 is a subset
of Bi and 2) the sequence εi of the radii of the epsilon balls converges to
zero together imply that there is a unique point z of M in each Bi. (The
importance of this idea is seen in the very similar construction in the proof
of the Baire category theorem of the next chapter.)



Chapter 18

Metric spaces and
compactness

18.1 Total boundedness

The notion of compactness is meaningful and important in general topological
spaces. However it takes a quantitative form in metric spaces, and so it is
worth making a special study in this particular setting. A metric space is
complete when it has no nearby missing points (that is, when every virtual
point is a point). It is compact when, in addition, it is well-approximated by
finite sets. The precise formulation of this approximation property is in terms
of the following concept.

A metric space M is totally bounded if for every ε > 0 there exists a finite
subset F of M such that the open ε-balls centered at the points of F cover M .

We could also define M to be totally bounded if for every ε > 0 the space
M is the union of finitely many sets each of diameter at most 2ε. For some
purposes this definition is more convenient, since it does not require the sets to
be balls.

The notion of total boundedness is quantitative. If M is a metric space, then
there is a function that assigns to each ε > 0 the smallest number N such that
M is the union of N sets each of diameter at most 2ε. The slower the growth
of this function, the better the space is approximated by finitely many points.

For instance, consider a box of side 2L in a Euclidean space of dimension
k. Then the N is roughly (L/ε)k. This shows that the covering becomes more
difficult as the size L increases, but also as the dimension k increases.

Theorem 18.1 Let f : K → M be a uniformly continuous surjection. If K is
totally bounded, then M is totally bounded.

Corollary 18.2 Total boundedness is invariant under uniform equivalence of
metric spaces.
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18.2 Compactness

For metric spaces we can say that a metric space is compact if it is both complete
and totally bounded.

Lemma 18.3 Let K be a metric space. Let F be a subset of K. If F is
complete, then F is a closed subset of K. Suppose in addition that K is complete.
If F is a closed subset of K, then F is complete.

Proof: Suppose F is complete. Say that s is a sequence of points in F that
converges to a limit a in K. Then s is a Cauchy sequence in F , so it converges
to a limit in F . This limit must be a, so a is in F . This proves that F is a closed
subset of K. Suppose for the converse that K is complete and F is closed in K.
Let s be a Cauchy sequence in F . Then it converges to a limit a in K. Since F
is closed, the point a must be in F . This proves that F is complete. �

Lemma 18.4 Let K be a totally bounded metric space. Let F be a subset of
K. Then F is totally bounded.

Proof: Let ε > 0. Then K is the union of finitely many sets, each of diameter
bounded by 2ε. Then F is the union of the intersections of these sets with F ,
and each of these intersections has diameter bounded by 2ε. �

Theorem 18.5 Let K be a compact metric space. Let F be a subset of K.
Then F is compact if and only if it is a closed subset of K.

Proof: Since K is compact, it is complete and totally bounded. Suppose F
is compact. Then it is complete, so it is a closed subset of K. For the converse,
suppose F is a closed subset of K. It follows that F is complete. Furthermore,
from the last lemma F is totally bounded. It follows that F is compact. �

Examples:

1. The unit sphere (cube) in `∞ is not compact. In fact, the unit basis vectors
δn are spaced by 1.

2. The unit sphere in `2 is not compact. The unit basis vectors δn are spaced
by
√

2.

3. The unit sphere in `1 is not compact. The unit basis vectors δn are spaced
by 2.

Examples:

1. Let ck ≥ 1 be a sequence that increases to infinity. The squashed solid
rectangle of all x with ck|xk| ≤ 1 for all k is compact in `∞.

2. Let ck ≥ 1 be a sequence that increases to infinity. The squashed solid
ellipsoid of all x with

∑∞
k=1 ckx

2
k ≤ 1 is compact in `2.

3. Let ck ≥ 1 be a sequence that increases to infinity. The squashed region
of all x with

∑∞
k=1 ck|xk| ≤ 1 is compact in `1.
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18.3 Countable product spaces

Let Mj for j ∈ N be a sequence of metric spaces. Let
∏
jMj be the product

space consisting of all functions f such that f(j) ∈ Mj . Let φ(t) = t/(1 + t).
Define the product metric by

d(f, g) =
∞∑

j=1

1
2j
φ(d(f(j), g(j)). (18.1)

The following results are elementary.

Lemma 18.6 If each Mj is complete, then
∏
jMj is complete.

Lemma 18.7 If each Mj is totally bounded, then
∏
jMj is totally bounded.

Theorem 18.8 If each Mj is compact, then
∏
jMj is compact.

Examples:

1. The product space R∞ is complete but not compact.

2. The closed unit ball (solid cube) in `∞ is a compact subset of R∞ with
respect to the R∞ metric. In fact, it is a countably infinite product [0, 1]∞

of compact spaces [0, 1]. What makes this work is that the R∞ metric
measures the distances for various coordinates in increasingly less stringent
ways. This example is called the Hilbert cube.

3. In the last example the Hilbert cube was defined as the countable infinite
product [0, 1]∞ of the unit interval [0, 1] with itself, with some metric
uniformly equivalent to the R∞ metric on this cube. An example of such
a metric is d(x, y) =

√∑
n |xk − yk|2a2

n, with a fixed sequence of an >
0 such that

∑
n a

2
n < +∞. A more geometric way of thinking of the

Hilbert cube is as the countable product of the spaces [0, an], regarded as
a subspace of `2. The metric on `2 is natural geometrically. In this picture
the Hilbert cube is compact because it is more and more compressed as
the dimension gets bigger.

4. The unit sphere (cube faces) in `∞ is not compact with respect to the R∞
metric, in fact, it is not even closed. The sequence δn converges to zero.
The zero sequence is in the closed ball (solid cube), but not in the sphere.

18.4 The Bolzano-Weierstrass property

The notion of subsequence depends on the concept of increasing injective func-
tion from N to N. Let r : N→ Nb be such a function. Then r is characterized
by the property that m < n implies rm < rn. If s : N→M is a sequence, then
s ◦ r is a subsequence. That is, a subsequence of n 7→ sn is j 7→ srj , where r is
increasing and injective.
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Theorem 18.9 (Bolzano-Weierstrass property) A metric space M is com-
pact if and only if every sequence with values in M has a subsequence that con-
verges to a point of M .

Proof: Suppose thatM is compact. Thus it is totally bounded and complete.
Let s be a sequence with values in M . Since M is bounded, it is contained in a
ball of radius C.

By induction construct a sequence of balls Bj of radius C/2j and a decreasing
sequence of infinite subsets Nj of the natural numbers such that for each k in
Nj we have sk in Bj . For j = 0 this is no problem. If it has been accomplished
for j, cover Bj by finitely many balls of radius C/2j+1. Since Nj is infinite,
there must be one of these balls such that sk is in it for infinitely many of the
k in Nj . This defines Bj+1 and Nj+1.

Let r be a strictly increasing sequence of numbers such that rj is in Nj .
Then j 7→ srj is a subsequence that is a Cauchy sequence. By completeness it
converges.

The converse proof is easy. The idea is to show that if the space is either not
complete or not totally bounded, then there is a sequence without a convergent
subsequence. In the case when the space is not complete, the idea is to have
the sequence converge to a point in the completion. In the case when the space
is not totally bounded, the idea is to have the terms in the sequence separated
by a fixed distance. �

The theorem shows that for metric spaces the concept of compactness is in-
variant under topological equivalence. In fact, it will turn out that compactness
is a purely topological property.

18.5 Compactness and continuous functions

Theorem 18.10 Let K be a compact metric space. Let L be another metric
space. Let f : K → L be a continuous function. Then f is uniformly continuous.

Proof: Suppose f were not uniformly continuous. Then there exists ε > 0
such that for each δ > 0 the set of pairs (x, y) with d(x, y) < δ and d(f(x), f(y)) ≥
ε is not empty. Consider the set of pairs (x, y) with d(x, y) < 1/n and d(f(x), f(y)) ≥
ε. Choose sn and tn with d(sn, tn) < 1/n and d(f(sn), f(tn)) ≥ ε. Since K is
compact, there is a subsequence uk = srk that converges to some limit a. Then
also vk = trk converges to a. But then f(uk) → f(a) and f(vk) → f(a) as
k → ∞. In particular, d(f(uk), f(vk)) → d(a, a) = 0 as k → ∞. This contra-
dicts the fact that d(f(uk), f(vk)) ≥ ε. �

A corollary of this result is that for compact metric spaces the concepts of
uniform equivalence and topological equivalence are the same.

Theorem 18.11 Let K be a compact metric space. Let L be another metric
space. Let f : K → L be continuous. Then f [K] is compact.

Proof: Let t be a sequence with values in f [K]. Choose sk with f(sk) = tk.
Then there is a subsequence uj = srj with uj → a as j → ∞. It follows that
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trj = f(srj ) = f(uj) → f(a) as j → ∞. This shows that t has a convergence
subsequence. �

The classic application of this theorem is to the case when f : K → R, where
K is a non-empty metric space. Then f [K] is a non-empty compact subset of
R. However, a non-empty compact set of real numbers has a least element and
a greatest element. Therefore there is a p in K where f assumes its minimum
value, and there is a q in K where f assumes its maximum value.

18.6 The Heine-Borel property

It is striking that while completeness is a metric property, and total boundedness
is a metric property, according to the theorem of this section compactness is a
purely topological property. In fact, it can be formulated entirely in terms of
open subsets, with no mention of the metric.

An open cover of a topological space K is a collection Γ of open sets with
K ⊂ ⋃Γ. The Heine-Borel property says that if Γ is an open cover of K, then
there is a finite subcollection Γ0 that is an open cover of K. This is a purely
topological property.

An equivalent statement of the Heine-Borel property is the finite intersection
property following. Let ∆ be a collection of closed subsets of K. Suppose that
for each finite subcollection ∆0 of ∆ the intersection

⋂
∆0 6= ∅. Then

⋂
∆ 6= ∅.

Theorem 18.12 The metric space K is compact if and only if K has the Heine-
Borel property.

Proof: Suppose that the metric space K is compact. Then it has the
Bolzano-Weierstrass property, and in addition it is totally bounded. Let Γ be
an open cover of K. The main point of the following proof is to show that there
is an ε > 0 such that the sets in Γ all overlap by at least ε. More precisely, the
claim is that there is an ε > 0 such that for every x there is an open set U in Γ
such that B(x, ε) ⊂ U .

Otherwise, there would be a sequence εn → 0 and a sequence xn such that
B(xn, εn) is not a subset of an open set in Γ. By the Bolzano-Weierstrass
property there is a subsequence xnk that converges to some x. Since Γ is a
cover, there is a U in Γ such that x ∈ U . Since U is open, there is a δ > 0
such that B(x, δ) ⊂ U . Take k so large that d(xnk , x) < δ/2 and εnk < δ/2.
Then d(y, x) ≤ d(y, xnk) + d(xnk , x), so B(xnk , εnk) ⊂ B(x, δ) ⊂ U . This is a
contradiction. So there must be an overlap by some ε > 0.

By total boundedness, there are points x1, . . . , xr such that the balls B(xj , ε)
cover K. For each j let Uj be an open set in Γ such that B(xj , ε) ⊂ Uj . Then
the Uj form an finite cover of K. This completes the proof of the Heine-Borel
property.

The converse is much easier. Suppose that xn form an infinite sequence of
distinct points with no convergent subsequence. Then for each x in K there is
a ball B(x, εx) with only finitely many elements of the sequence in it. The balls
B(x, εx) cover K, but cannot have a finite subcover. �
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18.7 Semicontinuity

A function from a metric space M to [−∞,+∞) is said to be upper semicon-
tinuous if for every u and every r > f(u) there is a δ > 0 such that all v with
d(u, v) < δ satisfy f(v) < r. An example of an upper semicontinuous function is
one that is continuous except where it jumps up at a single point. It is easy to
fall from this peak. The indicator function of a closed set is upper semicontinu-
ous. The infimum of a non-empty collection of upper semicontinuous functions
is upper semicontinuous. This generalizes the statement that the intersection
of a collection of closed sets is closed.

There is a corresponding notion of lower semicontinuous function. A function
from a metric space M to (−∞,+∞] is said to be lower semicontinuous if for
every u and every r < f(u) there is a δ > 0 such that all v with d(u, v) < δ
satisfy f(v) > r. An example of a lower semicontinuous function is one that is
continuous except where jumps down at a single point. The indicator function
of an open set is lower semicontinuous. The supremum of a non-empty collection
of lower semicontinuous functions is lower semicontinuous. This generalizes the
fact that the union of a collection of open sets is open.

Theorem 18.13 Let K be compact and not empty. Let f : K → (−∞,+∞]
be lower semicontinuous. Then there is a point p in K where f assumes its
minimum value.

Proof: Let a be the infimum of the range of f . Suppose that s is a sequence
of points in K such that f(sn)→ a. By compactness there is a strictly increasing
sequence g of natural numbers such that the subsequence j 7→ sgj converges to
some p in K. Consider r < f(p). The lower semicontinuity implies that for
sufficiently large j the values f(sgj ) > r. Hence a ≥ r. Since r < f(p) is
arbitrary, we conclude that a ≥ f(p). �

There is a corresponding theorem for the maximum of an upper semicontin-
uous function on a compact space that is not empty.

18.8 Compact sets of continuous functions

Let A be a family of functions on a metric space M to another metric space.
Then A is equicontinuous if for every x and every ε > 0 there is a δ > 0 such
that for all f in A the condition d(x, y) < δ implies d(f(x), f(y)) < ε. Thus the
δ does not depend on the f in A.

Similarly, A is uniformly equicontinuous if for every ε > 0 there is a δ > 0
such that for all f in A the condition d(x, y) < δ implies d(f(x), f(y)) < ε. Thus
the δ does not depend on the f in A or on the point in the domain.

Finally, A is equiLipschitz if there is a constant C such that for all f in A
the condition d(x, y) < δ implies d(f(x), f(y)) < Cd(x, y) is satisfied.

It is clear that equiLipschitz implies uniformly equicontinuous implies equicon-
tinuous.
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Lemma 18.14 Let K be a compact metric space. If A is an equicontinuous set
of functions on K, then A is a uniformly equicontinuous set of functions on K.

Let K,M be metric spaces, and let BC(K → M) be the metric space of
all bounded continuous functions from K to M . The distance between two
functions is given by the supremum over K of the distance of their values in
the M metric. When M is complete, this is a complete metric space. When K
is compact or M is bounded, this is the same as the space C(K → M) of all
continuous functions from K to M . A common case is when M = [−m,m] ⊂ R,
a closed bounded interval of real numbers.

Theorem 18.15 (Arzelà-Ascoli) Let K and M be totally bounded metric
spaces. Let A be a subset of C(K → M). If A is uniformly equicontinuous,
then A is totally bounded.

Proof: Let ε > 0. By uniform equicontinuity there exists a δ > 0 such that
for all f in A and all x, y the condition d(x, y) < δ implies that |f(x)− f(y)| <
ε/4. Furthermore, there is a finite set F ⊂ K such that every point in K is
within δ of a point of F . Finally, there is a finite set G of points in M that are
within ε/4 of every point in M . The set GF is finite.

For each h in GF let Dh be the set of all g in A such that g is within ε/4 of
h on F . Every g is in some Dh. Each x in K is within δ of some a in F . Then
for g in Dh we have

|g(x)− h(a)| ≤ |g(x)− g(a)|+ |g(a)− h(a)| < ε/4 + ε/4 = ε/2. (18.2)

We conclude that each pair of functions in Dh is within ε of each other. Thus
A is covered by finitely many sets of diameter ε. �

In practice the way to prove that A is uniformly equicontinuous is to prove
that A is equiLipschitz with constant C. Then the theorem shows in a rather
explicit way that A is totally bounded. In fact, the functions are parameterized
to within a tolerance ε by functions from the finite set F of points spaced by
δ = ε/(4C) to the finite set G of points spaced by ε/4.

Corollary 18.16 (Arzelà-Ascoli) Let K,M be compact metric spaces. Let A
be a subset of C(K →M). If A is equicontinuous, then its closure Ā is compact.

Proof: Since K is compact, the condition that A is equicontinuous implies
that A is uniformly equicontinuous. By the theorem, A is totally bounded. It
follows easily that the closure Ā is totally bounded. Since M is compact and
hence complete, C(K → M) is complete. Since Ā is a closed set of a complete
space, it is also complete. The conclusion is that Ā is compact. �

The theorem has consequences for existence results. Thus every sequence of
functions in A has a subsequence that converges in the metric of C(K →M) to
a function in the space.
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18.9 Summary

This summary is a brief comparison of compactness and completeness.
A topological space K is compact iff whenever Gamma is a collection of

closed subsets with the property that every finite subcollection has non-empty
intersection, then Gamma has non-empty intersection. Every closed subset A of
a compact space K is compact. Every compact subset K of a Hausdorff space
X is closed.

Compactness is preserved under topological equivalence. In fact the image
of a compact space under a continuous map is compact.

A metric space M is complete if every Cauchy sequence in M converges to
a point in M . A closed subset A of a complete metric space M is complete. A
complete subset A of a metric space M is closed.

Completeness is preserved under uniform equivalence. In fact, the image of
a complete space under a continuous uniformly open map is complete.

A compact metric space K is complete. For compact metric spaces topolog-
ical equivalence is the same as uniform equivalence. In fact, every continuous
map from a compact metric space to another metric space is uniformly contin-
uous.

Problems

1. Let ck ≥ 1 be a sequence that increases to infinity. Show that the squashed
solid ellipsoid of all x with

∑∞
k=1 ckx

2
k ≤ 1 is compact in `2.

2. Prove that the squashed solid ellipsoid in `2 is not homeomorphic to the
closed unit ball in `2.

3. Let ck ≥ 1 be a sequence that increases to infinity. Is the squashed ellipsoid
of all x with

∑∞
k=1 ckx

2
k = 1 compact in `2?

4. Is the squashed ellipsoid in `2 completely metrizable? Hint: Show that
the set

∑
k ckx

2
k ≤ 1 is a Gδ in `2. Show that the set

∑
k ckx

2
k ≥ 1 is a Gδ

in `2.

5. Consider a metric space A with metric d. Say that there is another metric
space B with metric d1. Suppose that A ⊂ B, and that d1 ≤ d on A×A.
Finally, assume that there is a sequence fn in A that approaches h in B\A
with respect to the d1 metric. Show that A is not compact with respect
to the d metric. (Example: Let A be the unit sphere in `2 with the `2

metric, and let B be the closed unit ball in `2, but with the R∞ metric.)

6. Is the metric space of continuous functions on [0, 1] to [−1, 1] with the sup
norm compact? Prove or disprove. (Hint: Consider the completion with
respect to the metric d1(f, g) =

∫ 1

0
|f(x)− g(x)| dx. Construct a sequence

as in the previous problem. Also, check directly that the sequence is not
totally bounded.)
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7. Consider the situation of the Arzelà-Ascoli theorem applied to a set A ⊂
C(K) with bound m and Lipschitz constant C. Suppose that the number
of δ sets needed to cover K grows like (L/δ)k, a finite dimensional behavior
(polynomial in 1/δ). What is the growth of the number of ε sets needed
to cover A ⊂ C(K)? It this a finite dimensional rate?

8. Let M be a metric space. Show that a real function f on M is continuous
if and only if its restriction to each compact subset K is continuous. Hint:
Use sequences.

9. Let M be a metric space. Let fn be a sequence of continuous real functions
on M such that for each compact subset K of M we have fn → f uniformly
on K. Prove that f is continuous.
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Part V

Polish Spaces
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Chapter 19

Completely metrizable
topological spaces

19.1 Completely metrizable spaces

The central focus of this part is Polish spaces: topological spaces that are metriz-
able with a complete metric and that are separable. These include most of the
spaces on which analysis is done. This leads to the subject of standard spaces:
measurable spaces isomorphic to the space of Borel subsets of a Polish space.
The concluding result of this chapter will center around a remarkable uniqueness
result: up to isomorphism there is only one uncountable standard measurable
space.

However, initially we concentrate on a more general class of topological
spaces, those that are metrizable with a complete metric. Such a space is said
to be completely metrizable. Sometimes such a space is called topologically com-
plete. However this term is used more general topological contexts, so a reader
consulting other references must remain alert. If necessary use a term such as
“metrically topologically complete”.

If the hypothesis of a theorem says that a certain space is a complete metric
space, and the conclusion of the theorem is purely topological property of this
space, then it is clear that the conclusion follows for an arbitrary completely
metrizable topological spaces. Often this observation is taken for granted. On
the other hand, if the conclusion of a theorem says that a certain metric space
is a completely metrizable topological space, then it does not follow that it is a
complete metric space.

Consider a topological space. A subset is a Gδ if it is a countable intersection
of open sets. A subset is a Fσ if it is a countable union of closed sets. The
German origin of Gδ is Gebiet-Durchschnitt, which means open intersection.
The French origin of Fσ is fermé-somme, which means closed union.

Theorem 19.1 Let T be a completely metrizable topological space. Suppose
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that S is dense in T . Then S is completely metrizable if and only if it is a Gδ
in T .

To motivate the if part of the proof, look at the special case when S is open
and dense in T . Let B = T \ S. Suppose that T has the metric d. Since S is
open it follows that d(x,B) > 0 for each x in S. Consider the metric e defined
on S by

e(x, y) = d(x, y) +
∣∣∣∣

1
d(x,B)

− 1
d(y,B)

∣∣∣∣ . (19.1)

It is easy to see that d and e define the same topology on S. However with the
metric e the space S is complete. To see this, consider a Cauchy sequence xm
with respect to the metric e. It is also a Cauchy sequence with respect to the
metric d, so it converges to a point x in T . On the other hand, the numbers
1/d(xm, B) also form a Cauchy sequence, so they converge to a number a 6= 0.
Thus 1/d(x,B) = a, and so x is in S.

Proof: Suppose that S is a Gδ in T . Then S =
⋂
n Un, where Un is open

in T . Let Bn = T \ Un. Suppose that T has the metric d. Since S ⊂ Un and
Un is open it follows that d(x,Bn) > 0 for each x in S. Let b(t) = t/(1 + t).
This is the transformation that creates bounded metrics. Consider the metric e
defined on S by

e(x, y) = d(x, y) +
∑
n

1
2n

∣∣∣∣
1

d(x,Bn)
− 1
d(y,Bn)

∣∣∣∣ . (19.2)

It is easy to see that d and e define the same topology on S. However with
the metric e the space S is complete. To see this, consider a Cauchy sequence
xm with respect to the metric e. It is also a Cauchy sequence with respect to
the metric d, so it converges to a point x in T . On the other hand, for each n
the numbers 1/d(xm, Bn) also form a Cauchy sequence, so they converge to a
number an 6= 0. Thus 1/d(x,Bn) = an, and so x is in the complement of Bn.
Since this works for each n, it follows that x is in S. Thus S with this metric is
complete.

For the converse, suppose that S has a metric e that defines its topology and
that with this metric S is complete. For each n let

Un = {x ∈ T | ∃δ > 0∀y ∈ S∀z ∈ S (d(y, x) < δ, d(z, x) < δ ⇒ e(y, z) < 1/n)}.
(19.3)

The first thing to note is that for each n we have S ⊂ Un. This is because
on S the metrics d and e define the same topology. So for each n there exists
δ > 0 so that if y and z are each within δ of x with respect to d, then y and z
are each within 1/(2n) of x with respect to e. It follows that y and z are within
1/n of each other with respect to e.

Next, each set Un is open. Suppose that x is in Un. Then there is a cor-
responding δ. Suppose that x′ is within δ/2 of x with respect to d. Then if y
and z are within δ/2 of x′ with respect to d, then they are within δ of x with
respect to each d. This is enough to show that x′ is in Un.
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Finally, the intersection of the Un is S. To see this, suppose that x is a
point such that for each n we have x in Un. Since S is dense in T , there is a
sequence m 7→ xm of points in S such that xm → x as m → ∞. Consider a
particular value of n. Since x is in Un, there is a value of δ so that d(xm, x) < δ
and d(xk, x) < δ implies e(xm, xk) < 1/n. However for m, k large enough we
can guarantee that d(xm, x) < δ and d(xk, x) < δ. So for these m, k we have
e(xm, xk) < 1/n. Thus the xm form a Cauchy sequence with respect to e.
Therefore the xm converge to some limit in S. This limit must be x, so x is in
S. The conclusion of the discussion is that S is the intersection of the open sets
Un, and hence S is a Gδ.
�

19.2 Locally compact metrizable spaces

A topological space is M is compact if it has the Heine-Borel property, that
is, every open cover has a finite subcover. A topological space is M is locally
compact if for each p in M there is an open subset U and a compact subset K
with p ∈ U ⊂ K.

Theorem 19.2 Let X be a metrizable topological space. Let M be a subset of
X such that M is locally compact and M is dense in X. Then M is an open
subset of X.

Proof: Suppose that p is in M . Since M is locally compact, there is an
open subset U of M and a compact subset K of M such that p ∈ U ⊂ K.
Furthermore, there is an open subset W of X such that W ∩M = U . Since
M̄ = X it follows that W = W ∩ M̄ ⊂ W ∩M ⊂ Ū . Since K is compact in
M , it follows that K is compact in X, and consequently K is closed in X. It
follows that Ū ⊂ K. This shows that W is open in X with p ∈ W ⊂ K ⊂ M .
This suffices to prove that M is an open subset of K. �

Corollary 19.3 Let M be a locally compact metrizable space. Then M is a
completely metrizable topological space.

Proof: Let X be the completion of M . Then M is dense in M . It follows
from the theorem that M is an open subset of X. In particular, M is a Gδ in
X. It follows from an earlier theorem that M is topologically complete. �

19.3 Closure and interior

For each subset A of a topological space, its closure is the smallest closed set
of which A is a subset. The closure of A is denoted Ā. The closure operation
satisfies the Kuratowski closure axioms:

1. ∅̄ = ∅.
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2. A ⊂ Ā.

3. A = A.

4. (A ∪B) = Ā ∪ B̄.

For each subset A of a topological space X, its interior is the largest open
subset of A. The interior of A is denoted A◦. The relation between closure
and interior is that (Ā)c = Ac◦. In other words, just as complementation
interchanges closed sets and open sets, it also interchanges closure and interior
operations.

A dense set B with B̄ = X is good at approximation. On the other hand, an
empty interior set A with A◦ = ∅, that is, Ac = X, is a set whose complement
is good at approximation. Every point is near a point that is not in A.

The operation Ac◦ sends A into the interior of its complement, that is, into
the set of all points that are isolated from A. This operation may be iterated.
The operation Ac◦c◦ = (Ā)◦ sends A into the set of all points that are isolated
from the points that are isolated from A. In other word, every point near a
point in (Ā)◦ is approximated by points in A.

A set B has dense interior if B◦ = X. For a set B with dense interior every
point x in X may be approximated by points in the interior of B. Thus such a
set is extremely good at approximation.

A set A such that (Ā)◦ = ∅ is said to be nowhere dense. This is the dual
notion to dense interior. A nowhere dense set A has a complement that is
extremely good in approximation, since Ac◦ = X. In other words, every point
is near a point not approximated by A.

The collection of nowhere dense subsets is an ideal of subsets in the collection
of all subsets. This means that the nowhere dense subsets are closed under finite
intersections and countable unions, and furthermore, if A is nowhere dense and
B is an arbitrary subset, then A ∩B is nowhere dense.

Notice for future use that when a set A fails to be nowhere dense, that means
that there exists a point x that is in the interior of Ā.

If A is a subset of a topological space X, and Ac = X \A is its complement,
then the boundary of A is the closed subset ∂A = Ā\A◦. If A is open, or if A is
closed, then ∂A has empty interior, and so in particular ∂A is nowhere dense.

19.4 The Baire category theorem

The Baire category theorem is a theory of subsets of a completely metrizable
topological space. Some subsets are good at approximation (residual sets) and
other subsets have complements that are good at approximation (meager sets).
Another name for meager set is set of first category; hence the terminology.

Let S be a topological space. A subset M is meager if M is a countable
union of nowhere dense subsets. A subset R of S is residual if R is a countable
intersection of dense interior subsets. The property of being meager or residual
is a purely topological property.
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For an example, take S = [0, 1]. Every finite subset is nowhere dense. Every
countable subset is meager. The indicator function of the rationals fails to be
nowhere dense, but it is meager. On the other hand, an uncountable subset of
[0, 1] can be nowhere dense. The Cantor set is an example.

The collection of meager subsets is a σ-ideal of subsets in the collection of all
subsets. This means that the meager subsets are closed under finite intersections
and countable unions, and furthermore, if A is meager and B is an arbitrary
subset, then A ∩ B is meager. A non-meager subset is, of course, a subset
that is not meager. The Baire theorem proved below will establish that every
subset with non-empty interior of a completely metrizable topological space is
non-meager.

Sometimes another terminology is used. A subset M is first category if
it is meager. A non-meager subset is second category. We shall not use this
terminology.

Theorem 19.4 (Baire category theorem) Let S be a non-empty completely
metrizable topological space. If R is residual in S, then R is dense in S. Equiv-
alently, if M is meager in S, then M has empty interior.

Proof: It is sufficient to prove that if Gn is a sequence of sets each with
dense interior, then the intersection R is dense.

Let x1 be an arbitrary point in S. Let ε1 be an arbitrary number with
0 < ε1 < 1. The task is to prove that there is an x in R such that d(x, x1) < ε1.

Construct inductively xn and 0 < εn with B(xn+1, εn+1) ⊂ B(xn, εn/2)∩G◦n.
In particular d(xn+1, xn) < εn/2 and εn+1 ≤ εn/2. The reason this can be done
is that the interior G◦n is dense, and so it must have non-empty intersection
with the open ball B(xn, εn/2). Then d(xm, xn) < εn

∑∞
k=1 1/2k = εn for

m ≥ n. This proves that the xn form a Cauchy sequence. Since S is a complete
metric space, there is an x such that xn → x as n → ∞. Then d(x, xn) ≤ εn.
Furthermore, d(xn+1, x) ≤ εn+1 implies x ∈ G◦n. Thus there is an element x in
R with d(x, x1) < ε1. �

Meager sets are sets whose complements are very good at approximation,
yet they have a stability property under countable unions. The basic properties
of meager subsets of completely metrizable topological spaces are summarized
here:

• A nowhere dense (Ā)◦ = ∅ ⇒ A meager⇒ A has empty interior (A◦ = ∅).
• The class of meager subsets is closed under countable unions.

• Consequence: A countable union of closed sets with empty interiors has
empty interior.

Residual sets are very good at approximation, yet they have a stability
property under countable intersections. The basis properties of residual subsets
of completely metrizable topological spaces are summarized here:

1. B dense interior (B◦ = X) ⇒ B residual ⇒ B dense (B̄ = X).



206CHAPTER 19. COMPLETELY METRIZABLE TOPOLOGICAL SPACES

2. The class of residual subsets is closed under countable intersection.

3. A countable intersection of dense open sets is dense.

Theorem 19.5 A subset R of a completely metrizable topological space S is
residual if and only if there is a subset W ⊂ R that is a dense Gδ in S.

Proof: If there is a subset W that is a dense Gδ, then W is a countable
intersection of open sets Un. Furthermore, if W is dense, then each Un is dense.
It follows that W is residual, and so R is residual.

If R is residual, then R it is the intersection of sets Bn with B◦n = S. Let W
be the intersection of the sets B◦n. Then W is a Gδ. Since W is also residual, it
follows from the Baire theorem that W is dense. �
Example: A trivial but illuminating illustration of Baire category ideas is the
fact that the plane cannot be written as a countable union of lines. Each line is
nowhere dense, but the plane is not meager. Notice however that the countable
union of lines can be dense in the plane.

There is also a completely elementary proof of the same fact. Consider a
fixed circle. Then each line intersects the circle in at most two points, so the
union of lines cannot even include the circle.

There are many less trivial examples of the use of the Baire category theorem.
What follows is a series of arguments that proves the remarkable fact that a lower
semicontinuous real function cannot be discontinuous at every point.

Theorem 19.6 Suppose that f is LSC on a complete metric space with real
values. Then there exists a non-empty open subset on which f is bounded above.

Proof: Let Sn be the subset where f ≤ n. Since f is LSC, the set Sn is
closed. Since f has real values, the union of the Sn is a complete metric space.
Such a space cannot be meager. Therefore one of the Sn must fail to be nowhere
dense. Since Sn is closed, it follows that Sn has non-empty interior. This gives
a non-empty open set on which f ≤ n. �

Lemma 19.7 Suppose that f is defined on a non-empty complete metric space
and has real values. Suppose that f is LSC but fails to be USC at every point.
Then f is unbounded above.

Proof: To say that f is USC at x is to say that for every k there exists
an open set with x in it such that for all y in this open set the values f(y) <
f(x) + 1/k. To say that f is not USC at x is to say that for some k there are
points y arbitrarily close to x such that f(y) ≥ f(x) + 1/k. Let Ak be the set
of all x such that there are y arbitrarily close to x with f(x) ≥ f(x) + 1/k. If
f fails to be USC at every point, then the union of the Ak is a complete metric
space. It follows that one of the Ak must fail to be nowhere dense. So there is
a non-empty open set U ⊂ Āk.

There exists x0 in U and in Ak. This will be the starting point for an
inductive construction. Suppose that we have xi in U and in Ak. Then there
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exists y in U with f(y) ≥ f(xi)+1/k. There exists a sequence of points that are
in U and in Ak and converge to y. Since f is LSC at y, there must be a point
xi+1 that is in the range of this sequence such that f(xi+1) > f(y) − 1/(2k).
Thus f(xi+1) > f(xi) + 1/(2k). It is clear that f(xi) > f(x0) + i/(2k). This is
enough to show that f is unbounded above. �

Theorem 19.8 There is no real function on a non-empty complete metric space
that is LSC and nowhere continuous.

Proof: Suppose that f were such a function. Since f is LSC, there is an non-
empty open set on which f is bounded above. This open set is a topologically
complete metric space. Since f is nowhere USC on this space, it is unbounded
above on it. This is a contradiction. Thanks to Leonid Friedlander for this
argument. �

Problems

1. Let M be a metric space. Let f be a real function on M . Show that the
points of M where f is continuous form a Gδ subset. Hint: First prove
that f is continuous at a if and only if for every n there exists real z and
δ > 0 such that for all x (d(x, a) < δ ⇒ d(f(x), z) < 1/n). Let Un be
the set of all a for which there exists real z and δ > 0 such that for all x
(d(x, a) < δ ⇒ d(f(x), z) < 1/n). Show that Un is open.

2. (a) Consider a complete metric space. Show that every dense Gδ subset
is residual.

(b) Show that Q is not a residual subset of R.

(c) Show that is impossible for a real function on R to be continuous
precisely on Q.

3. Show that R2 is not a countable union of circles.

4. Let M be a complete metric space. Let fn be a sequence of continuous
real functions such that fn to f pointwise. Show that there is a k in N
and a non-empty open subset U such that |f | is bounded by k on U . Hint:
Let Fk be the set of all x such that for each n |fn(x)| ≤ k. Use the fact
that M is not meager.

5. Let L be the subset of C([0, 1]) consisting of Lipschitz functions. Show
that L is a meager subset. Hint: Let Fk be the set of all f such that for
all x, y we have |f(x)− f(y)| ≤ k|x− y|.

6. Show that the middle third Cantor subset of R is equal to its boundary.
Show that it is an uncountable nowhere dense subset of R.

7. Recall that f : X → R is lower semicontinuous (LSC) if and only if the
inverse image of each interval (a,+∞), where −∞ ≤ a ≤ +∞, is open
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in X. Show that if fn ↑ f pointwise and each fn is LSC, then f is LSC.
(This holds in particular if each fn is continuous.)

8. Give an example of a function f : R→ R that is LSC but is discontinuous
at almost every point (with respect to Lebesgue measure).



Chapter 20

Polish topological spaces

20.1 The role of Polish spaces

Recall that a completely metrizable topological space is a space whose topology
is given by some complete metric. A separable completely metrizable topological
space is called a Polish space. Every compact metrizable space is a Polish space.

It may be shown [10] that every compact Hausdorff space is normal, and
every locally compact Hausdorff space is regular. The Urysohn metrization the-
orem says that every second countable regular space is metrizable. It follows
that every second countable locally compact Hausdorff space is metrizable. We
have already seen that a locally compact metrizable space is completely metriz-
able. This proves the following theorem.

Theorem 20.1 Every second countable locally compact Hausdorff space is a
Polish space.

Among topological spaces the Polish spaces are particularly nice for analysis.
The separable locally compact metrizable spaces are a more restrictive class;
they are the same as the locally compact Polish spaces. The nicest of all are
the compact metrizable spaces, which are the compact Polish spaces.

The Euclidean space Rn is a locally compact Polish space. So one could
think of the concept of locally compact Polish space as capturing the idea of the
topology of Euclidean space. However, some analysts prefer to work with the
more general concept of locally compact Hausdorff space.

An important example of a Polish space that is not locally compact is the
real Hilbert space `2 of square-summable real sequences. This is the infinite
dimensional analog of Euclidean space Rn. Similarly, the spaces `1 and `∞ are
not locally compact. Perhaps surprisingly, the space R∞ is also not locally com-
pact. Certainly, each parallelepiped

∏
n[−Ln, Ln] bounded in each coordinate

direction is compact, but non-empty open subsets are only bounded in finitely
many coordinate directions.

209
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20.2 Embedding a Cantor space

A standard example of an compact metric space is the Cantor product space
2N. This is space is uncountable. However in a certain sense it is the smallest
such space, as is shown by the following result.

Proposition 20.2 Let B be a Polish space. Suppose that B is uncountable.
Then there exists a compact subset D ⊂ B that is homeomorphic to 2N.

Proof: Let C be the set of all y in B such that there exists a countable open
subset U with y ∈ U . Since B is separable, we can take the open sets to belong
to a countable base. This implies that C is itself a countable set.

Let D = B\C. Since B is uncountable, it follows that D is also uncountable.
Each y in D has the property that each open set U with y ∈ U is uncountable.

The next task is to construct for each sequence ω1, . . . , ωm a corresponding
closed subset Fω1,...,ωm of D. Each closed set has a non-empty interior and has
diameter at most 1/m. For different sequences the corresponding closed subsets
are disjoint. The closed sets decrease as the sequence is extended. This is done
inductively. Start with D. Since it is uncountable, it has at least two points.
Construct the first two sets F0 and F1 to satisfy the desired properties. Say
that the closed subset Fω1,...,ωm has been defined. Since it non-empty interior,
there are uncountably many points in it. Take two points. About each of these
points construct subsets Fω1,...,ωm,0 and Fω1,...,ωm,1 with the desired properties.

These closed subsets of D are also non-empty subsets of the complete metric
space B with decreasing diameter. By the completeness of B, for each infinite
sequence ω in 2N the intersection of the corresponding sequence of closed sets
has a single element g(ω) ∈ B. It is not hard to see that g : 2N → B is
a continuous injection. Since 2N is compact, it is a homeomorphism onto a
compact subset D of B. �

20.3 Embedding in the Hilbert cube

Another standard example of an compact metric space is the Hilbert cube, the
product space [0, 1]N. In a certain sense it is the largest such space, as is shown
by the following result.

Theorem 20.3 Let B be a separable metrizable space. Then there exists a com-
pact subset T ⊂ [0, 1]N and a dense subset S of T such that B is homeomorphic
to S.

Proof: Let B be a complete separable metric space. There exists a metric
on B with values bounded by one such that the map between the two metric
spaces is uniformly continuous. So we may as well assume that that B is a
complete separable metric space with metric d bounded by one.

Since B is separable, there is a sequence s : N→ B that is an injection with
dense range. Let I = [0, 1] be the unit interval, and consider the space IN with
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the product metric dp. Define a map f : B → IN by f(x)n = d(x, sn). This is
a homeomorphism f from B to a subset S ⊂ IN. �

If a topological space B is homeomorphic to a dense subspace S of a com-
pact space T , then T is said to be a compactification of B. The above result
shows that every separable metrizable space B has a Polish compactification
T . In view of the construction, it seems reasonable to call this the Hilbert cube
compactification of a separable metrizable space.

Corollary 20.4 Let B be a Polish space. Then there exists a compact sub-
set T ⊂ [0, 1]N and a dense subset S of T that is a Gδ in T such that B is
homeomorphic to S.

Problems

1. Describe the Hilbert cube compactification of the open interval (0, 1). How
many extra points are adjoined?
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Chapter 21

Standard measurable spaces

21.1 Measurable spaces

As we know, a measurable space is a set X together with a given σ-algebra of
subsets. Many concepts for topological spaces carry over to measurable spaces.
If Z is a subset of X, then there is a relative σ-algebra induced on X, so that
in this way Z becomes a measurable space. Also, if Γ is a partition of X, then
there is a quotient σ-algebra induced on Γ, so that again Γ becomes a measurable
space.

Of course if X is a topological space, then with its Borel σ-algebra it also
becomes a measurable space. Such a measurable space, where the σ-algebra is
generated by a topology, is sometimes called a Borel space.

It is not hard to see that if X is a topological space and Z is a subset, then
the Borel measurable structure on Z coming from the relative topology of Z
is the same as the relative measurable structure on Z coming from the Borel
measurable structure on X.

The corresponding result for quotient spaces is false. If X is a topologi-
cal space, and Γ is a partition of X, then the Borel measurable structure on
Γ coming from the quotient topology of Γ may be coarser than the quotient
measurable structure on Γ coming from the Borel measurable structure on X.
Example: Let X = R and let the partition Γ of X consist of the intervals
[n, n + 1) for integer n in Z. Thus the partition looks like Z. The quotient
topology on Z is the trivial topology with just the empty set and the whole space
as open sets. Thus topology does not seem very useful for classification. The
Borel measurable structure generated by this topology is also trivial. However
the other direction gives us what we need. The measurable structure on the
quotient space that comes from the Borel measurable structure on R consists of
all subsets.

The general picture is that the topology on a quotient space may be too
coarse to be of interest, but the measurable structure on a quotient space may
be exactly what is appropriate. So even if a measurable structure is relatively
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uninformative compared to a topological structure, it may be all that is available
for classification.

21.2 Bernstein’s theorem for measurable spaces

This section gives the proof of Bernstein’s theorem in the case when sets and
subsets are replaced by measure spaces and measurable subsets. It is the same
dynamical systems argument that gave the theorem for sets.

Lemma 21.1 Suppose that C is a measurable space space. Suppose that A ⊂
B ⊂ C are measurable subsets. Suppose that the map φ : C → A is an iso-
morphism of measurable spaces. Then there exists a map ψ : C → B that is an
isomorphism of measurable spaces.

Proof: Think of φ as a dynamical system on C. Let D = C \A. This is the
part of the space that consists of starting points for the action of φ as a shift. It
is a measurable subset. Since φ : C → A is an isomorphism, it maps measurable
subsets to measurable subsets. It follows that each iterate φn maps measurable
subsets to measurable subsets. The part of the space on which φ acts as a
shift is the countable union of measurable subsets φn[D] for n = 0, 1, 2, 3, . . .,
and hence it is a measurable subset O(D). Let E be the complement of O(D).
The set E consists of the part C on which φ is a bijection. The points in the
measurable set E consist of the intersection of all the φn[A] for n = 0, 1, 2, 3, . . ..
That is, each point in E comes from an arbitrarily remote past.

Decompose D into the two measurable subsets F = C \ B and G = B \ A.
Then O(D) is the union of O(F ) with O(G), where O(D) is the union of the
φn[F ] and O(G) is the union of the φn[G]. These are all measurable subsets.
Let ψ : C → B agree with with φ on O(F ), and let ψ be the identity on 0(G).
On E on can either make ψ agree with φ, or it can be set to be the identity.
Then the starting points for φ as a shift are F . The range of ψ is the union
of O(F ) \ F with 0(G) and with E. This is just C \ F = B. Thus ψ gives a
measurable isomorphism of C with B. �

Theorem 21.2 Let X and Y be measurable spaces. Let f : X → Y and g : Y →
X be measurable functions with images that are measurable subsets. Suppose that
f and g are each isomorphisms onto their images. Then there is an isomorphism
of measure spaces h : X → Y .

Proof: The composition φ = g ◦ f : X → X maps X to itself. Since g is an
isomorphism from Y to the image of g in X, the map g sends the image of f
to a measurable subset of X. This measurable subset is the image of φ. Also φ
is an isomorphism onto its image. From the lemma, there is an isomorphism ψ
from X to the image of g. Then h = g−1 ◦ ψ is the desired isomorphism from
X to Y . �
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21.3 A unique measurable structure

In the next sections we argue that the setting where X is a Polish the Borel
measurable structure is very close to being unique. The only possibilities are
those associated with a countable set or with the unit interval [0, 1].

Two measurable spaces are isomorphic if there is a bijection between the
underlying sets that preserves the measurable subsets. If the spaces are topo-
logical spaces, and the measurable subsets are the Borel subsets, then the spaces
are sometimes said to be Borel isomorphic.

Examples:

1. The measurable spaces (0, 1) and [0, 1) are Borel isomorphic. These spaces
are homeomorphic to (0,∞) and [0,+∞). So to prove this, it is sufficient
to show that (0,+∞) and [0,+∞) are Borel isomorphic. An isomorphism
is given by f(x) = n + 1 − (x − n) on n < x ≤ n + 1. This is a Borel
isomorphism, but it is far from being continuous.

2. The measurable space [0, 1) and [0, 1] are Borel isomorphic. It is obvious
that [0, 1) is homeomorphic to (0, 1], so it is sufficient to show that (0, 1]
and [0, 1] are Borel isomorphic. However (0, 1) is a Borel subset of (0, 1],
and [0, 1) is a Borel subset of [0, 1]. So we can take the isomorphism we
got in the previous example between these subsets, and send 1 to 1.

Theorem 21.3 Let X and Y be two uncountable Polish topological spaces.
Then X and Y are isomorphic as measurable space.

This theorem implies that for every uncountable Polish space the associated
measurable space is isomorphic to the measurable space associated with the
unit interval [0, 1]. In other words, for most practical purposes, there is just one
measurable space of interest.

There is a more general form of theorem that applies to uncountable sep-
arable metrizable spaces that Borel subsets of Polish spaces. See the text by
Dudley [4] for this stronger version. The slightly more elementary Polish space
version is proved in the following two sections of this chapter.

Here are some consequences. Say that a measurable space is a standard
measurable space if it isomorphic, as a measurable space, to a Polish space with
the Borel σ-algebra. Often this is called a standard Borel space.

Examples:

1. Both [0, 1] and (−∞,+∞) are standard measurable space, since they are
separable complete metric spaces and hence Polish spaces.

2. (0, 1) and [0, 1) are standard measurable spaces, and in fact are Borel
isomorphic to [0, 1]. It is true that these are not complete spaces with
their usual metrics, but they are are still Polish spaces.
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Corollary 21.4 Every standard measurable space is isomorphic, as a measur-
able space, to a countable set with the discrete σ-algebra or to the unit interval
[0, 1] with the usual Borel σ-algebra.

Proof: If the space is uncountable, then it is isomorphic as a measurable
space to [0, 1] with its Borel structure, since [0, 1] is a complete separable metric
space. If the space is countable, then every subset is a Borel set. So it is
isomorphic to a finite set or to N with the discrete topology. �

Corollary 21.5 Every standard measurable space is isomorphic, as a measur-
able space, to the Borel structure associated with a compact metric space.

Proof: The unit interval [0, 1] is compact. Every finite set is compact.
The remaining case is that of a countable infinite set. Take the space to be
N ∪ {∞}, the one point compactification of the natural numbers. This is a
countable compact metric space. Every subset is a Borel set. �

21.4 Measurable equivalence of Cantor space and
Hilbert cube

The strategy of the proof is simple. The first part is to show that for every
uncountable Polish space has a Cantor set embedded in it. The second part is
to show that every Polish space may be placed inside a Hilbert cube. The third
part is to place the Hilbert cube inside the Cantor set. The final step is to argue
that if the space has a Cantor set inside and is also inside a Cantor set, then
it may be matched up with a Cantor set. This is done by a dynamical systems
argument.

The first part is a known result. Suppose that X is an uncountable Polish
space. We have seen that there is a subset K of X that is homeomorphic to the
Cantor set.

The second part depends on the known embedding theorem. Suppose X is
a Polish space. We have also seen that there subset S of the Hilbert cube with
closure T such that B is homeomorphic to S, and S is a Gδ subset of T .

By the definition of the relative topology on T , Each open subset U of T is
of the form U = T ∩ V , where V is open an open subset of the Hilbert cube.
Since S is a Gδ, it is of the form S =

⋂
n Un, where each Un = T ∩ Vn is open

in T . Thus S = T ∩⋂n Vn. Since T is closed, it is a Borel subset of the Hilbert
cube. Each Vn is a open set, so

⋂
n Vn is also a Borel subset of the Hilbert cube.

We conclude that S is a Borel subset of the Hilbert cube.
The third part of the proof is an explicit construction.

Lemma 21.6 There is a continuous bijective Borel measurable function from
a Borel subset Y of 2N+ onto [0, 1]N+ with a Borel measurable inverse. In
particular, [0, 1]N+ is isomorphic as a measure space with the Borel subset Y of
2N+ .
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Proof: There is a continuous function from 2N+ onto [0, 1] that is injective
on a Borel subset W of 2N+ . The inverse of this continuous function is a
measurable function from [0, 1] to the Borel subset W .

The continuous function from 2N+ to [0, 1] defines a continuous function
from 2N+×N+ to [0, 1]N+ . It maps Y ′ = WN+ injectively onto [0, 1]N+ and has
a measurable inverse. Since there is a bijection of N+ with N+×N+, there is a
continuous bijection of 2N+ with 2N+×N+ . This gives a continuous bijection of
a subset Y ⊂ 2N+ with Y ′ ⊂ 2N+×N+ , which in turn goes bijectively to [0, 1]N+ .
�

The assertion of the theorem is that if X and X ′ be uncountable Polish
topological spaces, then the measurable space X is isomorphic to the measurable
space X ′. It is enough to show that they are isomorphic to the cantor space
C = 2N+ . Here is the remainder of the proof of the theorem.

Proof: Let X be an uncountable Polish space. Then there exists a compact
subset K ⊂ X that is homeomorphic to 2N+ . Furthermore, X is isomorphic to
a Borel subset S of [0, 1]N+ . Since there is a measurable isomorphism of [0, 1]N+

with a Borel subset Y of 2N+ , there is a measurable isomorphism of S with a
Borel subset B of C = 2N+ .

These constructions give a measurable isomorphism of X with B. Let A ⊂ B
be the image of K under this isomorphism. Then A ⊂ B ⊂ C, where A is
measurable isomorphic to C. The lemma for the proof of Bernstein’s theorem
shows that B must also be measurable isomorphic to C. This reasoning shows
that every such X is measurable isomorphic to C. �

21.5 A unique measure structure

There is another striking result that is an easy consequence of the theorem. This
says that if X is an uncountable Polish space, and µ is a finite non-zero Borel
measure with no point masses, then the measure space (X,B, µ) is isomorphic to
Lebesgue measure on some closed and bounded interval [0,M ] of real numbers,
with 0 < M < +∞. There is a corresponding result for a σ-finite measure,
where the interval [0,+∞) is also allowed. In other words, for most practical
purposes there is just one class of continuous σ-finite measure spaces of interest,
classified by total mass M .

Theorem 21.7 Let µ be a finite Borel measure on an uncountable Polish space
X. Let M = µ(X) be the total mass and suppose that M > 0. Suppose also
there are no one point sets with non-zero measure. Then the measure space
(X,B, µ) is isomorphic to the measure space ([0,M ],B, λ).

This is not a difficult result, since one can reduce the problem to the analysis
of a finite measure on [0, 1]. If the measure has no point masses, then it is
given by an increasing continuous function from [0, 1] to [0,M ]. This maps the
measure to Lebesgue measure on [0,M ]. The only problem that there may be
intervals where the function is constant, so it is not bijective. This can be fixed.
See the Chapter 15, Section 5 of the Royden text [17] for the detailed proof.
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The conclusion is that for continuous finite measure spaces of this type the
only invariant under isomorphism is the total mass. Otherwise all such measure
spaces look the same. There is a corresponding theorem for σ-finite measures.
In this situation there is the possibility of infinite total mass, corresponding to
Lebesgue measure on the interval [0,+∞).

In the end, the measure spaces of practical interest are isomorphic to a
countable set with point measures, an interval with Lebesgue measure, or a
disjoint union of the two.

Problems

1. Give an explicit construction to prove that the closed unit interval [0, 1]
is Borel isomorphic to the unit circle T .



Chapter 22

Measurable classification

22.1 Standard and substandard measurable spaces

A measurable space is standard if its σ-algebra is the Borel σ-algebra of some
Polish space. It may be shown [4] that every measurable subset of a standard
measurable space is a standard measurable space.

Let Z be a measurable space. Then Z is said to be countably separated if
there is a countable family of measurable subsets that separate points.

Theorem 22.1 Let Z be a measurable space. Then there is a measurable in-
jection of Z into a standard measurable space if and only if its σ-algebra F is
countably separated.

Proof: Let A1, A2, A3, . . . be a sequence of measurable subsets that separate
points. Define a function from Z to the Cantor space by f : Z → {0, 1}N+ by
f(x)n = 1An(x). Then f is an injection.

The subsets {ω | ωn = 1} for n = 1, 2, 3, . . . generate the σ-algebra of the
Cantor space. The inverse images of these sets are the Yn. This shows that f
is a measurable function from Z to A. �

A measurable space is a substandard if it along with its σ-algebra is isomor-
phic to a subset of a standard measurable space with its σ-algebra. (The subset
need not be measurable). This following is an easy characterization of substan-
dard measurable spaces [9, 20]. Consider a measurable space with its σ-algebra.
This is said to be countably generated if there is a countable sequence of mea-
surable sets that generate the σ-algebra. The condition in the theorem below
is that the σ-algebra is countably generated and separates points. These imply
that the σ-algebra is countably separated, so both hypothesis and conclusion
are stronger than in the previous result.

Theorem 22.2 Let Z be a measurable space. Then there is a measurable in-
jection of Z into a standard measurable space that preserves measurable subsets
if and only if its σ-algebra F is countably generated and separates points.

219
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Proof: To say that F separates points says that for every pair of of distinct
points x 6= y there is an element B of F such that x ∈ B and y /∈ B. Let
A1, A2, A3, . . . be a sequence of measurable subsets that generate F . Then the
An also separate points. Define a function from Z to the Cantor space by
f : Z → {0, 1}N+ by f(x)n = 1An(x). Then f is an injection.

The subsets {ω | ωn = 1} for n = 1, 2, 3, . . . generate the σ-algebra of the
Cantor space. Let Y be the subset of the Cantor space that is the image of f .
Then f maps An onto the sets f [An] that are the intersections of the subsets
{ω | ωn = 1} with A. The An generate the σ-algebra of X. The images f [An] in
Y generate the σ-algebra of Y induced from the σ-algebra of the Cantor space.
This shows that f is a measurable isomorphism of Z with A. �

If Z is standard, then Z is substandard, and if Z is substandard, then Z
is countably generated. For a countably generated Z there is an measurable
injection f of Z into a standard measurable space Y . This may be thought of
as a classification of the points of Z by a reasonable parameter space Y . The
classification is nicer if Z is substandard, since then f can be a measurable
isomorphism onto its range. It is particularly nice if Z is standard, since in that
case f can be a measurable isomorphism onto a measurable subset.

22.2 Classification

Measurable spaces that are not standard measurable spaces arise in classification
problems. This section is an introduction to this subject. Many of these ideas
go back to work of Mackey [15].

Say that X is a Polish space. Then by definition its Borel structure is a
standard measurable structure. If E is an equivalence relation on X, then the
quotient space X/E also has a measurable structure. If q : X → X/E is the
natural map, then W is a measurable subset of X/E precisely when q−1[W ] is
a measurable measurable subset of X.

Proposition 22.3 Suppose that X is a Polish space and E is an equivalence
relation. Then there is a measurable injection of X/E into a standard mea-
surable space Y if and only if there is a measurable function θ : X → Y such
that

xEy ⇔ θ(x) = θ(y). (22.1)

Proof: Suppose that there is a measurable injection f : X/E → Y , where
Y is a standard measurable space. Let θ be the composition of the natural map
from X/E with the map f from X/E to Y .

For the converse, suppose that there is such a map θ from X to Y . For t
in X/E take x ∈ t and define f(x) = θ(t). This is well-defined and injective
from X/E to Y . It is easy to see from the definition of the quotient measurable
structure that it is a measurable function. �

The above proposition describes when an equivalence relation E on X has
a Polish parameter space Y for the equivalence classes. (In this case some
authors [9, 8] call E a Borel smooth equivalence relation.) This seems almost a
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minimal requirement for effective classification. The parameterization need not
be particularly nice, but at least it should be injective and measurable!

An equivalence relation on a Polish space X is a Borel equivalence relation
if it is a Borel subset of the product topological space. It follows that the
equivalence classes are each Borel subsets of X. A Borel probability measure
µ on X is ergodic with respect to the equivalence relation E if every invariant
Borel subset (union of equivalence classes) has µ probability zero or one. The
following result is from Becker and Kechris [1].

Theorem 22.4 Let X be a Polish space, and let E be a Borel equivalence rela-
tion. Suppose that there exists a Borel probability measure µ on X that is ergodic
for E. Suppose also that each equivalence class has µ measure zero. Then there
is no measurable injection of the quotient measurable space X/G into a standard
measurable space.

Proof: The measure µ on X maps to a measure µ̃ on X/E. The mea-
sure µ̃ has the property that every measurable subset has measure zero or one.
Furthermore, each one point subset has µ̃ measure zero.

Suppose that X/E were countably separated. Then there would be a mea-
surable injection of X/E into the unit interval [0, 1]. The probability measure µ̃
would map to a Borel measure on [0, 1]. This would also have the property that
every Borel subset has measure zero or one, and every one point set has measure
zero. From the latter property, the distribution function would be continuous.
But then by the intermediate value theorem there would be subsets with every
possible measure between zero and one. �

Hjorth [8] presents another approach to results of this type. This approach
makes no mention of measure. Instead it is required that G is a topological
group that is a Polish space, and G acts continuously on the Polish space X.
Suppose that (1) every orbit is dense, and (2) every orbit is meager. Then the
quotient space X/G cannot be injected measurably into a standard measurable
space.

22.3 Orbits of dynamical systems

Consider the case where a group acts on X. The equivalence classes are the
orbits of the group. In this case there are many classical cases where there is
a measure that makes the action ergodic. See the book by Sinai [19] for an
elementary introduction. Thus the conclusion is that the coset spaces cannot
be parameterized, even measurably, by a Polish space.

Here is an example where the group is Z, and it acts on the circle T by
rotation by an irrational angle.

Theorem 22.5 Let T be the circle of circumference one with the rotationally
invariant probability measure. Let α be an irrational number. Then rotation by
α is ergodic.
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The group action is given by n · x = x + nα modulo 1. Two points x, x′

are in the same orbit if there are n, n′ with n · x = n′ · x′. This says that
x− x′ = (n′ − n)α modulo 1. The proof that this is an ergodic action is given
in the chapter on Fourier series.

The group does not have to be discrete. Consider the case is where the
Polish space X = T 2 is the torus, and the group consists of the reals R.

Theorem 22.6 Let T 2 be the that is the product of two circles, each of circum-
ference one. The measure is Lebesgue measure. Let α and β be numbers such
that whenever p and q are integers with pα + qβ = 0, then p = q = 0. Then
rotation by α, β is ergodic.

Again the proof may be found in the chapter on Fourier series. These exam-
ples are quite concrete. In each case an equivalence relation on a Polish space
gives rise to a quotient space. This quotient space appears to have no measur-
able parameterization by a Polish space. Thus some quite natural mathematical
objects (quotient spaces) are apparently unclassifiable.

Problems

1. Consider a measurable space X with its σ-algebra F of subsets. It is said
to be countably separated if there is a sequence n 7→ An of sets in F such
that for every x 6= y there is an n with x ∈ An and y /∈ An.

(a) Let X be the unit interval with the Borel σ-algebra. Prove that X is
countably separated.

(b) Let X be the unit interval with the σ-algebra generated by the one
point subsets. Prove that X is not countably separated. Hint: Describe
the σ-algebra explicitly. Which ordered pairs of points in the unit square
can be separated by a countable sequence of elements of this σ-algebra?

2. Let Z be an uncountable measurable space. Prove that Z is standard if and
only there is a sequence A1, A2, A3 of measurable subsets that generate
the σ-algebra of all measurable subsets, and such that the function f :
Z → {0, 1}N+ defined by f(x)n = 1An(x) is a bijection.

3. Consider a rational rotation of the circle of circumference one. Describe
the space of orbits. Describe its topology and its measurable structure.
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Chapter 23

Function spaces

23.1 Spaces of continuous functions

This section records notations for spaces of real functions. In some contexts it is
convenient to deal instead with complex functions; usually the changes that are
necessary to deal with this case are minor. Our default is to take the functions
as real functions, except in the context of Hilbert space and Fourier analysis.

Let X be a topological space. The space C(X) consists of all real continuous
functions. The space B(X) consists of all real bounded functions. It is a Banach
space in a natural way. The space BC(X) consists of all bounded continuous
real functions. It is a somewhat smaller Banach space.

Consider now the special case when X is a locally compact Hausdorff space.
Thus each point has a compact neighborhood. For example X could be Rn.
The space Cc(X) consists of all continuous functions, each one of which has
compact support. The space C0(X) is the closure of Cc(X) in BC(X). It is
itself a Banach space. It is the space of continuous functions that vanish at
infinity.

The relation between these spaces is that Cc(X) ⊂ C0(X) ⊂ BC(X). They
are all equal when X compact. When X is locally compact, then C0(X) is the
best behaved.

Recall that a Banach space is a normed vector space that is complete in the
metric associated with the norm. In the following we shall need the concept of
the dual space of a Banach space E. The dual space E∗ consists of all continuous
linear functions from the Banach space to the real numbers. (If the Banach space
has complex scalars, then we take continuous linear function from the Banach
space to the complex numbers.) The dual space E∗ is itself a Banach space,
where the norm is the Lipschitz norm.

For certain Banach spaces E of functions the linear functionals in the dual
space E∗ may be realized in a more concrete way. For example, suppose that
X is a Polish space (a separable completely metrizable space) that is locally
compact. (This is equivalent to being a second countable locally compact Haus-
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dorff space.) If E = C0(X), then its dual space E∗ = M(X) is a Banach space
consisting of finite signed Borel measures. (A finite signed measure σ is the
difference σ = σ+−σ of two finite positive measures σ±.) If σ is in M(X), then
it defines the linear functional f 7→ ∫

f(x) dσ(x), and all elements of the dual
space E∗ arise in this way.

23.2 The Stone-Weierstrass theorem

Let X be a compact Hausdorff space, and let C(X) be the space of continuous
real functions on X. It is fairly difficult to approximate in C(X), since this is
uniform approximation. Nevertheless, there is a powerful way of finding a dense
subset of C(X), given by the Stone-Weierstrass theorem .

A collection of functions is an algebra of functions if it is a vector space
of functions that is also closed under pointwise multiplication. A collection of
functions separates points if for each x 6= y there is a function f in the collection
with f(x) 6= f(y).

Theorem 23.1 (Stone-Weierstrass) Consider a algebra of real functions in
C(X) that includes the constant functions. Suppose that it separates points.
Then it is dense in C(X).

There are proofs of this theorem in Folland [5] and Dudley [4]. The clas-
sic application is the original Weierstrass approximation theorem. In that case
X = [a, b] and the functions in the collection consist of all real polynomials.
The conclusion is that every real continuous function may be uniformly approx-
imated on [a, b] by a real polynomial.

Here is another example. Take X to be the circle of circumference 2π.
Consider the collection of functions that are finite real linear combinations of
cos(nx) for n = 0, 1, 2, 3, . . . and sin(nx) for n = 1, 2, 3, . . .. Trigonometric iden-
tities show that these form an algebra of functions. The Stone-Weierstrass the-
orem shows that every real continuous periodic function may be approximated
uniformly by such trigonometric functions.

There is also a version of the Stone-Weierstrass theorem for the space of
complex functions, but it also requires that the collection be invariant under
taking the complex conjugation. This gives a more transparent way of treating
the last example. Take X to be the circle of circumference 2π. Consider the
collection of functions that are finite complex linear combinations of functions
einx for n in Z. It is completely elementary that this is an algebra of functions.
Furthermore, the complex conjugate of such a function einx is another function
e−inx of the same kind. It follows that these functions are uniformly dense in
the space C(X) of continuous complex periodic functions.

23.3 Pseudometrics and seminorms

A pseudometric is a function d : P ×P → [0,+∞) that satisfies d(f, f) ≥ 0 and
d(f, g) ≤ d(f, h) + d(h, g) and such that d(f, f) = 0. If in addition d(f, g) = 0
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implies f = g, then d is a metric.
The theory of pseudometric spaces is much the same as the theory of metric

spaces. The main difference is that a sequence can converge to more than one
limit. However each two limits of the sequence have distance zero from each
other, so this does not matter too much.

Given a pseudometric space P , there is an associated metric space M . This
is defined to be the set of equivalence classes of P under the equivalence relation
fEg if and only if d(f, g) = 0. In other words, one simply defines two points r, s
in P that are at zero distance from each other to define the same point r′ = s′

in M . The distance dM (a, b) between two points a, b in M is defined by taking
representative points p, q in P with p′ = a and q′ = b. Then dM (a, b) is defined
to be d(p, q).

A seminorm is a function f 7→ ‖f‖ ≥ 0 on a vector space E that satisfies
‖cf‖ = |c|‖f‖ and the triangle inequality ‖f + g‖ ≤ ‖f‖ + ‖g‖ and such that
‖0‖ = 0. If in addition ‖f‖ = 0 implies f = 0, then it is a norm. Each seminorm
on E defines a pseudo-metric for E by d(f, g) = ‖f − g‖. Similarly, a norm on
E defines a metric for E.

Suppose that we have a seminorm on E. Then the set of h in E with ‖h‖ = 0
is a vector subspace of E. The set of equivalence classes in the construction of
the metric space is itself a vector space in a natural way. So for each vector
space with a seminorm we can associate a new quotient vector space with a
norm.

23.4 Lp spaces

In this and the next sections we introduce the spaces Lp(X,F , µ) and the cor-
responding quotient spaces Lp(X,F , µ).

Fix a set X and a σ-algebra F of measurable functions. Let 0 < p < ∞.
Define

‖f‖p = µ(|f |p) 1
p . (23.1)

Define Lp(X,F , µ) to be the set of all f in F such that ‖f‖p <∞.

Theorem 23.2 For 0 < p <∞, the space Lp is a vector space.

Proof: It is obvious that Lp is closed under scalar multiplication. The
problem is to prove that it is closed under addition. However if f , g are each in
Lp, then

|f + g|p ≤ [2(|f | ∨ |g|)]p ≤ 2p(|f |p + |g|p). (23.2)

Thus f + g is also in Lp. �
The function xp is increasing for every p > 0. In fact, if φ(p) = xp for x ≥ 0,

then φ′(p) = pxp−1 ≥ 0. However it is convex only for p ≥ 1. This is because
in that case φ′′(x) = p(p− 1)xp−2 ≥ 0.

Let a ≥ 0 and b ≥ 0 be weights with a + b = 1. For a convex function we
have the inequality φ(au+bv) ≤ aφ(u)+bφ(v). This is the key to the Minkowski
inequality.
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Theorem 23.3 (Minkowski inequality) If 1 ≤ p <∞, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (23.3)

Proof: Let c = ‖f‖p and d = ‖g‖p. Then by the fact that xp is increasing
and convex
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Integrate. This gives

µ

(∣∣∣∣
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c+ d
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p)
≤ 1. (23.5)

Thus ‖f + g‖p ≤ c+ d. �
The preceding facts show that Lp is a vector space with a seminorm. It is a

fact that µ(|f |p) = 0 if and only if f = 0 almost everywhere. Thus for f in Lp
we have ‖f‖p = 0 if and only if f = 0 almost everywhere.

Theorem 23.4 (dominated convergence for Lp) Let 0 < p < ∞. Let fn → f
pointwise. Suppose that there is a g ≥ 0 in Lp such that each |fn| ≤ g. Then
fn → f in Lp, that is, ‖fn − f‖p → 0.

Proof: If each |fn| ≤ g and fn → f pointwise, then |f | ≤ g. Thus |fn − f | ≤
2g and |fn − f |p ≤ 2pgp. Since gp has finite integral, the integral of |fn − f |p
approaches zero, by the usual dominated convergence theorem. �

It would be an error to think that just because gn → g in the Lp sense it
would follow that gn → g almost everywhere. Being close on the average does
not imply being close at a particular point. Consider the following example. For
each n = 1, 2, 3, . . ., write n = 2k + j, where k = 0, 1, 2, 3, . . . and 0 ≤ j < 2k.
Consider a sequence of functions defined on the unit interval [0, 1] with the
usual Lebesgue measure. Let gn = 1 on the interval [j/2k, (j + 1)/2k] and gn
= 0 elsewhere in the unit interval. Then the L1 seminorm of gn is 1/2k, so the
gn → 0 in the L1 sense. On the other hand, given x in [0, 1], there are infinitely
many n for which gn(x) = 0 and there are infinitely many n for which gn(x) = 1.
So pointwise convergence fails at each point.

Say that a seminormed vector space is sum complete if every absolutely
convergent series is convergent to some limit. Recall that it is complete (as a
pseudometric space) if every Cauchy sequence converges to some limit.

Lemma 23.5 Consider a seminormed vector space. If the space is sum com-
plete, then it is complete.

Proof: Suppose that E is a seminormed vector space that is sum complete.
Suppose that gn is a Cauchy sequence. This means that for every ε > 0 there
is an N such that m,n ≥ N implies ‖gm− gn‖ < ε. The idea is to show that gn
has a subsequence that converges very rapidly. Let εk be a sequence such that∑∞
k=1 εk < ∞. In particular, for each k there is an Nk such that m,n ≥ Nk
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implies ‖gm − gn‖ < εk. The desired subsequence is the gNk . Define a sequence
f1 = gN1 and fj = gNj − gNj−1 for j ≥ 2. Then

gNk =
k∑

j=1

fj . (23.6)

Furthermore,
∞∑

j=1

‖fj‖ ≤ ‖f1‖+
∞∑

j=2

εj−1 <∞. (23.7)

This says that the series is absolutely convergence. Since E is sum complete, the
series converges to some limit, that is, there exists a g such that the subsequence
gNk converges to g. Since the sequence gn is Cauchy, it also must converge to
the same g. Thus E is complete. Thus the theorem follows. �

Theorem 23.6 For 1 ≤ p <∞ the space Lp is complete.

Proof: Suppose that
∑∞
j=1 fj is absolutely convergent in Lp, that is,

∞∑

j=1

‖fj‖p = B <∞. (23.8)

Then by using Minkowski’s inequality

‖
k∑

j=1

|fj |‖p ≤
k∑

j=1

‖fj‖p ≤ B. (23.9)

By the monotone convergence theorem h =
∑∞
j=1 |fj | is in Lp with Lp seminorm

bounded by B. In particular, it is convergent almost everywhere. It follows that
the series

∑∞
j=1 fj converges almost everywhere to some limit g. The sequence∑k

j=1 fj is dominated by h in Lp and converges pointwise to
∑∞
j=1 fj . Therefore,

by the dominated convergence theorem, it converges to the same limit g in the
Lp seminorm. �

Corollary 23.7 If 1 ≤ p < ∞ and if gn → g in the Lp seminorm sense, then
there is a subsequence gNk such that gNk converges to g almost everywhere.

Proof: Let gn → g as n→∞ in the Lp sense. Then gn is a Cauchy sequence
in the Lp sense. Let εk be a sequence such that

∑∞
k=1 εk < ∞. Let Nk be a

subsequence such that n ≥ Nk implies ‖gn − gNk‖p < εk. Define a sequence fk
such that

gNk =
k∑

j=1

fj . (23.10)
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Then ‖fj‖p = ‖gNj − gNj−1‖p ≤ εj−1 for j ≥ 2. By the monotone convergence
theorem

h =
∞∑

j=1

|fj | (23.11)

converges in Lp and is finite almost everywhere. It follows that

g =
∞∑

j=1

fj (23.12)

converges in Lp and also converges almost everywhere In particular, gNk → g
as k →∞ almost everywhere. �

In order to complete the picture, define

‖f‖∞ = inf{M ≥ 0 | |f | ≤M almost everywhere }. (23.13)

This says that ‖f‖∞ ≤ M if and only if µ(|f | > M) = 0. In other words,
M < ‖f‖∞ if and only if µ(|f | > M) > 0. The space L∞(X,F , µ) consists
of all functions f in F such that ‖f‖∞ < ∞. The number ‖f‖∞ is called the
essential supremum of f with respect to µ. The space L∞(X,F , µ) is a vector
space with a seminorm. The following theorem is also simple.

Theorem 23.8 The space L∞(X,F , µ) is complete.

Among the Lp spaces the most important are L1 and L2 and L∞. Conver-
gence in L1 is also called convergence in mean, more precisely, in mean absolute
value. Convergence in L2 is convergence in root mean square. (Sometimes this
is abbreviated to RMS.) Convergence in L∞ is a measure theory version of
uniform convergence.

23.5 Dense subspaces of Lp
In this section we see that it is easy to approximate in Lp, at least for 1 ≤ p <∞.
The advantage is that the approximation does not have to be uniform.

For a function to be in Lp(X,F , µ) it is not only required that µ(|f |p) <∞,
but also that f is measurable, that is, that f is in F . This requirement has
important consequences for approximation.

Theorem 23.9 Let X be a set, F a σ-algebra of real measurable functions on
X, and µ an integral. Consider the space Lp(X,F , µ) for 1 ≤ p < ∞. Let L
be a vector lattice of functions with L ⊂ Lp(X,F , µ). Suppose that the smallest
monotone class including L is F . Then L is dense in Lp(X,F , µ). That if, if
f is in Lp(X,F , µ) and if ε > 0, then there exists h in L with ‖h− f‖p < ε.

Proof: We know that the smallest monotone class including L+ is F+. Let
g be in L+. Let Sg be the set of all f ≥ 0 such that f ∧ g is in the Lp closure
of L. Clearly L+ ⊂ Sg, since if f is in L+ then so is f ∧ g. Furthermore, Sg is
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closed under increasing and decreasing limits. Here is the proof for increasing
limits. Say that fn is in Sg and fn ↑ f . Then fn ∧ g ↑ f ∧ g ≤ g. By the Lp
monotone convergence theorem, ‖fn ∧ g − f ∧ g‖p → 0. Since fn ∧ g is in the
Lp closure of L, it follows that f ∧ g is also in the Lp closure of L. However
this says that f is in Sg. It follows from this discussion that F+ ⊂ Sg. Since
g is arbitrary, this proves that f in F+ and g in L+ implies f ∧ g is in the Lp
closure of L.

Let f ≥ 0 be in Lp. Let S′f be the set of all h ≥ 0 such that f ∧ h is
in the Lp closure of L. From the preceding argument, we see that L ⊂ S′f .
Furthermore, S′f is closed under increasing and decreasing limits. Here is the
proof for increasing limits. Say that hn is in S′f and hn ↑ h. Then f ∧ hn ↑
f ∧ h ≤ f . By the Lp monotone convergence theorem, ‖f ∧ hn − f ∧ h‖p → 0.
Since f ∧ hn is in the Lp closure of L, it follows that f ∧ h is also in the Lp
closure of L. However this says that h is in Sf . It follows from this discussion
that F+ ⊂ S′f . Since f is arbitrary, this proves that f ≥ 0 in Lp and h in F+

implies f ∧ h is in the Lp closure of L. Take h = f . Thus f ≥ 0 in Lp implies
f is in the Lp closure of L. �

Corollary 23.10 Take 1 ≤ p <∞. Consider the space Lp(R,B, µ), where µ is
a measure that is finite on compact subsets. Let L be the space of step functions,
or let L be the space of continuous functions with compact support. Then L is
dense in Lp(R,B, µ).

This result applies in particular to the case µ = λ of Lebesgue measure.
Notice that nothing like this is true for L∞(R,B, λ). The uniform limit of a
sequence of continuous functions is continuous, and so if we start with continuous
functions and take uniform limits, we stay in the class of continuous functions.
But functions in L∞(R,B, λ) can be discontinuous in such a way that cannot be
fixed by changing the function on a set of measure zero. Even a step function
has this property.

Remark. So people might argue that the so-called delta function δ(x) is in
L1, since it has integral

∫∞
−∞ δ(x) = 1. Actually the delta function is a measure,

not a function, so this is not correct. But there is a stronger sense in which this
is not correct. Let h be an arbitrary continuous function with compact support.
Look at the distance from δ(x) to h(x). This is the integral

∫∞
−∞ |δ(x)−h(x)| dx

which always has a value one or bigger. The delta function is thus not even
close to being in L1.

23.6 The quotient space Lp

The space Lp(X,F , µ) is defined for 1 ≤ p ≤ ∞. It is a vector space with a
seminorm, and it is complete. One can associate with this the space Lp(X,F , µ),
where two elements f, g of Lp(X,F , µ) define the same element of Lp(X,F , µ)
provided that f = g almost everywhere with respect to µ. Then this is a vector
space with a norm, and it is complete. In other words, it is a Banach space.
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This passage from a space of functions L to the corresponding quotient
space Lp is highly convenient, but also confusing. The elements of Lp are not
functions, and so they do not have values defined at particular points of X.
Nevertheless they are come from functions.

It is convenient to work with the spaces Lp abstractly, but to perform all
calculations with the corresponding functions in Lp. For this reason people often
use the notation Lp to refer to either space, and we shall follow this practice in
most of the following, unless there is a special point to be made.

However be warned, these spaces can be very different. As an example,
take the space L1(R,B, δa), where δa is the measure that assigns mass one to
the point a. Thus the corresponding integral is δa(f) = f(a). This space
consists of all Borel functions, so it is infinite dimensional. However two such
functions are equal almost everywhere with respect to δa precisely when they
have the same values at the point a. Thus the quotient space L1(R,B, δ) is one
dimensional. This is a much smaller space. But it captures the notion that
from the perspective of the measure δa the points other than a are more or less
irrelevant.

23.7 Duality of Lp spaces

In this section we describe the duality theory for the Banach spaces Lp. We
begin with the arithmetic-geometric mean inequality. This will immediately give
the famous Hölder inequality.

Lemma 23.11 (arithmetic-geometric mean inequality) Let a ≥ 0 and b ≥ 0
with a+ b = 1. Let z > 0 and w > 0. Then zawb ≤ az + bw.

Proof: Since the exponential function is convex, we have eau+bv ≤ aeu+bev.
Set z = eu and w = ev. �

Lemma 23.12 Let p > 1 and q > 1 with 1/p + 1/q = 1. If x > 0 and y > 0,
then

xy ≤ 1
p
xp +

1
q
yq. (23.14)

Proof: Take a = 1/p and b = 1/q, and substitute ea = x and eb = y. �

Theorem 23.13 (Hölder’s inequality) Suppose that 1 < p <∞ and that 1/p+
1/q = 1. Then

|µ(fg)| ≤ ‖f‖p‖g‖q. (23.15)

Proof: It is sufficient to prove this when ‖f‖p = 1 and ‖g‖p = 1. However
by the lemma

|f(x)||g(x)| ≤ 1
p
|f(x)|p +

1
q
|g(x)|q. (23.16)

Integrate. �
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This lemma shows that if g is in Lq(µ), with 1 < q < ∞, then the linear
functional defined by f 7→ µ(fg) is continuous on Lp(µ), where 1 < p <∞ with
1/p + 1/q = 1. This shows that each element of Lq(µ) defines an element of
the dual space of Lp(µ). It may be shown that every element of the dual space
arises in this way. Thus the dual space of Lp(µ) is Lq(µ), for 1 < p <∞.

Notice that we also have a Hölder inequality in the limiting case:

|µ(fg)| ≤ ‖f‖1‖g‖∞. (23.17)

This shows that every element g of L∞(µ) defines an element of the dual space
of L1(µ). It may be shown that if µ is σ-finite, then L∞(µ) is the dual space of
L1(µ).

On the other hand, each element f of L1(µ) defines an element of the dual
space of L∞(µ). However in general this does not give all elements of the dual
space of L∞(µ).

The most important spaces are L1, L2, and L∞. The nicest by far is L2,
since it is a Hilbert space. The space L1 is also common, since it measures the
total amount of something. The space L∞ goes together rather naturally with
L1. Unfortunately, the theory of the spaces L1 and L∞ is more delicate than
the theory of the spaces Lp with 1 < p < ∞. Ultimately this is because the
spaces Lp with 1 < p <∞ have better convexity properties.

Here is a brief summary of the facts about duality. The dual space of a
Banach space is the space of continuous linear scalar functions on the Banach
space. The dual space of a Banach space is a Banach space. Let 1/p+ 1/q = 1,
with 1 ≤ p < ∞ and 1 < q ≤ ∞. (Require that µ be σ-finite when p = 1.)
Then the dual of the space Lp(X,F , µ) is the space Lq(X,F , µ). The dual of
L∞(X,F , µ) is not in general equal to L1(X,F , µ). Typically L1(X,F , µ) is not
the dual space of anything. The fact that is often used instead is that M(X) is
the dual of C0(X).

There is an advantage to identifying a Banach space E∗ as the dual space
of another Banach space E. This can be done for E∗ = M(X) and for E∗ =
 Lq(X,F , µ) for 1 < q ≤ ∞ (with σ-finiteness in the case q = ∞). Then E∗ is
the space of all continuous linear functionals on the original space E. There is a
corresponding notion of pointwise convergence in E∗, called weak∗ convergence,
and this turns out to have useful properties that make it a convenient technical
tool.

Spaces of sequences provide a particularly illuminating example. Let c0 be
the space of all sequences that converge to zero. It may be thought of as a space
of continuous functions that vanish at infinity. Its dual space is `1, the space
of absolutely summable sequences. In this context `1 is analogous to a space
of finite signed measures. On the other hand, we may think of `1 as a space
of integrable functions, so its dual space is `∞. This gives a concrete example
where the double dual `∞ is larger than the original space c0.
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23.8 Supplement: Orlicz spaces

It is helpful to place the theory of Lp spaces in a general context. Clearly, the
theory depends heavily on the use of the functions xp for p ≥ 1. This is a convex
function. The generalization is to use a more or less arbitrary convex function.

Let H(x) be a continuous function defined for all x ≥ 0 such that H(0) = 0
and such that H ′(x) > 0 for x > 0. Then H is an increasing function. Suppose
that H(x) increases to infinity as x increases to infinity. Finally, suppose that
H ′′(x) ≥ 0. This implies convexity.

Example: H(x) = xp for p > 1.
Example: H(x) = ex − 1.
Example: H(x) = (x+ 1) log(x+ 1).
Define the size of f by µ(H(|f |)). This is a natural notion, but it does not

have good scaling properties. So we replace f by f/c and see if we can make
the size of this equal to one. The c that accomplishes this will be the norm of
f .

This leads to the official definition of the Orlicz norm

‖f‖H = inf{c > 0 | µ (H (|f/c|)) ≤ 1. (23.18)

When this norm is finite, then f is said to belong to the Orlicz space corre-
sponding to the function H.

It is not difficult to show that if this norm is finite, then we can find a c such
that

µ (H (|f/c|)) = 1. (23.19)

Then the definition takes the simple form

‖f‖H = c, (23.20)

where c is defined by the previous equation.
It is not too difficult to show that this norm defines a Banach space LH(µ).

The key point is that the convexity of H makes the norm satisfy the triangle
inequality.

Theorem 23.14 The Orlicz norm satisfies the triangle inequality

‖f + g‖H ≤ ‖f‖H + ‖g‖H . (23.21)

Proof: Let c = ‖f‖H and d = ‖g‖H . Then by the fact that H is increasing
and convex

H

(∣∣∣∣
f + g

c+ d

∣∣∣∣
)
≤ H

(
c

c+ d

∣∣∣∣
f

c

∣∣∣∣+
d

c+ d

∣∣∣g
d

∣∣∣
)
≤ c

c+ d
H

(∣∣∣∣
f

c

∣∣∣∣
)

+
d

c+ d
H
(∣∣∣g
d

∣∣∣
)
.

(23.22)
Integrate. This gives

µ

(
H

(∣∣∣∣
f + g

c+ d

∣∣∣∣
))
≤ 1. (23.23)
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Thus ‖f + g‖H ≤ c+ d. �
Notice that this result is a generalization of Minkowski’s inequality. So

we see that the idea behind Lp spaces is convexity. The convexity is best for
1 < p <∞, since then the function xp has second derivative p(p− 1)xp−2 > 0.
(For p = 1 the function x is still convex, but the second derivative is zero, so it
not strictly convex.)

One can also try to create a duality theory for Orlicz spaces. For this it is
convenient to make the additional assumptions that H ′(0) = 0 and H ′′(x) > 0
and H ′(x) increases to infinity.

The dual function to H(x) is a function K(y) called the Legendre transform.
The definition of K(y) is

K(y) = xy −H(x), (23.24)

where x is defined implicitly in terms of y by y = H ′(x).
This definition is somewhat mysterious until one computes that K ′(y) = x.

Then the secret is revealed: The functions H ′ and K ′ are inverse to each other.
Furthermore, the Legendre transform of K(y) is H(x).

Examples:

1. Let H(x) = xp/p. Then K(y) = yq/q, where 1/p+ 1/q = 1.

2. Let H(x) = ex − 1− x. Then K(y) = (y + 1) log(y + 1)− y.

Lemma 23.15 Let H(x) have Legendre transform K(y). Then for all x ≥ 0
and y ≥ 0

xy ≤ H(x) +K(y). (23.25)

Proof: Fix y and consider the function xy−H(x). Since H ′(x) is increasing
to infinity, the function rises and then dips below zero. It has its maximum
where the derivative is equal to zero, that is, where y − H ′(x) = 0. However
by the definition of Legendre transform, the value of xy −H(x) at this point is
K(y). �

Theorem 23.16 (Hölder’s inequality) Suppose that H and K are Legendre
transforms of each other. Then

|µ(fg)| ≤ 2‖f‖H‖g‖K . (23.26)

Proof: It is sufficient to prove this when ‖f‖H = 1 and ‖g‖K = 1. However
by the lemma

|f(x)||g(x)| ≤ H(|f(x)|) +K(|g(y)|). (23.27)

Integrate. �
This is just the usual derivation of Hölder’s inequality. However if we take

H(x) = xp/p, K(y) = yq/q, then the H and K norms are not quite the usual Lp

and Lq, but instead multiples of them. This explains the extra factor of 2. In
any case we see that the natural context for Hölder’s inequality is the Legendre
transform for convex functions. For more on this general subject, see Appendix
H (Young-Orlicz spaces) in the treatise of Dudley [3].
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Problems

1. Let X = R, let Bo be the real Borel functions on R, and let the integral µ
be defined by

µ(f) =
(

1
2

)n n∑

k=0

(
n

k

)
f(k). (23.28)

(a) Show that µ(1) = 1. Hint: The number 2m of subsets of an m element
set may be written as the sum

∑m
j=0

(
m
j

)
= 2m over j of the number of j

element subsets. Here
(
m
j

)
= m!

j!(m−j)! .

(b) What is the dimension of the vector space L1(R,Bo, µ)?

(c) What is the dimension of the vector space  L1(R,Bo, µ)?

(d) Let f(x) = x. Is f in L1(R,Bo, µ)? If so, then compute µ(f). If not,
explain the problem.

2. In this problem `p is a space of real sequences indexed by natural numbers
with counting measure, and Lp is a space of Borel measurable functions
on the unit interval with Lebesgue measure. In each problem give a yes
or no answer, together with a proof or counterexample.

(a) Is `1 ⊂ `2?

(b) Is L2 ⊂ L1?

(c) Is `1 dense in `∞?

(d) Is L∞ dense in L1?

3. Prove that
(∫ ∞

1

|f(x)| dx
)5

≤ 4
(∫ ∞

1

x
5
16 |f(x)| 54 dx

)4

. (23.29)

4. Consider complex Borel functions on the unit interval [0, 1] with Lebesgue
measure. Let k(x, y) be a complex function such that

c2 =
∫ 1

0

∫ 1

0

|k(x, y)|2 dx dy <∞. (23.30)

Define a linear transformation K on L2 by

(Kf)(x) =
∫ 1

0

k(x, y)f(y) dy. (23.31)

(a) Show that K is continuous from L2 to L2.

(b) Show that if c < 1, then for each g in L2 the equation

Kf + g = f (23.32)

has a unique solution f in L2. Hint: Define the map T from L2 to L2 by
Tf = Kf + g.
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5. Consider Lebesgue measure λ defined for Borel functions B defined on R.
Let 1 ≤ q < r < ∞. (a) Give an example of a function in Lq that is not
in Lr. (b) Give an example of a function in Lr that is not in Lq.

6. Consider a finite measure µ (the measure of the entire set or the integral
of the constant function 1 is finite). Show that if 1 ≤ q ≤ r ≤ ∞, then
Lr ⊂ Lq.

7. Let φ be a smooth convex function, so that that for each a and t we have
φ(t) ≥ φ(a) + φ′(a)(t − a). Let µ be a probability measure. Let f be
a real function in L1. Show that φ(µ(f)) ≤ µ(φ(f)). (This is Jensen’s
inequality.) Hint: Let a = µ(f) and t = f . Where do you use the fact
that µ is a probability measure?

8. Let φ be a smooth convex function as above. Deduce from the preceding
problem the simple fact that if 0 ≤ a and 0 ≤ b with a + b = 1, then
φ(au + bv) ≤ aφ(u) + bφ(v). Describe explicitly the probability measure
µ and the random variable f that you use.

9. Suppose that f is in Lr for some r with 1 ≤ r < ∞. (a) Show that the
limit as p → ∞ of ‖f‖p is equal to ‖f‖∞. Hint: Obtain an upper bound
on ‖f‖p in terms of ‖f‖r and ‖f‖∞. Obtain a lower bound on ‖f‖p by
using Chebyshev’s inequality applied to the set |f | > a for some a with
0 < a < ∞. Show that this set must have finite measure. For which a
does this set have strictly positive measure? (b) Show that the result is
not true without the assumption that f belongs to some Lr.

10. Consider 1 ≤ p <∞. Let B denote Borel measurable functions on the line.
Consider Lebesgue measure λ and the corresponding space Lp(R,B, λ). If
f is in this Lp space, the translate fa is defined by fa(x) = f(x− a). (a)
Show that for each f in Lp the function a 7→ fa is continuous from the
real line to Lp. (b) Show that the corresponding result for L∞ is false.
Hint: Take it as known that the space of step functions is dense in the
space Lp for 1 ≤ p <∞.

11. Define the Fourier transform for f in L1(R,B, λ) by

f̂(k) =
∫ ∞
−∞

e−ikxf(x) dx. (23.33)

Show that if f is in L1, then the Fourier transform is in L∞ and is con-
tinuous. Hint: Use the dominated convergence theorem.

12. Show that if f is in L1, then the Fourier transform of f vanishes at infinity.
Hint: Take it as known that the space of step functions is dense in the
space L1. Compute the Fourier transform of a step function.

13. Minkowski’s inequality for integrals (a) Let 1 ≤ p < ∞. Show that the
Lp norm of the integral is bounded by the integral of the Lp norm. More
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specifically, let µ be a measure defined for functions on X, and let ν be
a measure defined for functions on Y . Suppose that µ and ν are each
σ-finite. Let f be a product measurable function on X×Y . Then ν(f | 1)
denotes the ν partial integral of f keeping the first variable fixed, and
‖f | 2‖p is the Lp norm with respect to µ keeping the second variable
fixed. The assertion is that

‖ν(f | 1)‖p ≤ ν(‖f | 2‖p). (23.34)

That is,

(∫
|
∫
f(x, y) dν(y)|p dµ(x)

) 1
p

≤
∫ (∫

|f(x, y)|p dµ(x)
) 1
p

dν(y).

(23.35)
(b) What is the special case of this result when ν is a counting measure
on two points? (c) What is the special case of this result when µ is a
counting measure on two points? Hint: For the general inequality it is
enough to give the proof when f is a positive function. Write α(y) =
(
∫
f(x, y)p dµ(x))

1
p and set α =

∫
α(y) dν(y). Then

(
1
α

∫
f(x, y) dν(y)

)p
=
(∫

f(x, y)
α(y)

α(y)
α

dν(y)
)p
≤
∫ (

f(x, y)
α(y)

)p
α(y)
α

dν(y).

(23.36)
Apply the µ integral and interchange the order of integration.

14. Let K be the Legendre transform of H. Thus K(y) = xy −H(x), where
x is the solution of y = H ′(x). (a) Show that K ′(y) = x, in other words,
K ′ is the inverse function to H ′. (b) Show that if H ′′(x) > 0, then also
K ′′(y) > 0. What is the relation between these two functions?



Chapter 24

Hilbert space

24.1 Inner products

A Hilbert space H is a vector space with an inner product that is complete.
The vector space can have real scalars, in which case the Hilbert space is a real
Hilbert space. Or the vector space can have complex scalars; this is the cased
of a complex Hilbert space. Both cases are useful. Real Hilbert spaces have
a geometry that is easy to visualize, and they arise in applications. However
complex Hilbert spaces are better in some contexts. In the following most of
the attention will be given to complex Hilbert spaces.

An inner product is defined so that it is linear in one variable and conjugate
linear in the other variable. The convention adopted here is that for vectors
u, v, w and complex scalars a, b we have

〈u, av + bw〉 = a〈u, v〉+ b〈u,w〉
〈au+ bw, v〉 = ā〈u, v〉+ b̄〈w, v〉. (24.1)

Thus the inner product is conjugate linear in the left variable and linear in
the right variable. This is the convention in physics, and it is also the conven-
tion in some treatments of elementary matrix algebra. However in advanced
mathematics the opposite convention is common.

The inner product also satisfies the condition

〈u, v〉 = 〈v, u〉. (24.2)

Thus 〈u, u〉 is real. In fact, we require for an inner product that

〈u, u〉 ≥ 0. (24.3)

The final requirement is that

〈u, u〉 = 0⇒ u = 0. (24.4)

239
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The inner product defines a norm ‖u‖ =
√
〈u, u〉. It has the basic homo-

geneity property that ‖au‖ = |a|‖u‖. The most fundamental norm identity
is

‖u+ v‖2 = ‖u‖2 + 〈u, v〉+ 〈v, u〉+ ‖v‖2. (24.5)

Notice that the cross terms are real, and in fact 〈u, v〉+ 〈v, u〉 = 2<〈u, v〉. This
leads to the Schwarz inequality.

Theorem 24.1 (Schwarz inequality)

|〈u, v〉| ≤ ‖u‖‖v‖. (24.6)

Proof: If either u or v is the zero vector, then the inequality is trivial.
Otherwise let u1 = u/‖u‖ and v1 = eiθv/‖v‖. Then these are unit vectors. By
the fundamental identity

−2<(eiθ〈u1, v1〉) ≤ 2. (24.7)

Pick θ so that −<(eiθ〈u1, v1〉) = |〈u1, v1〉). Then the equation gives

2|〈u1, v1〉| ≤ 2. (24.8)

This leads immediately to the Schwarz inequality. �

Theorem 24.2 (Triangle inquality)

‖u+ v‖ ≤ ‖u‖+ ‖v‖. (24.9)

Proof: From the fundamental identity and the Schwarz inequality

‖u+ v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2. (24.10)

�
Each element u of H defines an element u∗ of the dual space H∗ of continuous

linear functions from H to C. The definition of u is that it is the linear function
v 7→ 〈u, v〉. That is, the value

u∗(v) = 〈u, v〉. (24.11)

From the Schwarz inequality we have

‖u∗(v)‖ ≤ ‖u‖‖v‖, (24.12)

which proves that u∗ is Lipschitz, hence continuous.
This notation shows the advantage of the convention that inner products

are continuous in the right variable. In fact, this notation is rather close to one
that is common in linear algebra. If u is a column vector, then u∗ is given by
the corresponding row vector with complex conjugate entries. The algebraic
properties of this correspondence are just what one would want: (u + w)∗ =
u∗ + w∗ and (au)∗ = āu∗.
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The notation is also compatible with the standard notation for the adjoint
of a linear transformation from one Hilbert space to another. We can identify
the vector u with the linear transformation a 7→ au from C to H. The adjoint of
this transformation is the transformation w 7→ 〈u,w〉 from H to C. This is just
the identity 〈u,w〉a = 〈w, au〉. So it is reasonable to denote the transformation
w 7→ 〈u,w〉 by the usual notation u∗ for adjoint.

One particularly convenient aspect of this notation is that one may also form
the outer product vu∗. This is a linear transformation from H to itself given
by w 7→ v〈u,w〉. This following result is well known in the context of integral
equations.

Proposition 24.3 The linear transformation vu∗ has eigenvalues 〈u, v〉 and 0.
If µ is not equal to either of these two values, then the inverse if µI − vu∗ is

(µI − vu∗)−1 =
1
µ

[
I +

1
µ− 〈u, v〉vu

∗
]
. (24.13)

If 〈u, v〉 = 1, then vu∗ is a slant projection onto v along the directions per-
pendicular to u. In particular, if u∗u = 1, then uu∗ is an orthogonal projection
onto u.

In the physics literature a vector v is called a ket. A dual vector u∗ is called
a bra. The complex number that results from the pairing of a bra and a ket is
〈u, v〉, hence a bracket. This rather silly terminology is due to Dirac.

If u and v are vectors, we write u ⊥ v if 〈u, v〉 = 0. They are said to be
perpendicular or orthogonal.

Theorem 24.4 (Pythagoras) If u ⊥ v, then

‖u+ v‖2 = ‖u‖2 + ‖v‖2. (24.14)

The theorem of Pythagoras says that for a right triangle the sums of the
squares of the sides is the square of the hypotenuse. It follows immediately
from the fundamental identity. The following parallelogram law does not need
the hypothesis of orthogonality.

Theorem 24.5 (parallelogram law) In an an inner product space

‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2. (24.15)

It says that for an arbitrary triangle there is an associated parallelogram
consisting of 0, u, v, u+ v, and the sum of the squares of the diagonals is equal
to the sum of the square of the four sides.

This parallelogram law is a fundamental convexity result. Write it in the
form

‖u− v
2
‖2 + ‖u+ v

2
‖2 =

1
2
‖u‖2 +

1
2
‖v‖2. (24.16)

This immediately shows that the function u→ ‖u‖2 has a convexity property, at
least with weights 1/2 and 1/2. Furthermore, there is a kind of strict convexity,
in that there is an extra term on the left that is strictly positive whenever u 6= v.
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24.2 Closed subspaces

The classic examples of Hilbert spaces are sequence spaces Cn (finite dimen-
sional) and `2 (infinite dimensional). A more general class of infinite dimensional
examples is given by L2(X,F , µ), the quotient space formed from F measurable
functions that are square integrable with respect to µ. In this case the inner
product comes from

〈f, g〉 = µ(f̄g) =
∫
f(x)g(x) dµ(x). (24.17)

The norm is

‖f‖ =
√
µ(|f |2) =

√∫
|f(x)|2 dµ(x). (24.18)

A linear subspace (or vector subspace) M of a Hilbert space H is a subset
with the zero vector in it and that is closed under vector addition and scalar
multiplication. If it is also a in the topological sense, then it is another Hilbert
space.

Theorem 24.6 A subspace M of a Hilbert space is a closed subspace if and
only if it is itself a Hilbert space (with the same inner product).

Proof: Suppose that M is a closed subspace. Since it is a closed subset of
a complete metric space, it is complete. Therefore M is a Hilbert space.

Suppose on the other hand that M is a Hilbert space. Since it is a complete
subset of a metric space, it follows that M is a closed subset. So M is a closed
subspace. �

Examples:

1. Consider the space `2 of square summable sequences. Fix n. The subspace
consisting of all sequences x in this space with xk = 0 for k ≤ n is a closed
infinite dimensional subspace.

2. Consider the space `2. The subspace consisting of all sequences x such that
there exists an n such that xk = 0 for k > n is an infinite dimensional
subspace that is not closed. In fact, its closure is all of `2.

3. Consider the space `2. Fix n. The subspace consisting of all sequences x
in this space with xk = 0 for k > n is a closed finite dimensional subspace.

4. Consider the space L2(R,B, λ) of Borel functions on the line that are
square summable with respect to Lebesgue measure λ. The subspace
consisting of all step functions is not closed. In fact, its closure is the
entire Hilbert space.
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5. Consider the space L2(R,B, λ) of Borel functions on the line that are
square summable with respect to Lebesgue measure λ. The subspace
consisting of all continuous functions with compact support is not closed.
In fact, its closure is the entire Hilbert space. Notice that the subspaces
in the last two examples have only the zero vector in common.

If M is a subspace of a Hilbert space H, then we write w ⊥M if for all v in
M we have w ⊥ v. Then M⊥ consists of all vectors w in H such that w ⊥M .

Theorem 24.7 If M is a subspace, then M⊥ is a closed subspace. Furthermore,
M ⊂M⊥⊥.

Notice that in general, it is not the case that M is equal to M⊥⊥. As an
example, let M be the subspace that is the intersection of the subspaces in
examples 1 and 2 above. Then M⊥ is the subspace in example 3. However
M⊥⊥ is the subspace in example 1.

24.3 The projection theorem

Lemma 24.8 Let M be a subspace of H. Let u be a vector in H. Then v is a
vector in M that is closest to u if and only if v is in M and u−v is perpendicular
to M .

Proof: Suppose that v is in M and u − v is perpendicular to M . Let v′

be another vector in M . Then u − v′ = u − v + v − v′. By the theorem of
Pythagoras ‖u− v′‖2 = ‖u− v‖2 + ‖v − v′‖2. Hence ‖u− v‖ ≤ ‖u− v′‖. So v
is the vector in M closest to u.

Suppose on the other hand that v is the vector in M closest to u. Let w 6= 0
be another vector in M . Let cw be the projection of u − v onto the subspace
generated by w given by taking c = 〈u−v, w〉/〈w,w〉. Let v′ = v+cw. Then the
difference (u− v′)− (v′− v) = u− v′ is orthogonal to v′− v. By the theorem of
Pythagoras ‖u−v‖2 = ‖u−v′‖2 +‖v′−v‖2. Since v is closet to u, the left hand
side must be no larger than the first term on the right hand side. Hence the
second term on the right hand side is zero. Thus v′− v = cw is zero, and hence
c = 0. We conclude that u − v is perpendicular to w. Since w is an arbitrary
non-zero vector in M , this proves that u− v is perpendicular to M . �

Theorem 24.9 (Projection theorem) Let M be a closed subspace of the
Hilbert space H. Let u be a vector in H. Then there exists a unique vector
v in M that is closest to u. In particular, u− v is perpendicular to M .

Proof: Let a be the infimum of the numbers ‖u − v‖2 for v in M . Let vn
be a sequence of vectors in M such that ‖u − vn‖2 → a as n → ∞. Apply the
parallelogram identity to two vectors u− vm and u− vn. This gives

‖1
2

(vm − vn)‖2 + ‖u− 1
2

(vm + vn)‖2 =
1
2
‖u− vm‖2 +

1
2
‖u− vn‖2. (24.19)
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Since each 1
2 (vm + vn) is in M , it follows that

‖1
2

(vm − vn)‖2 + a ≤ 1
2
‖u− vm‖2 +

1
2
‖u− vn‖2. (24.20)

As m,n get large, the right hand side tends to a. This proves that the vn form a
Cauchy sequence. Since M is complete, there exists a v in M such that vn → v
as n→∞. Since the ‖u− vn‖2 → a and the norm is a continuous function on
H, it follows that ‖u − v‖2 = a. This proves that v is the vector in M closest
to u. �

The vector v in this projection theorem is the orthogonal projection (or pro-
jection) of u on M . It is clear that the vector u− v is the orthogonal projection
of u on M+. Thus every vector in H may be written as the sum of a vector in
M and a vector in M⊥.

Corollary 24.10 If M is a closed subspace, then M⊥⊥ = M .

Proof: It is evident that M ⊂M⊥⊥. The hard part is to show that M⊥⊥ ⊂
M . Let u be in M⊥⊥. By the projection theorem we can write u = w + v,
where v is in M and w is in M⊥. Then 0 = 〈u,w〉 = 〈w,w〉 + 〈v, w〉 = 〈w,w〉.
So w = 0 and u = v is in M . �

24.4 The Riesz-Fréchet theorem

Theorem 24.11 (Riesz-Fréchet representation theorem) Let H be a Hilbert
space. Let L be a continuous linear function L : H → C. Then there ex-
ists a unique vector u in H such that L = u∗. That is, the vector u satisfies
L(u) = 〈u, v〉 for all v in H.

Proof: Let
E[w] =

1
2
‖w‖2 −<L(w). (24.21)

Since L is continuous, it is Lipschitz. That is, there is a constant c such that
|Lw| ≤ c‖w‖. It follows that E[w] ≥ 1

2‖w‖2− c‖w‖ ≥ − 1
2c

2. Thus the E[w] are
bounded below. Let a be the infimum of the E[w]. Let wn be a sequence such
that E[wn] → a as n → ∞. By the parallelogram identity and the fact that L
is linear we have

‖1
2

(wm − wn)‖2 + 2E[
1
2

(wm + wn)] = E[wm] + E[wn]. (24.22)

Hence
‖1

2
(wm − wn)‖2 + 2a ≤ E[wm] + E[wn]. (24.23)

However, the right hand side tends to 2a. This proves that the wn form a
Cauchy sequence. Since H is complete, they converges to a vector u in M . By
continuity E[u] = a.
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The rest of the proof amounts to taking the derivative of the function E[w]
at w = u in the direction v. The condition that this derivative is zero should
give the result. However it is perhaps worth writing it out explicitly. Let v be
a vector in H. Then for each real number t > 0 we have

a = E[u] ≤ E[u+ tv]. (24.24)

This says that

0 ≤ t<〈u, v〉 − t<L(v) +
1
2
t2‖v‖2. (24.25)

Divide both sides by t > 0. Since the resulting inequality is true for each t > 0,
we have 0 ≤ <〈u, v〉−<L(v). Thus we have proved that <L(v) ≤ <〈u, v〉 for all
v. The same argument applied to −v shows that −<L(v) ≤ −<〈u, v〉. Hence
<L(v) = <〈u, v〉. The above reasoning applied to −iv shows that =L(v) =
=〈u, v〉. We conclude that L(v) = 〈u, v〉. �

This Riesz-Fréchet representation theorem says that every element of the
dual space H∗ comes from a vector u in H. However it does not quite say that
a Hilbert space is naturally isomorphic to its dual space, at least not in the
case of complex scalars. In fact, the correspondence u 7→ u∗ from H to H∗

is conjugate linear. However it does preserve the norm. (In the real case it is
completely accurate to say that a Hilbert space is naturally self-dual.)

Here is a warning. While a Hilbert space is naturally conjugate-isomorphic
to its dual space, in general it is a mistake to identify a Hilbert space with its
dual space. In some instances this does no harm, but in other contexts (such
as the theory of Sobolev spaces) it can cause real confusion. Furthermore, for
Banach spaces it is quite clear that there is no natural identification of the space
with its dual space; indeed these spaces can be quite different.

24.5 Adjoint transformations

Let T : H → K be a continuous linear transformation from the Banach space E
to the Banach space F . In this context the value of T on u is often written in
the form Tu. The adjoint transformation T ∗ : K → H is defined by 〈T ∗v, u〉 =
〈v, Tu〉. It is not difficult to prove that T ∗∗ = T .

If we think of the space as consisting of column vectors, then T is like a
matrix on the left acting on column vectors on the right. The adjoint T ∗ is the
conjugate transpose matrix matrix, also acting this way.

The Lipschitz norm of the transformation T is denoted ‖T‖. Thus it is
the smallest constant satisfying ‖Tu‖ ≤ ‖T‖‖u‖. The norm has the attractive
property that ‖T ∗‖ = ‖T‖.

It may be shown that space of all continuous linear transformations from H
to K is a Banach space. However in general it is not a Hilbert space.

Let w be a vector in the Hilbert space H. Then it defines continuous linear
transformation a 7→ aw from C to H. The adjoint transformation, denoted w∗,
maps H continuously to C. In other words, it is in the dual space H∗. By
definition it satisfies w∗(v)a = 〈v, aw〉. This is equivalent to w∗(v) = 〈w, v〉. If
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we think of v as a column vector, then w∗ is more like a conjugated row vector.
The last equation says that the product of a conjugated row vector on the left
with a column vector on the right gives the value of the inner product.

24.6 Bases

In the following we need the notion of isomorphism of Hilbert spaces. IfH andK
are each Hilbert spaces, then an isomorphism (or unitary transformation) from
H to K is a bijection U : H → K that is linear and preserves the inner product.
The latter means that 〈Uv,Uw〉 = 〈u, v〉, where the inner product on the left
is that of K and the inner product on the right is that of H. An isomorphism
of Hilbert spaces obviously also preserves the norm. As a consequence, an
isomorphism of Hilbert spaces is simultaneously an isomorphism of vector spaces
and an isomorphism of metric spaces. Clearly the inverse of an isomorphism is
also an isomorphism.

Let H be a Hilbert space. Let J be an index set. An orthonormal family is
a function j 7→ uj from J to H such that 〈uj , uk〉 = δjk. The key result for an
orthonormal family is the Bessel inequality.

Proposition 24.12 (Bessel’s inequality) Let f be in H and define coeffi-
cients c by

cj = 〈uj , f〉. (24.26)

Then c is in `2(J) and
‖c‖2 ≤ ‖f‖2. (24.27)

Proof: Let J0 be a finite subset of J . Let g =
∑
j∈J0

cjuj . Then f − g ⊥ uk
for each k in J0. By the theorem of Pythagoras ‖f‖2 = ‖f − g‖2 + ‖g‖2. Hence
‖g‖2 ≤ ‖f‖2. This says that

∑
j∈J0
|cj |2 ≤ ‖f‖2. Since this is true for arbitrary

finite J0 ⊂ J , we have
∑
j∈J |cj |2 ≤ ‖f‖2. �

The Bessel inequality and the completeness of Hilbert space lead to the
following Riesz-Fischer theorem.

Proposition 24.13 (Riesz-Fischer) Let j 7→ uj be an orthonormal family.
Let c be in `2(J). Then the series

g =
∑

j

cjuj (24.28)

converges in the Hilbert space sense to a vector g in H. Furthermore, we have
the Parseval identity

‖g‖2 = ‖c‖2. (24.29)

Proof: Since c is in `2(J), there are only countably many values of j such that
cj 6= 0. So we may consider this countable sum indexed by natural numbers. Let
gn be the nth partial sum. Then for m > n we have ‖gm−gn‖2 =

∑m
j=n+1 |cj |2.

This approaches zero as m,n → ∞. So the gn form a Cauchy sequence. Since
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H is complete, the gn converge to some g in H. That is, ‖g −∑n
j=0 cjej‖ → 0

as n→∞. This is the Hilbert space convergence indicated in the statement of
the proposition. �

Theorem 24.14 Let j 7→ uj be an orthonormal family of vectors in the Hilbert
space H. Then there exists a closed subspace M of H such that the map c →∑
j cjuj is an isomorphism from `2 to M . The map that sends f in H to

g =
∑
j〈uj , f〉uj in H is the orthogonal projection of f onto M .

Sometimes physicists like to write the orthogonal projection onto M with a
notation that somewhat resembles

E =
∑

j

uju
∗
j . (24.30)

This just means that the orthogonal projection of a vector f onto the span of
the ej is Ef =

∑
j uj〈uj , f〉.

An orthonormal family j 7→ uj is a basis for the Hilbert space H if every
vector f in H has the representation

f =
∑

j

〈uj , f〉uj . (24.31)

In this case the correspondence between H and `2(J) given by the basis is an
isomorphism of Hilbert spaces. That is, the coefficient vectors c with cj = 〈uj , f〉
give an alternative description of the Hilbert space.

Proposition 24.15 Suppose that j 7→ ej is a maximal orthonormal family in
H. Then it is a basis for H.

Proof: Let M be the collection of all linear combinations
∑
j cjuj where

c is in `2. Then M is a closed subspace. If the family does not form a basis,
then M is a proper subset of H. Let f be in H and not in M . Let g be the
projection f on M . Then f − g is orthogonal to M and is non-zero, and so
can be normalized to be a unit vector. The gives a strictly larger orthonormal
family, so the original family is not maximal. �

If H is an arbitrary Hilbert space, then it follows from the axiom of choice
via Zorn’s lemma that there is a maximal orthonormal family j 7→ uj defined on
some index set J . This is a basis for H. In other words, every Hilbert space has
a basis. It follows that for every Hilbert space there is a set J such that H is
isomorphic to `2(J). This method of constructing bases involves lots of arbitrary
choices and is not particularly practical. However it is of considerable theoretical
interest: it says that Hilbert spaces of the same dimension (cardinality of index
set) are isomorphic.

Proposition 24.16 . Suppose that j 7→ uj is an orthonormal family such that
for every vector f in H we have

‖f‖2 =
∑

j

|〈uj , f〉|2. (24.32)
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Then u 7→ uj is a basis for H.

Proof: Let M be the collection of all linear combinations
∑
j cjuj where c

is in `2. Then M is a closed subspace. If the family does not form a basis, then
M is a proper subset of H. Let f be in H and not in M . Let g be the projection
f on M . By the theorem of Pythagoras, ‖f‖2 = ‖g‖2 + ‖f − g‖2 > ‖g‖2. This
violates the equality. �

Proposition 24.17 Suppose that j 7→ ej is an orthonormal family, and suppose
that the set of all finite linear combinations of these vectors is dense in H. Then
it is a basis.

Proof: Let M be the collection of all linear combinations
∑
j cjuj where c

is in `2. Then M is a closed subspace. Let f be in H. Consider ε > 0. Then
there exists a finite linear combination h such that ‖f − h‖ < ε. Furthermore,
h is in M . Let g be the projection of f onto M . Since g is the element of M
that is closest to f , it follows that ‖f − g‖ ≤ ‖f −h‖. Hence ‖f − g‖ < ε. Since
ε > 0 is arbitrary, we have f = g. �

24.7 Separable Hilbert spaces

The following Gram-Schmidt construction gives a more explicit way of producing
an orthonormal family.

Theorem 24.18 (Gram-Schmidt orthonormalization) Let k 7→ vk be a
linearly independent sequence of vectors in the Hilbert space H. Then there exists
an orthonormal sequence k 7→ uk such that for each m the span of u1, . . . , um
is equal to the span of v1, . . . , vm.

Proof: The proof is by induction on m. For m = 0 the sequences are
empty, and the corresponding spans are both just the subspace with only the
zero vector. Given u1, . . . , um orthonormal with the same span as v1, . . . , vm,
let qm+1 be the orthogonal projection of vm+1 on this subspace. Let pm+1 =
vm+1 − qm+1. Then pk+1 is orthogonal to u1, . . . , um. This vector is non-zero,
since otherwise vm+1 would depend linearly on the vectors in the subspace.
Thus it is possible to define the unit vector um+1 = pm+1/‖pm+1‖. �

Theorem 24.19 Let H be a separable Hilbert space. Then H has a countable
basis.

Proof: Since H is separable, there is a sequence s : N → H such that
n 7→ sn has dense range. In particular, the set of all finite linear combinations
of the vectors sn is dense in H. Define a new subsequence vk (finite or infinite)
by going through the sn in order and throwing out each element that is a linear
combination of the preceding elements. Then the vk are linearly independent,
and the linear span of the vk is the same as the linear span of the sn. Thus we
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have a linearly independent sequence tk whose linear span is dense in H. Apply
the Gram-Schmidt orthonormalization procedure. This gives an orthonormal
sequence uk with the same linear span. Since the linear span of the uk is dense
in H, the uk form a basis for H. �

Corollary 24.20 Every separable Hilbert space is isomorphic to some space
`2(J), where J is a countable set.

For most applications separable Hilbert spaces are sufficient. In fact, a sep-
arable Hilbert space is either finite dimensional or has countable infinite dimen-
sion. All countable infinite dimensional separable Hilbert spaces are isomorphic.
In fact, they are all isomorphic to `2(N).

The space L2([0, 1],B, λ) of Borel functions on the unit interval with

λ(|f |2) =
∫ 1

0

|f(x)|2 dx < +∞ (24.33)

is a separable infinite dimensional Hilbert space. An example of an orthonormal
basis is given by the Walsh functions.

Consider a natural number n ≥ 1. Divide the interval from 0 to 1 in 2n

equally spaced parts, numbered from 0 to 2n − 1. The Rademacher function
rn is the function that is 1 on the even numbered intervals and −1 on the odd
numbered intervals. A Walsh function is a product of Rademacher functions.
Let S ⊂ {1, 2, 3, . . .} be a finite set of strictly positive natural numbers. Let the
Walsh function be defined by

wS =
∏

j∈S
rj . (24.34)

Notice that when S is empty the product is 1.
The Walsh functions may be generated from the Rademacher functions in a

systematic way. At stage zero start with the function 1. At stage one take also
r1. At stage two take r2 times each of the functions from the previous stages.
This gives also r2 and r1r2. At stage three take r3 times each of the functions
from the previous stages. This gives also r3 and r1r3 and r2r3 and r1r2r3. It
is clear how to continue. The Walsh functions generated in this way oscillate
more and more.

Theorem 24.21 The Walsh functions form an orthonormal basis of L2([0, 1],B, λ)
with respect to the inner product

〈f, g〉 = λ(f̄g) =
∫ 1

0

f(x)g(x) dx. (24.35)

Thus for an arbitrary function f in L2([0, 1]) there is an L2 convergent Walsh
expansion

f(x) =
∑

S

〈wS , f〉wS(x). (24.36)
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Proof: The 2n Walsh functions wS with S ⊂ {1, . . . , n} are linearly in-
dependent. It follows that they span the 2n dimensional space of binary step
functions with step width 1/2n. Thus the linear span of the Walsh functions is
the space of all binary step functions. These are dense in L2. In fact, they are
even uniformly dense in the space of continuous functions. �

Consider a natural number n ≥ 0. Divide the interval from 0 to 1 in 2n

equally spaced parts, numbered from 0 to 2n − 1. The binary rectangular func-
tion fn;k is the function that is the indicator function of the kth interval.

A Haar function is a multiple of a product of a binary rectangular function
with a Rademacher function. For n ≥ 0 and 0 ≤ k < 2n define the Haar function
to be

hn;k = cnfn;krn+1, (24.37)

and define h−1;0 = 1. For n ≥ 0 the coefficient cn > 0 is determined by
c2n = 1/2n. The function h−1;0 together with the other Haar functions hj;k for
j = 0 to n − 1 and 0 ≤ k < 2j form a basis for the binary step functions with
width 1/2n. Note that the number of such functions is 1 +

∑n−1
j=0 2j = 2n.

The Haar functions may be generated in a systematic way. At stage zero
start with the function 1. At stage one take also r1. At stage two take also f1;0r2

and f1;1r2. At stage three take also f2;0r3 and f2;1r3 and f2;2r3 and f2;3r
3. The

Haar functions generated in this way become more and more concentrated in
width.

Theorem 24.22 The Haar functions form an orthonormal family of vectors
with respect to the inner product

〈f, g〉 = λ(f̄g) =
∫ 1

0

f(x)g(x) dx. (24.38)

For an arbitrary function f in L2([0, 1]) there is an L2 convergent Haar expan-
sion

f(x) =
∞∑

n=−1

∑

0≤k<2n

〈hn;k, f〉hn;k(x). (24.39)

Proof: The 2n partial sum of the Haar series is the same as the 2n partial
sum of the Walsh series. Each of these is the projection onto the space of
rectangular functions of width 1/2n. �

Problems

1. This problem concerns real Borel measurable functions on the unit interval
and Lebesgue measure. Consider the function x2.

(a) What is the constant function that best approximates x2 in the L∞

norm?

(b) What is the constant function that best approximates x2 in the L2

norm?
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2. Consider the finite dimensional real Hilbert space H = Rn with Lebesgue
measure λn. Say that a point in Rn is a “corner point” if each coordinate
has absolute value one. Let A be the open ball of radius 2 centered at the
origin. Let B be the union of the open balls of radius 1 centered at the
corner points.

(a) What is the ratio of the Lebesgue measure of B to the Lebesgue
measure of A?

(b) For which n are the sets A and B disjoint?

3. Consider the Hilbert space H = L2(R,B, λ), where λ(f) =
∫∞
−∞ f(x) dx

is Lebesgue measure. Consider the closed subspace M consisting of all
functions g inH satisfying g(−x) = −g(x). Find the orthogonal projection
of the function f(x) = (1 + x)e−x/(1 + e−2x) onto this subspace.

4. Let
E = x

∂

∂x
+ y

∂

∂y
+ z

∂

∂z
(24.40)

be the Euler operator. Let

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(24.41)

be the Laplace operator. The space P` of solid spherical harmonics of
degree ` consists of all polynomials p in variables x, y, z with Ep = `p and
∆p = 0. It may be shown that P` has dimension 2`+ 1. (a) Prove that P`
is invariant under rotations about the origin. (b) Find the spaces P` for
` = 0, 1, 2, 3.

5. Let S be the unit sphere in R3 defined by the equation x2 + y2 + z2 = 1.
The space H` of surface spherical harmonics consists of the restrictions of
the solid spherical harmonics to S. Show that P` and H` are isomorphic
vector spaces. Give an explicit formula that expresses a solid spherical
harmonic in terms of the corresponding surface spherical harmonic.

6. Let x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ be expressed in
spherical polar coordinates. Then E = r∂/∂r. Furthermore,

∆ =
1
r2

(E(E + 1) + ∆S) , (24.42)

where

∆S =
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2
. (24.43)

Consider the space L2(S) with the rotation invariant measure sin θ dθ dφ,
where the co-latitude θ goes from 0 to π and the longitude φ goes from 0
to 2π. (a) Show that for smooth functions in L2(S) we have the identity
〈∆Su, v〉 = 〈u,∆Sv〉. When you integrate by parts, be explicit about
boundary terms. (b) Show that for u in H` we have ∆Su = −`(`+ 1)u.
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7. Show that the subspaces H` of surface spherical harmonics are orthogonal
in L2(S) for different values of `.

8. Consider the Hilbert space L2(R,B, γ), where γ is the measure γ(h) =∫∞
−∞ h(x) exp(−x2) dx. Thus the inner product is

〈f, g〉 = γ(f̄g) =
∫ ∞
−∞

f(x)g(x)e−x
2
dx. (24.44)

Let the polynomial hn(x) of degree n be defined by

hn(x) =
(

2x− d

dx

)n
1. (24.45)

Thus h0(x) = 1, h1(x) = 2x, h2(x) = 4x2−2, and so on. Find h3(x), h4(x), h5(x).
Show that the hn form an orthogonal family of vectors in the Hilbert space.
Hint: Integrate by parts.

9. Show that the inner product in a Hilbert space is determined by its norm.
Prove that a Banach space isomorphism between Hilbert spaces is actually
a Hilbert space isomorphism. (That is, prove that if there is a linear
bijective correspondence that preserves the norm, then it preserves the
inner product.) Hint: For a real Hilbert space this follows from 4〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2. How about for a complex Hilbert space?

10. Let j → uj be an orthogonal family of non-zero vectors in H indexed by
j ∈ J . Suppose that finite linear combinations of these vectors are dense in
H. Let wj = 1/〈uj , uj〉 be numerical weights associated with these vectors.
Let `2(J,w) be the Hilbert space of all sequences c with

∑
j |cj |2wj <∞.

Show that H is isomorphic to `2(J,w) by the isomorphism that sends f to
c given by cj = 〈uj , f〉. Find the inverse isomorphism. Check that both
isomorphisms preserve the norm.

11. This is a continuation. Let T = (−L2 , L2 ] be the circle of length L, and
consider the Hilbert space H = L2(T,B, λ) with norm squared equal to

‖f‖2 =
∫

T

|f(x)|2 dx. (24.46)

Let k be an integer multiple of 2π
L . Let uk be the element of H defined

by uk(x) = exp(ikx). According to the theory of Fourier series the finite
linear combinations of these vectors are dense in H. These vectors are
orthogonal but not orthonormal. Do not normalize them! Instead, find
the weights wj = 1/〈uj , uj〉. (a) Write explicitly the formula for the coef-
ficients c in the space `2( 2π

L Z, w) of a function f in H. (b) Write explicitly
the formula for f in terms of the coefficients c. (c) Write explicitly the
equation that expresses the equality of norms (squared) in the two Hilbert
spaces.
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12. This is a continuation. Fix f smooth with compact support. Let L→∞
with k fixed. What are the limiting formulas corresponding to (a),(b),(c)
above. Why was it important not to normalize the vectors?
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Chapter 25

Differentiation

25.1 The Lebesgue decomposition

Consider a measurable space X,F . Here F can stand for a σ-algebra of subsets,
or for the corresponding σ-algebra of real measurable functions. Let ν be a
measure. As usual we write the integral of a measurable function f ≥ 0 as
ν(f) ≥ 0. We also write the measure of a measurable subset E as ν(E) = ν(1E).

Consider two such measures ν and µ. Then ν is said to be absolutely con-
tinuous with respect to µ if every measurable subset E with µ(E) = 0 also has
ν(E) = 0. In that case we write ν ≺ ν.

Consider two such measures ν and µ. Then ν and µ are said to be mutually
singular if there exists a measurable set A with complement Ac = X \ A such
that µ(A) = 0 and ν(Ac) = 0. In that case we write ν ⊥ µ. If µ is thought of as
a reference measure, then sometimes we say that ν is singular with respect to µ.
The Lebesgue decomposition describes the relation between two finite measures.

Theorem 25.1 (Lebesgue decomposition) Let X,F be a measurable space.
Let µ and ν be finite measures. Then ν = νac + νs, where νac ≺ µ and νs ⊥ µ.

Proof: This Hilbert space proof is due to von Neumann. The trick is to
compare ν not directly with µ but with µ+ ν instead. In fact, it is also possible
to compare µ to µ+ ν in the same way.

The main technical device is to look at ν as a linear functional on the real
Hilbert space L2(X,F , µ+ ν). We have

|ν(f)| ≤ ν(|f |) ≤ (µ+ ν)(|f |) = 〈1, |f |〉. (25.1)

By this Schwarz inequality and the fact that µ+ ν is a finite measure we have
the continuity

|ν(f)| ≤ ‖1‖2‖f‖2. (25.2)

It follows from the Riesz-Fréchet theorem that there exists a function g in
L2(X,F , µ + ν) so that ν is given by the inner product by ν(f) = 〈g, f〉. In
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other words
ν(f) = (µ+ ν)(gf). (25.3)

A little algebra gives
µ(f) = (µ+ ν)((1− g)f). (25.4)

Let E be the set where g < 0. If (µ+ν)(E) > 0, then ν(E) = (µ+ν)(g1E) < 0,
which is a contradiction. Thus (µ+ ν)(E) = 0 and so 0 ≤ g almost everywhere
with respect to µ + ν. Let F be the set where g > 1. If (µ + ν)(F ) > 0, then
µ(F ) = (µ+ν)((1−g)1F ) < 0, which is a contradiction. So also (µ+ν)(F ) = 0.
So we may as well assume that 0 ≤ g ≤ 1.

One consequence of this result is that the last two displayed equations hold
for all measurable functions f ≥ 0, by the monotone convergence theorem.

Let A be the set where g = 1. Let Ac = X \ A be its complement, so
0 ≤ g < 1 on Ac. Let νs(f) = ν(f1A) and let νac(f) = ν(f1Ac). Since µ(A) = 0
and νs(Ac) = 0, we have νs ⊥ µ. If µ(E) = 0, let E′ = E ∩Ac. Then µ(E′) = 0
and so (µ+ ν)((1− g)1E′) = 0. Since 1− g > 0 on E′, we have (µ+ ν)(E′) = 0
and so ν(E′) = 0. Thus νac(E) = 0. This proves that νac ≺ µ. �

The Lebesgue decomposition also holds true when ν and µ are σ-finite mea-
sures. It also holds true in the context when ν is a finite signed measure (a
difference of two finite measures) and µ is a σ-finite measure.

25.2 The Radon-Nikodym theorem

Consider a measure µ, regarded as a reference measure. In many cases µ is
Lebesgue measure on some measurable subset of Euclidean space. Let ν be
another measure. Suppose that h ≥ 0 is in L1 with respect to the measure
µ, and that ν(f) = µ(hf) for for all bounded measurable functions f . Then
ν is said to be given by the density h. Actually, this is a relative density,
since it depends also on the reference measure µ. The existence of a density is
characterized by the Radon-Nikodym theorem.

Theorem 25.2 (Radon-Nikodym) Let X,F be a measurable space. Let µ
and ν be finite measures. Suppose ν ≺ µ. Then there exists a relative density
h ≥ 0 with µ(h) <∞ and with ν(f) = µ(hf) for all f ≥ 0.

Proof: This is the von Neumann method of proof again. Suppose that
ν ≺ µ. Then from the Hilbert space argument above we find g with 0 ≤ g ≤ 1
such that ν(u) = (µ+ ν)(gu) and µ(u) = (µ+ ν)((1− g)u). These identities are
valid for all measurable functions u ≥ 0. Let A be the set where g = 1. Then
µ(A) = (µ + ν)((1 − g)1A) = 0. Hence by absolute continuity ν(A) = 0. Let
h = g/(1− g) on Ac and h = 0 on A. Thus

(1− g)h = g1Ac . (25.5)

This equation is crucial: it shows that h is related to g in a quite non-linear
way. All that we know about h is that 0 ≤ h < +∞.
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Let f ≥ 0. Then we use the first identity with u = f1Ac and the second
identity with u = hf to get

ν(f) = ν(f1Ac) = (µ+ ν)(g1Acf) = (µ+ ν)((1− g)hf) = µ(hf). (25.6)

It follows that µ(h) = ν(1) < +∞, so h is integrable. �
The Radon-Nikodym theorem is also true when ν is a finite measure and µ

is a σ-finite measure. It also holds true in the more general context when ν is a
finite signed measure and µ is a σ-finite measure.

The density function h is called the Radon-Nikodym derivative of ν with
respect to the reference measure µ. Some justification for this terminology may
be found in the problems.

25.3 Absolutely continuous functions

Proposition 25.3 Let ν be a finite measure and let µ be another measure.
Then ν ≺ µ is equivalent to the condition that for every ε > 0 there is a δ > 0
such that for every measurable subset E we have µ(E) < δ ⇒ ν(E) < ε.

Proof: Suppose that ν ≺ µ. Suppose there exists ε > 0 such that for every
δ > 0 there is a measurable subset E such that µ(E) < δ and ν(E) ≥ ε. Consider
such an ε. For each n choose a measurable subset En such that µ(En) < 1/2n+1

and ν(En) ≥ ε. Let Fk =
⋃∞
n=k En. Then µ(Fk) ≤ 1/2k. Let F =

⋂∞
k=1 Fk.

Since for each k we have F ⊂ Fk, we have µ(F ) ≤ µ(Fk) ≤ 1/2k. Thus µ(F ) = 0.
On the other hand, Ek ⊂ Fk, so ν(Fk) ≥ ν(Ek) ≥ ε. Since Fk ↓ F and ν is a
finite measure, it must be that ν(Fk) ↓ ν(F ). Hence ν(F ) ≥ ε. The existence of
F with µ(F ) = 0 and ν(F ) ≥ ε implies that ν ≺ µ is false. This a contradiction.
Thus the ε− δ condition holds. Thus the implication follows.

The converse is considerably easier. Suppose that the ε − δ condition is
satisfied. Suppose µ(E) = 0. Let ε > 0. It follows from the condition that
ν(E) < ε. Since ε > 0 is arbitrary, we have ν(E) = 0. This is enough to show
that ν ≺ µ. �

Consider the real line R with the notion B of Borel set and Borel function.
Let F be an increasing right continuous real function on R. Then there is
a unique measure νF with the property that νF ((a, b]) = F (b) − F (a) for all
a < b. This measure is finite on compact sets. The measure determines the
function up to an additive constant. Clearly νF is a finite measure precisely
when F is bounded.

One other fact that we need is that the measure of a Borel measurable set
is determined from the function F by a two-stage process. The first stage is to
extend the measure from intervals (a, b] to countable unions of such intervals.
The second stage is to approximate an arbitrary measurable subset from outside
by such countable unions.

It is not very difficult to show that the same result may be obtained by using
open intervals (a, b) instead of half-open intervals (a, b]. The most general open
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subset U of the line is a countable union of open intervals. So the second stage
of the approximation process gives the condition of outer regularity:

νF (E) = inf{νF (U) | U open , E ⊂ U}. (25.7)

An increasing function F is said to be absolutely continuous increasing if for
every ε > 0 there is δ > 0 such that whenever V is a finite union of disjoint
open intervals with total length λ(V ) < δ the corresponding sum of increments
of F is < ε.

A Lipschitz increasing function from the real line to itself is an absolutely
continuous increasing function. The converse is false.

An absolutely continuous increasing function is a uniformly continuous func-
tion from the real line to itself. However again the converse is false: not every
uniformly continuous increasing function from the line to itself is absolutely
continuous. The Cantor function provides an example.

Theorem 25.4 Suppose F is bounded, so νF is finite. The measure νF ≺ λ if
and only if F is an absolutely continuous increasing function.

Proof: Suppose that νF ≺ λ. Then the fact that F is absolutely continuous
increasing follows from the proposition above.

Suppose on the other hand that F is an absolutely continuous increasing
function. Consider ε > 0. Choose ε′ < ε with ε′ > 0. Then there exists a δ > 0
such that whenever U is a finite union of disjoint open sets, then the sum of
the corresponding increases of F is < ε′. Suppose that E is a Borel measurable
subset with λ(E) < δ. Since λ is outer regular, there exists an open set U with
E ⊂ U and λ(U) < δ. There is a sequence Uk of finite disjoint unions of k open
intervals such that Uk ↑ U as k →∞. Since λ(Uk) < δ, it follows that the sum
of the increases νF (Uk) < ε′. However the sequence νF (Uk) ↑ νF (U) as k →∞.
Hence νF (U) ≤ ε′. Hence νF (E) ≤ ε′ < ε. This establishes the ε − δ condition
that is equivalent to absolute continuity. �

Suppose that F is an absolutely continuous increasing function that is bounded.
Then the corresponding finite measure νF is absolutely continuous with respect
to Lebesgue measure, and hence there is a measurable function h ≥ 0 with finite
integral such that

νF (f) = λ(hf). (25.8)

Explicitly, this says that
∫ ∞
∞

f(x) dF (x) =
∫ ∞
−∞

f(x)h(x) dx. (25.9)

Take f(x) to be the indicator function of the interval from a to b. Then we
obtain

F (b)− F (a) =
∫ b

−a
h(x) dx. (25.10)

So the absolutely continuous increasing functions are precisely those functions
that can be written as indefinite integrals of positive functions.
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There is a more general concept of absolutely continuous function that cor-
responds to a signed measure that is absolutely continuous with respect to
Lebesgue measure. These absolutely continuous functions are the indefinite
integrals of integrable functions. See for instance Folland [5] for a detailed dis-
cussion of this important topic.

It is not true that the derivative of an absolutely continuous function exists
at every point. However a famous theorem of Lebesgue says that it exists at
almost every point and that the function can be recovered from its derivative
by integration.

Problems

1. Let λ2 be Lebesgue measure on the square [0, 1] × [0, 1]. Let g ≥ 0 be
integrable with respect to λ2. Define a measure µ on the interval [0, 1] by

µ(f) = λ2(gf) =
∫ 1

0

∫ 1

0

g(x, y)f(x) dx dy. (25.11)

Find the function h(x) that is the Radon-Nikodym derivative of µ with
respect to the Lebesgue measure λ on [0, 1].

2. Let λ denote Lebesgue measure on the Borel subsets of the closed interval
[−1, 1].

(a) Let φ : [−1, 1] → [−1, 1] be defined by φ(x) = x2. Find the image
measure µ = φ[λ].

(b) Is µ absolutely continuous with respect to λ? Prove or disprove. If so,
find its Radon-Nikodym derivative.

(c) Is λ absolutely continuous with respect to µ? Prove or disprove. If so,
find its Radon-Nikodym derivative.

(d) Let ψ : [−1, 1]→ [−1, 1] be defined by ψ(x) = sign(x). (Here sign(x) =
x/|x| for x 6= 0 and sign(0) = 0.) Find the image measure ν = ψ[λ].

(e) Is ν absolutely continuous with respect to λ? Prove or disprove. If so,
find its Radon-Nikodym derivative.

(f) Is λ absolutely continuous with respect to ν? Prove or disprove. If so,
find its Radon-Nikodym derivative.

3. Consider real Borel functions f on the interval [0, 2]. Define the integral
µ by

µ(f) =
∫ 1

0

∫ 1

0

f(x+ y) dx dy. (25.12)

Find the Radon-Nikodym derivative of µ with respect to Lebesgue measure
on [0, 2].

4. Say that µ is a finite measure and h ≥ 0 is a measurable function. Find
the function g that minimizes the quantity 1

2µ((1 + h)g2)− µ(hg).
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5. Show that if ν ≺ µ, then the derivative of ν with respect to µ is h. That
is, show that if there is no division by zero, then

lim
ε↓0

ν(t ≤ h < t+ ε)
µ(t ≤ h < t+ ε)

= t. (25.13)

Hint: Prove in fact the bounds

t ≤ ν(t ≤ h < t+ ε)
µ(t ≤ h < t+ ε)

≤ t+ ε. (25.14)



Chapter 26

Conditional Expectation

26.1 Hilbert space ideas in probability

Consider a probability space Ω,S, µ. Here µ will denote the expectation or mean
defined for S measurable real functions. In particular µ(1) = 1.

Recall that the set Ω is the set of outcomes of an experiment. A real mea-
surable function f on Ω is called a random variable, since it is a real number
that depends on the outcome of the experiment. If ω ∈ Ω is an outcome, then
f(ω) is the corresponding experimental number.

A measurable subset A ⊂ Ω is called an event. The probability of the event
A is written µ(A). If ω ∈ Ω is an outcome, then the event A happens when
ω ∈ A.

A real measurable function f is in L1(Ω,S, µ) if µ(|f |) < +∞. In this
case the function is called a random variable with finite first moment. The
expectation µ(f) is a well-defined real number. The random variable f − µ(f)
is called the centered version of f .

A real measurable function f is in L2(Ω,S, µ) if µ(f2) < +∞. It this case it
is called a random variable with finite second moment, or with finite variance.
The second moment is µ(f2). The variance is the second moment of the centered
version. In the Hilbert space language this is

µ((f − µ(f))2) = ‖f − µ(f)‖2. (26.1)

This equation may be thought of in terms of projections. The projection of
f onto the constant functions is µ(f). Thus the variance is the square of the
length of the projection of f onto the orthogonal complement of the constant
functions. It is a quantity that tells how non-constant the function is.

In probability a common notion for variance is

Var(f) = µ((f − µ(f))2). (26.2)

As mentioned before, this is squared length of the component orthogonal to the

261



262 CHAPTER 26. CONDITIONAL EXPECTATION

constant functions. There is a corresponding notion of covariance

Cov(f, g) = µ((f − µ(f))(g − µ(g))). (26.3)

This is the inner product of the components orthogonal to the constant func-
tions. Clearly Var(f) = Cov(f, f).

Another quantity encountered in probability is the correlation

ρ(f, g) =
Cov(f, g)√

Var(f)
√

Var(g)
. (26.4)

The Hilbert space interpretation of this is the cosine of the angle between the
vectors (in the subspace orthogonal to constants). This explains why −1 ≤
ρ(f, g) ≤ 1.

In statistics there are similar formulas for quantities like mean, variance,
covariance, and correlation. Consider, for instance, a sample vector f of n
experimental numbers. Construct a probability model where each index has
probability 1/n. This is called the empirical distribution. Then f is a random
variable, and so its mean and variance can be computed in the usual way. These
are called the sample mean and sample variance. Or consider instead a sample
of n ordered pairs. This can be regarded as an ordered pair f, g, where f and
g are each a vector of n experimental numbers. Then f and g are each random
variables with respect to the empirical distribution on the n index points, and
the covariance and correlation is computed as before. These are called the
sample covariance and sample correlation. (Warning: Statisticians often use
a slightly different definition for the sample variance or sample covariance, in
which they divide by n − 1 instead of n. This does not matter for the sample
correlation.)

The simplest (and perhaps most useful) case of the weak law of large numbers
is pure Hilbert space theory. It says that averaging n uncorrelated random
variables makes the variance get small at the rate 1/n.

Proposition 26.1 (Weak law of large numbers) Let f1, . . . , fn be random
variables with means µ(fj) = m and covariances Cov(fj , fk) = σ2δjk. Then
their average (sample mean) satisfies

µ(
f1 + · · ·+ fn

n
) = m (26.5)

and

Var(
f1 + · · ·+ fn

n
) =

σ2

n
. (26.6)
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26.2 Elementary notions of conditional expecta-
tion

In probability there is an elementary notion of conditional expectation given an
event B with probability µ(B) > 0. It is

µ(f | B) =
µ(f1B)
µ(B)

. (26.7)

This defines a new expectation, corresponding to a world in which it is known
that the event B has happened. There is also the special case of conditional
probability

µ(A | B) =
µ(A ∩B)
µ(B)

. (26.8)

Even these elementary notions can be confusing. Here is a famous problem,
a variant of the shell game.

Suppose you’re on a game show and you’re given the choice of
three doors. Behind one is a car, behind each of the others is a
goat. You pick a door, say door a, and the host, who knows what’s
behind the other doors, opens another door, say b, which has a
goat. He then says : “Do you want to switch to door c?” Is it to
your advantage to take the switch?’

Here is a simple probability model for the game show. Let X be the door
with the car. Then P [X = a] = P [X = b] = P [X = c] = 1/3. Suppose the
contestant always initially chooses door a.

Solution 1: The host always opens door b. Then we are looking at conditional
probabilities given X 6= b. Then P [X = a | X 6= b] = (1/3)/(2/3) = 1/2 and
P [X = c | X 6= b] = (1/3)/(2/3) = 1/2. There is no advantage to switching.
However this careless reading of the problem overlooks the hint that the host
knows X.

Solution 2. The host always opens a door without a car. The door he opens
is g(X), where g(b) = c and g(c) = b and where for definiteness g(a) = b. Let f
be defined by f(b) = c and f(c) = b. Then the contestant can choose a or can
switch and choose f(g(X)). There is no need to condition on g(X) 6= X, since
it is automatically satisfied. The probabilities are then P [X = a] = 1/3 and
P [X = f(g(X))] = 2/3. It pays to switch. This is the solution that surprised
so many people.

26.3 The L2 theory of conditional expectation

The idea of conditional expectation is that there is a smaller σ-algebra of measur-
able functions F with random variables that convey partial information about
the result of the experiment.



264 CHAPTER 26. CONDITIONAL EXPECTATION

For instance, suppose that g is a random variable that may be regarded
as already measured. Then every function φ(g) is computable from g, so one
may think of φ(g) as measured. The σ-algebra of functions σ(g) generated by
g consists of all φ(g), where φ is a Borel function.

Given a σ-algebra F ⊂ S, we have the closed subspace

L2(Ω,F , µ) ⊂ L2(Ω,S, µ). (26.9)

Suppose f is in L2(Ω,S, µ). The conditional expectation µ(f | F) is defined to
be the orthogonal projection of f onto the closed subspace L2(Ω,F , µ).

The conditional expectation satisfies the usual properties of orthogonal pro-
jection. Thus µ(f | F) is a random variable in F , and f − µ(f | F) is
orthogonal to L2(Ω,F , µ). This says that for all g in L2(Ω,F , µ) we have
〈µ(f | F), g〉 = 〈f, g〉, that is,

µ(µ(f | F)g) = µ(fg). (26.10)

If we take g = 1, then we get the important equation

µ(µ(f | F)) = µ(f). (26.11)

This says that we can compute the expectation µ(f) in two stages: first com-
pute the conditional expectation random variable µ(f | F), then compute its
expectation. In other words, work out the prediction based on the first stage of
the experiment, then use these results to compute the prediction for the total
experiment.

Proposition 26.2 The conditional expectation is order-preserving. If f ≤ g,
then µ(f | F) ≤ µ(g | F).

Proof: First we prove that if h ≥ 0, then µ(h | F) ≥ 0. Consider h ≥ 0.
Let E be the set where µ(h | F) < 0. Then 1E is in F , so µ(µ(f | F)1E) =
µ(f1E) ≥ 0. This can only happen if µ(f | F) = 0 almost everywhere on E.
We can then apply this to h = g − f . �

Corollary 26.3 The random variables µ(f | F) and µ(|f | | F) satisfy |µ(f |
F)| ≤ µ(|f | | F).

Proof: Since ±f ≤ |f |, we have ±µ(f | F) ≤ µ(|f | | F). �

Corollary 26.4 The expectations satisfy µ(|µ(f | F)|) ≤ µ(|f |).
Here is the easiest example of a conditional expectation. Suppose that there

is a partition of Ω into a countable family of disjoint measurable sets Bj with
union Ω. Suppose that the probability of each Bj is strictly positive, that is,
µ(Bj) > 0. Let B be the σ-algebra of measurable functions generated by the
indicator functions 1Bj . The functions in B are constant on each set Bj . Then
the conditional expectation of f with finite variance is the projection

µ(f | B) =
∑

j

〈1Bj , f〉
〈1Bj , 1Bj 〉

1Bj . (26.12)
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Explicitly, this is
µ(f | B) =

∑

j

µ(f | Bj)1Bj . (26.13)

Now specialize to the case when f = 1A. Then this is the conditional probability
random variable

µ(A | B) =
∑

j

µ(A | Bj)1Bj . (26.14)

This is the usual formula for conditional probability. It says that the conditional
probability of A given which of the events Bj happened depends on the outcome
of the experiment. If the outcome is such that a particulary Bj happened, then
the value of the conditional probability is µ(A | Bj).

In this example the formula that the expectation of the conditional expec-
tation is the expectation takes the form

µ(f) =
∑

j

µ(f | Bj)µ(Bj). (26.15)

The corresponding formula for probability is

µ(A) =
∑

j

µ(A | Bj)µ(Bj). (26.16)

Sometimes the notation µ(f | g) is used to mean µ(f | σ(g)), where σ(g) is
the σ-algebra of measurable random variables generated by the random variable
g. Since µ(f | g) belongs to this σ-algebra of functions, we have µ(f | g) = φ(g)
for some Borel function φ. Thus the conditional expectation of f given g consists
of the function φ(g) of g that best predicts f based on the knowledge of the
value of g. Notice that the special feature of probability is not the projection
operation, which is pure Hilbert space, but the nonlinear way of generating the
closed subspace on which one projects.

26.4 The L1 theory of conditional expectation

Consider again a probability space Ω,S, µ. The conditional expectation may
be defined for f in L1(Ω,S, µ). Let F ⊂ S be a σ-algebra of functions. Let
fn = f where |f | ≤ n and let fn = 0 elsewhere. Then fn → f in L1(Ω,S, µ),
by the dominated convergence theorem. So L2(Ω,S, µ) is dense in L1(Ω,S, µ).
Furthermore, by a previous corollary the map f 7→ µ(f | F) (defined as a pro-
jection in Hilbert space) is uniformly continuous with respect to the L1(Ω,S, µ)
norm. Therefore it extends by continuity to all of L1(Ω,S, µ). It other words,
for each f in L1(Ω,S, µ) the conditional expectation is defined and is an element
of L1(Ω,S, µ).

It is not hard to see that for f in L1(Ω,S, µ) the conditional expectation µ(f |
F) is the element of L1(Ω,S, µ) characterized by the following two properties.
The first is that µ(f | F) is in F , or equivalently, that µ(f | F) is in L1(Ω,F , µ).
The second is that for all g in L∞(Ω,F , µ) we have µ(µ(f | F)g) = µ(fg).
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Here is a technical remark. There is another way to construct the L1 con-
ditional expectation by means of the Radon-Nikodym theorem. Say that f ≥ 0
is in L1(Ω,S, µ). The idea is to look at the finite measure ν defined on F mea-
surable functions g ≥ 0 by ν(g) = µ(fg). Suppose that µ(g) = 0. Then the set
where g > 0 is in F with µ measure zero, and so the set where fg > 0 is in S
with µ measure zero. So ν(g) = 0. This shows that ν ≺ µ as measures defined
for F measurable functions. By the Radon-Nikodym theorem there exists an
h ≥ 0 in L1(Ω,F , µ) such that ν(g) = µ(hg) for all g ≥ 0 that are F measurable.
This h is the desired conditional expectation h = µ(f | F).

Here is an example where conditional expectation calculations are simple.
Say that Ω = Ω1 × Ω2 is a product space. The σ-algebra S = S1

⊗S2. There
is a product reference measure ν = ν1 × ν2. The actual probability measure µ
has a density w with respect to this product measure:

µ(f) = (ν1 × ν2)(fw) =
∫ ∫

f(x, y)w(x, y) dν1(x) dν2(y). (26.17)

Thus the experiment is carried on in two stages. What prediction can we make if
we know the result for the first stage? Let F1 = S1

⊗
R consist of the functions

g(x, y) = h(x) where h is in S1. This is the information given by the first stage.
It is easy to compute the prediction µ(f | F1) for the second stage. The answer
is

µ(f | F1)(x, y) =
∫
f(x, y′)w(x, y′) dν2(y′)∫

w(x, y′) dν2(y′)
. (26.18)

This is easy to check from the definition. Notice that the conditional expectation
only depends on the first variable, so it is in F1. For those who like to express
such results without the use of bound variables, the answer may also be written
as

µ(f | F1) =
ν2 ◦ (fw)|1

ν2 ◦ w|1
. (26.19)

A notation such as w|1 means the function that assigns to each x the function
y 7→ w(x, y) of the second variable. Thus ν2 ◦w|1 means the composite function
that assigns to each x the integral ν2(w|1(x)) =

∫
w(x, y) dν2(y) of this function

of the second variable.

Problems

1. Deduce the weak law of large numbers as a consequence of Hilbert space
theory.

2. Consider the game show problem with the three doors a, b, c and prize
X = a, b, or c with probability 1/3 for each. Recall that the host chooses
g(X), where g(c) = b and g(b) = c and also g(a) = b, though this is
not known to the contestant. (i) Find P [X = a | g(X) = b] and P [X =
f(g(X)) | g(X) = b]. If the game show host chooses b, does the contestant
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gain by switching? (ii) Find P [X = a | g(X) = c] and P [X = f(g(X)) |
g(X) = c]. If the game show host chooses c, does the contestant gain
by switching? (iii) Find the probabilities P [g(X) = b] and P [g(X) = c].
(iv) Consider the random variable with value P [X = f(g(X)) | g(X) = b]
provided that g(X) = b and with value P [X = f(g(X)) | g(X) = c]
provided that g(X) = c. Find the expectation of this random variable.

3. Say that f is a random variable with finite variance, and g is another ran-
dom variable. How can one choose the function φ to make the expectation
µ((f − φ(g))2) as small as possible?

4. Let λ > 0 be a parameter describing the rate at which accidents occur.
Let W1 be the time to wait for the first accident, and let W2 be the time
to wait from then until the second accident. These are each exponentially
distributed random variables, and their joint distribution is given by a
product measure. Thus

µ(f(W1,W2)) =
∫ ∞

0

∫ ∞
0

f(w1, w2)λ exp(−λw1)λ exp(−λw2) dw1 dw2.

(26.20)
Let T1 = W1 be the time of the first accident, and let T2 = W1 + W2 be
the time of the second accident. Show that

µ(h(T1) | T2) =
1
T2

∫ T2

0

h(u) du. (26.21)

That is, show that given the time T2 of the second accident, the time T1

of the first accident is uniformly distributed over the interval [0, T2]. Hint:
Make the change of variable t1 = w1 and t2 = w1 +w2 and integrate with
respect to dt1dt2. Be careful about the limits of integration.

5. Can a σ-algebra of measurable functions (closed under pointwise opera-
tions of addition, multiplication, sup, inf, limits) be a finite dimensional
vector space? Describe all such examples.

6. Say that µ is a probability measure or the corresponding expectation. Let
f be in L1 and let F be a smaller σ-algebra of measurable functions. Then
the conditional expectation µ(f | F) is defined by the properties that it is
an L1 function that is F measurable, and for all positive L∞ functions g
that are F measurable there is an identity

µ(fg) = µ(µ(f | F)g). (26.22)

Prove the monotone convergence theorem for conditional expectation.
That is, prove that if 0 ≤ fn ↑ f , then 0 ≤ µ(fn | F) ↑ µ(f |F) almost
everywhere and in L1.
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Chapter 27

Fourier series

27.1 Periodic functions

Let T be the circle parameterized by [0, 2π) or by [−π, π). Let f be a complex
function in L2(T ). The nth Fourier coefficient is

cn =
1

2π

∫ 2π

0

e−inxf(x) dx. (27.1)

The goal is to show that f has a representation as a Fourier series

f(x) =
∞∑

n=−∞
cne

inx. (27.2)

Another goal is to establish the equality

1
2π

∫ 2π

0

|f(x)|2 dx =
∞∑

n=−∞
|cn|2. (27.3)

There are two problems with the Fourier series representation. One is to in-
terpret the sense in which the series converges. The second is to show that it
actually converges to f .

Before turning to these issues, it is worth looking at the intuitive significance
of these formulas. Write einx = cos(nx) + i sin(nx). Then

f(x) =
1
2
a0 +

∞∑
n=1

[an cos(nx) + bn sin(nx)], (27.4)

where an = cn + c−n and bn = i(cn − c−n) for n ≥ 0. Note that b0 = 0. Also
2cn = an − ibn and 2c−n = an + ibn for n ≥ 0. Furthermore, |an|2 + |bn|2 =
2(|cn|2 + |c−n|2).

In some applications f(x) is real and the coefficients an and bn are real. This
is equivalent to c−n = c̄n. In this case for n ≥ 0 we can write an = rn cos(φn)

269
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and bn = rn sin(φn), where rn =
√
a2
n + b2n ≥ 0. Thus φ0 is an integer multiple

of π. Then the series becomes for real f(x)

f(x) =
1
2
r0 cos(−φ0) +

∞∑
n=1

rn cos(nx− φn). (27.5)

We see that the rn determines the amplitude of the wave at angular frequency
n, while the φn is a phase. Notice that the complex form coefficients are then
2cn = rne

−iφn and c−n = rne
iφn . Thus the coefficients in the complex expansion

carry both the amplitude and phase information.

27.2 Convolution

It is possible to define Fourier coefficients for f in L1(T ). The formula is

cn =
1

2π

∫ 2π

0

e−inxf(x) dx. (27.6)

It is clear that the sequence of coefficients is in `∞.
If f and g are in L1(T ), then we may define their convolution f ∗ g by

(f ∗ g)(x) =
1

2π

∫

T

f(x− y)g(y) dy =
1

2π

∫

T

f(z)g(x− z) dz. (27.7)

All integrals are over the circle continued periodically.

Proposition 27.1 If f has Fourier coefficients cn and g has Fourier coefficients
dn, then f ∗ g has Fourier coefficients cndn.

Proof: This is an elementary calculation. �
Another useful operation is the adjoint (function)adjoint of a function in

L1(T ). The adjoint function f∗ is defined by f∗(x) = f(−x).

Proposition 27.2 If f has Fourier coefficients cn, then its adjoint f∗ has
Fourier coefficients c̄n.

27.3 Approximate delta functions

An approximate delta function is a sequence of functions δa for a > 0 with the
following properties.

1. For each a > 0 the integral
∫∞
−∞ δa(x) dx = 1.

2. The function δa(x) ≥ 0 is positive.

3. For each c > 0 the integrals satisfy lima→0

∫
|x|≥c δa(x) dx = 0.
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Theorem 27.3 Let δa for a > 0 be an approximate δ function. Then for each
bounded continuous function f we have

lim
a→0

∫ ∞
−∞

f(x− y)δa(y) dy = f(x). (27.8)

Proof: By the first property
∫ ∞
−∞

f(x− y)δa(y) dy − f(x) =
∫ ∞
−∞

[f(x− y)− f(x)]δa(y) dy. (27.9)

By the second property

|
∫ ∞
−∞

f(x− y)δa(y) dy − f(x)| ≤
∫ ∞
−∞
|f(x− y)− f(x)|δa(y) dy. (27.10)

Consider ε > 0. Then by the continuity of f at x there exists c > 0 such that
|y| < c implies |f(x − y) − f(x)| < ε/2. Suppose |f(x)| ≤ M for all x. Break
up the integral into the parts with |y| ≥ c and |y| < c. Then using the first
property on the second term we get

|
∫ ∞
−∞

f(x− y)δa(y) dy − f(x)| ≤ 2M
∫

|y|>c
δa(y) dy + ε/2 (27.11)

The third property says that for sufficiently small a > 0 we can get the first
term also bounded by ε/2. �

There is also a concept of approximate delta function for functions on the
circle T . This is what we need for the application to Fourier series. In fact, there
is an explicit formula given by the Poisson kernel for the circle. For 0 ≤ r < 1
let

Pr(x) =
∞∑

n=−∞
r|n|einx =

1− r2

1− 2r cos(x) + r2
. (27.12)

The identity is proved by summing a geometric series. Then the functions
1

2πPr(x) have the properties of an approximate delta function as r approaches
1. Each such function is positive and has integral 1 over the periodic interval.
Furthermore,

Pr(x) ≤ 1− r2

2r(1− cos(x))
, (27.13)

which approaches zero as r → 1 away from points where cos(x) = 1.

27.4 Abel summability

The following theorem shows that the Fourier series of a continuous function
on the circle is always Abel summable. This means that one multiplies the
coefficients by r|n| with 0 < r < 1, performs the resulting sum, and then takes
the limit as r increases to 1. This is formally the same as taking the usual sum,
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but there is no guarantee that this usual sum is absolutely convergent. The
most important consequence of Abel summability is that the Fourier coefficients
uniquely determine the function.

Theorem 27.4 Let f in C(T ) be a continuous function on the circle. Then

f(x) = lim
r↑1

∞∑
n=−∞

r|n|cneinx. (27.14)

Proof: Proof: It is easy to compute that

1
2π

∫ 2π

0

Pr(y)f(x− y) dy =
∞∑

n=−∞
r|n|cneinx. (27.15)

Let r ↑ 1. Then by the theorem on approximate delta functions

f(x) = lim
r↑1

∞∑
n=−∞

r|n|cneinx. (27.16)

�

Corollary 27.5 Let f in C(T ) be a continuous function on the circle. Suppose
that the Fourier coefficients c of f are in `1. Then

f(x) =
∞∑

n=−∞
cne

inx. (27.17)

The convergence is uniform.

Proof: If in addition c is in `1, then the dominated convergence theorem for
sums says it is possible to interchange the limit and the sum. �

27.5 L2 convergence

The simplest and most useful theory is in the context of Hilbert space. The
result of this section shows that a square-integrable 2π-periodic function may
be specified by giving its Fourier coefficients at all frequencies, and conversely,
every `2 sequence of coefficients gives rise to such a function. There is a perfect
equivalence between the two descriptions.

Let L2(T ) be the space of all (Borel measurable) functions such that

‖f‖22 =
1

2π

∫ 2π

0

|f(x)|2 dx <∞. (27.18)

Then L2(T ) is a Hilbert space with inner product

〈f, g〉 =
1

2π

∫ 2π

0

f(x)g(x) dx. (27.19)
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Here T is the circle, regarded as parameterized by an angle that goes from 0 to
2π.

Let
φn(x) = exp(inx). (27.20)

Then the φn form an orthonormal family in L2(T ). It follows from general
Hilbert space theory (theorem of Pythagoras) that

‖f‖22 =
∑

|n|≤N
|cn|2 + ‖f −

∑

|n|≤N
cnφn‖22. (27.21)

In particular, Bessel’s inequality says that

‖f‖22 ≥
∑

|n|≤N
|cn|2. (27.22)

This shows that ∞∑
n=−∞

|cn|2 <∞. (27.23)

The space of sequences satisfying this identity is `2. Thus we have proved the
following proposition.

Proposition 27.6 If f is in L2(T ), then its sequence of Fourier coefficients is
in `2.

Theorem 27.7 If f is in L2(T ), then

‖f‖22 =
∑
n

|cn|2. (27.24)

Proof: The function f has Fourier coefficients cn. The adjoint function f∗

defined by f∗(x) = f(−x) has complex conjugate Fourier coefficients c̄n. The
coefficients of a convolution are the product of the coefficients. Hence g = f∗ ∗f
has coefficients c̄ncn = |cn|2.

Suppose that f is in L2(T ). Then g = f∗ ∗ f is in C(T ). In fact,

g(x) =
1

2π

∫

T

f(y − x)f(y) dy = 〈fx, f〉, (27.25)

where fx is f translated by x. Since translation is continuous in L2(T ), it follows
that g is a continuous function. Furthermore, since f is in L2(T ), it follows that
c is in `2, and so |c|2 is in `1. Thus the theorem applies, and

g(x) =
1

2π

∫

T

f(y − x)f(y) dy =
∑
n

|cn|2einx. (27.26)

The conclusion follows by taking x = 0. �



274 CHAPTER 27. FOURIER SERIES

Theorem 27.8 If f is in L2(T ), then

f =
∞∑

n=−∞
cnφn (27.27)

in the sense that
lim
N→∞

‖f −
∑

|n|≤N
cnφn‖22 = 0. (27.28)

Proof: Use the identity

‖f‖22 =
∑

|n|≤N
|cn|2 + ‖f −

∑

|n|≤N
cnφn‖22. (27.29)

The first term on the right hand side converges to the left hand side, so the
second term on the right hand side must converge to zero. �

27.6 C(T) convergence

Define the function spaces

C(T ) ⊂ L∞(T ) ⊂ L2(T ) ⊂ L1(T ). (27.30)

The norms ‖f‖∞ on the first two spaces are the same, the smallest number M
such that |f(x)| ≤M (with the possible exception of a set of x of measure zero).
The space C(T ) consists of continuous functions; the space L∞(T ) consists of
all bounded functions. The norm on L2(T ) is given by ‖f‖22 = 1

2π

∫ 2π

0
|f(x)|2 dx.

The norm on L1(T ) is given by ‖f‖1 = 1
2π

∫ 2π

0
|f(x)| dx. Since the integral is a

probability average, their relation is

‖f‖1 ≤ ‖f‖2 ≤ ‖f‖∞. (27.31)

Also define the sequence spaces

`1 ⊂ `2 ⊂ c0 ⊂ `∞. (27.32)

The norm on `1 is ‖c‖1 =
∑
n |cn|. Then norm on `2 is given by ‖c‖22 =

∑
n |cn|2.

The norms on the last two spaces are the same, that is, ‖c‖∞ is the smallest
M such that |cn| ≤ M . The space c0 consists of all sequences with limit 0 at
infinity. The relation between these norms is

‖c‖∞ ≤ ‖c‖2 ≤ ‖c‖1. (27.33)

We have seen that the Fourier series theorem gives a perfect correspondence
between L2(T ) and `2. For the other spaces the situation is more complicated.
Some useful information is expressed in the Riemann-Lebesgue lemma.
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Lemma 27.9 (Riemann-Lebesgue) If f is in L1(T ), then the Fourier coef-
ficients of f are in c0, that is, they approaches 0 at infinity.

Proof: Each function in L2(T ) has Fourier coefficients in `2, so each function
in L2(T ) has Fourier coefficients that vanish at infinity. The map from a function
to its Fourier coefficients gives a continuous map from L1(T ) to `∞. However
every function in L1(T ) may be approximated arbitrarily closely in L1(T ) norm
by a function in L2(T ). Hence its coefficients may be approximated arbitrarily
well in `∞ norm by coefficients that vanish at infinity. Therefore the coefficients
vanish at infinity. �

In summary, the map from a function to its Fourier coefficients gives a con-
tinuous map from L1(T ) to c0. That is, the Fourier coefficients of an integrable
function are bounded (this is obvious) and approach zero (Riemann-Lebesgue
lemma). Furthermore, it may be shown that the Fourier coefficients determine
the function uniquely.

The map from Fourier coefficients to functions gives a continuous map from
`1 to C(T ). An sequence that is absolutely summable defines a Fourier series
that converges absolutely and uniformly to a continuous function.

For the next result the following lemma will be useful.

Lemma 27.10 Say that

f(x) =
∞∑

n=−∞
cne

inx (27.34)

with L2(T ) convergence. Then the identity

f ′(x) =
∞∑

n=−∞
incne

inx (27.35)

obtained by differentiating holds, again in the sense of L2(T ) convergence. Here
the relation between f and f ′ is that f is an indefinite integral of f ′. Furthermore
f ′ has integral zero and f is periodic.

Proof: Let h(x) =
∑
n 6=0 bne

inx be in L2(T ). Define the integral V h by
(V h)(x) =

∫ x
0
h(y) dy. Then

‖V h‖2 ≤ ‖V h‖∞ ≤ (2π)‖h‖1 ≤ (2π)‖h‖2. (27.36)

This shows that V is continuous from L2(T ) to L2(T ). Thus we can apply V
to the series term by term. This gives

(V h)(x) =
∑

n 6=0

bn
einx − 1
in

= C +
∑

n6=0

bn
in
einx. (27.37)

Thus the effect of integrating is to divide the coefficient by in. Since differenti-
ation has been defined in this context to be the inverse of integration, the effect
of differentiation is to multiply the coefficient by in. �
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Theorem 27.11 If f is in L2(T ) and if f ′ exists (in the sense that f is an
integral of f) and if f ′ is also in L2(T ), then the Fourier coefficients are in `1.
Therefore the Fourier series converges in the C(T ) norm.

Proof: The hypothesis of the theorem means that there is a function f ′ in
L2(T ) with

∫ 2π

0
f ′(y) dy = 0. Then f is a function defined by

f(x) = c0 +
∫ x

0

f ′(y) dy (27.38)

with an arbitrary constant of integration. This f is an absolutely continuous
function. It is also periodic, because of the condition on the integral of f ′.

The proof is completed by noting that

∑

n6=0

|cn| =
∑

n 6=0

1
|n| |ncn| ≤

√∑

n 6=0

1
n2

√∑

n6=0

n2|cn|2. (27.39)

In other words,
∑

n6=0

|cn| ≤
√
π2

3
‖f ′‖2. (27.40)

�

27.7 Pointwise convergence

There remains one slightly unsatisfying point. The convergence in the L2 sense
does not imply convergence at a particular point. Of course, if the derivative
is in L2 then we have uniform convergence, and in particular convergence at
each point. But what if the function is differentiable at one point but has
discontinuities at other points? What can we say about convergence at that
one point? Fortunately, we can find something about that case by a closer
examination of the partial sums.

One looks at the partial sum

∑

|n|≤N
cne

inx =
1

2π

∫ 2π

0

DN (x− y)f(y) dy. (27.41)

Here

DN (x) =
∑

|n|≤N
einx =

sin((N + 1
2 )x)

sin(1
2x)

. (27.42)

This Dirichlet kernel DN (x) has at least some of the properties of an approxi-
mate delta function. Unfortunately, it is not positive; instead it oscillates wildly
for large N at points away from where sin(x/2) = 0. However the function
1/(2π)DN (x) does have integral 1.
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Theorem 27.12 If for some x the function

dx(z) =
f(x+ z)− f(x)

2 sin(z/2)
(27.43)

is in L1(T ), then at that point

f(x) =
∞∑

n=−∞
cnφn(x). (27.44)

Note that if dx(z) is continuous at z = 0, then its value at z = 0 is dx(0) =
f ′(x). So the hypothesis of the theorem is a condition related to differentiability
of f at the point x. The conclusion of the theorem is pointwise convergence of
the Fourier series at that point. Since f may be discontinuous at other points,
it is possible that this Fourier series is not absolutely convergent. Thus the
series must be interpreted as the limit of the partial sums over |n| ≤ N , taken
as N →∞.

Proof: We have

f(x)−
∑

|n|≤N
cne

inx =
1

2π

∫ 2π

0

DN (z)(f(x)− f(x− z)) dz. (27.45)

We can write this as

f(x)−
∑

|n|≤N
cne

inx =
1

2π

∫ 2π

0

2 sin((N +
1
2

)z)dx(−z) dz. (27.46)

This goes to zero as N →∞, by the Riemann-Lebesgue lemma. �

27.8 Supplement: Ergodic actions

Consider the case where a group acts on a measurable space X. This defines an
equivalence relation, where the equivalence classes are the orbits of the group.
A probability measure µ on X is ergodic if every measurable invariant subset
(union of equivalence classes) has µ probability zero or one.

The historical origin of this subject is the case when the group action consists
of time translation acting on some space of configurations. There is an invariant
probability measure µ on the space of configurations, and the ergodic condition
implies that long time averages of various quantities may be obtained by taking
the expectation with respect to the probability measure. See the book by Sinai
[19] for an introduction to the theory.

The next theorem gives the simplest example, where the group is Z and it
acts on the circle T by rotation by an irrational angle.

Theorem 27.13 Let T be the circle of circumference one with the rotationally
invariant probability measure. Let α be an irrational number. Then rotation by
α is ergodic.



278 CHAPTER 27. FOURIER SERIES

Proof: The group action is given by n · x = x + nα modulo 1. Two points
x, x′ are in the same orbit if there are n, n′ with n · x = n′ · x′. This says that
x− x′ = (n′ − n)α modulo 1.

The proof that this is an ergodic action follows easily from Fourier analysis.
Let f be an L2 function on T that is invariant under the irrational rotation.
Thus F could be the indicator function of a measurable subset that is invariant
under irrational rotation. Expand f in a Fourier series

f(x) =
∞∑

k=−∞
cke

2πikx. (27.47)

The condition that f is invariant under the irrational rotation by α translates
to the condition that

ck = e2πikαck. (27.48)

So either ck = 0 or the phase e2πikα = 1. This last is true if and only if kα = m
for some integer m. Since α is irrational, this can be true only if k = 0. We
conclude that k 6= 0 implies ck = 0. Thus f(x) = c0 is constant. If f is an
indicator function, then the corresponding measurable subset is either empty or
the whole circle, up to sets of measure zero. �

This result has a generalization to the torus T 2 that is the product of two
circles. What is interesting here is the condition on the action of the group
Z. Contrast this with the condition in the following theorem, where the group
action is by R.

Theorem 27.14 Let T 2 be the torus that is the product of two circles each
of circumference one. The measure is Lebesgue measure. Let α and β be two
numbers. Suppose that whenever p and q and m are integers with pα+ qβ = m,
then p = q = 0. Then rotation by α, β is ergodic.

Proof: The group action is given by n · (x, y) = (x+ nα, y + nβ), with the
addition taken modulo 1. The proof of ergodicity is left to the reader. It uses
the Fourier series expansion

f(x, y) =
∞∑

p=−∞

∞∑
q=−∞

cp,qe
2πi[px+qy]. (27.49)

The rest of the proof is much as in the previous result. �
The group does not have to be discrete. Consider the case is where the space

X = T 2 is the torus, and the group consists of the reals R.

Theorem 27.15 Let T 2 be the that is the product of two circles, each of cir-
cumference one. The measure is Lebesgue measure. Let α and β be numbers
such that whenever p and q are integers with pα+qβ = 0, then p = q = 0. Then
rotation by α, β is ergodic.
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Proof: The group action is given by t · (x, y) = (x+ tα, y + tβ), where the
sums are taken modulo 1. The proof that this is an ergodic action again follows
from Fourier analysis. Let f be an L2 function on T 2 that is invariant under
the irrational rotation. Expand f in a Fourier series

f(x, y) =
∞∑

p=−∞

∞∑
q=−∞

cp,qe
2πi[px+qy]. (27.50)

The condition that f is invariant under the rotations translates to the condition
that for each real t

cp,q = e2πit[pα+qβ]cp,q. (27.51)

So either cp,q = 0 or all the phases e2πit[pα+qβ] = 1. This last is true only if
pα+ qβ = 0, that is, only if p = q = 0. �

Problems

1. Let f(x) = x defined for −π ≤ x < π. Find the L1(T ), L2(T ), and L∞(T )
norms of f , and compare them.

2. Find the Fourier coefficients cn of f for all n in Z.

3. Find the `∞, `2, and `1 norms of these Fourier coefficients, and compare
them.

4. Use the equality of L2 and `2 norms to compute

ζ(2) =
∞∑
n=1

1
n2
. (27.52)

5. Compare the `∞ and L1 norms for this problem. Compare the L∞ and `1

norms for this problem.

6. Use the pointwise convergence at x = π/2 to evaluate the infinite sum

∞∑

k=0

(−1)k
1

2k + 1
, (27.53)

regarded as a limit of partial sums. Does this sum converge absolutely?

7. Let F (x) = 1
2x

2 defined for −π ≤ x < π. Find the Fourier coefficients of
this function.

8. Use the equality of L2 and `2 norms to compute

ζ(4) =
∞∑
n=1

1
n4
. (27.54)
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9. Compare the `∞ and L1 norms for this problem. Compare the L∞ and `1

norms for this problem.

10. At which points x of T is F (x) continuous? Differentiable? At which
points x of T is f(x) continuous? Differentiable? At which x does F ′(x) =
f(x)? Can the Fourier series of f(x) be obtained by differentiating the
Fourier series of F (x) pointwise? (This last question can be answered by
inspecting the explicit form of the Fourier series for the two problems.)

11. (a) Evaluate

lim
n→∞

∫ 1

0

(sin2(2πx))n dx. (27.55)

(b) Evaluate

lim
n→∞

∫ 1

0

sin2(2πnx) dx. (27.56)

(c) Evaluate

lim
n→∞

∫ 1

0

sin(2πnx)
1√
x
dx. (27.57)

12. Ergodic actions. Give an example of α, β such that pα + qβ = 0 implies
p = q = 0 but pα+ qβ = m does not imply p = q = 0.

13. Ergodic actions. Give an example of α, β such that pα+ qβ = m does not
imply p = q = 0.



Chapter 28

Fourier transforms

28.1 Fourier analysis

The general context of Fourier analysis is an abelian group and its dual group.
The elements x of the abelian group are thought of as space (or time) variables,
while the elements of the dual group are thought of as wave number (or angular
frequency) variables.

Examples:

1. Let ∆x > 0. The finite group consists of all x = j∆x for j = 0, . . . N − 1
with addition mod N∆x. The dual group is the finite group k = `∆k with
` = 0, . . . N − 1 with addition mod N∆k. Here N ∆x∆k = 2π.

2. Let L > 0. The compact group TL consists of all x in the circle of cir-
cumference L with addition mod L. The dual group is the discrete group
Z∆k consisting of all k = `∆k with ` ∈ Z. Here L∆k = 2π.

3. The discrete group Z∆x consists of all x = j∆x with j ∈ Z. The dual
group TB is the compact group of k in the circle of circumference B with
addition mod B, where ∆xB = 2π.

4. The group R consists of all x in the real line. The dual group R is all k in
the (dual) line.

In each case the formula are the essentially the same. Let λ > 0 be an
arbitrary constant. We have dual measures dx/λ and λdk/(2π). Their product
is dx dk/(2π). The Fourier transform is

f̂(k) =
∫
e−ikxf(x)

1
λ
dx. (28.1)

The integral is over the group. For a finite or discrete group it is a sum, and the
dx is replaced by ∆x. The Fourier representation is then given by the inversion

281
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formula

f(x) =
∫
eikxf̂(k)λ

dk

2π
. (28.2)

The integral is over the dual group. For a finite or discrete dual group it is a
sum, and the dk is replaced by ∆k.

The constant λ > 0 is chosen for convenience. There is a lot to be said for
standardizing on λ = 1. In the case of the circle one variant is λ = L. This
choice makes dx/λ a probability measure and λ∆k/(2π) = 1. Similarly, in the
case of the discrete group λ = ∆x makes ∆x/λ = 1 and λ dk/(2π) a probability
measure. In the case of the line λ = 1 is most common, though some people
prefer the ugly choice λ =

√
2π in a misguided attempt at symmetry.

28.2 L1 theory

Let f be a complex function on the line that is in L1. The Fourier transform f̂
is the function defined by

f̂(k) =
∫ ∞
−∞

e−ikxf(x) dx. (28.3)

Note that if f is in L1, then its Fourier transform f̂ is in L∞ and satisfies
‖f̂‖∞ ≤ ‖f‖1. Furthermore, it is a continuous function.

Similarly, let g be a function on the (dual) line that is in L1. Then the
inverse Fourier transform ǧ is defined by

ǧ(x) =
∫ ∞
−∞

eikxg(k)
dk

2π
. (28.4)

If g is a function and y is a real number, then the function x 7→ g(x − y)
is called the translate (or shift) of g by y. The purpose of Fourier analysis
is to analyze operations that are built out of translation, such as convolution
and differentiation. The ultimate reason that this succeeds is that the effect
of translation on the Fourier transform is simple. It replaces ĝ by the function
k 7→ eiky ĝ(k). In other words, it is just pointwise multiplication by a phase
factor.

We can look at the Fourier transform from a more abstract point of view.
The space L1 is a Banach space. Its dual space is L∞, the space of essentially
bounded functions. An example of a function in the dual space is the exponential
function φk(x) = eikx. The Fourier transform is then

f̂(k) = 〈φk, f〉 =
∫ ∞
−∞

φk(x)f(x) dx, (28.5)

where φk is in L∞ and f is in L1.
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Proposition 28.1 f, g are in L1(R, dx), then the convolution f ∗ g is another
function in L1(R, dx) defined by

(f ∗ g)(x) =
∫ ∞
−∞

f(x− y)g(y) dy =
∫ ∞
−∞

f(y)g(x− y) dy. (28.6)

Proposition 28.2 If f, g are in L1(R, dx), then the Fourier transform of the
convolution is the product of the Fourier transforms:

(̂f ∗ g)(k) = f̂(k)ĝ(k). (28.7)

Notice that convolution is defined in terms of translation. As a consequence,
the Fourier transform performs a great simplification, turning convolution into
pointwise multiplication.

As before, we define the adjoint!function)adjoint of a function f by f∗(x) =
f(−x). We shall see the reason for the term adjoint in the context of the L2

theory.

Proposition 28.3 Let f∗ be the adjoint of f . Then the Fourier transform of
f∗ is the complex conjugate of f̂ .

Theorem 28.4 If f is in L1 and is also continuous and bounded, we have the
inversion formula in the form

f(x) = lim
ε↓0

∫ ∞
−∞

eikxδ̂ε(k)f̂(k)
dk

2π
, (28.8)

where
δ̂ε(k) = exp(−ε|k|). (28.9)

Proof: The inverse Fourier transform of this is

δε(x) =
1
π

ε

x2 + ε2
. (28.10)

It is easy to calculate that
∫ ∞
−∞

eikxδ̂ε(k)f̂(k)
dk

2π
= (δε ∗ f)(x). (28.11)

However δε is an approximate delta function. The result follows by taking ε→ 0.
�

28.3 L2 theory

The space L2 is its own dual space, and it is a Hilbert space. It is the setting
for the most elegant and simple theory of the Fourier transform. This is the
Plancherel theorem that says that the Fourier transform is an isomorphism of
Hilbert spaces. In order words, there is a complete equivalence between the
time description and the frequency description of a function.
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Lemma 28.5 If f is in L1(R, dx) and in L2(R, dx), then f̂ is in L2(R, dk/(2π)),
and ‖f‖22 = ‖f̂‖22.

Proof: Let g = f∗ ∗ f . Then g is in L1, since it is the convolution of two
L1 functions. Furthermore, it is continuous and bounded. This follows from
the representation g(x) = 〈fx, f〉, where fx is translation by x. Since x→ fx is
continuous from R to L2, the result follows from the Hilbert space continuity of
the inner product. Finally, the Fourier transform of g is |f̂(k)|2. Thus

‖f‖22 = g(0) = lim
ε↓0

∫ ∞
−∞

δ̂ε(k)|f̂(k)|2 dk
2π

=
∫ ∞
−∞
|f̂(k)|2 dk

2π
(28.12)

by the monotone convergence theorem. �

Theorem 28.6 (Plancherel theorem) The Fourier transform F initially de-
fined on L1(R, dx)∩L2(R, dx) extends by uniform continuity to F : L2(R, dx)→
L2(R, dk/(2π)). The inverse Fourier transform F ∗ initially defined on L1(R, dk/(2π))∩
L2(R, dk/(2π)) extends by uniform continuity to F ∗ : L2(R, dk/(2π))→ L2(R, dx).
These are linear transformations that preserve L2 norm and preserve inner prod-
uct. Furthermore, F ∗ is the inverse of F .

Proof: It is easy to see that L1 ∩L2 is dense in L2. Here is the proof. Take
f in L2 and let An be a sequence of sets of finite measure that increase to all
of R. Then 1Anf is in L1 for each n, by the Schwarz inequality. Furthermore,
1Anf → f in L2, by the L2 dominated convergence theorem.

The lemma shows that F is an isometry, hence uniformly continuous. Fur-
thermore, the target space L2 is a complete metric space. Thus F extends by
uniform continuity to the entire domain space L2. It is easy to see that this
extension is also an isometry.

The same reasoning shows that the inverse Fourier transform F ∗ also maps
L2 onto L2 and preserves norm.

Now it is easy to check that (F ∗h, f) = (h, Ff) for f and h in L1 ∩L2. This
identity extends to all of L2. Take h = Fg. Then 〈F ∗Fg, f)〉 = 〈Fg, Ff〉 =
〈g, f〉. That is F ∗Fg = g. Similarly, one may show that FF ∗u = u. These
equations show that F ∗ = F−1 is the inverse of F . �

Corollary 28.7 Let f be in L2. Let An be a sequences subsets of finite measure
that increase to all of R. Then 1Anf is in L1 ∩ L2 and F (1Anf)→ F (f) in L2

as n→∞. That is, for fixed n the function with values given by

F (1Anf)(k) =
∫

An

e−ikxf(x) dx (28.13)

is well defined for each k, and the sequence of such functions converges in the
L2 sense to the Fourier transform Ff , where the function (Ff)(k) is defined
for almost every k. Explicitly, this says that the Fourier transform of an L2

function f is the L2 function f̂ = Ff characterized by
∫ ∞
−∞
|f̂(k)−

∫

An

e−ikxf(x) dx|2 dk
2π
→ 0 (28.14)



28.4. ABSOLUTE CONVERGENCE 285

as n→∞.

Another interesting result about convolution is Young’s inequality. The case
of interest for us is the Hilbert space case p = 2.

Theorem 28.8 (Young’s inequality) If f is in L1 and g is in Lp, 1 ≤ p ≤
∞, then

‖f ∗ g‖p ≤ ‖f‖1‖g‖p. (28.15)

.

Proof: Here is a proof for the case when 1 ≤ p <∞. Consider the function
|g(x, y)|. The left hand side of the inequality is bounded by the Lp norm with
respect to dx of the integral of this function with the finite measure |f(y)| dy.
Minkowski’s inequality for integrals says that the Lp norm of the integral is
bounded by the integral of the Lp norms. So the left hand side is bounded by
the integral with respect to |f(y)| dy of the Lp norm of |g(x − y)| with respect
to dx. A miracle occurs: due to translation invariance this is independent of y
and in fact equal to ‖g‖p. The remaining integral with respect to dy gives the
other factor ‖f‖1. �

A special case of Young’s inequality is that if f is in L1 and g is in L2, then
the convolution f ∗ g is in L2. In this context f̂ is in L∞ and ĝ is in L2, so the
Fourier transform of the convolution f ∗ g in L2 is the pointwise product f̂ ĝ in
L2.

This sheds light on the role of the adjoint function f∗. It is not difficult
to verify that 〈f∗ ∗ h, g〉 = 〈h, f ∗ g〉. In other words, convolution by f∗ is the
adjoint in the usual Hilbert space sense of convolution by f .

Since f∗ ∗ h has Fourier transform f̂ f̂ , the Fourier transform takes con-
volution by the adjoint function into pointwise multiplication by the complex
conjugate function.

28.4 Absolute convergence

We have seen that the Fourier transform gives a perfect correspondence between
L2(R, dx) and L2(R, dk/(2π)). For the other spaces the situation is more com-
plicated. It is difficult to characterize the image of L1(R, dx), but the Riemann-
Lebesgue lemma gives some information about it.

Theorem 28.9 (Riemann-Lebesgue lemma) The map from a function to
its Fourier transform gives a continuous map from L1(R, dx) to C0(R). That
is, the Fourier transform of an integrable function is continuous and bounded
and approaches zero at infinity.

Proof: We have seen that the Fourier transform of an L1 function is bounded
and continuous. The main content of the Riemann-Lebesgue lemma is that is
also goes to zero at infinity. This can be proved by checking it on a dense subset,
such as the space of step functions. �
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One other useful fact is that if f is in L1(R, dx) and g is in L2(R, dx), then
the convolution f ∗ g is in L2(R, dx). Furthermore, f̂ ∗ g(k) = f̂(k)ĝ(k) is the
product of a bounded function with an L2(R, dk/(2π)) function and therefore
is in L2(R, dk/(2π)).

However the same pattern of the product of a bounded function with an
L2(R, dk/(2π)) function can arise in other ways. For instance, consider the
translate fa of a function f in L2(R, dx) defined by fa(x) = f(x − a). Then
f̂a(k) = exp(−ika)f̂(k). This is also the product of a bounded function with an
L2(R, dk/(2π)) function.

One can think of this last example as a limiting case of a convolution.
Let δε be an approximate δ function. Then (δε)a ∗ f has Fourier transform
exp(−ika)δ̂ε(k)f̂(k). Now let ε→ 0. Then (δε)a∗f → fa, while exp(−ika)δ̂ε(k)f̂(k)→
exp(−ika)f̂(k).

Theorem 28.10 If f is in L2(R, dx) and if f ′ exists (in the sense that f is an
integral of f) and if f ′ is also in L2(R, dx), then the Fourier transform is in
L1(R, dk/(2π)). As a consequence f is is C0(R).

Proof: f̂(k) = (1/
√

1 + k2) · √1 + k2f̂(k). Since f is in L2, it follows that
f̂(k) is in L2. Since f ′ is in L2, it follows that kf̂(k) is in L2. Hence

√
1 + k2f̂(k)

is in L2. Since 1/
√

1 + k2 is also in L2, it follows from the Schwarz inequality
that f̂(k) is in L1. �

28.5 Fourier transform pairs

There are some famous Fourier transforms. Fix σ > 0, and consider first the
Gaussian

gσ(x) =
1√

2πσ2
exp(− x2

2σ2
). (28.16)

Its Fourier transform is similar; it is the Gauss kernel

ĝσ(k) = exp(−σ
2k2

2
). (28.17)

Here is a proof of this Gaussian formula. Define the Fourier transform ĝσ(k)
by the usual formula. Check that

(
d

dk
+ σ2k

)
ĝσ(k) = 0. (28.18)

This proves that

ĝσ(k) = C exp(−σ
2k2

2
). (28.19)

Now apply the equality of L2 norms. This implies that C2 = 1. By looking at
the case k = 0 it becomes obvious that C = 1.
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Let ε > 0. Introduce the Heaviside function H(k) that is 1 for k > 0 and 0
for k < 0. The two basic Fourier transform pairs are

fε(x) =
1

x− iε (28.20)

with Fourier transform
f̂ε(k) = 2πiH(−k)eεk. (28.21)

and its complex conjugate

fε(x) =
1

x+ iε
(28.22)

with Fourier transform

f̂ε(−k) = −2πiH(k)e−εk. (28.23)

These may be checked by computing the inverse Fourier transform. Notice that
fε and its conjugate are not in L1(R).

Take 1/π times the imaginary part. This gives the approximate delta func-
tion given by the Poisson kernel on the line given by

δε(x) =
1
π

ε

x2 + ε2
. (28.24)

with Fourier transform
δ̂ε(k) = e−ε|k|. (28.25)

Instead take the real part. This gives the approximate principal value of 1/x
function

pε(x) =
x

x2 + ε2
(28.26)

with Fourier transform

p̂ε(k) = −πi[H(k)e−εk −H(−k)eεk]. (28.27)

28.6 Supplement: Poisson summation formula

The classical setting for the Poisson summation formula begins with the group
R and its dual group, which is also R. However there is also a specified discrete
discrete subgroup Z∆x and a corresponding quotient group, which is a circle of
circumference ∆x. Finally, there is the dual group of this quotient group, which
is Z∆k, where ∆k∆x = 2π.

Theorem 28.11 (Poisson summation formula) Let f be in L1(R, dx) with
f̂ in L1(R, dk/(2π)) and such that

∑
` |f̂(`∆k)| <∞. Then

∑

j∈Z

f(j∆x) ∆x =
∑

`∈Z

f̂(`∆k). (28.28)
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Proof: Let
h(x) =

∑

j

f(x+ j∆x). (28.29)

Since h(x) is periodic with period ∆x, we can expand

h(x) =
∑

`

a`e
i`Deltakx. (28.30)

It is easy to compute that

a` =
1

∆x

∫ ∆x

0

e−i`∆k yf(y) dy = f̂(`∆k). (28.31)

So the Fourier series of h(x) is absolutely summable, and hence converges point-
wise to a continuous function. This gives the representation

∑

j

f(x+ j∆x) ∆x =
∑

f̂(`∆k)ei`∆k x (28.32)

Take x = 0 to get the formula as stated. �
Say that one is interested in the Fourier transform f̂(α) at angular frequency

α. One might use the Poisson summation formula with a given ∆x to compute
a discrete Riemann sum approximation to this Fourier transform. The following
corollary shows that the result is a sum of the Fourier transforms not only at
α, but also at all “alias” angular frequencies α+ `∆k.

Corollary 28.12 If the Poisson summation formula is applied to f(x)e−iαx

with Fourier transform f̂(k + α), then it becomes
∑

j∈Z

f(j Deltax)e−iαj∆x ∆x =
∑

`∈Z

f̂(α+ `∆k). (28.33)

Problems

1. Let f(x) = 1/(2a) for −a ≤ x ≤ a and be zero elsewhere. Find the
L1(R, dx), L2(R, dx), and L∞(R, dx) norms of f , and compare them.

2. Find the Fourier transform of f .

3. Find the L∞(R, dk/(2π)), L2(R, dk/(2π)), and L1(R, dk/(2π)) norms of
the Fourier transform, and compare them.

4. Compare the L∞(R, dk/(2π)) and L1(R, dx) norms for this problem. Com-
pare the L∞(R, dx) and L1(R, dk/(2π)) norms for this problem.

5. Use the pointwise convergence at x = 0 to evaluate an improper integral.

6. Calculate the convolution of f with itself.
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7. Find the Fourier transform of the convolution of f with itself. Verify in
this case that the Fourier transform of the convolution is the product of
the Fourier transforms.

8. In this problem the Fourier transform is band-limited, that is, only waves
with |k| ≤ a have non-zero amplitude. Make the assumption that |k| > a

implies f̂(k) = 0. That is, the Fourier transform of f vanishes outside of
the interval [−a, a].

Let

g(x) =
sin(ax)
ax

. (28.34)

The problem is to prove that

f(x) =
∞∑

m=−∞
f(
mπ

a
)g(x− mπ

a
). (28.35)

This says that if you know f at multiples of π/a, then you know f at all
points.

Hint: Let gm(x) = g(x − mπ/a). The task is to prove that f(x) =∑
m cmgm(x) with cm = f(mπ/a). It helps to use the Fourier transform

of these functions. First prove that the Fourier transform of g(x) is given
by ĝ(k) = π/a for |k| ≤ a and ĝ(k) = 0 for |k| > a. (Actually, it may
be easier to deal with the inverse Fourier transform.) Then prove that
ĝm(k) = exp(−imπk/a)ĝ(k). Finally, note that the functions ĝm(k) are
orthogonal.

9. In the theory of neural networks one wants to synthesize an arbitrary
function from linear combinations of translates of a fixed function. Let f
be a function in L2. Suppose that the Fourier transform f̂(k) 6= 0 for all
k. Define the translate fa by fa(x) = f(x− a). The task is to show that
the set of all linear combinations of the functions fa, where a ranges over
all real numbers, is dense in L2.

Hint: It is sufficient to show that if g is in L2 with (g, fa) = 0 for all
a, then g = 0. (Why is this sufficient?) This can be done using Fourier
analysis.

10. Let ε > 0. Prove that

1
π

∞∑
n=−∞

ε

ε2 + n2
=

2
1− e−2πε

− 1. (28.36)

Hint: Apply the Poisson summation formula to (1/π)ε/(ε2 + x2) with
∆x = 1. Sum explicitly over angular frequencies.

11. Prove that

1 =
∞∑

m=−∞

sin2(πα)
π2(m+ α)2

. (28.37)
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Does this formula make sense when α is an integer? Hint: Let g = 1/(2π)
on [−π, π] and be zero otherwise. Apply the corollary to the Poisson
summation formula to f = g ∗ g with ∆x = 2π. Perform an explicit sum
on one side.
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Chapter 29

Topology

29.1 Topological spaces

Let X be a set. The power set P (X) consists of all subsets of X. In the
following we shall fix attention on a universe X of points and certain subsets
U ⊂ X. Often we shall want to speak of sets of subsets. For clarity, we shall
often speak instead of collections of subsets. Thus a collection is a subset of the
power set P (X).

Let Γ ⊂ P (X) be a collection of sets. Recall the definitions of union and
intersection: ⋃

Γ = {x ∈ X | ∃U(U ∈ Γ ∧ x ∈ U)} (29.1)

and ⋂
Γ = {x ∈ X | ∀U(U ∈ Γ⇒ x ∈ U)}. (29.2)

Thus the union and intersection are each a subset of X.
A topology on X is a subcollection T of P (X) with the following two prop-

erties:

1. If Γ ⊂ T , then
⋃

Γ ∈ T .

2. If Γ ⊂ T is finite, then
⋂

Γ ∈ T .

The structure X, T consisting of a set X with a given topology T is called a
topological space. When the topology under consideration is clear from context,
then the topological space is often referred to by its underlying set X.

It follows from the first property that
⋃ ∅ = ∅ ∈ T . It follows from the

second property that
⋂ ∅ = X ∈ T . (The fact that

⋂ ∅ = X follows from the
convention that for Γ ⊂ P (X) the universe is X.) An open subset is a subset
that is in the topology. A closed subset is a subset that is the complement of
an open set.

The interior intS of a subset S is the union of all open subsets of it. It is
the largest open subset of S. A point is in the interior of S iff it belongs to an
open subset of S. The closure S̄ of a subset S is the intersection of all closed

293
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supersets. It is the smallest closed superset of S. A point is in the closure of
S if and only if every open set to which it belongs intersects S in at least one
point.

Let X and Y each have a topology. A continuous map f : X → Y is a
function such that for every open subset V of Y the inverse image f−1[V ] is an
open subset of X.

There is an alternate characterization of continuous maps that is often useful.
A function f : X → Y is continuous if and only if for every closed subset F of Y
the inverse image f−1[F ] is a closed subset of X. This is a useful fact; it often
used to show that the solutions of an equation form a closed set.

If f : X → Y is a continuous bijection with continuous inverse, then f is a
topological isomorphism or topological equivalence or homeomorphism.

Examples:

1. The open unit interval (0, 1) is homeomorphic to R.

2. The open unit interval (0, 1) is not homeomorphic to the circle S1. (One
is compact; the other is not.)

3. The closed unit interval [0, 1] is not homeomorphic to the circle S1. (One
can be disconnected by removing a point; the other not.)

4. The sphere Sn−1 is not homeomorphic to Rm.

5. There can be surprises. The unit sphere in the Hilbert space `2 is home-
omorphic to `2 [2].

It is also useful to have a definition of continuity at a point. We say that f
is continuous at the point x if for each open subset V with f(x) ∈ V there is
an open subset U with x ∈ U and f [U ] ⊂ V . In using this definition it may be
helpful to recall that f [U ] ⊂ V is equivalent to U ⊂ f−1[V ].

Two topologies on the same space may sometimes be compared. If every
open set in the first topology is an open set in the second topology, then the
first topology is said to be coarser (or smaller) and the second topology is said
to be finer (or larger). The finest possible topology on a set X is the discrete
topology, for which every subset is open. The coarsest possible topology on a
set is the indiscrete topology, for which only the empty subset ∅ and X itself are
open subsets.

If Γ ⊂ P (Y ) is an arbitrary collection of subsets of X, then there is a least
(coarsest) topology T with Γ ⊂ T . This is the topology generated by Γ. It may
be denoted by top(Γ).

For example, say that Γ = {U, V }, where U ⊂ Y and V ⊂ Y . Then the
topology generated by Γ is T = top(Γ) = {∅, U ∩V,U, V, U ∪V, Y } and can have
up to 6 subsets in it.

Proposition 29.1 Say that X has topology S and Y has topology T . Suppose
also that Γ generates T . Suppose that f : X → Y and that for every V in the
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generating set Γ the inverse image f−1[V ] is an open set in S. Then f is a
continuous map.

An example where this applies is when Y is a metric space. It says that in
this case it is enough to check that the inverse images of open balls are open.

If Y is a topological space, and if Z is a subset of Y , then there is a relative
topology induced on Z, so that Z becomes a subspace of X. It is defined as the
collection of all U ∩ Z for U ⊂ Y open. If we define the map i : Z → Y to
be the injection, then the topology on Z is the coarsest topology that makes i
continuous.

The most common way of defining a topology space is to take some well
known space, such as Y = Rn and then indicate some subset Z ⊂ Y . Even
though the topology of Z is the relative topology derived from Y , it is important
that one can forget about this and think of Z as a topological space that is a
universe with its own topology.

As an example, take the case when Y = R and Z = [0, 1]. Then a set like
[0, 1/2) is an open subset of Z, even though it is not an open subset of R. The
reason is that [0, 1/2) is the intersection of (−2, 1/2) with Z, and (−2, 1/2) is
an open subset of R.

If f : X → Y is a continuous injection that gives a homeomorphism of f with
Z ⊂ Y , where Z has the relative topology, then f is said to be an embedding of
X into Y . Thus f = i ◦ h, where h : X → Z is a homeomorphism.

Examples:

1. There is an embedding of the open interval (0, 1) into the circle S1. The
range of the embedding is the circle with a single point removed.

2. There is no embedding of the circle into the open interval. A continuous
image of the circle in the open interval is compact and connected, and
thus is a closed subinterval. But a circle is not homeomorphic to a closed
interval.

If X is a topological space, and if Γ is a partition of X, then there is a
quotient topology induced on Γ, so that Γ becomes a quotient space of X. It is
defined as the collection of all V ⊂ Γ such that

⋃
V is open in X. If we define

the map p : X → Γ to map each point onto the subset to which it belongs, then
the quotient topology is the finest topology that makes p continuous.

If f : X →W is a surjection, then the inverse images of points in W produce
a partition Γ of X. If f : X → W is a continuous surjection that comes from
a homeomorphism h : Γ → W with f = h ◦ p, then f is a way of continuously
classifying X into parts, where W is the classification space that indexes the
parts.

29.2 Comparison of topologies

There are situations in analysis when it is quite natural that there is more than
one topology on the same space. A standard example is an infinite dimensional
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Hilbert space H. The strong topology is the topology consisting of all open sets
in the usual metric sense. The weak topology is the topology generated by all
unions of sets of the form {u+w | u ∈ U,w ∈M⊥}, where U is an open subset
of a finite dimensional subspace M . Such a set is restricted in finitely many
dimensions. It is not hard to see that every open set in the weak topology is
an open set in the strong topology. The weak topology is the coarser or smaller
topology.

Let n 7→ sn be a sequence in the Hilbert space H. Then sn → w weakly as
n → ∞ if and only if for each finite dimensional subspace M with associated
orthogonal projection PM the function PMsn → PMw as n → ∞. Since finite
dimensional projections are given by finite sums involving inner products, this is
the same as saying that for each vector v in H the numerical sequence 〈v, sn〉 →
〈v, w〉 as n→∞.

It is clear that strong convergence of a sequence implies weak convergence
of the sequence. This is because |〈v, sn〉− 〈v, w〉| = |〈v, sn−w〉| ≤ ‖v‖‖sn−w‖,
by the Schwarz inequality.

The converse is not true. For example, let n 7→ en be a countable orthonor-
mal family. Then en → 0 weakly as n → ∞. This is because

∑
n |〈v, en〉|2 ≤

‖v‖2. It follows from convergence of this sum that 〈v, en〉 → 0 as n → ∞.
However ‖en − 0‖ = 1 for all n, so there is certainly not strong convergence to
zero.

If T ′ ⊂ T , then our terminology is that the topology on T ′ is coarser (or
smaller), while the topology T is relatively finer (or larger). Sometime the terms
weak and strong are used, but this takes some care, as is shown by the following
two propositions.

Proposition 29.2 Let X have topology S. If f : X → Y and T ′ ⊂ T are
topologies on Y , then f : (X,S) → (Y, T ) continuous implies f : (X,S) →
(Y, T ′) continuous.

The above proposition justifies the use of the word weak to describe the
coarser topology on Y . Thus strong continuity implies weak continuity for
maps into a space.

Proposition 29.3 Let Z have topology U . If f : Y → Z and T ′ ⊂ T are
topologies on Y , then f : (Y, T ′) → (Z,U) continuous implies f : (Y, T ′) →
(Z,U) continuous.

The above proposition gives a context when the coarser topology imposes
the stronger continuity condition. If we want to continue to use the word weak
to describe a coarser topology, then we need to recognize that weak continuity
for maps from a space is a more restrictive condition.

As an example, consider again infinite dimensional Hilbert space H with the
weak topology. Let f : H → R be given by f(u) = ‖u‖2. Then f is continuous
when H is given the strong topology. However f is not continuous when H is
given the weak topology. This may be seen by looking at a sequence en that is
an orthonormal family. Then en → 0 weakly, but f(en) = 1 for all n.
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29.3 Bases and subbases

A base for a topology T is a collection Γ of open sets such that every open set
V in T is the union of some subcollection of Γ.

Let X be a topological space and let Γ be a collection of open subsets.
Then Γ is a subbase if the collection Γ̃ of all intersections of finite subcollections
of Γ is a base. Notice that according to the convention

⋂ ∅ = X, the set X
automatically belongs to Γ̃.

Theorem 29.4 Let X be a set. Let Γ be a collection of subsets. Then there is
a coarsest topology T including Γ, and Γ is a subbase for T .

Proof: Let Γ be a collection of subsets of X. Let Γ̃ be the collection con-
sisting of intersections of finite subsets of Γ. Let T be the collection consisting
of unions of subsets of Γ̃. The task is to show that T is a topology.

It is clear that the union of a subcollection of T is in T . The problem is
to show that the intersection of a finite subcollection ∆ of T is in T . Each W
in ∆ is a union of a collection of sets AW ⊂ Γ̃. By the distributive law the
intersection is ⋂

W∈∆

⋃
AW =

⋃
s

⋂

W∈∆

s(W ). (29.3)

Here s is summed over all possible selection functions with the property that
s(W ) is in AW for each W . Since each s(W ) is a finite intersection of sets in Γ,
it follows that each

⋂
W∈∆ s(W ) is a finite intersection of sets in Γ. Thus the

finite intersection is a union of such finite intersections. Thus it is in T . �

Proposition 29.5 Let f : X → Y . Suppose that for each V ⊂ Y in a subbase
the set f−1[V ] is open in X. Then f is continuous.

A neighborhood base for a point x in a topological space is a family Γx of
open sets V with x ∈ V such that for every open set U with x ∈ U is there is a
V in Γx with V ⊂ U .

A neighborhood subbase for a point x in a topological space is a family Γx of
open sets V with x ∈ V such that for every open set U with x ∈ U is there is a
V that is a finite intersection of sets in Γx with V ⊂ U .

Proposition 29.6 Let f : X → Y . Suppose that for each V in a neighborhood
subbase of f(x) there is an open subset U with x ∈ U and f [U ] ⊂ V . Then f is
continuous at x. On the other hand, suppose that f is continuous at x and that
Γx is a neighborhood base for x. Then for each open subset V with f(x) ∈ V
there is a U in Γx with x ∈ U and f [U ] ⊂ V .

Again it is good to recall that f [U ] ⊂ V is always equivalent to U ⊂ f−1[V ].
A topological space is first countable if every point has a countable neigh-

borhood base. This is the same as having a countable neighborhood subbase.
A metric space is first countable. A neighborhood base at x consists of the
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open balls centered at x of radius 1/n, for n = 1, 2, 3, . . .. So being close to x is
determined by countably many conditions.

A topological space is second countable provided that it has a countable base.
This is the same as having a countable subbase.

If X is a topological space and S is a subset, then S is dense in X if its
closure is X.

A topological space X is separable provided that there is a countable subset
S with closure S̄ = X. In other words, X is separable if it has a countable dense
subset.

Theorem 29.7 If X is second countable, then X is separable.

Proof: Let Γ be a countable base for X. Let Γ′ = Γ \ {∅}. Then Γ′ consists
of non-empty sets. For each U in Γ′ choose x in U . Let S be the set of all such
x. Let V = X \ S̄. Since V is open, it is the union of those of its subsets that
belong to Γ. Either there are no such subsets, or there is only the empty set.
In either case, it must be that V = ∅. This proves that S̄ = X. �

It is also not very difficult to prove that a separable metric space is second
countable. It is not true in general that a separable topological space is second
countable. For a topological space the more useful notion is that of being second
countable.

29.4 Compact spaces

A topological space K is compact if whenever Γ is a collection of open sets with
K =

⋃
Γ, then there is a finite subcollection Γ0 ⊂ Γ with K =

⋃
Γ0. This can

be summarized in a slogan: Every open cover has a finite subcover.
Sometimes one wants to apply this definition to a subset K of a topological

space X. Then it is customary to say that K is compact if and only if whenever
Γ is a collection of open subsets of X with K ⊂ ⋃

Γ, then there is a finite
subcollection Γ0 ⊂ Γ with K ⊂ ⋃Γ0. Again: Every open cover has a finite
subcover. However this is just the same as saying that K itself is compact with
the relative topology.

There is a dual formulation in terms of closed subsets. A topological space
X is compact if whenever Γ is a collection of closed sets with

⋂
Γ = ∅, then

there is a finite subcollection Γ0 ⊂ Γ with
⋂

Γ0 = ∅.
A collection of sets Γ has the finite intersection property provided that for

every finite subcollection Γ0 ⊂ Γ we have
⋂

Γ0 6= ∅.

Proposition 29.8 A topological space is compact if and only if every collection
Γ of closed subsets with the finite intersection property has

⋂
Γ 6= 0.

Again there could be a compactness slogan: Every collection of closed sets
with the finite intersection property has a common point.
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Corollary 29.9 A topological space is compact if and only if for every collection
Γ of subsets with the finite intersection property there is a point x that is in the
closure of each of the sets in Γ.

Perhaps the compactness slogan could be: For every collection of sets with
the finite intersection property there exists a point near each set.

Proposition 29.10 If K is compact, F ⊂ K, and F is closed, then F is com-
pact.

Proof: Let Γ be a collection of closed subsets of F with the finite intersection
property. Since F is closed, each set in Γ is also a closed subset of K. Since K
is compact, there is a point p in each set in Γ. This is enough to prove that F
is compact. �

Theorem 29.11 Let f : K → L be a continuous surjection from K onto L. If
K is compact, then L is compact.

Proof: Let ∆ be an open cover of L. Then the inverse images under f of
the sets in ∆ form an open cover of K. However K is compact. Therefore there
exists a finite subset ∆0 of ∆ such that the inverse images of the sets in ∆0 form
an open cover of K. Since f is a surjection, every point y in L is the image of
a point x in K. There is an open set V in ∆0 such that that x is in the inverse
image of V . It follows that y is in V . This proves that ∆0 is an open cover of
V . It follows that L is compact. �

A topological space is Hausdorff provided that for each pair of points x, y
in the space there are open subsets U, V with x ∈ U , y ∈ V , and U ∩ V = ∅.
Proposition 29.12 Each compact subset K of a Hausdorff space is closed.

Proof: Let X be a Hausdorff space and K ⊂ X a compact subset.
Fix y /∈ K. For each x ∈ K choose Ux and Vx with x ∈ Ux and y ∈ Vx and

Ux ∩ Vx = ∅. The union of the Ux for x in K includes K, so there is a finite
subset S of K such that the union of the Ux for x in S included K. Let V be
the intersection of the Vx for x in S. Then V is open and y ∈ V and V ∩K = ∅.

Choose for every y in X \ K an open set Vy with y ∈ Vy and V ∩ K = ∅.
Then X \K is the union of the Vy with y in X \K. This proves that X \K is
open, and so K is closed. �

29.5 The one-point compactification

The one-point compactification is a construction that works for arbitrary topo-
logical spaces, but it will turn out that it is only useful for locally compact
Hausdorff spaces.

Theorem 29.13 (one-point compactification) Let X be a topological space
that is not compact. Then there exists a topological space X∗ with one extra point
that is compact and such that X is a subspace of X∗ with the induced topology.
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Proof: Let ∞ be a point that is not in X, and let X∗ = X ∪ {∞}. The
topology for X∗ is defined as follows. There are two kinds of open sets of X∗.
If∞ /∈ U , then U is open if and only if U is an open set in the topology of X. If
∞ ∈ U , then U is open if and only if U is the complement of a closed compact
subset K of X. It is clear that the topology of X is the relative topology as a
subspace of X∗.

Consider an open cover of X∗. This is a collection of open subsets of X∗

whose union is X∗, so there must be at least one open subset that is the com-
plement of a compact closed subset K of X. The union of the remaining open
subsets in the cover includes K. These open sets can be of two kinds. Some of
them may be open subsets of X. The other are complements of closed subsets of
X, so their intersections with X are open subsets of X. These subsets provide
an open cover of K, so they have a finite subcover of K. This shows that the one
open set whose complement is K together with the remaining finite collection
of open sets that cover K form an open cover of X∗. This proves that X∗ is
compact. �

A topological space X is locally compact if and only if for each point p in X
there exists an open set U and a compact set K with p ∈ U ⊂ K.

Theorem 29.14 (one-point Hausdorff compactification) Let X be a topo-
logical space. Then its one-point compactification X∗ is Hausdorff if and only
if X is both locally compact and Hausdorff.

Proof: Here is a sketch of the fact that X locally compact Hausdorff implies
X∗ Hausdorff. The Hausdorff property says that each pair of distinct points are
separated by open sets. The separation is clear for two points that are subsets
of X. The interesting case is when one-point is p ∈ X and the other point is
∞. Then by local compactness there exists an open subset U of X such that
p ∈ U ⊂ K, where K is a compact subset of X. Since X is Hausdorff, K is also
closed. Let V be the complement of K in X∗. Then ∞ ∈ V and p ∈ U , both U
and V are open in X∗, and the two open sets are disjoint. Thus p and ∞ are
separated by open sets. �

Examples:

1. Rn is locally compact and Hausdorff. Its one-point compactification is
homeomorphic to a sphere Sn.

2. Consider an infinite dimensional real Hilbert space H, for example `2. It
is a metric space and so is Hausdorff. However it is not locally compact.
In fact, an open ball is not totally bounded, so it cannot be a subset of a
compact set. The one-point compactification of H is not even Hausdorff.

3. What if we give H the weak topology? As we shall see, then each closed
ball is compact. But the space is still not locally compact, since there are
no non-empty weakly open sets inside the closed unit ball. The non-empty
weakly open sets are all unbounded.
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The case of R and C are particularly interesting. From the point of analytic
function theory, the one-point compactification is quite natural. The one-point
compactification of R is a circle, and the one-point compactification of C is the
Riemann sphere.

On the other hand, R has an order structure, and in this context it is more
natural to look at a two point compactification [−∞,+∞]. This of course is not
homeomorphic to a circle, but instead to an interval such as [0, 1].

29.6 Metric spaces and topological spaces

Among topological spaces metric spaces are particularly nice. This section is an
attempt to explain the special role of metric spaces. This begins with the T1,
T2, T3, and T4 properties.

A topological space is T1 if for every pair of points there is an open set with
the first point not in it and the second point in it. This is equivalent to the
condition that single point sets are closed sets.

A topological space is Hausdorff or T2 if every pair of points is separated by
a pair of disjoint open sets.

A topological space is regular if it is T1 and also satisfies condition T3: every
pair consisting of a closed set and a point not in the set is separated by a pair
of disjoint open sets.

A topological space is normal if it is T1 and satisfies condition T4: every pair
of disjoint closed sets is separated by a pair of disjoint open sets.

It the chapter on metric spaces, it was shown that given two disjoint closed
sets, there is a continuous real function with values in [0, 1] that is zero on one
set and one on the other set. As a consequence, every metric space is normal.

The following theorems clarify the question of when a topological space is
metrizable. They are stated here without proof.

Theorem 29.15 A compact Hausdorff space is normal.

Theorem 29.16 A locally compact Hausdorff space is regular.

Recall that in a topological space second countable implies separable. The
converse is true for metric spaces.

Theorem 29.17 (Urysohn) A second countable regular space is metrizable.

Corollary 29.18 A second countable locally compact Hausdorff space is metriz-
able.

29.7 Topological spaces and measurable spaces

The interaction of measure and topology can encounter technical difficulties.
Their origin is the following. A topological space is characterized by open sets
allowing uncountable unions and finite intersections. A measurable space is



302 CHAPTER 29. TOPOLOGY

characterized by measurable sets allowing countable unions, countable intersec-
tions, and complements. The tension arises from a situation when the uncount-
able operations for a topological space enter the measure theory. We review
some of these issues, mainly to point out that there are many situations when
they do not arise.

First, we recall that for every σ-algebra of subsets, there is a corresponding σ-
algebra of real functions, consisting of all real functions measurable with respect
to the σ-algebra of subsets. Conversely, for every σ-algebra of real functions,
there is a corresponding σ-algebra of subsets. So we can think of either kind of
σ-algebra; they are equivalent.

If X is a topological space, then it determines a measurable space by taking
the Borel σ-algebra of subsets. This is the smallest σ-algebra Bo that contains
all the open sets of the topological space. Since it is closed under complements,
it also contains all the closed sets.

If X is a measurable space and Z ⊂ X is a subset, then there is a natural
structure of measurable space on Z. This is the relative σ-algebra consisting of
all the intersections of measurable subsets of X with Z. Furthermore, if X is
a topological space, and Z ⊂ X is a subset, then there is a natural structure
of topological space on Z. This is the relative topology consisting of all the
intersections of open sets of X with Z. The relative σ-algebra on Z induced by
the Borel σ-algebra on X is the same as the Borel σ-algebra on Z generated by
the relative topology on Z.

The situation for the product of two topological spaces is the following. The
product σ-algebra of two Borel σ-algebras is always contained in the Borel σ-
algebra of the product space. However when the original two topological spaces
are second-countable, then the product σ-algebra coincides with the Borel σ-
algebra.

Next we look at the σ-algebra generated by C(X). This is the same as
the σ-algebra generated by BC(X). (Every function is C(X) is a continuous
function of a function in BC(X).) However, in general this can be smaller than
the Borel σ-algebra.

Theorem 29.19 If X is a metrizable topological space, then the space C(X)
generates the Borel σ-algebra Bo.

Proof: To prove this, it is sufficient to show that every closed set is in the
inverse image of a Borel subset under some continuous function. Let F be a
closed subset. Then the function f(x) = d(x, F ) is a continuous function that
vanishes precisely on F . That is, the inverse image of {0} is F . �

29.8 Supplement: Ordered sets and topological
spaces

The following topic is optional; it gives a brief introduction to nets, which are
maps from a certain kind of ordered set to a topological space. It also illustrates
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a way of associating a topology to an ordered set, so that a convergent net turns
out to be a map that is continuous at infinity.

In a metric space the notion of sequence is important, because most topo-
logical properties may be characterized in terms of convergence of sequences.
In more general spaces sequences are not enough to characterize convergence.
However the more general notion of net does the job.

A directed set is an ordered set I with the property that every finite non-
empty subset has an upper bound. For general topological spaces it is important
that I is not required to be a countable set. Note: Some authors give a definition
of directed set that omits the antisymmetry condition on the order.

A net in X is a function w : I → X. If X is a topological space, then a net
w converges to x provided that for every open set U with x ∈ U there is a j in
I such that for all k with j ≤ k we have wj ∈ U .

Examples:

1. A sequence in X is a net in X. This is the special case when the directed
set is the set of natural numbers.

2. Let S be a set. Let I consist of all finite subsets of S. Notice that if S
is uncountable, then the index set I is also uncountable. For H and H ′

in I we write H ≤ H ′ provided that H ⊂ H ′. Fix a function f : S → R.
Define the net H 7→ ∑

s∈H f(s) with values in R. If this net converges
to a limit, then this limit is a number

∑
f that deserves to be called the

unordered sum of f . The set of f for which such an unordered sum exists
is of course just `1(S). It turns out that this example is not so interesting
after all, since each f in `1(S) vanishes outside of some countable subset.

3. Here is an example that shows how one can construct a directed set to
describe convergence in a general topological setting. Let x be a point in
X, and define the directed set I to consists of all open sets with x ∈ U . Let
U ≤ U ′ mean that U ′ ⊂ U . Then I is a directed set, since the intersection
of finitely many such open sets is open. We shall see in the proof of the
next two theorem that this kind of directed set is a rather natural domain
for a net.

Theorem 29.20 Let E be a subset of X. A point x is in the closure Ē if and
only if there is a net w with values in E that converges to x.

Proof: First note that the complement of F̄ is the largest open set disjoint
from F . It follows that x /∈ F̄ is equivalent to ∃U (x ∈ U ∧ U ∩ F = ∅.
Here U ranges over open subsets. As a consequence, x ∈ F̄ is equivalent to
∀U (x ∈ U ⇒ U ∩ F 6= ∅).

Suppose w is a net in E that converges to x. Let U be an open set in X
such that x ∈ U . Then there exists a j so that wj ∈ U . Hence U ∩E 6= ∅. Since
U is arbitrary, it follows that x ∈ Ē.



304 CHAPTER 29. TOPOLOGY

Suppose on the other hand that x is in Ē. Then for every open set U with
x ∈ U we have U ∩ E 6= ∅. By the axiom of choice there is a point wU with
wU ∈ E and wU in U .

Let I consist of the open sets U with x ∈ U . Let U ≤ U ′ provided that
U ′ ⊂ U . Then I is a directed set, since the intersection of finitely many such
open sets is an open set. Thus U 7→ wU is a net in E that converges to x. �

Theorem 29.21 A function f : X → Y is continuous if and only if it maps
convergent nets into convergent nets.

Proof: Suppose f is continuous. Let w be a net in X that converges to x.
Let V be an open set in Y such that f(x) ∈ V . Let U = f−1[V ]. Then x ∈ U ,
so there exists a j such that j ≤ k implies wk ∈ U . Hence f(wk) ∈ V . This
shows that the net j 7→ f(wj) converges to f(x.

Suppose on the other hand that f maps convergent nets to convergent nets.
Suppose that f is not continuous. Then there is an open set V in Y such that
f−1[V ] is not open.

Next, notice that a set G is open if and only if ∀xx ∈ G ⇒ (∃U(x ∈
U ∧ U ⊂ G). Here U ranges over open subsets. This is simply because the a
union of open sets is always open. Hence a set G is not open if and only if
∃xx ∈ G ∧ (∀U(x ∈ U ⇒ U \G 6= ∅).

Apply this to the case G = f−1[V ]. Then there exists an x with f(x) ∈ V
but with the property that for every open set U with x ∈ U there exists a point
wU ∈ U with f(wU ) /∈ V . The existence this function U 7→ wU is guaranteed
by the axiom of choice.

Let I consist of the open sets U with x ∈ U . Let U ≤ U ′ provided that
U ′ ⊂ U . Then I is a directed set, since the intersection of finitely many such
open sets is an open set. Thus U 7→ wU is a net in X that converges to x.
However U 7→ f(wU ) does not converge to f(x). This is a contradiction. Thus
f must be continuous. �

The net language also sheds light on the Hausdorff separation property. It
may be shown that a topological space is Hausdorff if and only if every net
converges to at most one point.

There is a natural topology on every ordered set, generated by the intervals
of the form Ij = {k ∈ I | j ≤ k}. These intervals form a base for the topology.
If the ordered set is a directed set, the intersection of two such intervals is never
empty; it always includes another interval.

Augment the directed set I with an additional maximal element ∞. Define
the topology so that the non-empty open subsets of the augmented set are the
unions of open intervals of I each augmented with {∞}. The fact that I is
a directed set implies that this topology has the required finite intersection
property.

This gives a topological interpretation to the concept of convergent net.
Then a net w : I → X converges to x if and only if when we augment w by
w(∞) = x we have that w is continuous at ∞.
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Problems

1. Let X = R. Show that the sets (a,+∞) for a ∈ R, together with the
empty set and the whole space, form a topology.

2. Give an example of a continuous function f : R → X, where R has the
usual metric topology and X has the topology of the preceding problem.
Make the example such that f is not a continuous function in the usual
sense.

3. What are the compact subsets of X in the example of the first problem?

4. Let X = R. Show that the sets (a,+∞) for a ∈ R together with (−∞, b)
for b ∈ R are not a base for a topology. They are a subbase for a topology.
Describe this topology.

5. Let S be an infinite set. Consider the topology where the closed subsets
are the finite subsets and the set S. What are the compact subsets of S?
Prove that your answer is correct.

6. Consider an infinite-dimensional Hilbert space and a sequence n 7→ fn of
vectors. Show that if fn → f weakly and ‖fn‖ → ‖f‖ as n → ∞, then
fn → f strongly as n→∞. Hint: Look at ‖fn − f‖2.

7. Let H be an infinite dimensional real Hilbert space. Let n 7→ en be a
countable orthonormal family indexed by n = 1, 2, 3, . . ..

(a) Show that ek → 0 weakly as k →∞.

(b) Show that it is false that kek converges weakly to zero as k → ∞.
Hint: The vector v =

∑∞
n=1(1/n)en is in H.

(c) For each m < n let xmn = em + men. Let X be the set of all the
vectors xmn for m < n. Show that there is no sequence k 7→ sk of points
in X with sk → 0 weakly as k → ∞. Hint: If there is such a sequence
sk = emk +mkenk , then there is one for which k 7→ emk and k 7→ enk are
orthonormal families and also k ≤ mk.

(d) Show that 0 is in the weak closure of X.

8. Show that a collection Γ of subsets of X is a base for a topology if and
only if it has the following property: if U and V are in Γ with x ∈ U ∩ V ,
then there is a W in Γ with x ∈W ⊂ U ∩ V .

9. Let s : N→ X be a sequence in a metric space X. Let Tn = {sk | k ≥ n}.
Show that the sets Tn for n ∈ N have the finite intersection property.
Show that x is in the closure of every set Tn if and only if there is a
subsequence that converges to x.

10. Lindelöf theorem. Let X be a topological space with a second countable
topology T . (Thus there is a countable collection ∆ ⊂ T such that every
open set in T is a union of sets in ∆.) If A is a subset of X, then every
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open cover of A has a countable subcover. (That is, if Γ is a collection of
open sets with A ⊂ ⋃Γ, then there is a countable subcollection Γ0 with
A ⊂ ⋃Γ0.) Prove this result. Hint: Let Σ be the collection of all sets in ∆
that are used in a union forming one of the sets in Γ. Then by definition
for each S in Σ the collection of sets in Γ that use S is non-empty.

11. Generating a topology. Let X be a set and let Γ be a collection of subsets
of X. Prove that the set of all topologies T with Γ ⊂ T has a least
element. This is the topology top(Γ) generated by Γ.

12. Generating a σ-algebra of subsets. Let X be a set and let Γ be a collection
of subsets of X. Prove that the set of all σ-algebras FX of subsets of X
with Γ ⊂ FX has a least element. This is the σ-algebra of subsets σ(Γ)
generated by Γ.

13. Compatibility of topology and measurability. Let X be a set and let Γ be
a collection of subsets of X. Show that if T = top(Γ) is second countable,
then T ⊂ σ(Γ) and hence σ(T ) = σ(Γ). Hint: Let T be the smallest
collection of sets closed under finite intersection and union including Γ.
Let T ′ be the smallest collection of sets closed under finite intersection
and countable union including Γ. Show that T ′ is closed under finite
intersection and union.

14. Give an example to show that in the previous result one cannot dispense
with the assumption that the topology is second countable.

15. A topological space is called separable if it has a countable dense subset.
Every subspace of a separable metric space is separable.

Let the unit interval [0, 1] have its usual topology. Consider the product
space X = [0, 1]R consisting of all functions from R to [0, 1] with the
product topology. Then X is a compact Hausdorff space.

(a) Show that X is separable. Hint: Consider functions each of which has
finitely many values. Find a countable set of such functions that is dense
in X.

(b) Consider the subspace A of X consisting of indicator functions of single
points. Show that A is not separable.

16. Let w : I → X be a net. If z : J → X satisfies z = w ◦ α, then z is
called a subnet of w provided that the map α : J → I has the property
that ∀i∃j f [Jj ] ⊂ Ii. Formulate this property of α in terms of continuity
at infinity.



Chapter 30

Product and weak∗
topologies

30.1 Introduction

The following sections deal with important compactness theorems. The proofs
of these theorems make use of Zorn’s lemma. We have seen that the axiom of
choice implies Zorn’s lemma. It is quite easy to show that Zorn’s lemma implies
the axiom of choice.

Here is a quick review of Zorn’s lemma. Consider a non-empty partially
ordered set. Suppose that every non-empty totally ordered subset has an upper
bound. Zorn’s lemma is the assertion that the set must have a maximal element.

In a sense, Zorn’s lemma is an obvious result. Start at some element of the
partially ordered set. Take a strictly larger element, then another, then another,
and so on. Of course it may be impossible to go on, in which case one already
has a maximal element. Otherwise one can go through an infinite sequence of
elements. These are totally ordered, so there is an upper bound. Take a strictly
larger element, then another, then another, and so on. Again this may generate
a continuation of the totally ordered subset, so again there is an upper bound.
Continue in this way infinitely many times, if necessary. Then there is again an
upper bound. This process is continued as many times as necessary. Eventually
one runs out of set. Either one has reached an element from a previous element
and there is not a larger element after that. In that case the element that was
reached is maximal. Or one runs at some stage through an infinite sequence,
and this has an upper bound, and there is nothing larger than this upper bound.
In this case the upper bound is maximal.

Notice that this argument involves an incredible number of arbitrary choices.
But the basic idea is simple: construct a generalized orbit that is totally ordered.
Keep the construction going until a maximal element is reached, either as the
result of a previous point in the orbit, or as the result of an previous sequence
in the orbit.

307
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30.2 The Tychonoff product theorem

Let A =
∏
t∈T At be a product space. An element x of A is a function from the

index set T with the property that for all t ∈ T we have xt ∈ At.
Suppose that each At is a topological space. For each t there is projection pt :

A → At defined by pt(x) = xt. The product topology or pointwise convergence
topology is the coarsest topology on A such that each individual projection pt
is continuous. Thus if U ⊂ At is open, then p−1

t [U ] is an open set in A that
has its t component restricted. Furthermore, a finite intersection of such sets is
open. So there are open sets that are restricted in finitely many components.

Write the projection of x on the t coordinate as the value x(t) of the function
x. A net j 7→ wj in A =

∏
t∈T At converges to a point x in A if and only if

for each t the net j 7→ wj(t) converges to x(t). For this reason the product
topology is also called the topology of pointwise convergence. The fundamental
result about the product topology is the Tychonoff product theorem.

Theorem 30.1 (Tychonoff product theorem) The product of a family of
compact spaces is compact.

Before starting the proof, it is worth looking at an attempt at a proof that
does not work. Suppose that for each t ∈ T the space At is compact. Let Γ
be a collection of closed subsets of A with the finite intersection property. We
want to show that

⋂
Γ 6= ∅. This will prove that A is compact.

Fix t. Let Γt be the collection of all projected subsets Ft = pt[F ] for F ∈ Γ.
Then Γt has the finite intersection property. Since At is compact, there exists
an element that belongs to the closure of each Ft in Γt. Choose such an element
xt ∈ At arbitrarily.

Let x ∈ A be the vector which has components xt. If we could show that
x is in each of the F in Γ, then this would complete the proof. However this
where the attempt fails; there is no guarantee that this is so.

If fact, we could take a simple example in the unit square where this does
not work. Let the set Γ consist of the single set F = {(0, 1), (1, 0)}. Then the
projection on the first axis is the set {0, 1} and the second projection is also
{0, 1}. If we take x1 = 0 and x2 = 0, then x = (0, 0) is far from belonging
to F . The trouble is that the projections of a set do not do enough to specify
the set. The solution is to specify the point in the product space more closely
by taking a larger collection of sets with the finite intersection property. For
instance, in the example one could take Γ′ to consist of the set F together with
the smaller set {(0, 1)}. Then the projected sets on the first axis have only 0 in
their intersection, and the projected sets on the second axis have only 1 in their
intersection. So from these one can reconstruct that point (0, 1) in the product
space that belongs to all the sets in Γ′ and hence of Γ.

Notice that this enlarged collection of sets is somewhat arbitrary; one could
have made another choice and gotten another point in the product space. How-
ever the goal is to single out a point, and the way to do this is to make a maximal
specification of the point. One means to accomplish this is to take a maximal
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collection of sets with the finite intersection property. For instance, one could
take all subsets of which (0, 1) is an element. This is an inefficient but sure way
of specifying the point (0, 1).

Proof: Suppose that for each t ∈ T the space At is compact. Let Γ be a
collection of closed subsets of A with the finite intersection property. We want
to show that

⋂
Γ 6= ∅. This will prove that A is compact.

Consider all collections of sets with the finite intersection property that
include Γ. By Zorn’s lemma, there is a maximal such collection Γ′.

Fix t. Let Γ′t be the set of all projected subsets Ft = pt[F ] for F ∈ Γ. Then
Γ′t has the finite intersection property. Since At is compact, the intersection of
the closures of the Ft in Γ′t is non-empty. Choose an element xt in the closure
of each Ft for F in Γ′.

Let x be the vector which has components xt. Let U be an open set with
x ∈ U . Then there is a finite subset T0 ⊂ T and an open set Ut ⊂ At for each t
in T0 such that the intersection of the sets p−1

t [Ut] for t ∈ T0 is an open subset
of U with x in it.

Consider t in T0. It is clear that xt ∈ Ut. Since xt is in the closure of
each Ft for each F in Γ′, it follows that Ut ∩ Ft 6= ∅ for each F in Γ′. Thus
p−1
t [Ut]∩ F 6= ∅ for each F in Γ′. Since Γ′ is maximal with respect to the finite

intersection property, it follows that p−1
t [Ut] is in Γ′.

Now use the fact that Γ′ has the finite intersection property. Consider F in
Γ′. Since each of the p−1

t [Ut] for t in the finite set T0 is in Γ′, it follows that the
intersection of the p−1

t [Ut] for t in T0 with F is non-empty.
This shows that U has non-empty intersection with each element F of Γ′.

Since U is arbitrary, this proves that x is in the closure of each element F of
Γ′. In particular, x is in the closure of each element F of Γ. Since Γ consists of
closed sets, x is in each element F of Γ. �

30.3 Banach spaces and dual Banach spaces

This section is a quick review of the most commonly encountered Banach spaces
of functions and of their dual spaces. Let E be a Banach space. Then its dual
space E∗ consists of the continuous linear functions from E to the field of scalars
(real or complex). It is also a Banach space. There is a natural injection from
E to E∗∗. The Banach space E is said to be reflexive if this is a bijection.

Let X be a set and F be a σ-algebra, so that X is a measurable space. Fix
a measure µ. The first examples consist of the Banach spaces E = Lp(X,F , µ)
for 1 ≤ p < ∞. (In the case p = 1 we require that µ be a σ-finite measure.)
Then the dual space E∗ may be identified with Lq(X,F , µ), where 1 < q ≤ ∞.
Here 1/p + 1/q = 1. If u is in E and f is in E∗, the value of f on u is the
integral µ(fu) of the product of the two functions. If 1 < p < ∞, then the
Banach space Lp(X,F , µ) is reflexive. Thus if 1 < q ≤ ∞ the Banach space
Lq(X,F , µ) is a dual space. In general L1(X,F , µ) is not the dual of another
Banach space. This is because the dual of L∞(X,F , µ) is considerably larger
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than L1(X,F , µ). These facts are discussed in standard references, such as the
text by Dudley [4].

The following examples introduce topology in order to get a Banach space
E with a dual space E∗ that can play the role of an enlargement of L1. The
space E will be a space of continuous functions, while the space E∗ is identified
with a space of finite signed measures. In order to avoid some measure theoretic
technicalities, we shall deal only with continuous functions defined on metric
spaces.

Let X be a compact metric space. Then E = C(X) is a real Banach space.
The norm of a function in C(X) is the maximum value of its absolute value.
Thus convergence in C(X) is uniform convergence on X.

The space C(X) of continuous real functions generates a σ-algebra of func-
tions. These are called Borel functions, and there is a corresponding σ-algebra
of Borel sets. The integrals or measures under consideration are defined on
Borel functions or on Borel sets.

There is a concept of signed measure and a corresponding theorem. This
theorem says that a signed measure always has a as a difference of two measures
that live on disjoint subsets, where at least one of the measures must be finite.
Sometimes, in the context of signed measures, a measure of the usual kind is
called a positive measure. Thus a signed measure is the difference of two positive
measures.

A finite signed measure is the difference of two finite measures that live on
disjoint sets. That is, there are finite measures µ+ and µ− and measurable sets
B+ and B− such that µ+(B−) = 0 and µ−(B+) = −. The finite signed measure
is then µ = µ+ − µ−.

There is a natural norm for finite signed measures. If µ is a finite signed
measure, then ‖µ‖ = µ+(X) + µ−(X) is the norm.

The term Riesz representation theorem is used in several contexts for a the-
orem that identifies the dual of a Banach space of functions. For instance, the
theorem that identifies the dual of Lp as Lq for 1 ≤ p < ∞ and 1/p + 1/q = 1
is sometimes called a Riesz representation theorem. The theorem for spaces of
continuous functions is particularly important.

Proposition 30.2 (Riesz representation theorem (compact case)) Let X
be a a compact metrizable space. Let E = C(X) be space of continuous real func-
tions on X. Then the dual space E∗ may be identified with the space of finite
signed Borel measures on X. That is, each continuous real linear function on
C(X) is of the form f 7→ µ(f) for a unique finite signed Borel measure on the
compact space X.

Remark: A compact metrizable space the same as a second countable com-
pact Hausdorff space.

This result gives an example of a Banach space that is far from being reflex-
ive. That is, the dual of the space E∗ of finite signed measures is much larger
than the original space E = C(X). In fact, consider an arbitrary bounded Borel
function f . Then the map µ 7→ µ(f) is continuous on E∗ and hence is in E∗∗.
However it is not necessarily given by an element of E.
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The results have a useful generalization. Let X be a separable locally com-
pact metric space. Then C0(X) is a real Banach space. Here f is in C0(X)
provided that for every ε > 0 there is a compact subset K of X such that
|f | < ε outside of K. Such an f is said to vanish at infinity. The space C0(X)
of continuous real functions that vanish at infinity generates the σ-algebra of
Borel functions.

A Polish space is a separable completely metrizable space.

Proposition 30.3 (Riesz representation theorem (locally compact case))
Let X be a locally compact Polish space. Let E = C0(X) be the space of contin-
uous real functions on X that vanish at infinity. Then the dual space E∗ may
be identified with the space of finite signed Borel measures on X. That is, each
continuous real linear function on C0(X) is of the form f 7→ µ(f) for a unique
finite signed Borel measure on the locally compact space X.

Remark: A locally compact Polish space is the same as a second countable
locally compact Hausdorff space.

This proposition is only a slight variant on the preceding proposition. Let
X∗ be the one-point compactification of X. Then the space C0(X) may be
thought of as the functions in C(X∗) that vanish at the point∞. Similarly, the
finite signed measures µ on X may be identified with the measures on X∗ that
assign mass zero to the the set {∞}.

30.4 Adjoint transformations

If u is in E and α is in the dual space E∗, then we sometimes write 〈α, u〉 instead
of α(u). This is not intended to denote an inner product as in the case of a
Hilbert space. Rather, it indicates the pairing between E∗ and E.

Let T : E → F be a continuous linear transformation from the Banach space
E to the Banach space F . In this context the value of T on u is often written
in the form Tu. The Lipschitz norm of T is the smallest number ‖T‖ such
that ‖Tu‖ ≤ ‖T‖‖u‖. A well-known theorem says that the space of all such
mappings T is itself a Banach space. Furthermore, the dual space E∗ is just the
special case when the mappings are from E to R.

The adjoint transformation T ∗ : F ∗ → E∗ is defined by 〈T ∗α, u〉 = 〈α, Tu〉.
If we think of the space as consisting of column vectors and the dual space

as consisting of row vectors, then T is like a matrix that acts from the left on
column vectors on the right and T ∗ is the same matrix acting from the right on
column vectors on the left.

One can write the definition of adjoint in the more cryptic form T ∗(α) =
α ◦ T . This is the same thing, since this just says that 〈T ∗α, u〉 = α(T (u)) =
〈α, Tu〉. This way of writing reveals that the adjoint is just a special kind of
pullback.
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30.5 Weak∗ topologies on dual Banach spaces

The weak topology on E is the coarsest topology such that every element of
E∗ is continuous. As a special case, the weak topology on E∗ is the coarsest
topology such that every element of E∗∗ is continuous. The sets W (f, V ) =
{u ∈ E | f(u) ∈ V }, where f is in E∗ and V is an open set of scalars, form a
subbase for the weak topology of E.

The weak∗ topology on E∗ is the coarsest topology such that every element
of E defines a continuous function on E∗. This is the topology of pointwise
convergence for the functions in E∗. The sets W (u, V ) = {f ∈ E∗ | f(u) ∈ V },
where u is in E and V is an open set of scalars, form a subbase for the weak
topology∗ of E.

Proposition 30.4 Let E be a Banach space, and let E∗ be its dual space. The
weak∗ topology on E∗ is coarser than the weak topology on E∗. If E is reflexive,
then the weak∗ topology on E∗ is the same as the weak topology on E∗.

Proof: Since each element of E defines an element of E∗∗, the weak∗ topol-
ogy is the coarsest topology that makes all these elements of E∗∗ that come from
E continuous. The weak topology is defined by requiring that all the elements
of E∗∗ are continuous. Since more functions have to be continuous, the weak
topology is a finer topology. �

Examples:

1. Fix a σ-finite measure µ. Let E = L1 be the corresponding space of real
integrable functions. Then E∗ = L∞. A sequence fn in L∞ converges
weak∗ to f if for every u in L1 the integrals µ(fnu)→ µ(fu).

2. Fix a measure µ. Let E = Lp with 1 < p < ∞. Then E∗ = Lq with
1 < q < ∞. Here 1/p + 1/q = 1. A sequence fn in Lq converges weak∗

to f if for every u in Lp the integrals µ(fnu) → µ(fu). Since Lp for
1 < p <∞ is reflexive, this is the same as weak convergence in Lq.

3. Fix a measure µ. Let E = L∞. Then E∗ is an unpleasant space that
includes L1 but also has a huge number of unpleasant measure-like objects
in it. Notice that there is no weak∗ topology on L1, since it is not the
dual of another Banach space.

4. Consider a compact metric space X. Let E = C(X), the space of all
continuous real functions on X. The norm on X is the supremum norm
that describes uniform convergence. Then E∗ consists of signed measures.
These are of the form µ = µ+−µ−, where µ+ and µ− are finite measures.
These are the Radon measures that will be described in more detail in a
following chapter. The norm of µ is µ+(X) +µ−(X). A sequence µn → µ
in the weak∗ topology provided that µn(u) → µ(u) for each continuous
function u.
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5. Consider a locally compact metric space X. Let E = C0(X), the space
of all continuous real functions on X that vanish at infinity. Then E∗

again consists of signed measures. In fact, we can think of E as the space
of all continuous functions on the one point compactification of X that
vanish at the point ∞. Then the measures in E∗ are those measures on
the compactification that assign measure zero to the set {∞}. A sequence
µn → µ in the weak∗ topology provided that µn(u) → µ(u) for each
continuous function u that vanishes at infinity.

Such examples give an idea of the significance of the weak∗ topology. The
idea is that for µn to be close to µ in this sense, it is enough that for each
observable quantity u the numbers µn(u) get close to µ(u). The observation is a
kind of blurred observation that does not make too many fine distinctions. In the
case of measures it is the requirement of continuity that provides the blurring.
This allows measures that are absolutely continuous with respect to Lebesgue
measure to approach a discrete measure, and it also allows measures that are
discrete to approach a measure that is absolutely continuous with respect to
Lebesgue measure.

Examples:

1. The measures with density n1[0,1/n] approaches the point mass δ0. This
is absolutely continuous to singular.

2. The singular measures 1
n

∑n
j=1 δj/n approach the measure with density

1[0,1]. This is singular to absolutely continuous.

30.6 The Alaoglu theorem

The weak∗ topology is the natural setting for main theorem of this section, a
compactness result called the Alaoglu theorem. The name in this theorem is
Turkish; it is pronounced A-la-ō-lu.

Theorem 30.5 (Alaoglu) Let E be a Banach space. Let B∗ be the closed unit
ball in the dual space E∗. Then B∗ is compact with respect to the weak∗ topology.

Proof: This theorem applies to either a real or a complex Banach space.
Define for each u in E the set Iu of all scalars a such that |a| ≤ ‖u‖. This is an
closed interval in the real case or a closed disk in the complex case. In either
case each Iu is a compact space. Let P =

∏
u∈E Iu. By the Tychonoff product

theorem, this product space is compact. An element f of P is a scalar function
on E with the property that |f(u)| ≤ ‖u‖ for all u in D. The product space
topology on P is just the topology of pointwise convergence for such functions.

The unit ball B∗ in the dual space E∗ consists of all elements of P that
are linear. The topology on B∗ inherited from P is the topology of pointwise
convergence. The topology on B inherited from the weak∗ topology on E∗ is
also the topology of pointwise convergence. So the task is to show that B∗ is
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compact in this topology. For this, it suffices to show that B∗ is a closed subset
of P .

For each u ∈ E the mapping f 7→ f(u) is continuous on P . Therefore, for
each pair of scalars a, b and vectors u, v the mapping f 7→ f(au+ bv)− af(u)−
bf(v) is continuous on P . It follows that the set of all f with f(au + bv) −
af(u)− bf(v) = 0 is a closed subset of P . The intersection of these closed sets
for all a, b and all u, v is also a closed subset of P . However this intersection is
just B∗. Since B∗ is a closed subset of a compact space P , it must be compact.
�

If E is an infinite dimensional Banach space, then its dual space E∗ with
the weak∗ topology is not metrizable. This fact should be contrasted with the
following important result.

Theorem 30.6 If E is a separable Banach space, then the unit ball B∗ in the
dual space with the weak∗ topology is metrizable.

Proof: Suppose E is separable. Let S be a countable dense subset of the
unit ball B of E. Let I be the closed unit ball in the field of scalars. For each f
in B∗ there is a corresponding element u 7→ f(u) in IS . Denote this element by
j(f). Thus j(f) is just the restriction of f to S. From the fact that S is dense in
B it is easy to see j : B∗ → IS is injective. Give IS the product topology. Since
for each u in S the map f 7→ f(u) is continuous, it follows that j is continuous.

The remaining task is to prove that the inverse j(f) 7→ f is continuous.
To do this, consider a closed subset F of B∗. Since it is a closed subset of a
compact space, it is compact. Since j is continuous, j[F ] is a compact subset of
IS . However a compact subset of Hausdorff space is closed. So j[F ] is closed.
This says that the inverse image of each closed set under the inverse of j is a
closed set. It follows that the inverse of j is continuous.

This proves that j is an embedding of B∗ into IS . However since IS is a
countable product of metric spaces, the product topology on this space is given
by a metric. Such a metric induces a metric on B∗. This can be taken to have
the explicit form d(f, f ′) =

∑∞
n=1 |f(sn)− f ′(sn)|/2n. �

Examples:

1. Let E = L1, so E∗ = L∞. The unit ball consists of all functions with
absolute value essentially bounded by one. It is possible that a sequence
of positive functions with essential bound one converges weak∗ to zero. For
example, on the line the sequence of functions fn that are the indicator
functions of intervals [n, n+ 1] converge to zero. This is because for each
fixed u in L1 we have µ(fnu)→ 0, by the dominated convergence theorem.
Such an example is even possible when the measure space is finite. Here
the example would be given by the indicator functions of the sets [0, 1/n].
Yet another example is convergence to zero by oscillation. Consider the
functions cos(nx) on the interval [0, 2π]. These converge weakly to zero
in the weak∗ topology of L∞, by the Riemann-Lebesgue lemma.



30.6. THE ALAOGLU THEOREM 315

2. Let E = Lp with 1 < p < ∞, so E∗ = Lq with 1 < q < ∞. Here
1/p + 1/q = 1. It is possible that a sequence of positive functions with
Lq norm equal to one converges weak∗ to zero. The sequence of indicator
functions of the sets [n, n + 1] provide the most obvious example. In
the case when the measure space is finite, an example is where fn is the
n

1
q times the indicator function of the set [0, 1/n]. This example is less

obvious. It is clear that for u bounded we have |µ(fnu)| ≤ n 1
q ‖u‖∞/n→ 0.

Since bounded functions are dense in Lp and we have a bound on the Lq

norm of the fn, it follows that we have µ(fnu)→ 0 for each u in Lp. There
are yet more examples, such as convergence by oscillation.

3. Consider the space L1 with the weak topology. The closed unit ball is
not compact. In fact, let gn be n times the indicator function of 1/n. If,
for instance, w is a bounded continuous function, then µ(wgn) → w(0).
This indicates that gn is converging to something that acts like a point
measure at the origin. This is no longer in the space L1. A sequence of
densities with bounded total mass can converge to something that is not
a density. In physical terms: conservation of mass is not enough to make
something to remain a function. (This should be contrasted with the Lp

with p > 1 case above. For L2 this says that conservation of energy is
enough to maintain the constraint of being a function.)

4. Consider a compact metric space X. Let E = C(X). Then the signed
measures in the unit ball of the dual space form a weak∗ compact set.
Such a measure µ is an ordinary positive measure provided that for each
positive continuous function u ≥ 0 the value µ(u) ≥ 0. From this it is clear
that the positive measures of total mass at most one form a weak∗ closed
subset. (This is because µ 7→ µ(f) is continuous, so the inverse image of
the closed set [0,+∞) is closed.) Therefore they are a compact subsets.
Furthermore, the probability measures form a closed subset of these, since
the requirement for a positive measure to be a probability measure is that
µ(1) = 1. (This is because µ 7→ µ(1) is continuous, so the image of the
closed set {1} is closed.) The conclusion is that the space of probability
measures on a compact metric space is weak∗ compact. There is no way to
lose probability from a compact space! Notice that this example explains
what is going on in the preceding example. Consider the sequence µn of
probability measures that have density with respect to Lebesgue measure
that is n times the indicator function of [0, 1/n]. This sequence converges
to the point measure δ0 at the origin, which is still a probability measure.

5. Consider a separable locally compact metric space X. Let E = C0(X).
Again the signed measures in the unit ball of E∗ form a compact set.
The positive measures of total mass at most one again form a compact
subset. However the function 1 does not belong to the space C0(X). So we
cannot conclude that the set of probability measures is closed or compact.
In fact, we can take the measures with density given by the indicator
function of [n, n+ 1]. These probability measures converge weak∗ to zero.
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This seems mysterious until we choose to look instead at the one-point
compactification of X. Then it is seen that the probability has all gone
to the point at infinity.

Problems

1. Recall that f : X → (−∞,+∞] is lower semicontinuous (LSC) if and only
if the inverse image of each interval (a,+∞], where −∞ < a < +∞, is
open in X. Show that if f : X → R is LSC, and X is compact, then there
is a point in X at which f has a minimum value. Show by example that
if f : X → R is LSC, and X is compact, then there need not be a point
in X at which f has a maximum value.

2. Let H be a real Hilbert space. Let L : H → R be continuous and linear.
Thus in particular L is Lipschitz, that, is, there is an M with |L(u)| ≤
M‖u‖ for all u in H. Consider the problem of proving that there is a point
in H at which the function F : H → R defined by F (u) = (1/2)‖u‖2−L(u)
has a minimum value. This can be done using complete metric space ideas,
but can it be done using compact topological space ideas? One approach
would be to look at a sufficiently large closed ball centered at the origin
and argue that if there were a minimum, it would be in that closed ball.
If H were finite dimensional, that ball would be compact, and the result
is obvious. Show how to carry out the compactness proof for infinite
dimensional H. Hint: Switch to the weak topology. Be explicit about
which functions are continuous or lower semicontinuous.



Chapter 31

Radon measures

31.1 Topology and measure

The interaction of topology and measure is complicated. A topological structure
on a space X may somehow determine a measurable structure on X. The
simplest example of this is that the topology itself generates the Borel σ-algebra.
It turns out, however, that various technicalities arise. In particular, there are
two directions that may be taken.

The first possible direction is to take X to be a locally compact Hausdorff
space. This seems quite general, since such a space need not be a metrizable
space. (A typical example where this is so is when X is an uncountable product
of compact Hausdorff spaces, so that X is itself a compact Hausdorff space, not
metrizable.) However in this generality there are technicalities due to the fact
that a topology involves uncountable operations, and these interact uneasily
with measure theory, which is primarily based on countable operations. In
particular, while it is true that for a compact space (or for a σ-compact locally
compact space) that Cc(X) and BC(X) generate the same σ-algebra, it is quite
possible even for compact spaces that this is much smaller than the Borel σ-
algebra. This is something of a nightmare, and so this first direction is not
emphasized in the present treatment.

The other direction is to take X to be a Polish space, that is, a separable
completely metrizable space. This is general in a different way, since such a
space need not be locally compact. (A typical example is when X is an infinite-
dimensional Banach space; such a space is never locally compact.) In this setting
compactness issues can be something of a struggle. However certainly C(X)
generates the Borel σ-algebra, so it is easy to fix on the concept of measurability.
We just talk of Borel subsets.

The best possible world is when the space X is a second countable locally
compact Hausdorff space. This is the same as being a locally compact Polish
space. This is general enough for many applications, and most of the technical-
ities are gone. In particular, Cc(X) generates the Borel σ-algebra.

317
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31.2 Locally compact metrizable spaces

Next we need to explore the consequences of having a metrizable space that is
locally compact. The following lemma is crucial.

Lemma 31.1 (Urysohn’s lemma (locally compact metric case)) Let X
be a locally compact metric space. Let K ⊂ X be a compact subset. Then there
is a continuous function with values in [0, 1] with compact support that has the
value 1 on K.

Proof: Since X is locally compact, it is not hard to prove that there is an
open set U and a compact set L with K ⊂ U ⊂ L. Take f to be 1 on K and
zero on the complement of U . Then f has support in L. �

Notice that this result fails without the hypothesis of local compactness. For
example, consider a point in infinite dimensional Hilbert space. Say that there
is a real continuous function on the Hilbert space that is one at the point. Then
it is non-zero on some non-empty open set. However a non-empty open set is
never a subset of a compact set.

A topological space is said to be σ-compact if it is a countable union of
compact subsets.

Proposition 31.2 A second countable locally compact Hausdorff space is σ-
compact.

Proof: Since the space is locally compact, each point belongs to an open
subset that is included in a compact subset. The collection of these open subsets
is a cover of the space. By Lindelöf’s theorem there is a countable subcover.
The compact sets that correspond to this subcover are a countable collection
whose union is the entire space. �

A σ-compact space need not be locally compact. In fact the space Q ⊂ R
is σ-compact. Also, a σ-compact space need not be second countable; in fact
even a compact space need not be second countable. On the other hand, a
σ-compact metrizable space is second countable. This is because each compact
metrizable space is separable, and a countable union of separable metric spaces
is a separable metric space, hence second countable.

Theorem 31.3 Let X be a locally compact metric space that is σ-compact.
Then Cc(X) generates the Borel σ-algebra.

Proof: Since X is σ-compact, it may be written as an increasing union of
compact subsets Kn. Let fn be in Cc(X) with 0 ≤ fn ≤ 1 and fn = 1 on Kn.
Then the fn converge pointwise to 1. If g is in C(X), we can take a sequence gfn
in Cc(X) that converges pointwise to g. So Cc(X) generates the same σ-algebra
as C(X). However for a metric space this is the Borel σ-algebra. �
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31.3 Riesz representation

The following lemma will be useful in the following.

Lemma 31.4 Let X be a locally compact metric space. Suppose in addition
that X is σ-compact. Then the σ-ring generated by Cc(X) is a σ-algebra.

Proof: Since X is σ-compact, it may be written as an increasing union of
compact subsets Kn. Let fn be in Cc(X) with 0 ≤ fn ≤ 1 and fn = 1 on Kn.
Then the fn converge pointwise to 1. Therefore 1 is the σ-ring of functions
generated by Cc(X), and so this σ-ring is a σ-algebra. �

Theorem 31.5 (Dini) Suppose that X is a compact space. Let fn ↓ 0 be a
decreasing sequence of continuous functions that converges pointwise to zero.
Then fn converges uniformly to zero.

Proof: Consider ε > 0. The set where fn ≥ ε is a closed subset of a
compact space and hence is compact. The pointwise convergence implies that
the intersection of the collection of all these sets is zero. Hence there is a finite
subcollection whose intersection is zero. However this is a decreasing sequence
of sets. Therefore these sets are empty from some index on. That is, from some
index on the set fn < ε is the whole space. This implies uniform convergence.
�

A Radon measure on a space of real continuous functions is a linear func-
tion µ from the space to the reals that is order preserving. Thus in particular
f ≥ 0 implies µ(f) ≥ 0. A Radon measure might better be called a Radon
integral, since it acts on functions rather than on sets, but both terms are used.
The following theorem is sometimes called a Riesz representation theorem, even
though the space Cc(X) is not a Banach space, and the theorem as stated here
is only for linear functionals that preserve order.

Theorem 31.6 (Riesz representation (compact support case)) Let X be
a locally compact Polish space. Then there is a natural bijective correspondence
between Radon measures on Cc(X) and Borel measures that are finite on com-
pact sets.

Remark: A locally compact Polish space is the same as a second countable
locally compact Hausdorff space.

Proof: Suppose each fn is in Cc(X) and that fn ↓ 0 pointwise. There is a
fixed compact set K such that each fn has support in K. According to Dini’s
theorem, fn → 0 uniformly. Let g be in Cc(X) and have the value 1 on K. Then
0 ≤ fn ≤ ‖fn‖supg, so 0 ≤ µ(fn) ≤ ‖fn‖supµ(g). Thus µ(fn) → 0. That is, µ
satisfies the monotone convergence theorem on Cc(X). Thus µ is an elementary
integral.

The elementary integral extends uniquely to the σ-ring generated by Cc(X).
Since X is σ-compact, this is the same as the σ-algebra generated by Cc(X). In
the present context this is the Borel σ-algebra. �
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It is worth observing that the natural class of maps for such Radon measures
is the class of φ : X → Y such that φ is measurable and such that L ⊂ Y
compact implies there is a K ⊂ X compact with φ−1[L] ⊂ K. Thus if µ is
finite on compact subsets of X, then for each compact subset L of Y the image
measure φ[µ] satisfies the property that φ[µ](L) = µ(φ−1[L]) ≤ µ(K) is finite.
When φ is continuous this is often called a proper map.

Now we look at the situation for the larger space C0(X) of continuous func-
tions that vanish at infinity.

Theorem 31.7 If f is a locally compact metric space, then the closure of the
space Cc(X) of continuous functions with compact support in the space BC(X)
of bounded continuous functions is C0(X), the space of continuous functions
that vanish at infinity.

Proof: Since a function with compact support vanishes at infinity, it follows
that the closure of Cc(X) is a subset of C0(X). The converse is slightly more
complicated. Suppose that f is in C0(X). Then there is a compact set Kn such
that |f | < 1/n on the complement of Kn Let gn be in Cc(X) with 0 ≤ gn ≤ 1
and with gn = 1 on Kn. Then gnf is in Cc(X). Furthermore, (1 − gn)|f | is
bounded by 1/n. Hence gnf → f uniformly. So f is in the closure of Cc(X).
�

Theorem 31.8 Let X be a locally compact metric space. Let µ be as Radon
measure on C0(X). Then µ is a Lipschitz function on C0(X) with the uniform
norm.

Proof: First we argue that there is aM so that for f in C0(X) with 0 ≤ f ≤ 1
we have µ(f) ≤ M . Otherwise, there is sequence of fk with 0 ≤ fk ≤ 1 and
µ(fk) ≥ 2k. Let g =

∑∞
k=1

1
2k
fk. Then g is also in C0(X). Furthermore, for

each n we have g ≥ gn =
∑n
k=1

1
2k
fk. It follows that µ(g) ≥ µ(gn) ≥ n. If

n > µ(g) this is a contradiction.
Since µ is linear, if −1 ≤ f ≤ 1, then we have µ(f) = µ(f+) − µ(f−) and

so |µ(f)| ≤ µ(f+) + µ(f−) ≤ 2M . It then follows for arbitrary f in C0(X) that
|µ(f)| ≤ 2M‖f‖. �

Corollary 31.9 (Riesz representation theorem (locally compact case))
Let X be locally compact Polish space. Then there is a natural bijective corre-
spondence between Radon measures on C0(X) and finite Borel measures.

Remark: A locally compact Polish space is the same as a second countable
locally compact Hausdorff space.

Proof: A Radon measure µ on C0(X) restricts to a measure µ′ on Cc(X).
By the previous theorem µ′ uniquely corresponds to a Borel measure finite on
compact subsets. If this Borel measure µ′ is not finite, then one can construct
fn in Cc(X) with 0 ≤ fn ≤ 1 and fn ↑ 1, and so µ(fn) ↑ +∞. This is a
contradiction, so µ′ is a finite measure.
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Since µ = µ′ are both Lipschitz on C0(X) and agree on the dense subset
Cc(X), we see that µ = µ′ on C0(X). �

There is no corresponding theorem for BC(X). One can always start with a
linear order-preserving functional µ on BC(X). Again it will be Lipschitz. One
can restrict it to a Radon measure µ′ on Cc(X) that gives rise to a finite Borel
measure. However it is no longer the case that we can conclude that µ′ agrees
with the original µ on BC(X). The correspondence from µ to µ′ can be many
to one. The problem is that Cc(X) is not dense in BC(X). The functional µ
can depend on asymptotic properties of the functions on BC(X) that are not
captured by a measure on X.

Corollary 31.10 (Riesz representation theorem (compact case)) Let X
be a a compact metrizable space. Then there is a natural bijective correspondence
between Radon measures on C(X) and finite Borel measures.

Remark: A compact metrizable space is the same as a second countable
compact Hausdorff space.

Again there is a result where the Radon measure µ is not required to be
order preserving but only to be continuous on C(X) with compact X. The
conclusion is that µ is given by a finite signed Borel measure.

31.4 Lower semicontinuous functions

Let us look more closely at the extension process in the case of a Radon mea-
sure. We begin with the positive linear functional on the space L = Cc(X) of
continuous functions with compact support. The construction of the integral
associated with the Radon measure proceeds in the standard two stage process.
The first stage is to consider the integral on the spaces L ↑ and L ↓. The sec-
ond stage is to use this extended integral to define the integral of an arbitrary
summable function.

A function f from X to (−∞,+∞] is said to be lower semicontinuous (LSC)
if for each real a the set {x | f(x) > a} is an open set. A function f from X to
[−∞,+∞) is said to be upper semicontinuous (USC) if for each real a the set
{x | f(x) < a} is an open set. Clearly a continuous real function is both LSC
and USC.

Theorem 31.11 If each fn is LSC and if fn ↑ f , then f is LSC. If each fn is
USC and if fn ↓ f , then f is USC.

It follows from this theorem that space L ↑ consists of functions that are LSC.
Similarly, the space L ↓ consists of functions that are USC. These functions can
already be very complicated. The first stage of the construction of the integral
is to use the monotone convergence theorem to define the integral on the spaces
L ↑ and L ↓.

In order to define the integral for a measurable functions, we approximate
such a function from above by a function in L ↑ and from below by a function
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in L ↓. This is the second stage of the construction. The details were presented
in an earlier chapter.

The following is a useful result that we state without proof.

Theorem 31.12 If µ is a Radon measure and if 1 ≤ p < ∞, then Cc(X) is
dense in Lp(X,B, µ).

The corresponding result for p =∞ is false. The uniform closure of Cc(X) is
C0(X), which in general is much smaller than L∞(X,B, µ). A bounded function
does not have to be continuous, nor does it have to vanish at infinity.

31.5 Weak∗ convergence

In order to emphasize the duality between the space of measures and the space
of continuous functions, we sometimes write the value of the Radon measure µ
on the continuous function f as

µ(f) = 〈µ, f〉. (31.1)

As before, we consider only positive Radon measures, though there is a gen-
eralization to signed Radon measures. We consider finite Radon measures, that
is, Radon measures for which 〈µ, 1〉 <∞. Such a measure extends by continuity
to C0(X), the space of real continuous functions that vanish at infinity. In the
case when 〈µ, 1〉 = 1 we are in the realm of probability. Throughout we take X
to be a separable locally compact metric space, though a more general setting
is possible.

In this section we describe weak∗ convergenceweak∗ convergence for finite
Radon measures. In probability this is often called vague convergence. A se-
quence µn of finite Radon measures is said to weak∗ converge to a finite Radon
measure µ if for each f in C0(X) the numbers 〈µn, f〉 → 〈µ, f〉.

The importance of weak∗ convergence is that it gives a sense in which two
probability measures with very different qualitative properties can be close. For
instance, consider the measure

µn =
1
n

n∑

k=1

δ k
n
. (31.2)

This is a Riemann sum measure. Also, consider the measure

〈λ, f〉 =
∫ 1

0

f(x) dx. (31.3)

This is Lebesgue measure on the unit interval. Then µn → λ in the weak∗ sense,
even though each µn is discrete and λ is continuous.

A weak∗ convergent sequence can lose mass. For instance, a sequence of
probability measures µn can converge in the weak∗ sense to zero. A simple
example is the sequence δn. The following theory shows that a weak∗ convergent
sequence cannot gain mass.
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Theorem 31.13 If µn → µ in the weak∗ sense, then 〈µ, f〉 ≤ lim infn→∞〈µn, f〉
for all f ≥ 0 in BC(X).

Proof: It is sufficient to show this for f in BC with 0 ≤ f ≤ 1. Choose
ε > 0. Let 0 ≤ g ≤ 1 be in C0 so that 〈µ, (1− g)〉 < ε. Notice that gf is in C0.
Furthermore, (1− g)f ≤ (1− g) and gf ≤ f . It follows that

〈µ, f〉 ≤ 〈µ, gf〉+ 〈µ, (1−g)〉 ≤ 〈µ, gf〉+ ε ≤ 〈µk, gf〉+2ε ≤ 〈µk, f〉+2ε (31.4)

for k sufficiently large. �
The following theorem shows that if a weak∗ convergent sequence does not

lose mass, then the convergence extends to all bounded continuous functions.

Theorem 31.14 If µn → µ in the weak∗ sense, and if 〈µn, 1〉 → 〈µ, 1〉, then
〈µn, f〉 → 〈µ, f〉 for all f in BC(X).

Proof: It is sufficient to prove the result for f in BC with 0 ≤ f ≤ 1. The
preceding result gives an inequality in one direction, so it is sufficient to prove
the inequality in the other direction. Choose ε > 0. Let 0 ≤ g ≤ 1 be in C0 so
that 〈µ, (1− g)〉 < ε. Notice that gf is in C0. Furthermore, (1− g)f ≤ (1− g)
and gf ≤ f . For this direction we note that the extra assumption implies that
〈µn, (1− g)〉 → 〈µ, (1− g)〉. We obtain

〈µn, f〉 ≤ 〈µn, gf〉+〈µn, (1−g)〉 ≤ 〈µ, gf〉+〈µ, (1−g)〉+2ε ≤ 〈µ, gf〉+3ε ≤ 〈µ, f〉+3ε
(31.5)

for n sufficiently large. �
It is not true in general that the convergence works for discontinuous func-

tions. Take the function f(x) = 1 for x ≤ 0 and f(x) = 0 for x > 0. Then the
measures δ 1

n
→ δ0 in the weak∗ sense. However 〈δ 1

n
, f〉 = 0 for each n, while

〈δ0, f〉 = 1.
We now want to argue that the convergence takes place also for certain

discontinuous functions. A quick way to such a result is through the following
concept. For present purposes, we say that a bounded measurable function g
has µ-negligible discontinuities if for every ε > 0 there are bounded continuous
functions f and h with f ≤ g ≤ h and such that µ(f) and µ(h) differ by less
than ε.

Example: If λ is Lebesgue measure on the line, then every bounded piecewise
continuous function with jump discontinuities has λ-negligible discontinuities.

Example: If δ0 is the Dirac mass at zero, then the indicator function of the
interval (−∞, 0] does not have δ0-negligible discontinuities.

Theorem 31.15 If µn → µ in the weak∗ sense, and if 〈µn, 1〉 → 〈µ, 1〉, then
〈µn, g〉 → 〈µ, g〉 for all bounded measurable g with µ-negligible discontinuities.

Proof: Take ε > 0. Take f and h in BC such that f ≤ g ≤ h and µ(f)
and µ(h) differ by at most ε. Then µn(f) ≤ µn(g) ≤ µn(h) for each n. It
follows that µ(f) ≤ lim infn→∞ µn(g) ≤ lim supn→∞ µn(g) ≤ µ(h). But also
µ(f) ≤ µ(g) ≤ µ(h). This says that lim infn→∞ µn(g) and lim supn→∞ µn(g)
are each within ε of µ(g). Since ε > 0 is arbitrary, this proves that limn µn(g)
is µ(g). �
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31.6 Central limit theorem for coin tossing

This section gives a statement of the for the special case of coin-tossing. The
purpose is to illustrate the of the weak∗ convergence concept.

For each n consider the space {0, 1}n for the outcomes of n coin tosses. We
shall think of 0 as heads and 1 as tails. The probability measure for fair tosses
of a coin is the uniform measure that assigns measure 1/2n to each of the 2n

one point sets.
For j = 1, . . . , n let xj be the function on {0, 1}n that has value xj(ω) = 1

if ωj = 0 and ωj = −1 if ωj = 1. Thus x1 + · · · + xn is the number of heads
minus the number of tails. It is a number between −n and n.

Let µn be the probability measure on the line that is the image of the uniform
probability measure on {0, 1}n under the map

1√
n

(x1 + · · ·+ xn) : {0, 1}n → R. (31.6)

This measure assigns mass

pk =
(
n

k

)
1
2n

(31.7)

to the point (2k − n)/
√
n, for k = 0, 1, . . . , n. So it is very much a discrete

measure.

Theorem 31.16 (Central limit theorem for coin tossing) The measures
µn converge in the weak∗ sense to the standard normal probability measure µ
with density

φ(z) =
1√
2π
e−

1
2 z

2
(31.8)

with respect to Lebesgue measure on the line.

31.7 Weak∗ probability convergence and Wiener
measure

Consider a Polish space X that is not necessarily locally compact. There is
still a useful notion of convergence, provided that we restrict the discussion to
probability measures. A sequence µn of Borel probability measures is said to
converge to a Borel probability measure µ in the weak∗ probability sense if for
every f in BC(X) we have µn(f)→ µ(f) as n→∞.

The nice feature of this definition is that it applies not only to locally compact
spaces, but also to more general spaces, such as infinite dimensional separable
Banach spaces. See the book by Dudley [4] for a thorough development of
this theory. Notice that if X does happens to be locally compact, then on the
class of probability measures this agrees with the previous definition of weak∗

convergence of Radon measures.
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Perhaps the most famous probability measure on an infinite dimensional
space is Wiener measure (otherwise known as the Einstein model for Brownian
motion). Fix a time interval [0, T ]. The space on which the measure lives is
the space X = C([0, T ]) of all real functions on [0, T ]. These are considered as
function from time to one dimensional space. According to Einstein there is a
parameter σ > 0 that related time to space. This is the diffusion constant. It is
defined so that the expectation of the square of the distance travelled is σ times
the elapsed time.

Consider a natural numberN and define ∆t = T/N . For each j = 0, 1, 2, 3 . . . , N
there are corresponding time instants 0,∆t, 2∆t, 3∆t, T . For a coin toss se-
quence ω in {0, 1}N and a time t in [0, T ] with j∆t ≤ t ≤ (j + 1)∆t define

W (t, ω) = σ
√

∆t(x1(ω) + . . .+ xj(ω) +
t− j∆t

∆t
xj+1(ω)). (31.9)

For each coin toss sequence ω the function t 7→ W (t, ω) is a piecewise linear
continuous path in the space X = C([0, T ]). Define µN as the image of the coin
tossing measure on {0, 1}N in the space X = C([0, T ]).

Theorem 31.17 (Existence of Wiener measure) Fix the total time T and
the diffusion constant σ. For each N there is a probability measure µN in
X = C([0, T ]) defined as above by N tosses of a fair coin. The assertion is that
there is a probability measure µ in X = C([0, T ]) such that µn → µ in the weak∗

probability sense as n→∞.

The theorem is proved in probability texts, such as the one by Fristedt and
Gray [6]. The Wiener measure has remarkable properties.

1. For each t in [0, T ] the expectation µ(W (t)) = 0.

2. For each t in [0, T ] and h ≥ 0 with t+h in [0, T ] we have µ(W (t)W (t+h)) =
σ2t. In particular the variance is µ(W (t))2 = σ2t.

3. For each t the random variable W (t) has the normal distribution with
density

φt(x) =
1√

2πσ2t
e−

z2

2σ2t . (31.10)

The second property implies that the next increment W (t + h) −W (t) is
uncorrelated with the present W (t), that is, µ((W (t+ h)−W (t))W (t)) = 0.

As a consequence of these properties we see that for h ≥ 0 we have

µ((W (t+ h)−W (t))2) = σ2h (31.11)

This is consistent with the fact that the paths are continuous. However for
h > 0 this also says that

µ(
(
W (t+ h)−W (t)

h

)2

) =
σ2

h
. (31.12)

This suggests that though the typical Wiener path is continuous, it is not dif-
ferentiable.
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31.8 Supplement: Measure theory on locally com-
pact spaces

In this section we explore properties of locally compact Hausdorff spaces that
are not metrizable. Much of the elementary theory about spaces of continuous
functions continues to work [5], but there are new measure-theoretic technical-
ities.

If X is a topological space, then it determines a measurable space by taking
the Borel σ-algebra of subsets. This is the smallest σ-algebra Bo that contains
all the open sets of the topological space. Since it is closed under complements,
it also contains all the closed sets.

The smallest σ-algebra of subsets for which every function in C(X) is mea-
surable will be called the continuous Baire σ-algebra and denoted Bc. It is clear
that Bc ⊂ Bo. It is not difficult to see that this σ-algebra may also be generated
by BC(X).

For topological spaces that are not metrizable these may be different. An
example is obtained with a compact Hausdorff space Y (such as the two point set
{0, 1} or the unit interval [0, 1]) and an uncountable index set I. Then X = Y I

is a compact Hausdorff space, but it is not metrizable. Each set or function in
the continuous Baire σ-algebra depends only on countable many coordinate in
I. A one point set is defined by restricting all of the coordinates in I to have
fixed values. So the one point sets are not in the continuous Baire σ-algebra.
On the other hand, each one point set in X is closed, and so it is in the Borel
σ-algebra

Let X be a locally compact Hausdorff space. The Baire σ-algebra Ba is the
σ-algebra of functions generated by the space Cc(X) of real continuous functions
on X, each of which has compact support. This is the same σ-algebra as that
generated by the space C0(X) of real continuous functions on X that vanish at
infinity.

An example where the Baire σ-algebra Ba is strictly smaller than the ex-
tended Baire σ-algebra Bc is when X is an uncountable discrete space.

The general relation of the Baire, continuous Baire, and Borel σ-algebras is
Ba ⊂ Bc ⊂ Bo. See Royden [17] for yet more σ-algebras. The following result
is from this source.

Theorem 31.18 Let X be a σ-compact locally compact Hausdorff space. Then
Ba = Bc.

It is interesting to consider the Riesz representation theorems for non-metric
spaces. In this case the simplest results are for the Baire σ-algebra Ba. Recall
that a Radon measure on a space of real continuous functions is a linear function
µ from the space to the reals that is order preserving. Thus in particular f ≥ 0
implies µ(f) ≥ 0.

Theorem 31.19 (Riesz representation) Let X be a locally compact Haus-
dorff space. Suppose that it is also σ-compact. Then there is a natural bijective
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correspondence between Radon measures on Cc(X) and Baire measures that are
finite on compact sets.

Proof: Suppose as known the usual properties of continuous functions on
locally compact Hausdorff spaces, as described in Folland[5]. Here is a skecth
of the proof. Consider such a Radon measure µ. The local compactness and
Dini’s theorem are be used in the usual way to show that µ is an elementary
integral on Cc(X).

The elementary integral extends uniquely to the σ-ring generated by Cc(X).
Since X is σ-compact, this is the same as the σ-algebra generated by Cc(X)
[17]. This is the Baire σ-algebra Ba. �
Example: Let X = [0, 1]R, an uncountable product of copies of the unit interval.
This is a compact Hausdorff space. The continuous functions that depend on
only finitely many coordinates are dense in the space C(X). It follows that each
Baire subset depends on at most countably many coordinates.

There are many interesting subsets, even open subsets, that are not Baire
subsets. For example, consider a non-trivial open subset U of [0, 1]. For each
real t, the set St of all ω in X such ω(t) is in U is an open subset. Let S be
the set of all ω in S such that for some real t the value ω(t) is in U . Then S is
the union of the open subsets St for t in R, so S is open. But S is not a Borel
subset.

The Borel σ-algebra is large enough to include most interesting subsets,
and so one might want to have a correspondence between Radon measures and
Borel measures. In order to make such a correspondence well-defined, the Borel
measure must be assumed to have regularity properties with respect to certain
possibly uncountable supremum and infimum operations [5].

One way to do this is to use the notion of lower semicontinuous (LSC)
function. If X is a locally compact Hausdorff space, and f ≥ 0 is an lower
semicontinuous function from X to [0,+∞), then f is the supremum of the set
of all g in Cc(X) with 0 ≤ g ≤ f . Notice that this supremum may be over
an uncountable set of functions. It thus seems reasonable to require that an
integral µ satisfy the the first stage regularity property: If h ≥ 0 is LSC, then

µ(h) = sup{µ(f) | f ∈ Cc(X), 0 ≤ f ≤ h}. (31.13)

Theorem 31.20 (Riesz representation) Let X be a locally compact Haus-
dorff space. Then there is a natural bijective correspondence between Radon
measures on Cc(X) and Borel measures that are finite on compact sets and
whose corresponding integrals µ the following the first stage regularity property
and also the second stage regularity property: For each Borel measurable func-
tion g ≥ 0

µ(g) = inf{µ(h) | h ∈ LSC, g ≤ h} (31.14)

Here is an example where such issues arise [5]. Consider the space X =
C([0, T ]) that was used in the example of Wiener measure. It is a complete
separable metric space, and the notion of convergence, uniform convergence,
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seems quite natural. However it is not locally compact. It would be nice if it
were possible to to use a compact space in the construction of Wiener measure.

One approach is to use the product space [−∞,∞][0,T ]. This has the topol-
ogy of pointwise convergence. This space is much larger, but it is automatically
compact, because of the way that the topology is defined. However it is not
a metric space. Furthermore, the continuous functions are not a Baire subset,
but only a Borel subset. So one has to deal with measure theory technicalities
in order to get a measure on the space of continuous functions. This approach
is so elegant, however, that it apparently justifies the study of Borel measures
on compact Hausdorff spaces.

This approach, while elegant, may not save so much work. The estimates
that are needed to show that the measure lives on the space of continuous
functions are rather similar to the estimates that are needed to establish the
required compactness properties in the approach that works directly with X =
C([0, T ]).

Problems

1. Show that the union of a finite collection of compact sets is compact.

2. Recall that X is locally compact if for every point x in X there is an open
subset U and a compact subset K with x ∈ U ⊂ K. Suppose that X is
locally compact. Prove that for every compact subset M ⊂ X there is an
open subset V and a compact subset N such that M ⊂ V ⊂ N .

3. The problem concerns real Borel functions on the line. Let

g(z) =
1√
2π
e−

1
2 z

2
. (31.15)

The integral of g with respect to Lebesgue measure is 1. For t > 0 let
gt(x) = (1/t)g(x/t). Let γt be the measure whose Radon-Nikodym deriva-
tive with respect to Lebesgue measure is gt. Recall that weak∗ convergence
of measures says that for each continuous real function that vanishes at
infinity the integrals of the function converge.
(a) Find the weak∗ limit of γt as t→ +∞.
(b) Find the weak∗ limit of γt as t→ 0.

4. We know that
n∑

k=1

1
n
δ k
n
→ λ1 (31.16)

as n→∞ in the weak∗ sense, where λ1 is Lebesgue measure on the unit
interval.
(a) Evaluate the limit as n→∞ of

n∑

k=1

1
n
δ k
n2
. (31.17)
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(b) Evaluate the limit as n→∞ of

n∑

k=1

1
n
δk. (31.18)

(c) Evaluate the limit as n→∞ of

n∑

k=1

k2

n3
δ k
n
. (31.19)

(d) Evaluate the limit as n→∞ of

n2∑

k=1

n

n2 + k2
δ k
n
. (31.20)

5. There is an identity

1
m+ 1

m∑
n=0

n∑

k=−n
eikx =

1
m+ 1

sin2( 1
2 (m+ 1)x)

sin2( 1
2x)

. (31.21)

(a) Find the integral of this function over the interval from −π to π.

(b) For each x in the interval from −π to π find the pointwise limit of this
function as m→∞.

(c) Find the weak∗ limit as m→∞ of the measure with this density (with
respect to Lebesgue measure) in the space C(T )∗, where T is the circle
parameterized by [−π, π). Justify your calculation.

6. The context is Borel functions on the real line. Let f be in L2 and g be
in L1. Let T : L2 → L2 be defined by the convolution Tf = g ∗ f . Then
T is a continuous linear transformation. For each polynomial p define
µ(p) = 〈f, p(T )f〉. Then µ defines a Radon measure and hence is given by
a Borel measure on the line. Find this measure explicitly, as the image of
an absolutely continuous measure.
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Mathematical Notation

Logic
∀ for all
∧ and
∃ for some, there exists
∨ or
⇒ implies
¬ not
⊥ false statement

Sets
x ∈ A x is in A
A ⊂ B A is a subset of B
∅ empty set
{x, y} unordered pair with x and y in it
(x, y) ordered pair with x first, y second⋂

Γ intersection of a collection Γ of sets
A ∩B ⋂{A,B}⋃

Γ union of a collection Γ of sets
A ∪B ⋃{A,B}
A \B relative complement of A in B
Bc X \B
A×B Cartesian product of A,B
A+B disjoint union of A,B
P (X) power set of set X
{x ∈ A | p(x)} subset of A satisfying property p
X/E quotient of X by equivalence relation E

Relations
IA identity function on A
S ◦R composition of relations
R−1 inverse relation
R[A] image of A
R−1[B] inverse image of B

333



334 MATHEMATICAL NOTATION

Functions
f : A→ B f function with domain A and target B
{x 7→ φ(x) : A→ B} function from A to B given by formula φ∏
t∈I At Cartesian product of sets At, t ∈ I

AI Cartesian power of A, all functions from I to A∑
t∈I At disjoint union of sets At, t ∈ I

I ×A disjoint multiple of A
ω0 countable infinite cardinality
c cardinality of the continuuum, 2ω0

Ordered sets
≤ generic order relation
P,≤ ordered set
[a, b] {x ∈ P | a ≤ x ≤ b}
(a, b) {x ∈ P | a < x < b}
↓ S lower bounds for S
↑ S upper bounds for S∧
S infimum inf S, greatest lower bound

x ∧ y ∧{x, y}∨
S supS, supremum, least upper bound

x ∨ y ∨{x, y}

Number systems
N natural numbers starting at 0
N+ natural numbers starting at 1
Z integers
Q rational numbers
R real numbers
C complex numbers
H quaternions
N set ordered like N or N+

Z set ordered like Z
Q set ordered like Q
R set ordered like R

Convergence
→ approaches, converges to
↑ increases to
↓ decreases to

Metric spaces
d generic metric
X, d metric space
B(x, r) open ball about x of radius r
Rn all ordered n-tuples of real numbers
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`p all p-summable sequences of real numbers, 1 ≤ p < +∞
`∞ all bounded sequences of real numbers
c0 all sequences of real numbers that converge to zero
R∞ all infinite sequences of real numbers (product metric)
[0, 1]∞ Hilbert cube (product metric)
2∞ Cantor set, coin-tossing space {0, 1}∞ (product metric)

Topological spaces
T generic topology
X, T topological space
τ(Γ) topology generated by subsets in Γ
Ā closure of subset A
A◦ interior of subset A
Fσ countable union of closed subsets
Gδ countable intersection of open subsets

Measurable spaces
F generic σ-algebra (of subsets or of real functions)
X,F measurable space
σ(Γ) σ-algebra generated by Γ
Bo(X) = Bo(X, T ) Borel σ-algebra σ(T )
Bc(X) = Bc(X, T ) continuous Baire σ-algebra σ(C(X, T )) (= Bo(X, T ) for metrizable X, T )
Ba(X) = Ba(X, T ) Baire σ-algebra σ(Cc(X, T ))

Integrals and measures
µ generic (positive) measure
X,F , µ measure space
f+ positive part of f , f+ = f ∨ 0
f− negative part of f , f+ = −(f ∧ 0)
µ(f) integral of f with respect to µ, µ(f) = µ(f+)− µ(f−)
1A indicator function of A
µ(A) measure of A, same as µ(1A)
δp unit point mass at p, δp(g) = g(p)∑

summation (counting measure)
φ[µ] image of integral µ under φ, φ[µ](g) = µ(g ◦ φ)
ν ≺ µ ν is absolutely continuous with respect to µ
ν ⊥ µ ν and µ are mutually singular
Fµ completion of σ-algebra F with respect to µ
µ̄ completion of integral µ, measurable functions in F̄µ

Product measures
g ⊗ h tensor product of g, h, (g ⊗ h)(x, y) = g(x)h(y)
F1

⊗F2 product σ-algebra
µ1 × µ2 product integral, (µ1 × µ2)(g ⊗ h) = µ1(g)µ2(h)
X1 ×X2,F1

⊗F2, µ1 × µ2 product measure space
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f |1 fix first input, f |1(x) = {y 7→ f(x, y)}
f |2 fix second input, f |2(y) = {x 7→ f(x, y)}
µ2(f | 1) partial integral fixing first input, µ2 ◦ f |1
µ1(f | 2) partial integral fixing second input, µ1 ◦ f |2

Lebesgue integral
Bo Borel measurable functions Bo(R)
λ Lebesgue integral with Borel measurable functions, λ(g) =

∫∞
−∞ g(x) dx

Boλ Lebesgue measurable functions
λ̄ completed Lebesgue integral with Lebesgue measurable functions
σF Lebesgue-Stieltjes integral with Borel measurable functions, σF (g) =

∫∞
−∞ g(x) dF (x)

Function spaces
B(X) all bounded real functions on set X
C(X) = C(X, T ) all continuous real functions on topological space X, T
BC(X) = BC(X, T ) all bounded continuous real functions on topological space X, T
Cc(X) = Cc(X, T ) all real compactly-supported functions on LCH space X, T
C0(X) = C0(X, T ) all real functions on LCH space X, T that vanish at infinity
‖f‖sup supremum norm of function f
Lp(X,µ) = Lp(X,F , µ) Lp space of functions, 1 ≤ p ≤ ∞
Lp(X,µ) = Lp(X,F , µ) quotient space by µ-equivalent functions, 1 ≤ p ≤ ∞
‖f‖p Lp or Lp norm, 1 ≤ p ≤ ∞
M(X) = M(X,F) space of finite signed measures on X,F
µ+ positive part of signed measure µ
µ− negative part of signed measure µ
‖µ‖ variation norm µ+(X) + µ−(X), where µ = µ+ − µ−

Banach spaces
‖u‖ norm of vector u in Banach space E
T : E → F T is continuous linear from E to F
‖T‖ Lipschitz norm of T , ‖Tu‖ ≤ ‖T‖‖u‖
E∗ dual space of E, space of α : E → R
〈α, v〉 value α(v) of α in E∗ on v in E
T ∗ : F ∗ → E∗ adjoint of T , 〈T ∗α, v〉 = 〈α, Tv〉

Hilbert space
〈u, v〉 inner product of vectors u, v in Hilbert space H
‖v‖ norm ‖v‖ =

√
〈v, v〉 of v in Hilbert space H

u ⊥ v u is orthogonal (perpendicular) to v, 〈u, v〉 = 0
M⊥ closed subspace of vectors orthogonal to M
T : H → K T is continuous linear from H to K
T ∗ : K → H Hilbert space adjoint of T , 〈T ∗u, v〉 = 〈u, Tv〉
H∗ dual space of H, space of α : H → C
w∗ adjoint w∗ in H∗ of w in H, w∗(u) = 〈w, u〉
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Fourier transform
f ∗ g convolution of f and g , ‖f ∗ g‖2 ≤ ‖f‖1‖g‖2
f∗ convolution adjoint of function f , 〈f∗ ∗ h, g〉 = 〈h, f ∗ g〉
f̂ Fourier transform of f , f̂ ∗ g = f̂ ĝ, f̂∗ = f̄
F Fourier transform on L2, Fg = ĝ

Geometry
T = S1 circle
Tn n-torus
Sn−1 unit n− 1 sphere of area an = 2πn/2

Γ(n/2)

Bn open unit n ball of volume vn = an/n
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Abel summable, 271
absolute integral †, 89
absolutely continuous

function, 132, 259
measure, 130, 255

absolutely integrable function †, 89
abstract Lebesgue integral, 86
abstract Lebesgue measure, 86
adjoint transformation

Banach space, 311
Hilbert space, 245

Alaoglu theorem, 313
algebra of functions, 226
algebra of subsets, 115
almost everywhere, 140
almost surely, 140
amplitude, 270
angular frequency, 281
antisymmetric relation, 37
approximate delta function, 270
arithmetic-geometric mean inequal-

ity, 232
Arzelà-Ascoli theorem, 195
atomic formula (logic), 4
axiom of choice, 46
axiom of infinity, 29

Baire category theorem, 205
Baire σ-algebra, 326
ball, 168
Banach fixed point theorem, 184
Banach space, 182, 225
base for a topology, 173, 297
basis (Hilbert space), 247
Bernstein’s theorem, 49
Bessel inequality, 246
bijection, 38, 45

binary function, 94
Bolzano-Weierstrass property, 191
Borel equivalence relation, 221
Borel isomorphism, see measure space

isomorphism
Borel measurable, 77, 81
Borel measure, 90
Borel σ-algebra, 77, 81, 116, 302,

326
Borel space, see measurable space
bound variable (logic), 5
boundary, 204
Bourbaki fixed point theorem, 63
Brownian motion, see Wiener mea-

sure

Cantor function, 133
Cantor measure, 133
Cantor set, 50
Cantor space, 77, 210
Cantor’s theorem on power sets, 48
cardinal number, 65
careful substitution (logic), 6
Cartesian power, 48
Cartesian product, 28
Cauchy sequence, 177
central limit theorem, 324
chain, see linearly ordered set
characteristic function, see indica-

tor function
Chebyshev inquality, 140
classified set †, 46
closed (Hilbert) subspace, 242
closed ball, 168
closed subset, 76, 171, 293
closure, 172, 203, 293
coarser topology, 294
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codomain, see target
cograph, 36, 46
coin-tossing space, 78
collection, 24
compact metric space, 190
compact topological space, 203, 298
compactification

Hilbert cube, 211
one-point, 299

comparable elements, 56
complement, 26
complete

lattice, 58
metric space, 181

completed Lebesgue integral, 123
completed Lebesgue measure, 90
completely metrizable space, 201
completion

integral, 123
σ-algebra, 123

composition, 35, 45
conditional expectation, 264
connected space, 180
connective (logic), 4
continuous at a point, 174, 294
continuous Baire σ-algebra, 326
continuous function, 170
continuous map, 174, 294
continuous measure, 125
contraction, 174
contrapositive (logic), 5
converge

in measure, 164
pointwise, 80
pointwise almost everywhere, 140
uniformly, 170

converse (logic), 5
convolution, 270, 283
correlation, 262
countable additivity

of functions, 85
of subsets, 86

countable set, 48
countable subadditivity, 144
countably generated σ-algebra, 219

countably separated measurable space,
219

counting measure, 87, 118
covariance, 262
cover, 25

Daniell construction, 104
decomposable function, 149
decreasing, 58
definitely integrable function †, 88
delta measure, see unit point mass
dense interior, 204
dense subset, 172, 173, 298
density function (relative), 90, 130,

256
diffusion constant, 325
Dini’s theorem, 96, 319
Dirac delta measure, see delta mea-

sure
directed set, 303
Dirichlet kernel, 276
discrete measure, 125
discrete topology, 294
disjoint, 26
disjoint union, 28
distance, 167
distance from a set, 168
distribution function, 90
distribution functions, 131
distribution of random variable, 128
domain, 45
dominated convergence theorem, 138
dual Banach space, 225, 309
dynamical system, 39

Egoroff’s theorem, 145
elementary integral †, 95
embedding, 295
equicontinuous family, 194
equiLipschitz family, 194
equivalence class, 36
equivalence relation, 36
ergodic probability measure, 221, 277
essential supremum, 230
event, 126
expectation, 87, 126
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extended metric, 167
extended real number system, 61

family, 24
fast Cauchy sequence, 187
Fatou’s lemma, 137
finer topology, 294
finite intersection property, 193, 298
finite measure, 87
finite signed measure, 310
first category, see meager
first countable, 297
formula (logic), 4
Fourier coefficient, 269
Fourier series, 269
Fourier transform, 282
free variable (logic), 5
Fσ (fermé-somme), 201
Fubini’s theorem, 154
function, 28, 37, 45
function symbol (logic), 3

Gauss kernel, 286
Gδ (Gebiet-Durchschnitt), 201
generated

σ-algebra, 76
topology, 294

Gram-Schmidt construction, 248
graph, 36, 46
greatest element, 57
greatest lower bound, see infimum

Haar function, 250
Hausdorff maximal principle, 65
Hausdorff topological space, 172, 299,

301
Heine-Borel property, 193
Hilbert cube, 191
Hilbert cube compactification, 211
Hilbert space, 239
Hilbert space isomorphism, 246
Hölder inequality, 232
homeomorphism, 175, 294

ideal of subsets, 204
identity relation, 35

image, 45
image integral, 91, 128
image measure, 91, 128
in (set membership), 23
increasing, 56, 58
indexed family, 46
indexed set, 46
indicator function, 48
indiscrete topology, 294
infimum, 58
initial segment, 65
injection, 28, 38, 45
inner product, 239
integrable

absolutely †, 89
definitely †, 88

integral †, 85
interior, 172, 204, 293
intersection, 25
inverse Fourier transform, 282
inverse function, 45
inverse image, 45
inverse relation, 35
isometric, 175
isomorphism, see structure isomor-

phism

Jordan decomposition, 310

Knaster-Tarski fixed point theorem,
60

Kuratowski closure axioms, 203

L-bounded function, 121
L-bounded monotone class, 121
lattice, 58
lattice of functions, 79
Lawvere metric †, 167, 178
least element, 57
least upper bound, see supremum
Lebesgue decomposition, 255
Lebesgue differentiation theorem, 259
Lebesgue integral, 109, 123
Lebesgue measurable, 123
Lebesgue measure, 109
Lebesgue σ-algebra, 90
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Lebesgue-Stieltjes integrals, 130
left inverse, 46
Legendre transform, 235
limit of a net, 303
limit of a sequence, 177
Lindelöf theorem, 305
linear subspace, 242
linearly ordered set, 37, 56
Lipschitz equivalent, 175
Lipschitz map, 174
locally compact topological space, 203,

300
lower bound, 57
lower function, 103
lower integral, 62, 104
lower semicontinuous function, 179,

194, 321
Lp norm, 231
Lp space, 231

map, 45
mapping, 45
maximal element, 57
meager, 204
mean, 261
mean absolute value convergence, 230
measurable

function, 78, 80, 116
subset, 75
unction, 116

measurable map, 76, 128
measurable space, 75, 80
measurable space isomorphism, 215
measure, 86, 87, 104, 139
measure space, 86
measure space isomorphism, 217
metric space, 76, 167
metrizable topological space, 172
minimal element, 57
Minkowski inequality, 227
Minkowski’s inequality for integrals,

237
monotone, 58
monotone class, 120
monotone convergence

of functions, 85

of subsets, 86
monotone convergence theorem, 122
mutually singular measures, 255

natural deduction (logic), 8
neighborhood base, 297
neighborhood subbase, 297
net, 303
non-meager, 205
norm, 168
normal topological space, 173, 301
normed vector space, 182
nowhere dense, 204
null function, 123
null-dominated function, 123

one-point compactification, 299
open ball, 76, 168
open cover, 193
open map, 187
open subset, 76, 171, 293
orbit, 39
order preserving, see increasing
ordered pair, 27
ordered set, 37, 56
ordinal number, 66
Orlicz space, 234
orthogonal projection, 244
orthonormal family, 246
outcome, 94, 126

parallelogram law, 241
parameterized set, see indexed set
Parseval identity, 246
partial function, 37
partial integral, 154
partially ordered set, see ordered set
partition, 26
phase, 270
Plancherel theorem, 283
point, 24
point mass, 125, 132
pointwise convergence topology, 308
pointwise positive, see positive func-

tion
pointwise strictly positive, 57
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Poisson kernel (circle), 271
Poisson kernel (line), 287
Poisson summation formula, 287
Polish space, 209, 311
poset, see partially ordered set
positive function, 56
positive non-zero function, 56
positive real number, 56
power set, 26
pre-ordered set, 55
predicate symbol (logic), 3
principal value of 1/x, 287
probability, 126
probability integral, 126
probability measure, 87
product integral, 151
product measure, 151
product metric, 191
product σ-algebra, 149
product topology, 308
projection theorem, 244
proper map, 320
pseudo-metric, 167
pullback, 48, 128
pushforward, see image measure
Pythagorean theorem, 241

quantifier (logic), 4
quasi-metric, 167
quotient σ-algebra, 213
quotient space

measurable, 213
topological, 174, 295

quotient topology, 174, 295

Rademacher function, 249
Radon measure, 319
Radon-Nikodym derivative, 257
Radon-Nikodym theorem, 256
random variable, 94, 126
random walk, 162
range, 45
rectangular function, 93
reflexive Banach space, 309
reflexive relation, 36
regular measure, 119

regular topological space, 173, 301
relation, 28, 35
relative complement, 26
relative metric, 167
relative σ-algebra, 213
relative topology, 172, 295
residual, 204
retraction, see left inverse
Riemann integral, 62
Riemann-Lebesgue lemma, 274, 285
Riesz representation theorem, 310,

319, 326
Riesz-Fischer theorem, 246
Riesz-Fréchet representation theorem,

245
right inverse, 46
ring of subsets, 115, 156
root mean square convergence, 230
rooted tree, 37
Russell paradox, 27

Schwarz inequality, 169, 240
second category, see non-meager
second countable, 173, 298
section, see right inverse
section (slice), 152
seminorm, 227
semiring of subsets, 156
separable function, see decompos-

able function
separable space, 173, 298
sequence, 59, 169
set, 24
σ-algebra

of functions †, 80, 116
of subsets, 75, 116

σ-compact topological space, 318
σ-finite integral, 117
σ-ideal of sets, 205
σ-ring

of functions †, 116
of subsets, 116

signed measure, 310
singular continuous measure, 132
singular measure, 132, 255
solid spherical harmonic, 251



INDEX 343

sphere, 168
standard Borel space, see standard

measurable space
standard measurable space, 215
step function, 94
Stone vector lattice, 93
Stone-Weierstrass theorem, 226
strict contraction, 184
strictly decreasing, 58
strictly increasing, 56, 58
strictly positive real number, 56
strong law of large numbers, 161
strong topology of Hilbert space, 296
structure isomorphism, 69
structure map, 69
structured set, 69
subbase for a topology, 297
subnet, 306
subsequence, 191
subset, 23
subspace

measurable, 213
metric, 167
topological, 172, 295

substandard measurable space, 219
summation, 87, 118
sup norm, 170
support, 93
supremum, 58
surface spherical harmonic, 251
surjection, 28, 38, 45
symmetric relation, 36

target, 45
term (logic), 3
Tonelli’s theorem, 153
topological equivalence, 175, 294
topological isomorphism, 175, 294
topological space, 172, 293
topologically complete space, see com-

pletely metrizable space
topology, 293
torus, 170
total relation, 37
totally bounded, 189

totally ordered set, see linearly or-
dered set

transfinite induction, 65
transformation, 45
transitive relation, 36
translation (shift), 282
triangle inequality (metric), 167
triangle inequality (norm), 168
Tychonoff product theorem, 308

uniform convergence, 171
uniformly continuous map, 174
uniformly equicontinuous family, 194
uniformly equivalent, 175
uniformly open map, 187
union, 25
unit point mass, 125
unitary transformation, 246
upper bound, 57
upper function, 103
upper integral, 62, 103
upper semicontinuous function, 179,

194, 321
Urysohn metrization theorem, 173
Urysohn’s lemma, 172, 318

vague convergence, see weak∗ con-
vergence

variable (logic), 3
variance, 261
vector lattice of functions, 79
vector lattice with constants, 120
vector space of functions, 79

Walsh function, 249
wave number, 281
weak law of large numbers, 160, 262
weak topology of Banach space, 312
weak topology of Hilbert space, 296
weak∗ probability convergence, 324
weak∗ topology of dual Banach space,

312
well-ordered, 37, 65
Wiener measure, 325

Young’s inequality, 285
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Zermelo axioms, 23
Zorn’s lemma, 65


