Pairing of Zeros and Critical Points for Random Polynomials

Boris Hanin
Northwestern University

May 20, 2014
Model: $SU(2)$ Polynomials

$SU(2)$ polynomial:

$$p_N(z) \text{ def } = N \sum_{j=0}^{N} a_j \cdot \left(N \cdot j \right)^{1/2} z^j a_j \sim N(0, 1) C_{\text{indep}}.$$

Unique Gaussian ensemble for which the expected distribution of zeros is invariant under $SU(2)$.

$$M(z) \text{ def } = |p_N(z)|^2.$$

\{local minima of M\} \leftrightarrow \{zeros of p_N\}.

\{saddle points of M\} \leftrightarrow \{critical points of p_N\}.

Flow lines for $-\nabla M(z)$ accumulate at zeros of p_N.

Boris Hanin
Pairing of Zeros and Critical Points
Model: $SU(2)$ Polynomials

- Degree N $SU(2)$ polynomial:
Degree N $SU(2)$ polynomial:

$$p_N(z) \overset{\text{def}}{=} \sum_{j=0}^{N} a_j \cdot \binom{N}{j}^{1/2} z^j \quad a_j \sim N(0, 1)_\mathbb{C} \text{ indep.}$$
Model: $SU(2)$ Polynomials

- Degree N $SU(2)$ polynomial:

$$p_N(z) \overset{\text{def}}{=} \sum_{j=0}^{N} a_j \cdot \binom{N}{j}^{1/2} z^j \quad a_j \sim N(0, 1)_C \quad \text{indep.}$$

- Unique Gaussian ensemble for which the expected distribution of zeros is invariant under $SU(2)$.

Boris Hanin

Pairing of Zeros and Critical Points
Model: $SU(2)$ Polynomials

- Degree N $SU(2)$ polynomial:

$$p_N(z) \overset{\text{def}}{=} \sum_{j=0}^{N} a_j \cdot \binom{N}{j}^{1/2} z^j \quad a_j \sim N(0,1)_\mathbb{C} \quad \text{indep.}$$

- Unique Gaussian ensemble for which the expected distribution of zeros is invariant under $SU(2)$.

- $M(z) \overset{\text{def}}{=} |p_N(z)|^2$.
Model: $SU(2)$ Polynomials

- Degree N $SU(2)$ polynomial:

\[
p_N(z) \overset{\text{def}}{=} \sum_{j=0}^{N} a_j \cdot \binom{N}{j}^{1/2} z^j \quad a_j \sim N(0,1)_{\mathbb{C}} \quad \text{indep.}
\]

- Unique Gaussian ensemble for which the expected distribution of zeros is invariant under $SU(2)$.

- $M(z) \overset{\text{def}}{=} |p_N(z)|^2$.

 - $\{\text{local minima of } M\} \iff \{\text{zeros of } p_N\}$.

Boris Hanin

Pairing of Zeros and Critical Points
Model: $SU(2)$ Polynomials

- Degree N $SU(2)$ polynomial:

$$p_N(z) \overset{\text{def}}{=} \sum_{j=0}^{N} a_j \cdot \binom{N}{j}^{1/2} z^j \quad a_j \sim N(0, 1) \overset{\text{indep.}}{\sim}$$

- Unique Gaussian ensemble for which the expected distribution of zeros is invariant under $SU(2)$.

- $M(z) \overset{\text{def}}{=} |p_N(z)|^2$.

 - \{local minima of M\} \leftrightarrow \{zeros of p_N\}.
 - \{saddle points of M\} \leftrightarrow \{critical points of p_N\}.

Flow lines for $-\nabla M(z)$ accumulate at zeros of p_N.

Boris Hanin

Pairing of Zeros and Critical Points
Model: $SU(2)$ Polynomials

- Degree N $SU(2)$ polynomial:

$$p_N(z) \overset{\text{def}}{=} \sum_{j=0}^{N} a_j \cdot \binom{N}{j}^{1/2} z^j \quad a_j \sim N(0,1)_\mathbb{C} \quad \text{indep.}$$

- Unique Gaussian ensemble for which the expected distribution of zeros is invariant under $SU(2)$.

- $M(z) \overset{\text{def}}{=} |p_N(z)|^2$.

 - $\{\text{local minima of } M\} \leftrightarrow \{\text{zeros of } p_N\}$.
 - $\{\text{saddle points of } M\} \leftrightarrow \{\text{critical points of } p_N\}$.

- Flow lines for $-\nabla M(z)$ accumulate at zeros of p_N.
Pairing of Zeros and Crits for $SU(2)$ Polynomials
“Proof” of Pairing

\[\Delta G = \mu \Rightarrow dG(z) = e - \text{field from } \mu. \]

Fix \(p \mathcal{N} : \mathbb{S}^2 \rightarrow \mathbb{S}^2 \):

\[\text{Def. } \text{Div} (p \mathcal{N}) = -\mathcal{N} \cdot \delta_{\infty} + \sum p \mathcal{N}(\xi) = 0 \delta_{\xi} \]

\[\Delta \log |p \mathcal{N}(z)| = \text{Div} (p \mathcal{N}) \text{ (Poincaré-Lelong)} \]

Therefore,

\[d \log |p \mathcal{N}(z)| = e - \text{field from Div} (p \mathcal{N}) \]

\[\frac{d}{dz} p \mathcal{N}(z) = 0 \iff d \log |p \mathcal{N}(z)| = 0 \]
“Proof” of Pairing

- Electrostatics for measure μ on S^2:

$\Delta G = \mu \implies dG(z) = e^{-\text{field from } \mu}$

Fix p_N:

$S^2 \to S^2$:

Def. $\text{Div}(p_N) = -N \cdot \delta_\infty + \sum p_N(\xi) = 0 \delta_\xi$

$\Delta \log |p_N(z)| = \text{Div}(p_N)$ (Poincaré-Lelong)

Therefore,

$d \log |p_N(z)| = e^{-\text{field from } \text{Div}(p_N)}$

$d_{dz} p_N(z) = 0 \iff d \log |p_N(z)| = 0$
“Proof” of Pairing

- Electrostatics for measure μ on S^2:

$$\Delta G = \mu$$
"Proof" of Pairing

Electrostatics for measure μ on S^2:

$$\Delta G = \mu \implies dG(z) = \text{e-field from } \mu.$$
Electrostatics for measure μ on S^2:

$$\Delta G = \mu \Rightarrow dG(z) = \text{e-field from } \mu.$$

Fix $p_N : S^2 \to S^2$:

$$\text{Def. Div}(p_N) = -N \cdot \delta_{\infty} + \sum p_N(\xi) = 0 \delta \xi$$

$$\Delta \log |p_N(z)| = \text{Div}(p_N) \text{ (Poincaré-Lelong)}$$

Therefore,

$$d \log |p_N(z)| = 0 \Rightarrow d \log |p_N(z)| = 0$$
Proof” of Pairing

- Electrostatics for measure μ on S^2:
 \[\Delta G = \mu \implies dG(z) = \text{e-field from } \mu. \]

- Fix $p_N : S^2 \to S^2$:
 - Def. $\text{Div}(p_N) = -N \cdot \delta_\infty + \sum_{p_N(\xi)=0} \delta_\xi$
“Proof” of Pairing

 Electrostatics for measure μ on S^2:

\[\Delta G = \mu \Rightarrow dG(z) = \text{e-field from } \mu. \]

 Fix $p_N : S^2 \to S^2$:

- **Def.** $\text{Div}(p_N) = -N \cdot \delta_\infty + \sum_{p_N(\xi)=0} \delta_\xi$

- $\Delta \log |p_N| = \text{Div}(p_N)$ (Poincaré-Lelong)
Electrostatics for measure \(\mu \) on \(S^2 \):

\[
\Delta G = \mu \implies dG(z) = \text{e-field from } \mu.
\]

Fix \(p_N : S^2 \to S^2 \):

- **Def.** \(\text{Div}(p_N) = -N \cdot \delta_\infty + \sum_{p_N(\xi)=0} \delta_{\xi} \)

\[
\Delta \log |p_N| = \text{Div}(p_N) \quad \text{(Poincaré-Lelong)}
\]

Therefore,

\[
d \log |p_N(z)| = \text{e-field from } \text{Div}(p_N)
\]
“Proof” of Pairing

- Electrostatics for measure μ on S^2:
 \[\Delta G = \mu \Rightarrow dG(z) = \text{e-field from } \mu. \]

- Fix $p_N : S^2 \to S^2$:

 - **Def.** $\text{Div}(p_N) = -N \cdot \delta_\infty + \sum_{p_N(\xi) = 0} \delta_\xi$

 - $\Delta \log |p_N| = \text{Div}(p_N)$ (Poincaré-Lelong)

- Therefore,
 \[d \log |p_N(z)| = \text{e-field from } \text{Div}(p_N) \]

- $\frac{d}{dz} p_N(z) = 0 \iff d \log |p_N(z)| = 0$
Pairing of Zeros and Crits for $SU(2)$ Polynomials

Figure: Zeros – black discs. Crits – blue squares.
Definition of Pairing of Zeros and Crits

Let \(p \) be a degree \(N \) polynomial and fix \(\epsilon > 0 \).
A zero at \(\xi \) and critical point at \(w \) are \(\epsilon \)-paired if
\[N - 1 - \epsilon < |\xi - w| < N - 1 + \epsilon. \]
Definition of Pairing of Zeros and Crits

Def. Let p_N be a degree N polynomial and fix $\epsilon > 0$.
Def. Let p_N be a degree N polynomial and fix $\epsilon > 0$. A zero at ξ and critical point at w are ϵ–paired if $N^{-1-\epsilon} < |\xi - w| < N^{-1+\epsilon}$.
Def. Let p_N be a degree N polynomial and fix $\epsilon > 0$. A zero at ξ and critical point at w are $\epsilon-$paired if $N^{-1-\epsilon} < |\xi - w| < N^{-1+\epsilon}$.

![Diagram showing pairing of zeros and critical points](image-url)
Theorem (H - 2013)

Fix $\xi \in \mathbb{C} \setminus \{0\}$.

Let $p_N(z)$ be a degree $N \text{ SU}(2)$ polynomial conditioned to have $p_N(\xi) = 0$.

For each $\epsilon \in (0, \frac{1}{2})$, there exists $K = K(\epsilon)$ such that $P(\exists ! \epsilon - \text{paired with } \xi) \geq 1 - K \cdot N^{-3/2 + 3\epsilon}$.

Boris Hanin

Pairing of Zeros and Critical Points
Theorem (H - 2013)

Fix $\xi \in \mathbb{C}\setminus \{0\}$.
Theorem (H - 2013)

Fix $\xi \in \mathbb{C}\backslash \{0\}$. Let $p_N(z)$ be a degree N $SU(2)$ polynomial conditioned to have $p_N(\xi) = 0$.

$\exists \! \epsilon - \text{paired with } \xi$
Theorem (H - 2013)

Fix $\xi \in \mathbb{C} \setminus \{0\}$. Let $p_N(z)$ be a degree N $SU(2)$ polynomial conditioned to have $p_N(\xi) = 0$. For each $\epsilon \in (0, \frac{1}{2})$, there exists $K = K(\epsilon)$ such that

$$P(\exists ! \epsilon - \text{paired with } \xi) \geq 1 - K \cdot N^{-3/2} + 3 \epsilon.$$
Theorem (H - 2013)

Fix $\xi \in \mathbb{C}\setminus \{0\}$. Let $p_N(z)$ be a degree N SU(2) polynomial conditioned to have $p_N(\xi) = 0$. For each $\epsilon \in (0, \frac{1}{2})$, there exists $K = K(\epsilon)$ such that

$$
\mathbb{P}(\exists! \; \epsilon \text{ paired w to } \xi) \geq 1 - K \cdot N^{\frac{3}{2} + 3\epsilon}.
$$
Theorem (H - 2013)

Fix $\xi \in \mathbb{C}\setminus\{0\}$. Let $p_N(z)$ be a degree N SU(2) polynomial conditioned to have $p_N(\xi) = 0$. For each $\epsilon \in (0, \frac{1}{2})$, there exists $K = K(\epsilon)$ such that

$$\mathbb{P} \left(\exists! \; \epsilon - \text{paired w to } \xi \right) \geq 1 - K \cdot N^{-3/2+3\epsilon}.$$
Definition of Hermitian Gaussian Ensembles

\[\text{Def.} \quad P_N = \{ \text{Poly. deg.} \leq N \} \]

Fix \(\phi \in C^\infty (\mathbb{C}, \mathbb{R}) \):

\[\phi(z) \sim \log |z| \text{ as } |z| \to \infty \]

\(\phi(z) \) subharmonic

Each such \(\phi \) defines different \(HGE(\phi, N) \):

\[L^2(\mathbb{C}, e^{-N \phi(z)} \Delta \phi(z) \, dz) \supseteq P_N \]

\[\phi(z) = \log (1 + |z|^2) - SU(2) \text{ polynomials} \]

\[\text{Def.} \quad \xi \in S^2 \text{ is distinguished in } HGE(\phi, N) \text{ if } d\phi(\xi) = 0. \]

Boris Hanin

Pairing of Zeros and Critical Points
Definition of Hermitian Gaussian Ensembles

- Def. \(\mathcal{P}_N = \{ \text{Poly. deg.} \leq N \} \)

- Fix \(\phi \in C^\infty(C, \mathbb{R}) : \phi(z) \sim \log |z| \) as \(|z| \to \infty \)
 subharmonic
- Each such \(\phi \) defines different \(HGE(\phi, N) \):
 \[L^2(C, e^{-N \phi(z)} \Delta \phi(z) dz) \supseteq \mathcal{P}_N \phi(z) = \log(1 + |z|^2) - SU(2) \text{ polynomials} \]

- Def. \(\xi \in S_2 \) is distinguished in \(HGE(\phi, N) \) if \(d\phi(\xi) = 0 \).
Definition of Hermitian Gaussian Ensembles

- **Def.** $\mathcal{P}_N = \{\text{Poly. deg. } \leq N\}$
- **Fix** $\phi \in C^\infty(\mathbb{C}, \mathbb{R})$:
 \[
 \phi(z) \sim \log|z| \text{ as } |z| \to \infty
 \]
 $\phi(z)$ subharmonic
 Each such ϕ defines different $HGE(\phi, N)$:
 \[
 L^2(\mathbb{C}, e^{-N\phi(z)} \Delta \phi(z) \, dz) \supseteq \mathcal{P}_N
 \]

$\xi \in S^2$ is distinguished in $HGE(\phi, N)$ if $d\phi(\xi) = 0$.
Definition of Hermitian Gaussian Ensembles

- Def. $\mathcal{P}_N = \{\text{Poly. deg.} \leq N\}$
- Fix $\phi \in C^\infty(\mathbb{C}, \mathbb{R})$:
 - $\phi(z) \sim \log |z|$ as $|z| \to \infty$
 - $\phi(z)$ subharmonic
Definition of Hermitian Gaussian Ensembles

Def. $\mathcal{P}_N = \{\text{Poly. deg.} \leq N\}$

Fix $\phi \in C^\infty(\mathbb{C}, \mathbb{R})$:

- $\phi(z) \sim \log |z|$ as $|z| \to \infty$
- $\phi(z)$ subharmonic

Each such ϕ defines different $HGE(\phi, N)$:
Definition of Hermitian Gaussian Ensembles

- **Def.** $\mathcal{P}_N = \{\text{Poly. deg. } \leq N\}$

- Fix $\phi \in C^\infty(\mathbb{C}, \mathbb{R})$:
 - $\phi(z) \sim \log|z|$ as $|z| \to \infty$
 - $\phi(z)$ subharmonic

- Each such ϕ defines different $HGE(\phi, N)$:
 - $L^2(\mathbb{C}, e^{-N\phi(z)} \Delta \phi(z) dz)$

- Boris Hanin
 - Pairing of Zeros and Critical Points
Definition of Hermitian Gaussian Ensembles

- Def. \(\mathcal{P}_N = \{ \text{Poly. deg. } \leq N \} \)

- Fix \(\phi \in C^\infty(\mathbb{C}, \mathbb{R}) : \)
 - \(\phi(z) \sim \log |z| \) as \(|z| \to \infty \)
 - \(\phi(z) \) subharmonic

- Each such \(\phi \) defines different \(HGE(\phi, N) : \)
 - \(L^2(\mathbb{C}, e^{-N\phi(z)} \Delta \phi(z) dz) \supseteq \mathcal{P}_N \)
Definition of Hermitian Gaussian Ensembles

- **Def.** $\mathcal{P}_N = \{\text{Poly. deg. } \leq N\}$
- Fix $\phi \in C^\infty(\mathbb{C}, \mathbb{R})$
 - $\phi(z) \sim \log|z|$ as $|z| \to \infty$
 - $\phi(z)$ subharmonic
- Each such ϕ defines different $HGE(\phi, N)$:
 - $L^2(\mathbb{C}, e^{-N\phi(z)} \Delta \phi(z) dz) \supseteq \mathcal{P}_N$
 - $\phi(z) = \log \left(1 + |z|^2\right)$ — $SU(2)$ polynomials

Boris Hanin
Pairing of Zeros and Critical Points
Definition of Hermitian Gaussian Ensembles

- **Def.** $\mathcal{P}_N = \{ \text{Poly. deg. } \leq N \}$

- **Fix** $\phi \in C^\infty(\mathbb{C}, \mathbb{R})$:

 - $\phi(z) \sim \log |z|$ as $|z| \to \infty$

 - $\phi(z)$ subharmonic

- Each such ϕ defines different $HGE(\phi, N)$:

 - $L^2(\mathbb{C}, e^{-N\phi(z)} \Delta \phi(z) dz) \supseteq \mathcal{P}_N$

 - $\phi(z) = \log \left(1 + |z|^2\right) \quad - \quad SU(2)$ polynomials

- **Def.** $\xi \in S^2$ is distinguished in $HGE(\phi, N)$ if $d\phi(\xi) = 0$.

Boris Hanin

Pairing of Zeros and Critical Points
Proof Ingredients

Local scaling limit of p_N is multiple of GAF:

$$p_N(\xi + u\sqrt{N}) \cdot e^{\sqrt{N}\phi(\xi + u/\sqrt{N})} \to \sum_{j \geq 0} a_j u^j \sqrt{j!}$$

in the sense of C^∞ convergence of covariance kernels.

Poincaré Lelong $-\frac{1}{4}\pi \Delta \log |p_N| = Z_{p_N}$

Probabilistic analog for Gaussian fields:

$$E[Z_{p_N}(z)] = \frac{1}{4\pi} \Delta \log |K_N(z, z)|$$

Correlations

$$E[Z_{p_N} \otimes C_{p_N}]$$

$$E[Z_{p_N}] \otimes E[C_{p_N}]$$

Pairing of Zeros and Critical Points
Proof Ingredients

Local scaling limit of p_N is multiple of GAF:

$$p_N \left(\xi + \frac{u}{\sqrt{N}} \right) \cdot e^{\sqrt{N}\phi(\xi + u/\sqrt{N})} \rightarrow \sum_{j \geq 0} a_j \frac{u^j}{\sqrt{j!}}$$

in the sense of C^∞ convergence of covariance kernels.
Proof Ingredients

- Local scaling limit of p_N is multiple of GAF:
 \[p_N \left(\xi + \frac{u}{\sqrt{N}} \right) \cdot e^{\sqrt{N} \phi(\xi + u/\sqrt{N})} \rightarrow \sum_{j \geq 0} a_j \frac{u^j}{\sqrt{j!}} \]
 in the sense of C^∞ convergence of covariance kernels.

- Poincaré Lelong
 \[- \frac{1}{4\pi} \Delta \log |p_N| = Z_{p_N} \]
Proof Ingredients

- Local scaling limit of p_N is multiple of GAF:
 \[
 p_N \left(\xi + \frac{u}{\sqrt{N}} \right) \cdot e^{\sqrt{N} \phi(\xi + u/\sqrt{N})} \rightarrow \sum_{j \geq 0} a_j \frac{u^j}{\sqrt{j!}}
 \]
 in the sense of C^∞ convergence of covariance kernels.

- Poincaré Lelong
 \[
 - \frac{1}{4\pi} \Delta \log |p_N| = Z_{p_N}
 \]

- Probabilistic analog for Gaussian fields:
Proof Ingredients

- Local scaling limit of p_N is multiple of GAF:

$$p_N \left(\xi + \frac{u}{\sqrt{N}} \right) \cdot e^{\sqrt{N} \phi(\xi + u/\sqrt{N})} \to \sum_{j \geq 0} a_j \frac{u^j}{\sqrt{j!}}$$

in the sense of C^∞ convergence of covariance kernels.

- Poincaré Lelong

$$\frac{1}{4\pi} \Delta \log |p_N| = Z_{p_N}$$

- Probabilistic analog for Gaussian fields:

$$\mathbb{E} [Z_{p_N}] (z) = \frac{1}{4\pi} \Delta \log |K_N(z, z)|$$
Proof Ingredients

- Local scaling limit of p_N is multiple of GAF:

$$p_N \left(\xi + \frac{u}{\sqrt{N}} \right) \cdot e^{\sqrt{N} \phi(\xi + u/\sqrt{N})} \rightarrow \sum_{j \geq 0} a_j \frac{u^j}{\sqrt{j!}}$$

in the sense of C^∞ convergence of covariance kernels.

- Poincaré Lelong

$$- \frac{1}{4\pi} \Delta \log |p_N| = Z_{p_N}$$

- Probabilistic analog for Gaussian fields:

$$\mathbb{E} [Z_{p_N}](z) = \frac{1}{4\pi} \Delta \log |K_N(z, z)|$$

- Correlations

$$- \mathbb{E} [Z_{p_N} \otimes C_{p_N}] - \mathbb{E} [Z_{p_N}] \otimes \mathbb{E} [C_{p_N}]$$
Figure: Zeros and critical points near $\xi = 0$. For every critical point the sector predicted to contain its paired zero is shown.
Theorem (H - 2012)

Fix an $N^{-1/2}-$scaled normal coordinate around a distinguished point $\xi \in S^2$.

Expected Nearest Neighbor Spacings near $\xi = 0$
Theorem (H - 2012)

Fix an $N^{-1/2}$-scaled normal coordinate around a distinguished point $\xi \in S^2$. Consider $A \subseteq \mathbb{C}\setminus \{|w| \leq 1\}$.
Expected Nearest Neighbor Spacings near $\xi = 0$

Theorem (H - 2012)

Fix an $N^{-1/2}$-scaled normal coordinate around a distinguished point $\xi \in S^2$. Consider $A \subseteq \mathbb{C} \setminus \{|w| \leq 1\}$. Define

$$\mathcal{X}_{A,N} := \# \text{ (zero,crit) pairs } (z, w)$$

so that

$$w \in A \text{ and } z = w + re^{it}$$
Theorem (H - 2012)

Fix an $N^{-1/2}$-scaled normal coordinate around a distinguished point $\xi \in S^2$. Consider $A \subseteq \mathbb{C} \setminus \{|w| \leq 1\}$. Define

$$\mathcal{X}_{A,N} := \# \text{ (zero,crit) pairs } (z, w)$$

so that

$$w \in A \text{ and } z = w + re^{it}$$

and

$$r \in \left[|w|^{-1} \pm |w|^{-7/4}\right] \text{ and } t \in \left[\arg(w) \pm |w|^{-3/4}\right].$$
Theorem (H - 2012)

Fix an $N^{-1/2}$-scaled normal coordinate around a distinguished point $\xi \in S^2$. Consider $A \subseteq \mathbb{C} \setminus \{|w| \leq 1\}$. Define

$$\mathcal{X}_{A,N} := \# \text{ (zero,crit) pairs } (z,w)$$

so that

$$w \in A \text{ and } z = w + re^{it}$$

and

$$r \in \left[|w|^{-1} \pm |w|^{-7/4}\right] \text{ and } t \in \left[\arg(w) \pm |w|^{-3/4}\right].$$

We have, for each $\epsilon > 0$,

$$\mathbb{E} [\mathcal{X}_{A,N}] = \mathbb{E} [C_A] + O \left(\int_A |w|^{-1/4} \, dw \wedge d\overline{w}\right) + O(N^{-1/2+\epsilon}).$$