
PROOF OF RADEMACHER’S THEOREM

Theorem. Let f(x) be a Lipschitz function in Rn. Then f(x) is differentiable
almost everywhere.

Proof. I will break the proof of the theorem into several steps.
Step 1. In the case n = 1, the theorem follows from the fact that a Lipschitz
function have bounded variation on any finite interval.
Step 2. Let v be a non-zero vector in Rn. The directional derivative

fv(x) = lim
τ→0

f(x+ τv)− f(x)
τ

exists a.e.. In fact, let Dv be the set of all points where fv(x) exists. Then the
one-dimensional measure of the intersection of Rn\Mv with any line that is parallel
to v equals 0 (step 1.) It is an easy exercise to show that the set Mv is measurable.
Then Fubini’s theorem implies m(Rn \Mv) = 0.
Step 3. By fj(x) I will denote partial derivatives ∂f/∂xj . Let v = (v1, . . . , vn) be
a non-zero vector, and let

Sv = {x : fv(x), f1(x), . . . , fn(x) exist, and fv(x) = v1f1(x) + · · ·+ vnfn(x)}.

Then m(Rn \ Sv) = 0. It follows from step 2 that the derivatives fv(x) and fj(x),
j = 1, . . . , n, exist almost everywhere. Take a function φ(x) ∈ C∞0 (Rn). By the
Dominated Convergence Theorem,∫

fv(x)φ(x)dx = lim
τ→0

∫
f(x+ τv)− f(x)

τ
φ(x)dx

= lim
τ→0

∫
f(x)

φ(x− τv)− φ(x)
τ

dx

= −
∫
f(x)

n∑
j=1

vj
∂φ(x)
∂xj

dx =
∫ ( n∑

j=1

vjfj(x)
)
φ(x)dx.

The last equality is valid for an arbitrary function φ(x); therefore fv =
∑
vjfj a.e..

Step 4. Let Ω be a countable, dense set on the unit sphere in Rn. Take a point
x ∈ S = ∩ω∈ΩSω. I will show that the function f(x) is differentiable at the point
x. For an arbitrary unit vector ω and τ > 0 , I define

r(ω, τ) =
f(x+ τω)− f(x)− τ

∑
ωjfj(x)

τ
.

One has

(1) |r(ω̃, τ)− r(ω, τ)| ≤ C|ω̃ − ω|
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because the function f(x) is Lipschitz. The constant C in (1) depends on the
Lipcshitz constant of f only. It follows from step 3 that for every finite set of unit
vectors Ω′ and for every ε > 0 there exists a number τ0(Ω′, ε) such that

(2) |r(ω′, τ)| < ε

2
when τ < τ0(Ω′, ε).

The set Ω is dense in the unit sphere, so one can find its finite subset Ω′ such that
dist(ω,Ω′) < ε/2C for every unit vector ω. Here C is the constant from (1). Then,
for every unit vector ω there exists a vector ω′ ∈ Ω′ such that |ω−ω′| < ε/2C, and,
for τ < τ0(Ω′, ε), one has

|r(ω, τ)| ≤ |r(ω′, tau)|+ |r(ω, τ)− r(ω′, τ)| < ε.

The last inequality means that for every ε > 0∣∣∣∣f(x+ v)− f(x)−
∑
vjfj(x)

|v|

∣∣∣∣ < ε

when |v| is small enough. This implies differentiability of the function f at the
point x.
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