PROBLEM SET 1

Problem 1

Recall that the Fourier transform of the disribution $u_{\lambda} = x_{+}^{\lambda}$ equals

(1)
$$\hat{u}_{\lambda}(\xi) = \Gamma(\lambda+1) \left[e^{-\pi i(\lambda+1)/2} \xi_{+}^{-\lambda-1} + e^{\pi i(\lambda+1)/2} \xi_{-}^{-\lambda-1} \right]$$

when λ is not an integer real number. Find the Fourier transform of the distribution $U_k = x_+^k, \ k = 0, 1, 2, \ldots$, by taking the limit $\lambda \to k$ in (1).

Problem 2

A distribution u is called *radial* if

$$\langle u, \phi(Ax) \rangle = \langle u, \phi(x) \rangle$$

for every orthogonal matrix A and for every test function ϕ .

a) Find all radial distributions that are homogeneous of degree λ .

b) Prove that the Fourier transform of a radial distribution is a radial distribution.

c) Compute the Fourier transform of the distribution $u_{\lambda} = |x|^{\lambda}$.

From Evans's book: problems 15, 17, 18, p.p. 291, 292

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{E} X$