## Sample problems for review for the Final Exam

**1.** Write the number in the form a + ib.

(a) 
$$\frac{1}{3+4i}$$

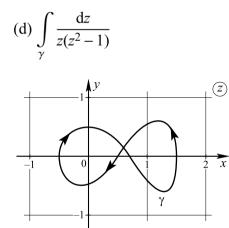
- (b) Log(i)
- (c)  $(1-i)^{16}$
- (d)  $\exp(2-3i)$

(e) 
$$\arctan\left(\frac{1+i}{\sqrt{2}}\right)$$
, give all values  $\left(\operatorname{hint:} \arctan(z) = \frac{i}{2}\log\frac{1-iz}{1+iz}\right)$ 

2. Find all the values of  $(-64)^{1/6}$ . Sketch the "values of  $(-64)^{1/6}$ "="solutions of  $z^6 + 64 = 0$ " on the complex plane.

**3.** Check where the Cauchy–Riemann equations for the function f(z) hold (z = x + iy).

(a) 
$$f(z) = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}$$
  
(b)  $f(z) = x^3 - 3xy^2 + iy^3 - 3ix^2y$ 


4. Find the radius of convergence of the power series

(a) 
$$\sum_{n=0}^{\infty} n^{2008} z^n$$
  
(b)  $\sum_{n=0}^{\infty} (12 - 5i)^n z^{2n}$ 

(c) Taylor series for the function  $(2+z)^{1/3}$  about z = 0 (which goes as  $2^{1/3} + \frac{z}{2^{2/3}3} - \frac{z^2}{2^{2/3}18} + \dots$ )

**5.** Evaluate the integrals

(a) 
$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^3}$$
  
(b) 
$$\oint_{|z|=2} \frac{\cos(\pi z)}{z(z-1)} dz$$
  
(c) 
$$\oint_{|z|=11} \frac{\sin z}{z^2} dz$$



**6.** Evaluate integrals of trigonometric functions over  $[0, \pi]$  and integrals involving fractional powers

(a) 
$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos^2 \theta}$$
  
(b) 
$$\int_{0}^{2\pi} \frac{d\theta}{(2 - \sin \theta)^2}$$

$$(c) \quad \int_0^\infty \frac{\sqrt{x}}{x^2 + 2x + 5} dx$$

7. Find the Laurent series for the given functions about the indicated point.

**9.** Find f(z) that maps the half plane U = {z: Im z > 0} onto the disk  $\Delta = \{w: |w| < 1\}$ 

10. Find f(z) that maps the strip  $\pi \le y \le \pi$  onto the punctured plane, those w with  $w \ne 0$ 

**11.** See examples 3, 4, 5 page 226-227