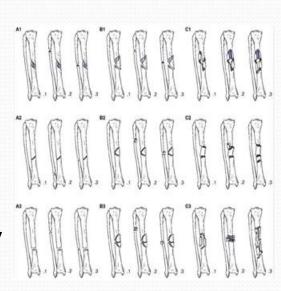
Electro-mechanical Properties of Bones

By: Ken Peng, Miyant'e Newton, and Eric Sonera

Mentor: Dr. Ildar Gabitov

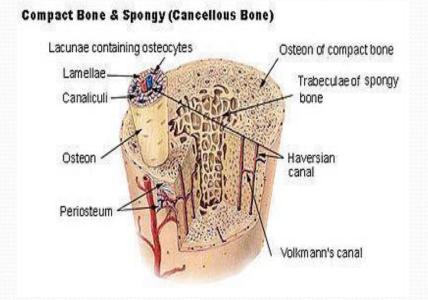
Introduction

- The role of bones in the human body
 - Support/Protection
 - o Production of blood cells
- The study of bone structures
 - Conductive properties of bone
- The properties of piezoelectric materials
- Applicable potential of piezoelectric property of bone
 - Aids in healing process
- Motivation of model



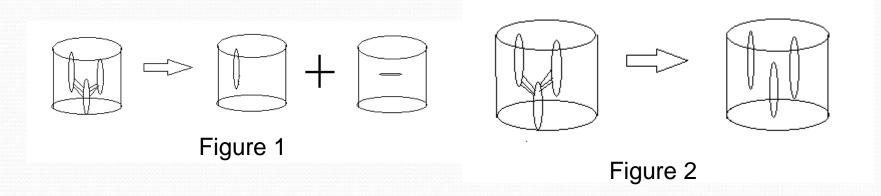
Properties and Structure of Bones

- Bones contain canals
 - Haversian
 - Volkmann
- Properties of the canals
 - Density/Fill Factor
 - Conductivity



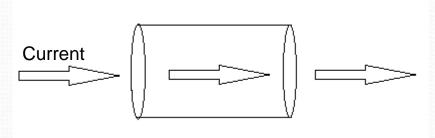
Modeling the Structure

- Two ways to simplify the structure
 - Figure 1: Conductive ellipsoids running horizontally and vertically, with no interaction between them, in an isotropic medium
 - Figure 2: Conductive ellipsoids in a slightly conductive medium
- Pros/Cons of each model

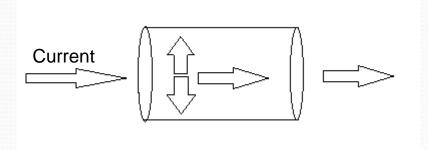


Current Flow Through Bones

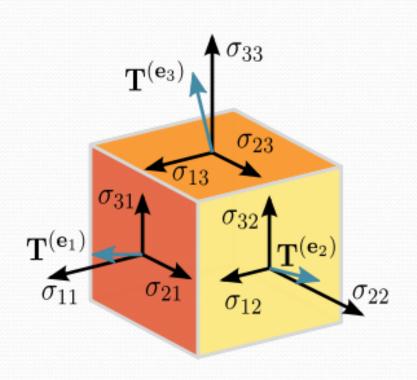
 First consider the simplest case, current through an isotropic metal rod.



 However since bones are anisotropic the flow of current is not so straightforward.



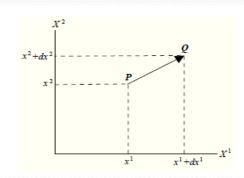
Tensors



$$\sigma = \begin{bmatrix} \mathbf{T}^{(e_1)} \mathbf{T}^{(e_2)} \mathbf{T}^{(e_3)} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

Types of Tensors



- Contravariant Tensor
 - Geometrically describes transformation of a displacement vector in one coordinate space to another.

$$d\bar{x}^{1} = \frac{\partial \bar{x}^{1}}{\partial x^{1}} dx^{1} + \frac{\partial \bar{x}^{1}}{\partial x^{2}} dx^{2}$$

$$d\bar{x}^{2} = \frac{\partial \bar{x}^{2}}{\partial x^{1}} dx^{1} + \frac{\partial \bar{x}^{2}}{\partial x^{2}} dx^{2}$$

$$\bar{a}^{i} = \frac{\partial \bar{x}^{i}}{\partial x^{j}} a^{j}$$

$$\bar{a}^{i} = \frac{\partial \bar{x}^{i}}{\partial x^{j}} a^{j}$$

- Covariant Tensor
 - Geometrically describes transformation of a gradient vector in one coordinate space to another.

$$\frac{\partial \phi}{\partial \bar{x}^p} = \frac{\partial \phi}{\partial x^r} \frac{\partial x^r}{\partial \bar{x}^p}. \qquad \qquad \bar{\nabla} \phi_p = \nabla \phi_r \frac{\partial x^r}{\partial \bar{x}^p}. \qquad \qquad \bar{T}_p = \frac{\partial x^r}{\partial \bar{x}^p} T_r.$$

Properties of Tensors

Inner Product

$$\mathbf{u}\cdot\mathbf{v}=u_i\ v^i$$

Einstein Summation Convention

$$y = c_i x^i$$
. $\longrightarrow y = \sum_{i=1}^3 c_i x^i = c_1 x^1 + c_2 x^2 + c_3 x^3$

Cross Product

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix} \longrightarrow (\mathbf{u} \times \mathbf{v})_i = \epsilon_{ijk} u^j v^k$$

Model of the Conductivity of Bones

- Electricity & current density
 - Dielectric material; conductive inhomogeneities

$$\Delta \mathbf{E} = \frac{V^*}{V_0} \mathbf{R} \cdot \mathbf{J} \qquad \Delta \mathbf{J} = \frac{V^*}{V_0} \mathbf{K} \cdot \mathbf{E}$$

$$\Delta \boldsymbol{J} = \frac{\boldsymbol{V}^*}{\boldsymbol{V}_0} \boldsymbol{K} \cdot \boldsymbol{E}$$

- Eshelby tensors
 - Resistivity & conductivity tensors

$$\boldsymbol{K} = k_0 \left(\boldsymbol{s}^C - \frac{k_0}{k_1 - k_0} \boldsymbol{I} \right)^{-1}$$

Tensors In Model

- Conductivity tensor
 - Shape factor

$$s^{c} = f_{0}(I - nn) + (1 - 2f_{0})nn$$
 $f_{0} = \frac{\gamma^{2}(1 - g)}{2(\gamma^{2} - 1)}$

- Shape Factor
 - Two cases

$$g = \begin{cases} \frac{1}{\gamma\sqrt{1-\gamma^2}} arctan \frac{\sqrt{1-\gamma^2}}{\gamma}, & \text{oblate shape } (\gamma < 1) \\ \frac{1}{\gamma\sqrt{\gamma^2-1}} \ln \left(\gamma + \sqrt{\gamma^2-1}\right), & \text{prolate shape } (\gamma > 1) \end{cases}$$

Dimensionless Factors

- K tensor for conductivity
 - Revised using dimensionless factors

$$\mathbf{K} = -k_0(A_1\mathbf{I} + A_2\mathbf{n}\mathbf{n})$$

Dimensionless factors

$$A_1 = \frac{k_0 - k_1}{k_0 + (k_1 - k_0)f_0}, \quad A_2 = \frac{(k_0 - k_1)^2 (1 - 3f_0)}{[k_1 - 2(k_1 - k_0)f_0][k_0 + (k_1 - k_0)f_0]}$$

Assuming k_1 >>> k_0

$$A_1 = \frac{-1}{f_0}, \quad A_2 = \frac{1 - 3f_0}{f_0(1 - 2f_0)}$$

Results

	A_1	A_2
Single prolate spheroid γ = 120	-2.001	-3.211×10^{3}
Single prolate spheroid $\gamma = 80$	-2.001	-1.568×10^{3}
Single oblate spheroid γ = 0.2	-8.016	6.683
	$\sum R_{11} = \sum R_{22}$	$\sum R_{33}$
Haversian canals	-2.001	-3.213×10^{3}
Osteocyte lacunae	-4.674	-8.016
Canaliculi and Volkman's canals	-7.86×10^{2}	-2.001

Future Work

There are two considerations for future work

- Modeling the flow of current through a bone after homogenization of the matrix
- Changing the model in the paper to observe if neighboring Haversian canals have an effect on one another.

Works Cited

Kosterich, J. D., Foster, K. R., & Pollack, S. R. (1983). Dielectric permittivity and electrical conductivity of fluid saturated bone. IEEE Transactions on Biomedical Engineering, 30, 81–86.

Kosterich, J. D., Foster, K. R., & Pollack, S. R. (1984). Dielectric properties of fluid-saturated bone – The effect of variation in conductivity of immersion fluid. IEEE Transactions on Biomedical Engineering, 31, 369–374.

R. Casas, I. Sevostianov. Electrical resistivity of cortical bone: Micromechanical modeling and experimental verification. International Journal of Engineering Science 62 (2013) 106–112

Mangan, Thomas C. A Gentle Introduction to Tensors

Peeters, Kasper and Kees Dullemond. Introduction to Tensor Calculus. 2008

Rockwood, , and Green. *Fractures in Adults*. 6th. Lippincott Williams & Wilkins, 2006. eBook. http://www.msdlatinamerica.com/ebooks/RockwoodGreensFracturesinAdults/sid1337350.html.

SEER Training Modules, *Module Name*. U. S. National Institutes of Health, National Cancer Institute. http://training.seer.cancer.gov/.