ENERGY FLOW IN ELECTRICAL GRIDS

Authors: Safatul Islam Deanna Johnson, Homa Shayan, Jonathan Utegaard Mentors: Aalok Shah, Ildar Gabitov

Thursday, March 28, 13

OVERVIEW

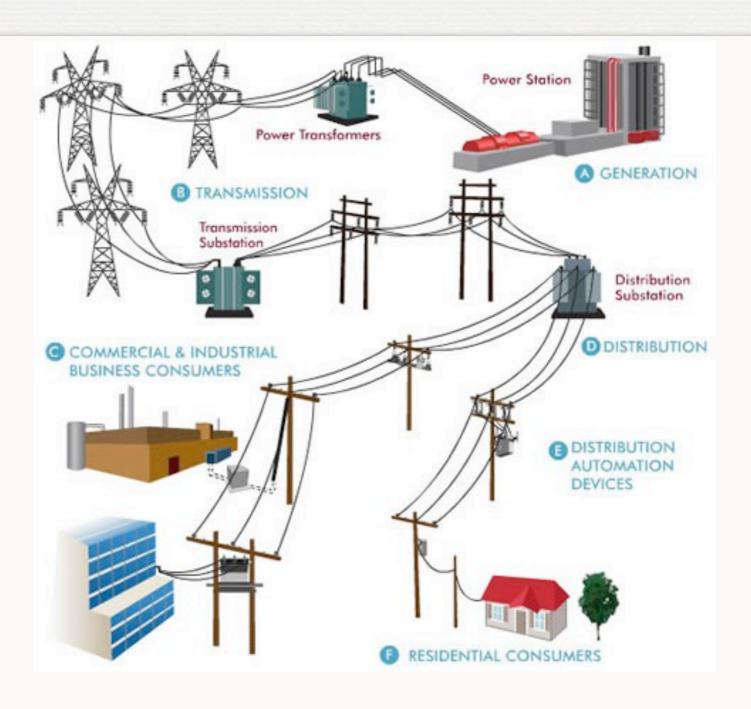
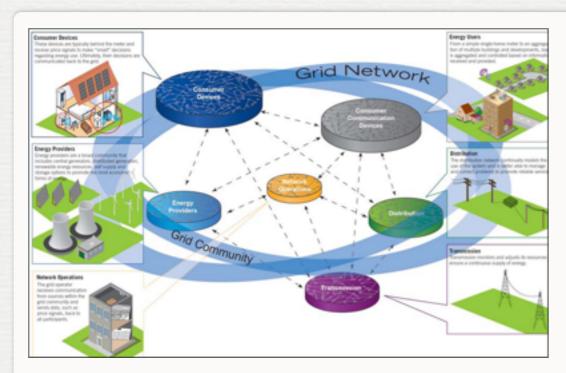


Image Source: http://www.altenergymag.com/articles/09.04.01/smartgrid/grid.jpg

MOTIVATION

- Along a feed line voltage fluctuates
 - Desire: Reduce voltage drop at end of line
- Determine maximum length supporting consumption
- Goal: Create low-parametric ODE Model of a feeder

APPLICATIONS



Smart Grids

Transporting Energy

PV systems

Superbowl Power Outage

Image Sources:

http://deepresource.files.wordpress.com/2012/04/smart-grid-concept.png http://assets.inhabitat.com/wp-content/uploads/sunpower_main.jpg http://energy.gov/sites/prod/files/styles/topic_hero/public/Wind.jpg?itok=uYcFe4cShttp://www.mediaite.com/wp-content/uploads/2013/02/cbs-power.jpg

BACKGROUND

Alternating Current

$$v(t) = \sqrt{2}V sin(\omega t + \alpha) \quad i(t) = \sqrt{2}I sin(\omega t + \beta)$$
$$p(t) = VIcos(\alpha - \beta) - VIcos(2\omega t + \alpha + \beta)$$

v = Voltagei = Currentp = Power

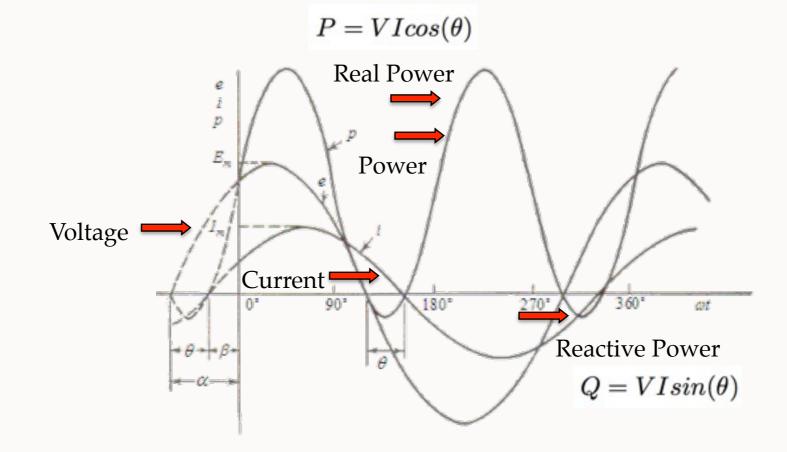


Image Source: http://prismglow.com/electronics/eees/ch02/ch2_2/inst-e,i,p-inaccircuit.gif

BACKGROUND

Other Basic Equations

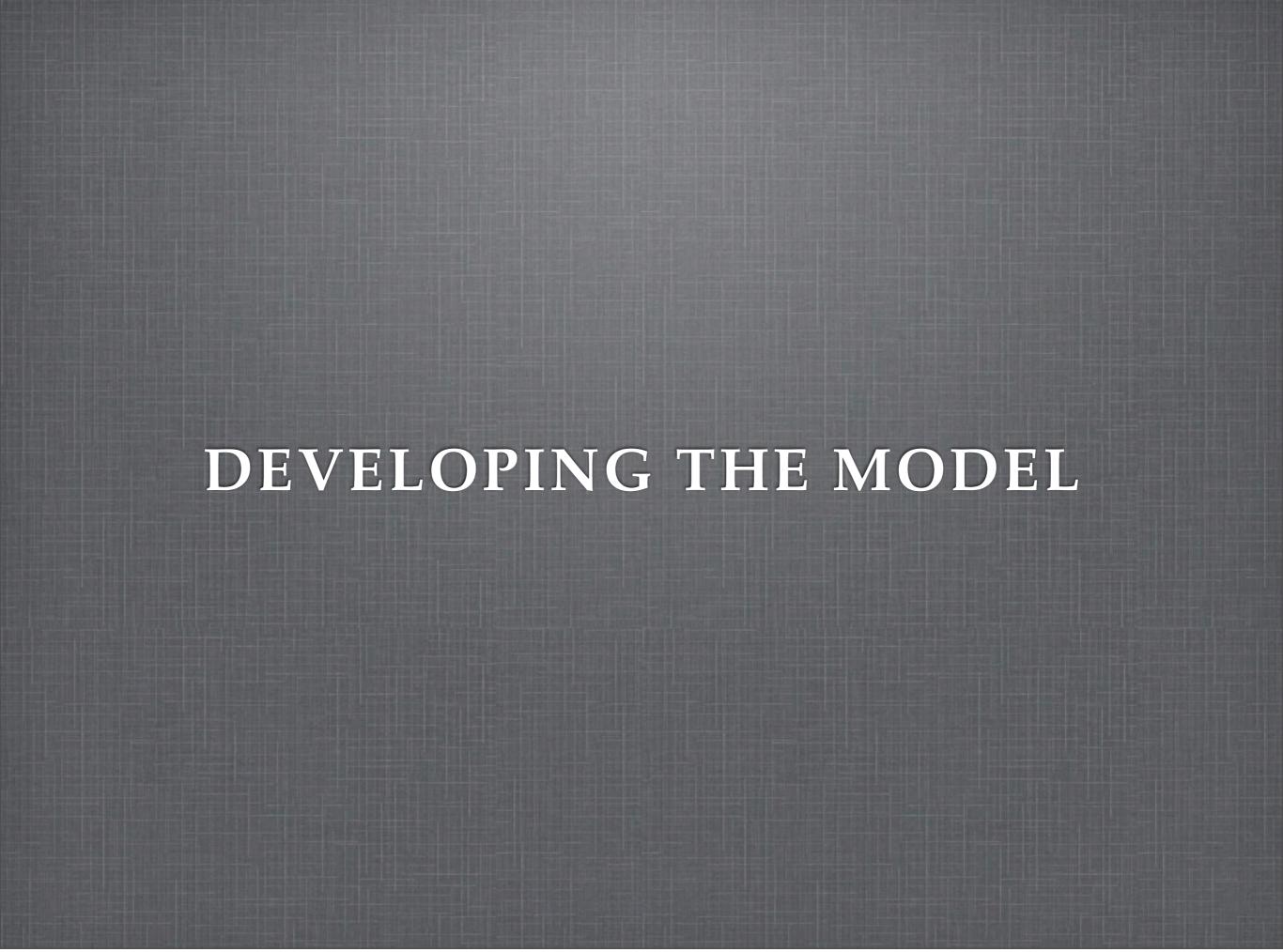
$$S = VI = P + jQ$$
$$z = r + jx$$

S = Apparent Power z = impedance x = inductance r = resistance

SET-UP

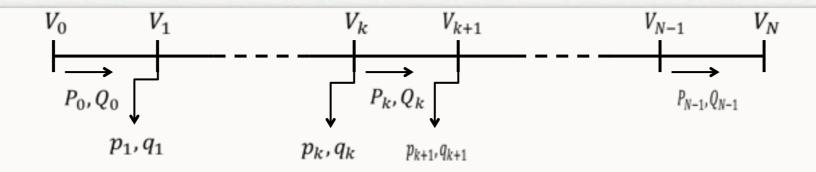
Feed Line
$$P_0, Q_0$$
 P_1, q_1 Load P_k, q_k P_{k+1} P_{k+1} P_{k+1} P_{k+1} P_{k+1}

$$S_1 = S_0 - S_l - S_L$$
$$V_1 = V_0 - z_1 I_0$$



Thursday, March 28, 13

PROBLEM FORMULATION



Discrete form

$$P_{k+1} - P_k = p_k - r_k \frac{P_k^2 + Q_k^2}{v_k^2}$$

$$Q_{k+1} - Q_k = q_k - x_k \frac{P_k^2 + Q_k^2}{v_k^2}$$

$$v_{k+1}^2 - v_k^2 = -2(r_k P_k + x_k Q_k) - (r_k^2 + x_k^2) \frac{P_k^2 + Q_k^2}{v_k^2}$$

where

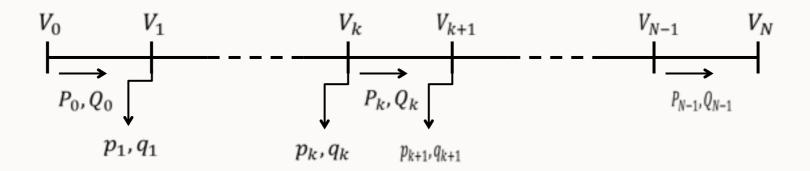
k=0,...,N enumerates buses of the feeder P_k,Q_k real and reactive power flowing from bus k to bus k+1 p_k, q_k overall consumption of real and reactive power at bus k r_k, x_k line resistance and reactance connecting bus k to bus k+1

with Boundary Conditions

$$v_0 = 1, P_N = Q_N = 0$$

Continuous and Homogeneous form

Large number of consumers $N \gg 1$ continuous form with limit $N \longrightarrow \infty$ $\frac{r_k}{x_k}$ is set constant. $r_k = r \frac{l_k}{L}$ and $x_k = x \frac{l_k}{L}$ L total length of the feeder line l_k length of line from bus k to bus k+1 $L_k = \sum_{i=0}^{k-1} l_k$ $z = \frac{L_k}{L_k}$ decomposing $F_k = F(z) + \tilde{F}(L_k)/N$ p_k and q_k are small varying fast $p(z)=p_k\frac{L}{l_k} \text{ and } q(z)=q_k\frac{L}{l_k} \text{ are in } O(1) \text{ and varying smoothly}$ Relating Finite difference to derivatives $F_{k+1} - F_k \approx F'(z)l_k/L$

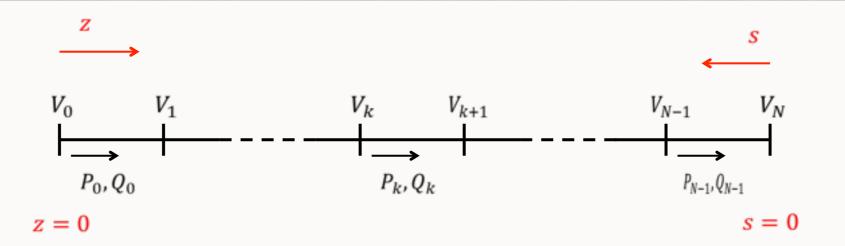


Boundary Value Problem

$$\frac{d}{dz} \begin{pmatrix} P \\ Q \\ v \end{pmatrix} = \begin{pmatrix} p - r \frac{P^2 + Q^2}{v^2} \\ q - x \frac{P^2 + Q^2}{v^2} \\ - \frac{rP + xQ}{v} \end{pmatrix}$$

with Boundary Conditions

$$v_0 = 1, P(L) = Q(L) = 0$$



Re-scaling

Assuming p = constant and with new variable $s = \frac{\sqrt{|p|r}}{v(L)}(L-z)$

$$\varrho(s) = \sqrt{\frac{r}{|p|}} \frac{P(z)}{v(L)}$$

$$\tau(s) = \sqrt{\frac{r}{|p|}} \frac{Q(z)}{v(L)}$$

$$v(s) = \frac{v(z)}{v(L)}$$

$$v(s) = \frac{v(z)}{v(L)}$$

Initial Value Problem

$$\frac{d}{ds} \begin{pmatrix} \varrho \\ \tau \\ v \end{pmatrix} = \begin{pmatrix} sign(p) - \frac{\varrho^2 + \tau^2}{v^2} \\ A - B \frac{\varrho^2 + \tau^2}{v^2} \\ - \frac{\varrho + B\tau}{v} \end{pmatrix}$$

with Initial Conditions

$$v(0) = 1, \varrho(0) = \tau(0) = 0$$

Solving for original end points $s: 0 \to s_*$ and solving for the $\varrho(s_*)$, $\tau(s_*)$ and $\upsilon(s_*)$

$$L = \frac{s_*}{\upsilon(s_*)\sqrt{|p|r}}$$

$$v(L) = \frac{1}{\upsilon(s_*)}$$

$$P(0) = \frac{\varrho(s_*)\sqrt{|p|/r}}{\upsilon(s_*)}$$

$$Q(0) = \frac{\tau(s_*)\sqrt{|p|/r}}{\upsilon(s_*)}$$

MATLAB/RESULTS

Thursday, March 28, 13

INITIAL AND BOUNDARY VALUE PROBLEMS

IVP

$$-\frac{d}{ds} \begin{pmatrix} \rho \\ \tau \\ \upsilon \end{pmatrix} = \begin{pmatrix} \operatorname{sign}(p) - \frac{\rho^2 + \tau^2}{\upsilon^2} \\ A - B \frac{\rho^2 + \tau^2}{\upsilon^2} \\ -\frac{\rho + B\tau}{\upsilon} \end{pmatrix}$$

BVP

$$\frac{d}{dz} \begin{pmatrix} P \\ Q \\ v \end{pmatrix} = \begin{pmatrix} p - r \frac{P^2 + Q^2}{v^2} \\ q - x \frac{P^2 + Q^2}{v^2} \\ - \frac{rP + xQ}{v} \end{pmatrix}$$

Graphs generated from each problem:

End Voltage vs. Length
Power Utilization vs.
Length

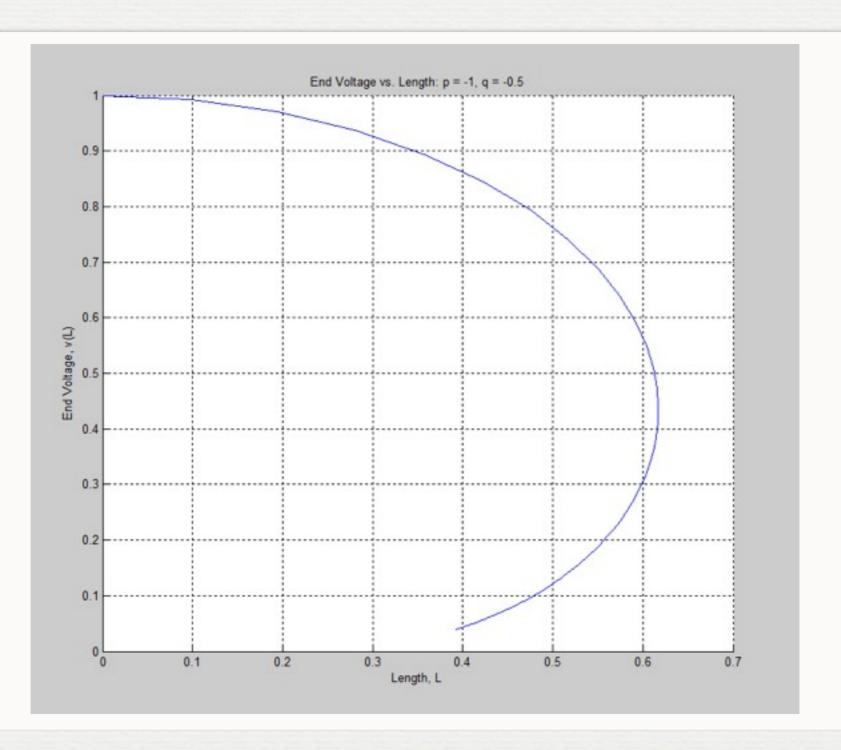
Voltage vs. Position Power vs. Position

MATLAB CODE

- IVP
 - ode45 used to solve the system of rescaled ODEs
- BVP
 - bvp4c was used to solve the original system of ODEs
 - Requires a guess of the solution

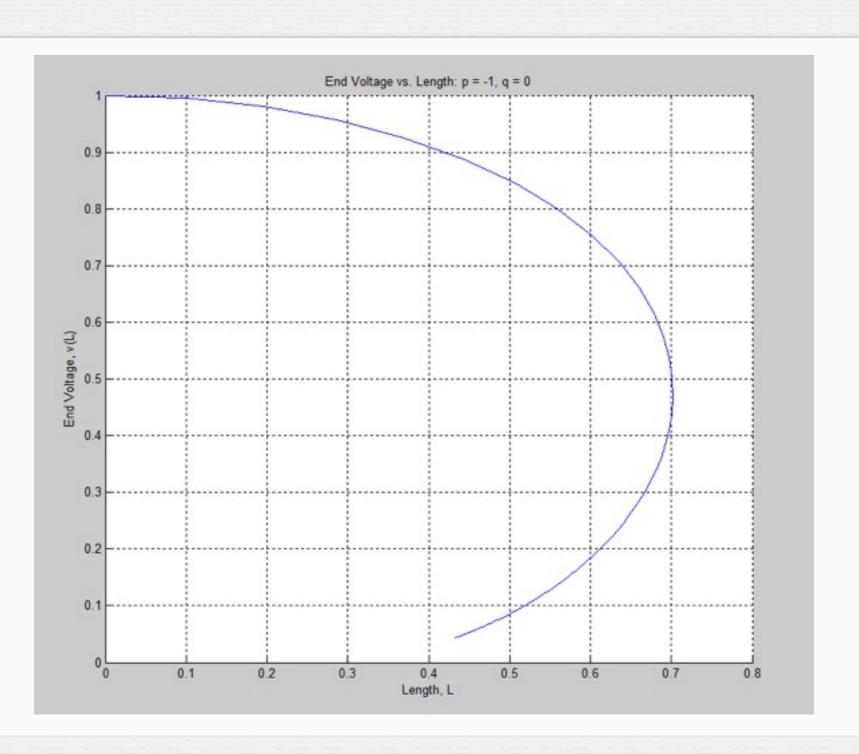
END VOLTAGE VS. LENGTH

P = -1, Q = -0.5

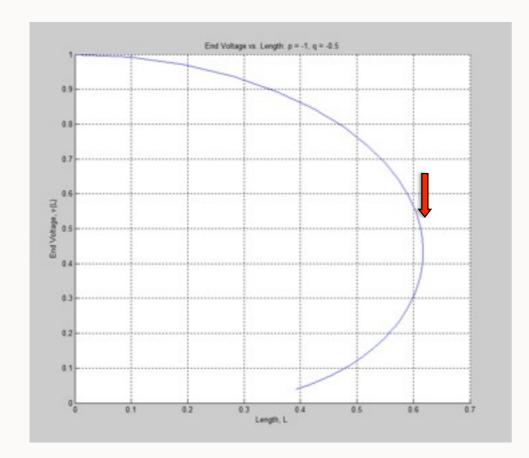


END VOLTAGE VS. LENGTH

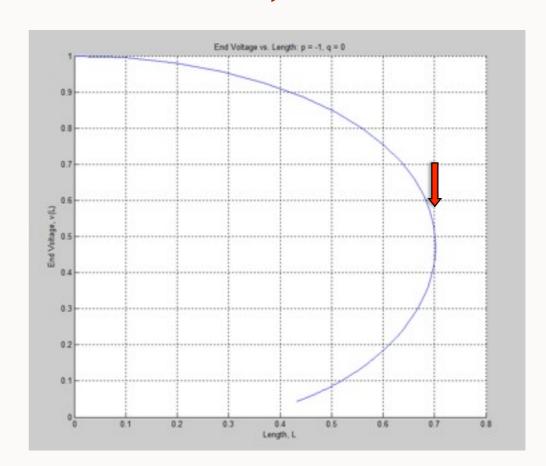
P = -1, Q = 0



P = -1, Q = -0.5



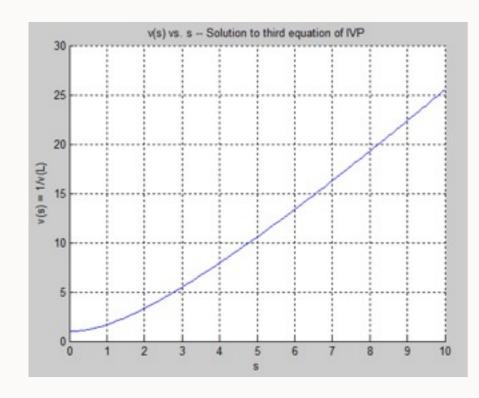
P = -1, Q = 0

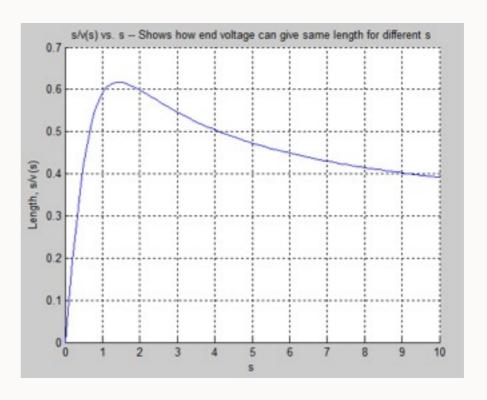


TWO END VOLTAGES FOR ONE LENGTH

$$v(L) = \frac{1}{v(s_*)}$$

$$L = \frac{s_*}{v(s_*)\sqrt{|p|r}}$$

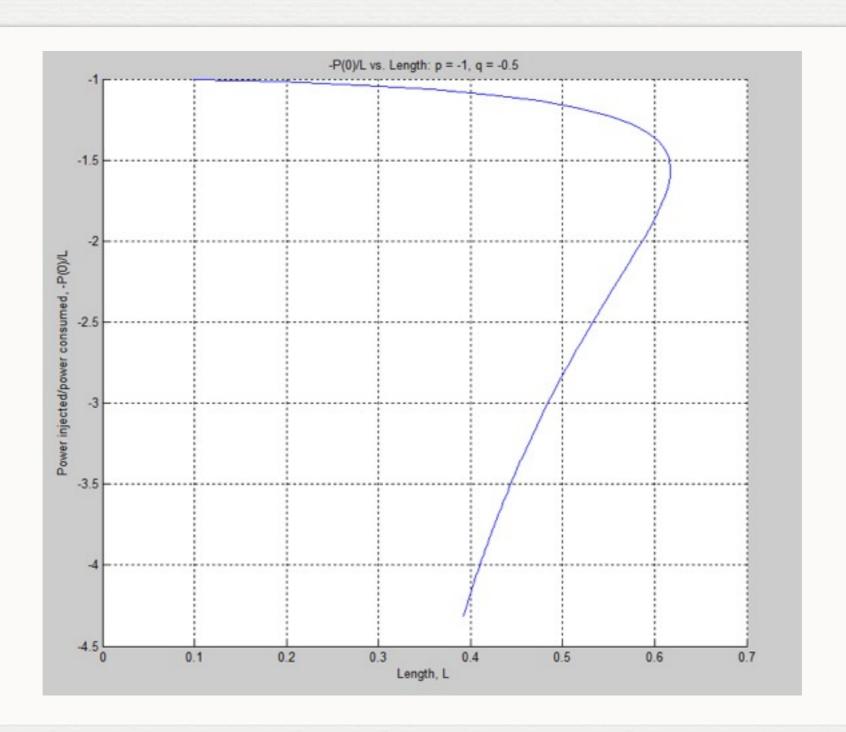




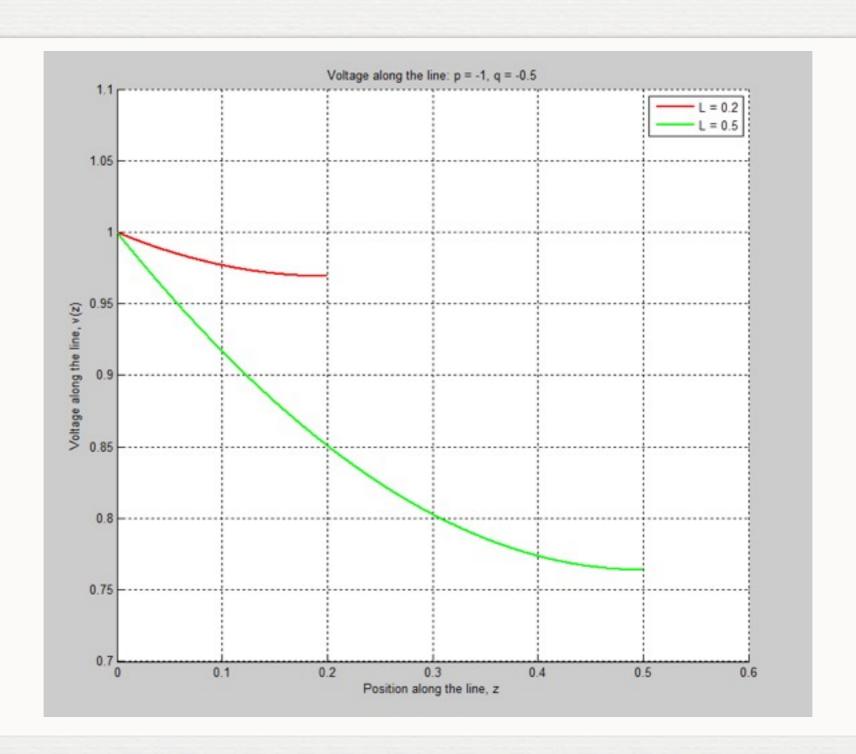
POWER UTILIZATION VS. LENGTH

Power utilization = $\frac{\text{Initial Injected Power}}{\text{Power Consumed}} = \frac{P(0)}{p^*L}$

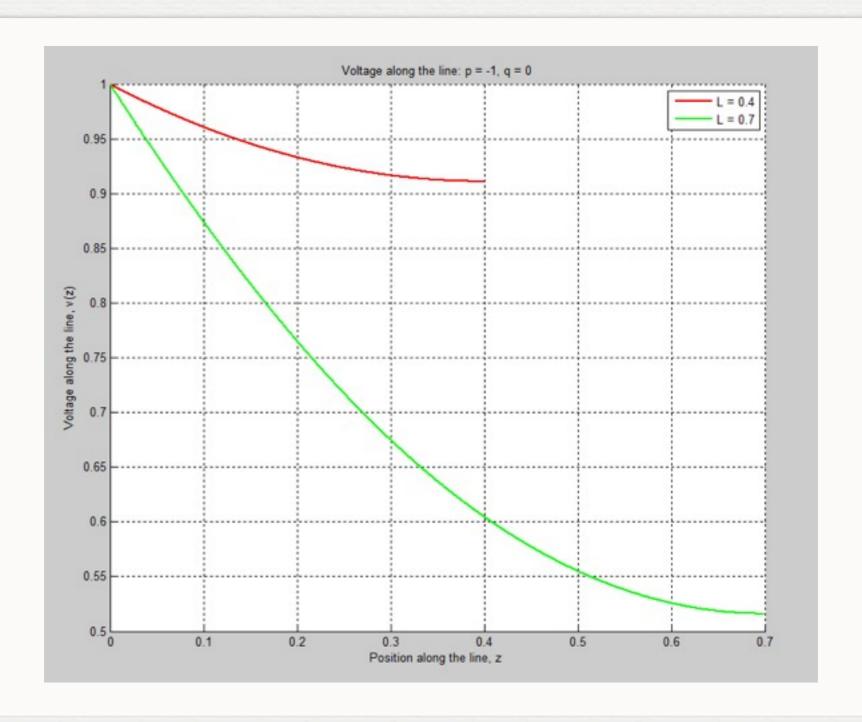
POWER UTILIZATION VS. LENGTH P = -1, Q = -.5



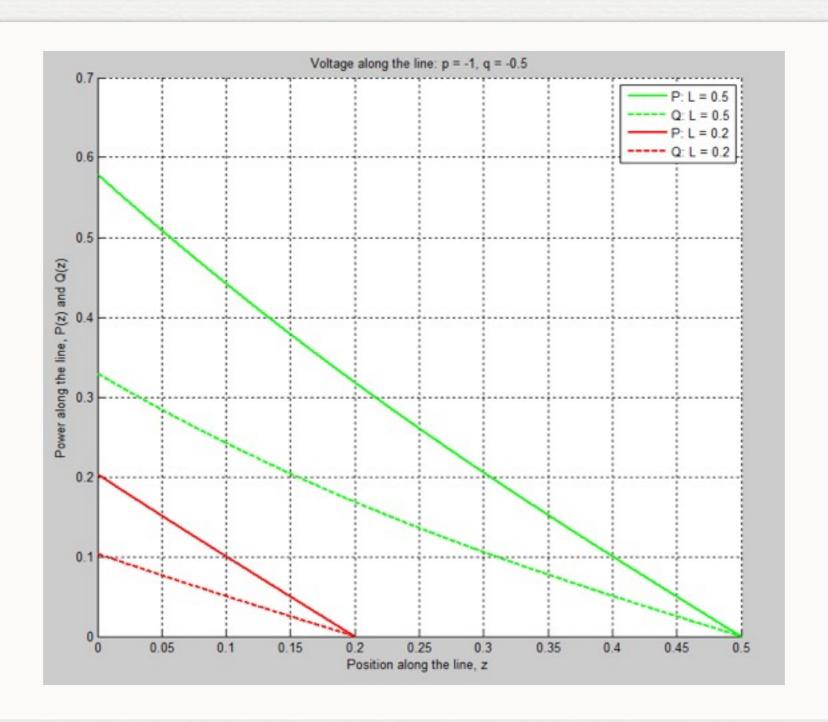
VOLTAGE ALONG THE LINE



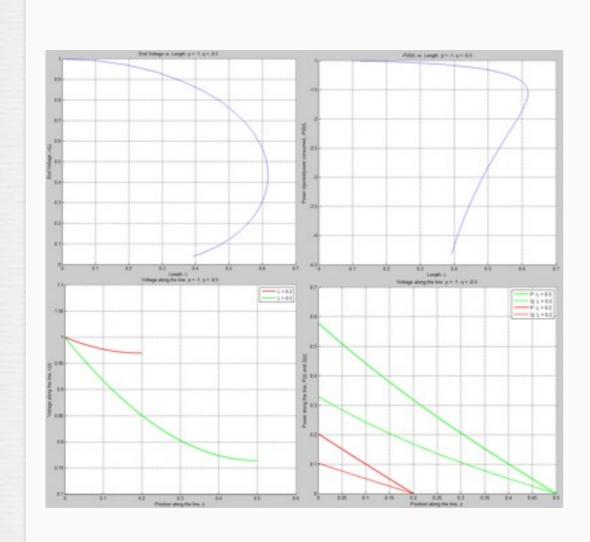
VOLTAGE ALONG THE LINE

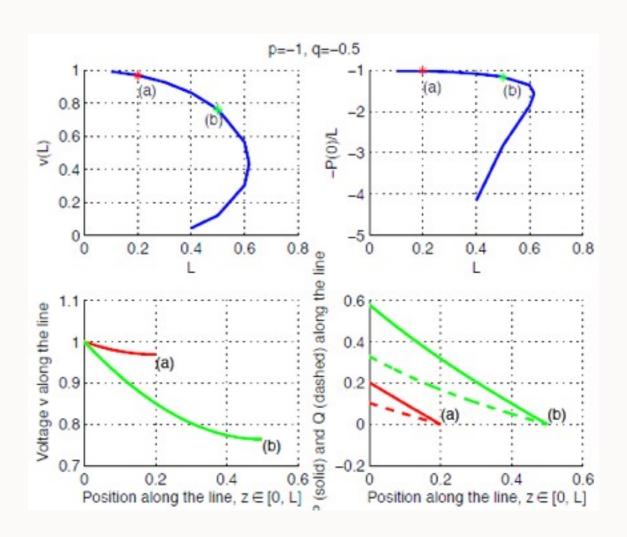


POWER ALONG THE LINE



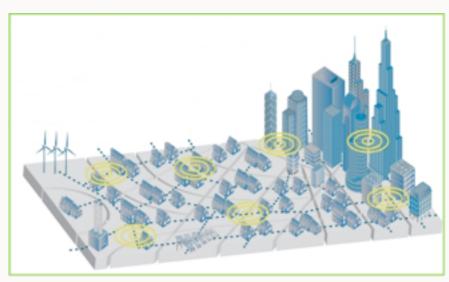
OUR GRAPHS VS. ARTICLE





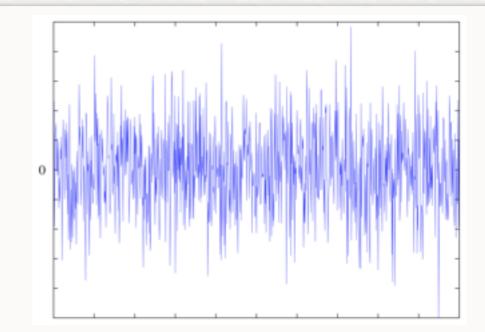
FUTURE WORK

- Major Assumption:
 - Uniform consumption of loads p
- In reality
 - Slight variations across a line



OUR PLAN

- Monte Carlo Method
 - Let $p(l) = p_0 + w(l)$



- Substitute for *p* in DistFlow ODEs
- Solve for boundary value problem
- Repeat

EXPECTATIONS

- Verify the previous researcher's approach to statistical similarity as valid
- Averaged results will align with previous findings

REFERENCES

- The papers used for this presentation were:
- M. Baran and F. Wu, "Optimal sizing of capacitors placed on a radial distribution system," *Power Delivery, IEEE Transactions on*, vol. 4, no. 1, pp. 735 –743, jan 1989.
- D Wang, K Turitsyn and M Chertkov, "DistFlow ODE: Modeling, Analyzing and Controlling Long Distribution Feeder", Proceedings of, the 51st IEEE Conference on Decision and Control (2012) [http://arxiv.org/abs/1209.5776]

