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Abstract​: The dark sky riddle, also known as Olber’s paradox, asks us “Why is the sky 
dark at night?” We look into previous solutions developed over the past few centuries 
and analyze why these solutions have been disproven. By examining the density of 
stars in concentric shells surrounding the planet, or understanding the redshift of cosmic 
radiation in a static universe, one can reason the different factors of luminosity hitting 
Earth. The Big-Bang Solution provides us with the most plausible answer to-date, but 
the riddle is still being analyzed by astronomers, physicists, and mathematicians. We 
propose to take one of these existing solutions and experimentally determine the 
accuracy of such using computer simulations. 
 

 



 
I. Background/Brief History 

 
In the sixteenth century, the riddle of why the sky is dark at night stumped 

mathematicians and astronomers. It has since played a large role in the 
understanding of the continuously expanding universe and complex solutions to 
the problem are still being created. The paradox is as follows: In the case that the 
universe is static and homogeneous, as well as populated by an infinite number 
of stars, any line of sight from the human eye should eventually intercept the 
surface of a star. Hence, the night sky should be completely illuminated, which 
contradicts the darkness and nonuniformity of the night.  

Thomas Digges formulated this riddle in the 16th century and was 
discussed by 17th century astronomers Johannes Kepler, Otto von Guericke, 
Bernard de Fontenelle, and Christina Huygens. It was first discussed in print in 
1722 by Edmund Halley whose resolution involved the apparent luminosity 
dropping off by a factor of ( ). German astronomer Wilhelm Olbers noted/r  1 4  
Halley’s error and gave a corrected discussion of the paradox in a paper 
published in 1823.  

The darkness of the night sky represents one of the pieces of evidence of 
a dynamic universe, such as the Big Bang model. By invoking spacetime’s 
expansion, the non-uniformity of brightness can be explained via redshift, which 
is the lengthening of microwave radiation background wavelengths to those 
outside the visible light spectrum, so it appears dark to the naked eye. 

Various resolutions have been discussed in the past centuries. If the 
assumptions of infinite stars in a continuously expanding universe are assumed 
to be correct, then the simplest resolution is that the average lifetime of stars is 
too short for their light to have reached Earth yet for extremely distant stars. In 
another context, the universe is too young for light from distant regions to have 
reached the Earth.  

 
II. Previous Solutions to the Problem 

 
For Olber’s Paradox, there are two ways to interpret the problem that 

come from two basic distinct assumptions. One assumption is that the universe 
has uniform distribution density of stars. The other assumption is simply the 
opposite: the universe does not have a uniform distribution of stars, even if it is 
infinite. 



Let us first take a look at some of the approaches used to tackle the 
paradox under the assumption that the stars are uniformly distributed among the 
universe meaning that the sky should be covered by stars. The question that 
arises from this assumption is, ‘what happened to the missing starlight?’. 
 

Edmund Halley suggested dividing the universe into concentric shells. If 
the stars have a uniform density distribution in the universe then it follows that 
the number of stars in each shell depends on the volume of the shell. The 
volume of a shell increases with the radius squared, hence there are  as ofr2  
many stars with increasing radius. 

 
V πr ΔrΔ = 4 2  

 
However the intensity of light of each star decreases as . So, each shell1/r )( 2  
gives off the same intensity of light regardless of the distance. Then why is the 
night sky not covered by stars? 
 

Jean-Pillipe Cheseaux adds to Halley’s by saying that interstellar medium 
absorbs the light from some of these stars and that is why we cannot see those 
stars. He called D the average distance between stars and therefore  theV = D3  
average volume taken up by a star. Also, the surface area of a star .RS = π 2  
By dividing, Cheseaux calculated , where  is the distance of the/Sλ = V λ  
background stars. At this distance the stars form a continuous stellar 
background. He calculated  to be  light years.λ 03 · 1 15  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Halley’s concentric shells of equal thickness uniformly populated with stars [1] 



Heinrich Olber applied Halley’s and Cheseaux techniques, but with a 
different approach. He developed an expression for the fraction of the sky 
covered by stars. For a shell of radius  the total number of stars, , isq N  

 
πnq dqN = 4 2  
 

Where  is a unit star per volume ( ). Multiplying the number of stars in an /Dn = 1 3  
shell by the fraction of area each star takes up on the surface area of the shell, 
we obtain the fraction of the shell covered by stars. 

 
α ) 4πnq ndq dq dqd = ( S

4πq2
2dq = S = S

D3 =  λ
1  

 
By integrating the above equation from (the observer) to some radius 0q =   

, we obtain the fraction of the sky cover up to that radius. Here each shell rq =   
adds to the total number of visible stars. 
 

α = λ
r  

 
From the equation one notices that when , the fraction is unity meaning thatr = λ  
100% of the sky is covered in stars. If the universe is infinite any star beyond the 
radius  must not be visible due to occultation from stars in the foreground. Olberr  
decides to account for stars occulating other stars by factoring in onxp(− /λ)e q  
each shell, now the fraction of sky covered by stars in each shell is 

 
α e dqd =  λ

1 −q/λ  
 

This makes sense because as the radius of the shell increases, one would 
expect less and less stars to be visible from each shell due to stars from smaller 
shells blocking or interfering with our view of stars from outer shells. 
After integration up to , rq =   

α = 1 − e−r/λ  
 

 when  (infinite universe).α = 1 >r > λ  
 
Aside from occultation, Olber took absorption of starlight into account as well. He 
factors in . Now the fraction of sky covered by stars in each shell isxp(− /λ)e q  
 

α (e ) e )dqd =  −q/λ · ( (−q/μ)·(1/λ)  



 
where  is the absorption distance. This factor makes sense since we canμ  
expect the fraction of visible stars on each shell to decrease with an increased 
radius of shell due to more interstellar medium between shell and observer, 
hence more absorption of starlight. After integrating our final expression for 
fraction of visible stars on each shell from the observer to a radius  we get,q = r  
 

(1 )α = μ
λ+μ − e−r(μ+λ)/λμ  

 
Notice that when  approaches infinity (infinite universe),r   
 

α = μ
λ+μ  

 
which is not 1, so therefore in an infinite universe the fraction of visible stars in 
the sky is not 100%. Solved?! 
 

John Herschel said that the absorption for missing starlight should not be 
taken into account for the absorbing medium would just emit the radiation back 
out. So then in an infinite universe the sky should be covered by stars when 
looking at it, according to Olber. Why are there dark spots in the night sky if 
starlight is not absorbed? What happened to the missing stars? This is the 
second interpretation of the paradox. Herschel states that the stars are not 
uniformly distributed in the universe. Therefore a dark spot in the night sky is 
simply explained by the absence of stars in that particular line of sight. 
 

Figure 2: With the observer at the center, the visible universe at finite age is bounded by the 
particle horizon. The darkness of the sky is the result of the finite age of the luminous universe [1] 



With the introduction and acceptance of the speed of light, the argument 
of the Visible Universe is borned. In a unbounded, static and finte age universe 
we say that the the visible universe is or radius , where  is the speed oftr = c c  
light and  is the age of the universe. Therefore, stars that are further than  aret r  
not visible to us because their starlight has not reached us yet. The visible 
argument can have both interpretations of the paradox:  

- If , the sky is covered by stars. If so, what happened to the missingλ < c · t  
starlight (the first interpretation of paradox is correct) 

- If , stars do not cover the sky. If so, what happened to the missingc · t > λ  
stars (the second interpretation of the paradox is correct) 
 

 
 

 
III. Evaluation of Previous Solutions 

 
The simplicity of the question being asked in the dark night sky riddle 

belies the complexity of the form a plausible solution must take. Over the 
centuries many astronomers, physicists, and mathematicians have suggested 
seemingly reasonable solutions to Olbers’ riddle only to find their solutions are 
demonstrably false.The difficulty in confirming a unitary solution to this puzzle 
arises from the current uncertainty in our knowledge of the universe. As 
astronomers uncover fundamental truths that govern the relationships between 
celestial bodies, we are better able to reject previous solutions to Olbers’ 
question. 

The first case we consider is that of Kepler’s solution. Kepler’s argument 
for a spatially finite universe might have been well founded when it was 
concluded in 1610 but current astronomical observations allow us to disregard 
this “solution” in a trivial manner. Certainly, if the universe was spatially finite then 
his conclusion might hold true but the qualifier has been shown to be false. The 
fact that the universe is expanding was theoretically proven by Alexander 
Friedmann in 1914 (Friedmann Aleksandr). Since the universe is expanding it 
cannot have a finite size, thus trivializing Kepler’s position. 

In 1823 Olbers performed calculations similar to Chaseux’s work from 
1744. While Olber made significant headway in the problem, notably by removing 
the need for uniform distribution of stars, his solution of a dust cloud absorbing 
the light from distant stars is definitively false (Harrison Edward). Olber failed to 



recognize, or perhaps was unaware of, the consequences of his solution.  By the 
1st law of thermodynamics: 
 

U  QΔ =  − W  
 

Where  is the change in the internal energy,  is the heat added to theUΔ Q  
system, and  is the work done by the system. Given Olbers’ solution, the dustW  
cloud must be absorbing the light and thermal radiation from infinite stars. Under 
the condition of absorbing infinite heat, the dust cloud itself would begin to glow 
radiating as intensely as the light it absorbed from distant stars. This is a direct 
consequence of the 1st law of thermodynamics. 

It is Bondi’s redshift solution that presents the first non-trivial discussion. 
Bondi correctly observed that the finite age of the universe as well as the 
luminous lifetime of stars can account for the thermodynamic disequilibrium that 
is present. Despite this, his work largely referenced a steady-state universe of 
infinite past and future with stars that exist in perpetuity. As discussed above, 
Bondi’s solution leads to the conclusion: 
 

 u
u* =  DH

4λ+DH
≈ 10−13  

 
So, the ratio of radiation density in interstellar space and radiation density at the 
sources is a constant term. What’s more, expansion of the universe does not 
guarantee darkness, rather the relative magnitudes of  and  ​are responsibleλ DH  
for the darkness condition in the night sky. Namely darkness occurs when: 
 

λDH ≪ 4  
 
As a direct consequence of the finite speed of light, any observer looking up at 
the night sky must extend their vision backwards in space as well as time. The 
cone of light observed must then stretch from the observer a distance so that it 
lies tangential to the Hubble Sphere (the temporal edge of the observable 
universe). The lightcone never reaches a particle horizon, meaning that all 
celestial bodies trapped within its volume are witnessed by the observer. This 
leads us to the conclusion that all light from stars near the edge of the universe 
must be red-shifted out of the visible range of light. This is a plausible solution to 
Olbers’ paradox but it fails to account for one important detail. Stars radiate in 
more frequencies than just visible. If the visible wavelengths are red-shifted into 
infrared, then the ultraviolet wavelengths must be red-shifted into the visible. 



Light from these stars would still be visible. After some finite time, the light from 
stars at the edge of the steady-state universe will reach the observer, causing the 
night sky to glow brightly. 

While Bondi’s solution holds for a steady state universe it fails to provide a 
complete solution to Olbers’ riddle in our expanding universe. The Big-Bang 
Solution is presently the most complete response to Olbers’ “Paradox.” Outside 
the steady-state universe examined by Bondi, The Big-Bang solution maintains 
conservation of matter and energy. As evidenced above, the red-shift in an 
expanding universe is insufficient to account for a dark night sky. This can be 
witnessed using the resultant equation in II: 
 

exp(− )α = ∫
t

t1
V (t)

n(t )SV (t )cdt′ ′ ′ ∫
t′

t

cdt"
λ(t")  

 
Where, assuming , we find  because of redshift. In the model of a bigα = 1 u < u*  
bang universe the finite speed of light combined with the fact that our universe is 
∼ 10- 15 billion years old results in the undeniable truth that the maximum 
distance from which light can be received is ∼ 10- 15 billion light-years away. 
Galaxies beyond this distance might exist, though their light has yet to reach us. 
The second half of the big bang solution is found in the finite lifetime of stars. 
Eventually, stars dim. This effect is observed more succinctly in nearby galaxies 
as a direct consequence of the shorter light-travel time. The sum of these effects 
leave us with the conclusion that the night sky will never be completely filled with 
stars. Either, light from distant stars has yet to reach us, or those close to us has 
grown cold and dark. 



 
 
IV. Analysis of a Plausible Modern Solution 

 
While the Big-Bang Solution presents the most widely agreed upon 

plausible conclusion to Olbers’ Paradox there still exist a variety of solutions that 
potentially explain the phenomenon. One, less intuitive, answer to the riddle is a 
consequence of vacuum decay in separate universes. 

As explored in Frieden’s paper, “Spontaneous Formation of Universes 
from Vacuum via Information-induced Holograms” (​Frieden, B. R., & Gatenby) 
one can use Fisher Information to derive the existence of the 26 fundamental 
constants of the universe. In this paper he postulates that minimizing the loss of 
Fisher information, , can be achieved using Cramer-Rao:I  

 
e2 = I−1  

 
Where  is the mean squared error attainable in measuring a signal value. Hee2  
continues by commenting that the Big bang is usually considered a large scale 
version of the “emergence from false vacuum” effect. In the case of the Big bang, 
however, the scales of time and space are undefined, this dilemma can be 
rectified through maximizing the Fisher information resulting in these criteria.  

Frieden’s theory continues into the discussion of a multiverse, based on 
the Lorentzian Wormhole-based model, in which there exists a finite region 
bounded by a universe which does not realize the minimum energy of a true 
vacuum. This may result in the case where an “umbilical pathway” may grow and 
create a new “baby” universe.  

Frieden goes on to prove, using Fisher information, that this wormhole 
must deliver the 26 universal constants as well as the Higgs field to the new 
universe via a high intensity hologram. We also consider this new universe to be 
a false vacuum so that it does not collapse on itself. In this scenario, a huge 
amount of energy is “lost” from one universe and imparted to another and could 
be a solution to the thermal disequilibrium first remarked upon by Kepler, Olber, 
and Bondi. This modern solution to Olbers’ “Paradox” is one of many that are 
currently discussed. The surprising complexity of this “simple” question becomes 
more apparent as we discuss the accuracy of various historical solutions. Kepler, 
Olber, and numerous physicists have devised seemingly plausible solutions only 
to have them refuted as astronomical discoveries are made. The current 
generation of solutions (those of Bondi, Frieden, and the Big Bang solution) may 



yet prove to be false as astronomy develops even further. Only through a more 
intimate understanding of our universe can Olbers’ “Paradox” truly be resolved. 

 
V. Self-Avoiding Random Walk 

 
We chose to dive deeper into the self-avoiding random walk model, which 

provides a plausible solution to the riddle as well as an interesting way to model 
the distribution of stars in the universe. Let us assume we are dealing with an 
infinite random walk in which each step is a unit length and each vertex is a 
sphere with radius The radius should be chosen to accurately reflect the ratio. a  
between the radius of a star and the distance between two nearby stars. It is also 
important to note that this random walk is self-avoiding due to the fact that two 
stars cannot occupy the same region of space. The question we ask is, “if an 
observer is placed at one of these spheres and looks around, would he/she see 
overlapping spheres in every direction (a bright night sky) or would only a certain 
percentage of the viewing area be covered by these spheres (a dark night sky)?” 

Let  be a self-avoiding random walk with verticesW  
  and so on, such that  and  are adjacent to each, X , X , X , X , ...X0  1  −1  2  −2  Xk Xk+1  

other. If we place the observer at the origin, the nearest star can be represented 
by . We know that the radius of gyration of a self-avoiding random walk ofX0  
length  is of the order of  with , so we can then assume the meann nμ  .588μ ≈   
distance between  and  is of the order . We can also assume theX0 Xk kμ  
distribution of  can be approximated by a classical Gaussian distribution andXk  
the density function approximated by the function 

(X ) ( ) exp(− )f k ≈  1
σ√2π k

3
2σk

2
|X |k

2

 

The observed area of the star at  from the observer’s standpoint isXk  

given by the equation  where  is the radius of the star at position . We
|X |k

2
4πak

2

ak Xk  

can then let  be the distance between the observer and the nearest star.X |d0 = | 0  
We can then find the mean contribution of  to the total observed area as seenXk  
by the observer by integrating the density function over infinite space. 

( ) exp(− )dX∫
 

 
∫
 

 
∫
 

|X | ≥ dk 0
|X |k

2
4πak

2
1

σ√2π k

3
2σk

2
|X |k

2

k  

=  σk
2

4π a2
k
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We can then find the mean of the total observed area by summing the 
contributions of the observed area from all the stars and find that it is bounded 
above by 



∑
 

k = ±1, ±2, ...
 σk

2
4π a2

k
2

 

Because each  is very small (in terms of astronomical units) and  isak σk
2  

of the order  then the above series is convergent. If we were to substitute k|| 2μ ak  
by the largest known radius of a star, and  by  where b > 0 is a constantσk |k|b μ  
determined by the random walk model, the series can be bounded by 

 

.17b2
10πa2 = .17

10 πa3 2  
 
After we substitute the largest known radius of a star, we find that the 

observed area of the night sky populated by light is extremely small. In 
conclusion, if the stars were to follow a distribution similar to a self-avoiding 
random walk model of infinite length, an observer at the origin would only see a 
very small percentage of the night sky lit up. 

 
 
VI. Results 

To assess the validity of the Self Avoiding Random Walk model we 
choose to simulate the process in MATLAB and compare the results to 
experimental observations of the night sky. Our metric for comparison was the 
percentage of the night sky that is illuminated by stars, 𝛼.  
 

 
 

Figure 3: Two different paths generated from the same MATLAB code defining a self avoiding 
random walk where the distance between stars is given by one parsec 

 



In order to analytically assess the random walk solution, we began by 
defining an upper bound to the series from equation (17) using an expression by 
Diao in his paper from 2007 [4]: 
 

α ≤ .17
10 πa3 2

 
 

To calculate the upper bound in equation (19) we used the radius of the 
largest currently observed star: IRAS 05280-6910. We compare the values 
calculated by us to the value calculated by Diao in 2007. Though the two 
answers differ this is simply because Diao chose a smaller stellar radius to use in 
his calculations as IRAS 05280-6910 had yet to be observed. As part of our 
comparison we include the experimental solution of the percentage of the 
illuminated night sky. This experimental answer is found by finding the mean free 
path of the universe and extending it across the night sky [5]: 
 
 

Diao’s Upper Bound Our Upper Bound Experimental Solution 

1.51*10​-4 ​ % 2.84*10​-3 ​ % 10​-14 ​ - 10​-17​% 

 
Table 1: Upper bounds to the percentage of the night sky illuminated by stars calculated by us 

and Diao [4] as well as the observed solution of the same phenomena. 
 

Through the disparity in orders of magnitude between the upper bounds 
calculated and the experimental solution, it is clear that the upper bound found 
using the self avoiding random walk model is not a viable solution to Olbers’ 
Paradox. The reasoning behind this disparity though, is quite simple. The self 
avoiding random walk model is uniquely general in its context. The upper bound 
solution implies a steady-state static universe of infinite expanse. Through 
astronomical observations we are aware that these implications are not true. The 
universe, as we observe it, is finite spatially and temporally. As a result of this 
finiteness astronomers define a Hubble Sphere that bounds the observable size 
of the universe. In order to better fit our calculations to the observable universe 
we constrain equation (17) by the Hubble Sphere and numerically solve for the 
percentage of the night sky that is illuminated. This yields the following results: 
 
 
 



 
 

Method Percentage of Night Sky Covered 

Self Avoiding Walk 2.44*10​-13 ​ % 

Olbers 10​-13 ​ % 

Bondi 10​-13 ​ % 

Big Bang 10​-13 ​ % 

Experimental Solution 10​-14 ​ -  10​-17 ​ % 

 
Table 2: Values for the percentage of the night sky illuminated by stars using different methods. 
The values for Olbers, Bondi, and Big Bang were taken from [1]. The experimental solution was 
found using [5]. Though the order of magnitude found in both Olbers’ and Bondi’s solutions is 

equivalent to that found by the Big Bang solution, they are colored red as the reasoning behind 
these answers is blatantly false in our observed universe as discussed previously. 

 
Clearly, the introduction of a Hubble Sphere to the Self Avoiding Random 

Walk model significantly improved the accuracy of the results found. Notably, the 
order of magnitude using this method agrees with the order of magnitude found 
using the Big Bang solution, the most widely agreed upon plausible solution to 
the paradox.  
  



 
VII. Conclusion 

Olbers’ “Paradox” has been the subject of study by astronomers, 
physicists, and mathematicians for hundreds of years. Over the course of its 
analysis various plausible solutions have been presented only to be refuted later 
as new data comes to light. The current leading theory is that of the Big-Bang 
solution which claims that light from distant stars has yet to reach us, and by the 
time it does the light from the closest stars will have gone dark. While the 
Big-Bang solution is the most widely agreed upon theory, it has yet to be 
confirmed. Many astronomers, physicists, and mathematicians are still analyzing 
this peculiar phenomenon and presenting independent solutions to solve Olbers’ 
question. 

Olber’s Paradox is used as a starting argument for the question of the 
universe being infinite in age or space and whether it is static or expanding. Self 
Avoiding Random Walk is an attractive approach to the paradox because these 
questions don’t factor in. Only a fraction of the night sky will be covered 
regardless of the age of the universe or its expansion. However, a static infinite 
universe with a non-uniform distribution is assumed by this model, leaving the 
only question to be what the distribution of stars is. Moreover, it is a safe bet to 
say that a uniform distribution can be ruled out due to modern data making this 
model a safe bet. 

The solution we assessed, the Self Avoiding Random Walk, is a plausible 
solution to Olbers’ Paradox so long as we constrain the expression with a hubble 
sphere. Under just this one constraint we find that the order of magnitude for the 
percentage of the night sky illuminated by starlight is of the same order as the 
Big-Bang solution. It is likely that further constraining the expression for the 
Random Walk method with other observed phenomena in the universe will 
decrease the order of magnitude to one more closely resembling the observed 
portion of the night sky that is illuminated. Introducing black holes, red-shift, and 
diffraction about solar bodies would be a key step towards improving the 
accuracy of this model. 
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