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1 Introduction

This project was based on the mystery, or more appropriately, a counter-intuitive result lying within
the Earth-Moon system. That being the existence of tidal friction within the system, which causes
the system to lose energy, which means the Moon should be coming in closer to the Earth. However,
experimental observations show that the Moon is in fact moving further and further away from the
Earth as time goes on. As mentioned, the initial consideration of tidal friction would leads to the
opposite conclusion than what has been experimentally observed, so this project delves into the
theory behind why tidal friction is in fact the cause of the Moon moving away from the Earth.

To begin with, tidal friction is described by the equations for tidal torques, which are derived
from the fact that there is an unequal gravitational pull on the different points of Earth. This
unequal pull results in friction between the rotation of Earth and the oceans being pulled by the
Moon. These equations are described further below but it must be noted that the forces exerted
by the tidal torques require a very large time scale for effects to be observed, so these timescales
must be taken into account within the equations. Further below, it is described how the system is
broken down into three different timescale and how equations must be sequentially averaged from
the short to the intermediate and then from the intermediate to the long timescales.

This paper heavily follows the research done by Goldreich [1] and by Touma and Wisdom [2]
as they provide derivations and implementations for the aforementioned equations including tidal
friction. Once the equations were understood, numerical analysis was done by implementing them
into an algorithm in Python using two RK4 solvers in order to solve for parameters on the long
timescale. These results, which are discussed below, show that with the inclusion of tidal friction,
one would indeed expect that the Moon should be moving away from the Earth just as the results
from [1] and [2] indicate as well.

2 Model

The following model was derived following the approach laid out by Goldreich [1]. The derivation
follows a successive averaging, where motion in the system is described on increasingly larger
time scales via integration. While the majority of the analysis is consistent with Goldreich, some
assumptions are corrected following work done by Touma and Wisdom [2]. Where the analysis
varies from Goldreich’s, the changes are noted.

∗This report was completed in collaboration with an appointed University of Arizona Math Department mentor.
We would like to express our gratitude for her help and guidance.
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2.1 Time

Motion in the Earth-Moon system can be described on three time scales, as described by both
Goldreich [1] and Touma and Wisdom [2]. The short time scale, or orbital time scale, is used to
describe the orbital periods of the bodies involved and corresponds to a day (the orbital period of
the Earth around its axis), a month (the orbital period of the moon’s orbit about the Earth), and a
year (the orbital period of the Earth-Moon system about the sun). On the intermediate time scale,
or precessional time scale, we see precessional motion of the bodies, which is the periodic change in
the angles between orbital planes. Of most import for this model are the precessions of the angle
between the lunar orbit plane and the Earth’s equatorial plane, ε, the angle between the lunar orbit
plane and the ecliptic, I, also referred to as the inclination of the lunar orbit, and third, the angle
between the Earth’s equatorial plane and the ecliptic, γ. The period’s of these motions define the
intermediate time scale and are reported by Touma and Wisdom [2] as 17.83 years, 34,245.8 years,
and 74,590.96 years respectively. Lastly, the long time scale, or tidal time scale, is on a much larger
order of about a billion years. On this time scale we see the effects of tidal friction on the system,
and while orbital periods may remain constant on both the short and intermediate time scale, it
is on the long time scale that we find large variations in their values and speculations on both the
history and future of the system may be made.

2.2 Keplerian Elements

Figure 1: Earth-Moon Terminology Diagram.

To describe the orbit of a body a full set of Keplerian elements is required. For this project
the set of elements for the lunar orbit with respect to both the ecliptic and the equatorial planes
is needed. Some of the angles involved in this description were mentioned above, ε, I, and γ (see
figure 1). Other than these angles we also need to define the angle in the orbit measured from the
ascending node on the equatorial plane and the ecliptic plane, Φ and Φ′, as well as the position in
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the orbit measured from the moon’s ascending node on the ecliptic, u. Other than these angles, the
other Keplerian elements for the lunar orbit are its mean motion, nm, and its eccentricity, which
following both Goldreich [1] and Touma and Wisdom [2] we have chosen to ignore in favor of a
circular orbit with radius a, the semi-major axis of its orbit.

2.3 Motion on the Short and Intermediate Time Scales

Given the ultimate goal for deriving this model, describing the actual motion of the system on the
short time scale is unimportant. Of importance however, are the effects of both the Earth’s oblate
figure (that the Earth is not a sphere, but squished at the poles, making the equatorial radius
greater) and the sun on the Moon’s orbit. These effects are referred to as disturbing potentials.
Three disturbing potentials are included in the model, R1, the disturbing potential of the Earth’s
figure on the lunar orbit, R2, the disturbing potential of the Sun on the lunar orbit, and R3, the
disturbing potential of the Earth’s figure on the Sun. First, we need to know the Earth’s principal
moments of inertia, which are defined as

C = I[1 + (2ksR
5
e/9GI)Ω2

e] (1)

and

A = I[1 − (ksR
5
e/9GI)Ω2

e]. (2)

where C is the moment of inertia about the Earth’s rotational axis and A is the moment of inertia
about an axis in the equatorial plane. I = 9.72 × 1037 m2kg, is the moment of inertia of the
equivalent sphere, ks = 0.947 is the fluid Love number (where the Earth is considered a fluid for
the purposes of this model), Re is the radius of the Earth, G is the gravitational constant, and
Ωe is the angular velocity of the Earth (at present Ωe = 7.29 × 10−5 s−1, however, Ωe will vary
drastically on the long time scale).

The disturbing potential equations are first derived in terms on Legendre Polynomials and non-
Keplerian elements. The conversion to Keplerian elements is then made prior to averaging. Since
R1 and R3 are analogous except for their angles and masses, the derivation of R3 is saved for
after the averaging over the short time scale, where it is a trivial matter of substituting the correct
values. The orbital eccentricities are also ignored, where the semi-major axes of the Moon and
Earth’s orbits are defined as a and as respectively and taken as the orbital radii. The masses of the
bodies involved are also defined as me, mm, and ms, for the Earth, Moon, and Sun respectively.
The disturbing potential equations can then be written in Keplerian elements as

R1 =
2

3

µ

a3
JR2

e

[
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2
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]
(3)

and
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)
a2

a3s

[
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β2 +
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3

4
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8
β2

)
cos2(Φ′ − u) +

3

8
β2(cos2Φ′ + cos2u)

]
(4)

where J = 3/2(C −A)/meR
2
e, µ = G(me +mm), and β = sinI.

These equations are then averaged over one orbital period and all terms with a cosine vanish.
This leaves the secular parts of the disturbing potentials (secular refers to the fact that these
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parts are not averaged to zero over one period of the short time scale, and are thus the parts of
the disturbing potentials which carry an impact on the precessional motion of the system). As
mentioned, R3 is then derived by replacing µ, a and ε in R1 with Gme, as and γ respectively.

Figure 2: This figure shows the coordinate systems used to describe the Moon’s motion (left) and
the Sun’s motion (right) from [4].

These secular disturbing potentials can then be differentiated with respect to there Keplerian
elements (ε, I, and γ) and multiplied by the appropriate mass to yield equations for the secular
torques in the system (the torques which affect the precessional motion). Making a change in
coordinates to a set of unit vectors normal to the equator (a), lunar orbit (b), and ecliptic planes
(c), as shown in figures 2, the equations for secular torque can be written as

L1 = −µmm

a3
JR2

e(a · b)(a× b), (5)

L2 =
3

4
µ

(
msmm

me +mm

)
a2

a3s
(b · c)(b× c), (6)

and

L3 = −Gmems

a3s
JR2

e(a · c)(a× c). (7)

It is important to note that these equations are analogous to the disturbing potential equations,
in that L1 is the torque exerted on the lunar orbit by the Earth’s figure, L2 is the torque exerted
on the lunar orbit by the Sun, and L3 is the torque exerted on the Sun by the Earth’s figure. The
reverse torques are simply the opposite signs of these. Using this fact, three values are defined
relating these torques which are used in further derivation. These are

L =
µm

a3
JR2

e, K1 =
µms

a3s
JR2

e, K2 =
3

4
µ

(
msmm

me +mm

)
a2

a3s
. (8)

There are a total of four elements of the system who’s changes in the long time scale are of
particular interest, the angular momenta H and h of the Earth’s spin and the lunar orbit, the total
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angular momentum normal to the ecliptic Λ, and the total potential energy χ. It is trivial to show
that these values are otherwise constant on the short and intermediate time scale. The angular
momentum of the Earth’s spin can be used as a measure of the Earth’s angular velocity and the
angular momentum of the lunar orbit can be used to find the Earth-Moon distance. The values of
Λ and χ are of importance in solving the precessional equations, which will be discussed shortly.
Since the equations for these values are of more importance in the long time scale, they will be
described in the next section. Here, we are only interested in two equations which relate these
values which are important to the precessional equations.

Making another change in coordinates to a notation which relates the unit vectors to the Kep-
lerian elements, we can use the secular torque equations, as well as equations for H, h, Λ, and χ,
a set of four precessional equations can be derived. The new coordinates are x = (a · c) = cosγ,
y = (b · c) = cosI, z = (a · b) = cosε, and w = (a × b) · c = sinε. The precessional equations are
then

dx

dt
=
L

H
zw

dy

dt
= − L

h
zw

dz

dt
=

(
K2

h
y − K1

H
x

)
w

dw

dt
=
L

H
z(yz − x) − L

h
z(xz − y) +

(
K2

h
y − K1

H
x

)
(xy − z).

(9)

These equations are solved numerically as described in section 3. However, to solve these
equations initial values are required. In order to find these initial values three equations can be
derived to relate x, y, z, and w. They are

Λ =Hx+ hy

χ =K1x
2 +K2y2 + Lz2

w2 =1 − x2 − y2 − z2 + 2xyz.

(10)

Making the assumption w = 0, since the solutions of the precessional equations are periodic and
w is used as a check for x, y, and z, a sixth order polynomial in z can be found. This polynomial
has two real roots and one is chosen as the initial value of z, which is then used to find the initial
values of x and y.

2.4 Motion on the Long Time Scale

As mentioned previously, motion in the long time scale is due to tidal friction in the system.
Modeling tidal friction is a complex process and thus the results of MacDonald [3] will be assumed
in the form they are derived by him. Both Goldreich [1] and Touma and Wisdom [2] detail these
results and the equations presented here and the values of constants and variables are a conglomerate
from all three sources.

First, we must define equations for the four variables we are interested in the evolution of, H,
h, Λ, and χ. Equations governing these values were first derived on the intermediate time scale
using the secular torque equations, and the derivation here simply augments (via addition) these
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equations to include tidal torques. Since the effects of secular torque are negligible on the long time
scale, those terms vanish and we are left with the following equations

dH

dt
=Te · a

dh

dt
=Tm · b

dΛ

dt
=(Te + Tm) · c

dχ

dt
=

2K1

H
xTe · c +

2K2

h
y(Tm · c + yTm · b) + 2Lz

(
Te · b
H

+
Tm · a− 4zTm · b

h

)
.

(11)

The values Te and Tm are the equations for tidal friction, and are most conveniently defined
in terms of the precessional variables x, y, z, and w. Defining unit vectors along the axes used
in defining the vectors a, b, and c, shown in figure 2, we can show that either Te or Tm can be
defined as T = T1e1 +T2e2 +T3e3 = T ′1f1 +T ′2f2 +T ′3f3, where either the T or T ′ notations can be
used with regards to convenience. Henceforth, for MacDonald tides, only the T terms will be used.
Ultimately, using this notation, we can use the following to resolve the dot products in equations
(11)

T · a =T2(1 − z2)1/2 + T3z

T · b =T3

T · c =T1
w

(1 − z2)1/2
+ T2

(x− yz)

(1 − z2)1/2
+ T3y.

(12)

The values of T1, T2, and T3 are then taken from MacDonald assuming a circular orbit. In
Goldreich’s presentation of these equations he includes an incorrect factor of n, which is corrected
by Touma and Wisdom and also removed here. In defining these equations we also need new
quantities α = nm/Ωe, the ratio of the mean motion of the moon and the Earth’s angular velocity,
A = 3

2GmmR
5
ek2, q2 = (1 − z2)/(1 + α2 − 2), and q′2 = 1 − q2. Here, k2 = 0.29 is a dimensionless

Love number which can be found by observing the Chandler wobble. A set of integrals known as
the Complete Eliptic Integrals of the First and Second kind is also needed and are defined by F (q)
and K(q) as follows.

F (q) =

∫ 2π

0

dφ

(1 − q2sin2φ)1/2

K(q) =

∫ 2π

0

(1 − q2sin2φ)1/2dφ

(13)

In section 3 these integrals are solved using the built in Eliptic integrals in Python.
Using these new quantities, the tidal torque equations for T1, T2, and T3 are then

T1m = −T1e =0

T2m = −T2e =
2mmA

πa6
1

q
[K(q) − q′2F (q)]sin2δ

T3m = −T3e =
2mmA

πa6
q′F (q)sin2δ,

(14)
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where δ is the phase lag due to the fact that “High Tide” doesn’t occur directly under the Moon’s
orbit, but slightly in front of it in the direction of the Earth’s rotation due to the friction between
the Earth’s rotation and its oceans.

Thus, the set of equations which must be solved is given by (11) which are expanded using
the dot products (12) as well as the expressions (14). These equations along with the precessional
equations (9) form the basis for the numerical analysis in the next section.

3 Numerical Analysis

To implement our results with the formulated model, a numerical approach was used within the
Python programming language. Although the precessional equations within the short and inter-
mediate time scales are capable of being solved analytically, the long time scale must be solved
using a numerical approach. As a result of this, the short and intermediate time scales are solved
numerically as they will already be present within our environment. The primary foundation of
the model to solve the equations on the long time scale is an RK4 algorithm, with each step of one
million years that conducts several required sub operations.

Figure 3 provides a flowgraph that illustrates our numerical formulation, and algorithm 1 pro-
vides a high level algorithmic overview of our Python implementation. As mentioned previously,
unlike Goldreich’s formulation with varying time step width to estimate error, we capitalize on the
potential of modern computers by running at a small (relatively) step width of one million years.
Using this configuration, the results took approximately 36 hours to complete running on a High
Performance Computer node within the University of Arizona’s ECE department. The results of
these experiments are discussed next.

Figure 3: Numerical Method Flowgraph
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Algorithm 1: Modified Runge Kutta for Earth-Moon Modeling

Result: a, H, Λ, χ values for each step of integration period
Calculate initial values of ωE , a, H, Λ, χ;
Symbolically solve polynomials for z, y, x;
while time < steps * step size do

Calculate h, L,K1,K2;
Substitute values for z polynomial and solve;
Substitute values for y polynomial and solve;
Substitute values for x polynomial and solve;
while sgn(prior w value) is sgn(current w value) do

Calculate 4 Runge Kutta terms for x, y, z, w;
Append to solution list;

end
Average x, y, z, w over precessional period;
Calculate ΩE , α, q, q

′, TE , TM ;
Calculate 4 Runge Kutta terms for a,H,Λ, χ;
Append to solution list;

end

3.1 Numerical Results

Here, we present the data obtained for the several key intermediate and long-scale quantities men-
tioned previously. Figure 4 depicts the solution for precessional variable z over the length of one
period. Our data suggests the precessional period is approximately 17.7 years, which is consistent
with related work [5]. This is the only solution presented for one precessional period as the other
precessional quantities x and y have much longer periods than z, and therefore do not change much
over one period of z.

Figure 4: This plot shows the results for solving the precessional equations for the current day over
one period z, which is the same as one period of w. This plot shows that the period of z is about
17.7 years.
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Figures 5 and 6 present the projected future evolution of Earth’s length of day and lunar
distance over the next 10 billion years. While 10 billion years is unreasonable due to other dynamics
in the Solar System such as the expansion of the Sun, solving over this longer timescale allows
for trends within the model to be more clearly observed. The trends and magnitudes of these
results are consistent with those of Goldreich, Touma, and Wisdom [1, 2] as when length of day is
plotted against the Earth-Moon distance, the plot is concave up, but the amount of difference is
approximately 15 hours at the 10 billion year mark.

Figure 5: This figure shows the numerical results for the length of day and the Earth-Moon distance
found by our model plotted against time.

Figure 6: This figure shows the Length of Day plotted against the earth-Moon distance, which is an
important plot in order to see that the length of day should be growing faster than the earth-Moon
distance.

Finally, in Figure 7, we run our model backwards in time to estimate historical behavior of the
Earth-Moon system. As the literature suggests [1, 2] the trends of our model are consistent with
the expected past behavior of the planetary system as the Earth’s spin speeds up as the model goes
backwards in time.
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Figure 7: This figure shows solutions from the model going backwards in time, indicated by the
negative values of time up to the present day at time 0.

4 Conclusion

The Moon-Earth system is incredibly complex and thereby impractical to calculate analytically
entirely. The creation of our numerical model allows us and potentially future researchers to project
the behavior of the Moon in its future, paving way for work in the area of tides, sedimentation
rates, and more [3]. Prediction of Earth’s future tide behavior, day length, and modeling the future
behavior and environment of our solar system are all possibilities with studies within this space.

Some of the challenges we faced during the course of this modeling project included calculating
system parameters both for initial values and within each time-step. Establishing and tweaking the
flow of this process was critical to ensure the validity and accuracy of our model. In the end, we
believe our goal to implement a model following the work of those formulated previously backed
with modern computational capability was achieved.

Most importantly, the mystery of the Earth Moon system can finally be solved. Even though
the transfer of energy due to tidal friction incurs some loss of total energy through heat dissipation
from the Earth’s oceans, we notice that the total amount of angular momentum within the system
is conserved. Even when looking 10 billion years into the future or 750 million years into the past,
our model suggests this quantity remained conserved. Alongside this fact, we know the Earth’s
rotation is slowing down and thereby decreasing in its angular momentum. As the masses of both
the Earth and the Moon remain constant, this decrease must result in an increase of the angular
momentum of the Moon, thereby expanding its orbit. This explanation is rather counter intuitive,
and not immediately apparent, but is verified and consistent with the result of our model. With
further research into this application space, perhaps many more related mysteries that surround
our solar system and beyond can finally be solved.

10



References

[1] Goldreich, Peter. History of the Lunar Orbit. Reviews of Geophysics, Vol 4. November 1966.

[2] Touma, Jihad. Wisdom, Jack. Evolution of the Earth-Moon System. The Astronomical Journal,
Vol 108. November 1994.

[3] Meyers, Stephen R. Milinvernob, Alberto. Proterozoic Milankovitch cycles and the history of
the solar system. PNAS. 4 June 2018.

[4] Macdonald, Gordon J. F. Tidal Friction. Reviews of Geophysics, Vol 2. November 1964.

[5] Mangum, Jeff. National Radio Astronomy Observatory. Why isn’t the Precession of the Lu-
nar Nodes Uniform with Time? November 2014. https://public.nrao.edu/ask/why-isnt-the-
precession-of-the-lunar-nodes-uniform-with-time/

11



5 Appendix A: Variable Descriptions

Variable Symbol Description
G Gravitational Constant
me Mass of the Earth
mm Mass of the Moon
ms Mass of the Sun
Re Radius of the Earth
RM Radius of the Moon
RS Radius of the Sun
I Equivalent sphere moment of inertia of Earth

ΩE Earth’s spin angular velocity
A Principal moment of inertia about rotation axis
C Principal moment of inertia about equatorial plane
ks Secular Love number
a Semimajor axis of the Moon’s orbit about the Earth
aS Semimajor axis of the Earth’s orbit about the Sun
S Angle between Earth-Moon and Earth-Sun center lines
θ Latitude of the Moon’s position
ε Inclination of the Moon from the equator plane
Φ Angle in the orbit measured from the ascending node on the equator plan
γ Obliquity of the earth’s equator to the ecliptic
u Position in orbit as measured from the Moon’s ascending node on the ecliptic
R1 Disturbing potential felt by the Moon due to Earth
R2 Disturbing potential felt by the Moon due to Sun
R3 Disturbing potential felt by the Sun due to the Earth
R1 Time average of R1 over one lunar orbit period
R2 Time average of R2 over
R3 Time average of R3 over
a Unit vector in direction normal to the equator plane
b Unit vector in direction normal to the lunar orbit plane
c Unit vector in direction normal to the ecliptic plane
L1 Torque exerted by the Earth on the Moon
L2 Torque exerted by the Earth on the Sun
L3 Torque exerted by the Sun on the Moon
H Scalar angular momenta of the Earth’s spin
h Scalar angular momenta of the lunar orbit
Λ Component of total angular momentum in the

Earth-Moon system that is normal to the ecliptic
χ Sum of potential energies
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Variable Symbol Description
x Used as for more compact notation, x = a · c
y Used as for more compact notation, y = b · c
z Used as for more compact notation, z = a · b
w Used as for more compact notation, w = (a× b · c)
Te Tidal torque acting on the Earth
Tm Tidal torque acting on the Moon
r Radius of the Earth to the Moon
rs Radius of the Sun to the Earth
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