

Chapter 3

Examples of Mass Functions and Densities

Continuous Random Variables

Outline

Uniform

Exponential

Gamma

Beta

Normal

Logistic

Test Statistics

R Commands

Introduction

We will characterize a **family** of continuous random variables depending on the parameter θ , with their density

$$f_X(x|\theta) \approx \frac{1}{\Delta x} P_\theta\{x < X \leq x + \Delta x\}.$$

We will

- use the expression $\text{Family}(\theta)$ as shorthand for this family
- followed by the R command `family` and
- the **state space** S . The density is 0 outside of S .

Uniform Random Variables

$U(a, b)$ (R command `unif`) on $S = [a, b]$,
 $a < b$,

$$f_X(x|a, b) = \frac{1}{b-a}.$$

Independent $U(0, 1)$ are the most common choice for generating random numbers. Use the R command `runif(n)` to simulate n independent random numbers.

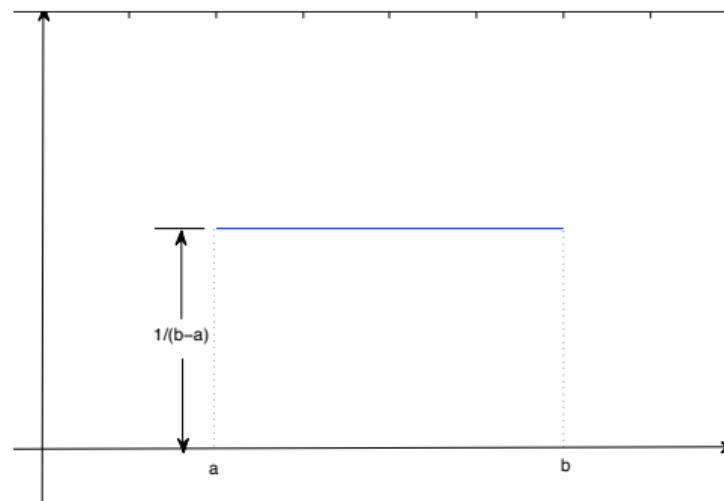


Figure: Uniform density on the interval $[a, b]$

Exponential Random Variables

$Exp(\lambda)$ (R command `exp`) on $S = [0, \infty)$

$$f_X(x|\lambda) = \lambda e^{-\lambda x}.$$

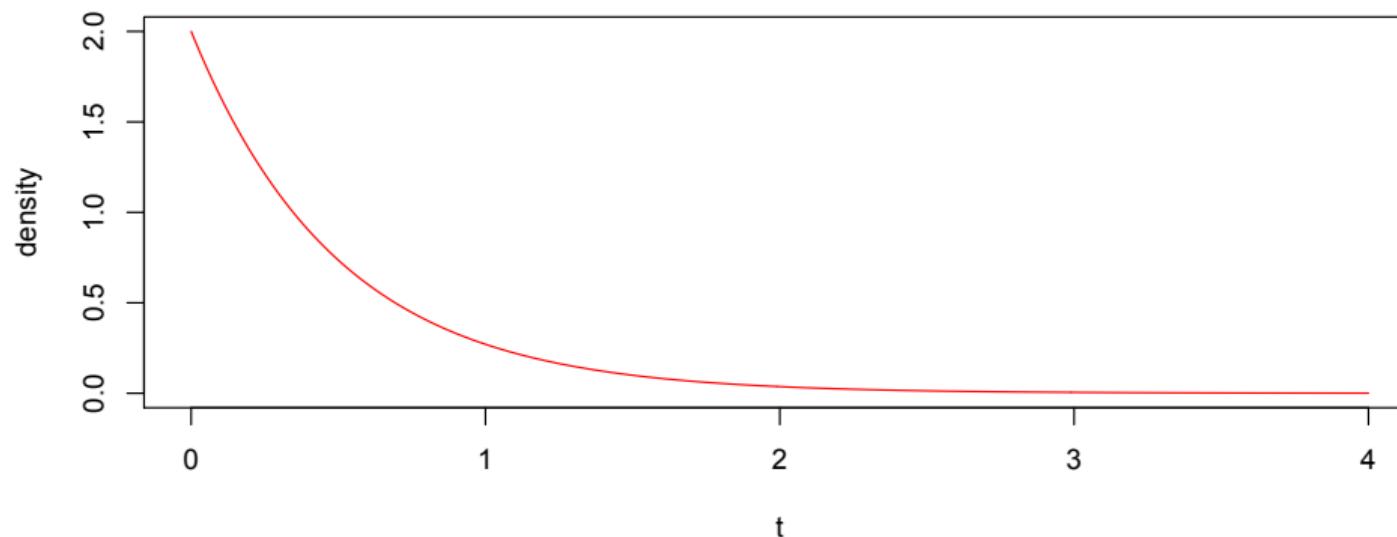


Figure: Exponential density with parameter $\lambda = 2$

Exponential Random Variables

Consider Bernoulli trials arriving at a rate of n trials per time unit.

- Let the probability of success p be small,
- nt the number of trials up to a given time t be large, and
- $\lambda = np$ be moderate in size.

Let T be the time of the first success. This random time exceeds a given time t if we begin with nt consecutive failures. The survival function

$$\bar{F}_T(t) = P\{T > t\} = (1 - p)^{nt} = \left(1 - \frac{\lambda}{n}\right)^{nt} \approx e^{-\lambda t}.$$

The cumulative distribution function

$$F_T(t) = P\{T \leq t\} = 1 - P\{T > t\} \approx 1 - e^{-\lambda t}.$$

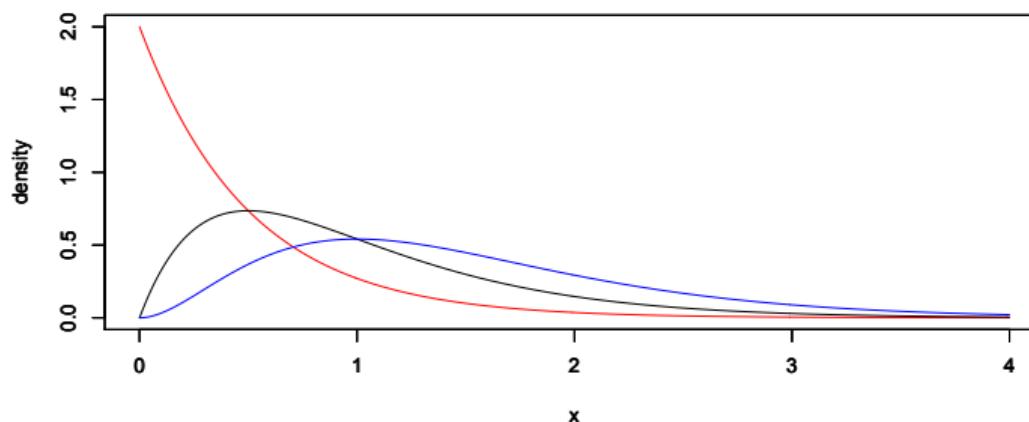
The density can be found by taking a derivative of $F_T(t)$.

Gamma Random Variables

$\Gamma(\alpha, \beta)$ (R command `gamma`) on $S = [0, \infty)$,

$$f_X(x|\alpha, \beta) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$$

The gamma function $\Gamma(s) = \int_0^\infty x^s e^{-x} \frac{dx}{x}$, `gamma(s)` in R.



The gamma density with parameters $\beta = 2$ and $\alpha = 1, 2, 3$, $\text{Gamma}(\beta, 1)$ is $\text{Exp}(\beta)$

The Gamma Function

We can use integration by parts obtain a recursion relation for the gamma function,

$$\begin{aligned}\Gamma(s+1) &= \int_0^\infty x^s e^{-x} dx = -x^s e^{-x} \Big|_0^\infty - \int_0^\infty s x^{s-1} (-e^{-x}) dx \\ &= s \int_0^\infty x^{s-1} e^{-x} dx = s\Gamma(s).\end{aligned}$$

$$\begin{array}{lll} u(x) & = & x^s \\ u'(x) & = & s x^{s-1} \end{array} \qquad \begin{array}{lll} v(x) & = & -e^{-x} \\ v'(x) & = & e^{-x} \end{array}$$

Exercise. $\Gamma(1) = 1$ and thus $\Gamma(n+1) = n!$

The Gamma Function

A **change of variables** will allow us to find the value of $\Gamma(1/2)$.

$$\begin{aligned}\Gamma(1/2) &= \int_0^\infty x^{-1/2} e^{-x} dx \\ &= \sqrt{2} \int_0^\infty e^{-z^2/2} dz = \sqrt{2} \cdot \frac{1}{2} \sqrt{2\pi} = \sqrt{\pi}\end{aligned}$$

$$z = \sqrt{2x}, \quad x = \frac{z^2}{2}, \quad dz = \frac{1}{\sqrt{2x}} dx, \quad x^{-1/2} dx = \sqrt{2} dz$$

Gamma Random Variables

Let n be a positive integer.

- a $\Gamma(n, \lambda)$ random variable can be seen as an approximation to the **negative binomial random variable** using the ideas that leads from the geometric random variable to the exponential.
- Alternatively, $\Gamma(n, \lambda)$ is the sum of n independent $Exp(\lambda)$ random variables.
 - This special case of the gamma distribution is sometimes called the **Erlang distribution** and was originally used in models for telephone traffic.

Beta Random Variables

$\text{Beta}(\alpha, \beta)$ (R command `beta`) on $S = [0, 1]$

$$f_X(x|\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}.$$

Beta random variables appear in a variety of circumstances. One example is the **order statistics**. Beginning with n independent $U(0, 1)$ random variables and rank them

$$X_{(1)}, X_{(2)}, \dots, X_{(n)}$$

from smallest to largest. Then, the k -th order statistic $X_{(k)}$ is $\text{Beta}(k, n - k + 1)$.

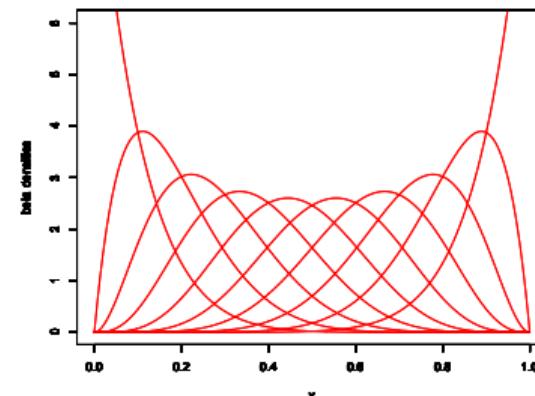


Figure: Densities of **order statistics**, $n = 10$

Normal Random Variables

$N(\mu, \sigma)$ (R command `norm`) on $S = \mathbb{R}$

$$f_X(x|\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Thus, a **standard normal random variable** is $N(0, 1)$. Other normal random variables are **linear transformations** of Z , the standard normal. In particular, $X = \sigma Z + \mu$ has a $N(\mu, \sigma)$ distribution.

Exercise. If X is a normal random variable, then $Y = \exp X$ is called a **log-normal random variable**. Find $f_Y(y)$, the density for Y .

Answer. The transformation $g(x) = e^x$, its inverse $g^{-1}(y) = \ln y$ has derivative $\frac{d}{dy}g^{-1}(y) = \frac{1}{y}$. Thus,

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy}g^{-1}(y) \right| = \frac{1}{y\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln y - \mu)^2}{2\sigma^2}\right).$$

Logistic Random Variables

$\text{Logistic}(\mu, \sigma)$ (R command `logis`) on $S = \mathbb{R}$

The logistic random variable is generally introduced through its distribution function.

$$F_X(x) = \frac{1}{1 - \exp(-(x - \mu)/s)} = \frac{1}{2} + \frac{1}{2} \tanh\left(\frac{x - \mu}{s}\right)$$

Exercise. Find the density function $f_X(x)$ for a logistic random variable.

Answer. We take the derivative

$$f_X(x) = \frac{\exp(-(x - \mu)/s)}{s(1 - \exp(-(x - \mu)/s))^2}$$

The final examples, each of them derived from normal random variables, will be used in **hypothesis testing**. In practice, probabilities and quantiles are generally computed using software rather than working with the densities explicitly

Student's t Random Variables

$t_\nu(\mu, \sigma)$ (R command `t`) on $S = \mathbb{R}$

$$f_X(x|\nu, \mu, \sigma) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)\sigma} \left(1 + \frac{(x-\mu)^2}{\nu\sigma^2}\right)^{-(\nu+1)/2}.$$

The value ν is also called the number of **degrees of freedom**. If \bar{Z} is the sample mean of n standard normal random variables and

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (Z_i - \bar{Z})^2 \quad \text{is the sample variance}$$

$$\text{then, } T = \frac{\bar{Z}}{S/\sqrt{n}}.$$

has a $t_{n-1}(0, 1)$ distribution.

χ^2 and F Random Variables

χ^2_ν (R command `chisq`) on $S = [0, \infty)$

$$f_X(x|\nu) = \frac{x^{\nu/2-1}}{2^{\nu/2}\Gamma(\nu/2)} e^{-x/2}.$$

The value ν is called the number of degrees of freedom. For ν a positive integer, χ^2_ν is the sum of the squares of ν standard normal random variables.

F_{ν_1, ν_2} (R command `f`) on $S = [0, \infty)$

$$f_X(x|\nu_1, \nu_2) = \frac{\Gamma((\nu_1 + \nu_2)/2)\nu_1^{\nu_1/2}\nu_2^{\nu_2/2}}{\Gamma(\nu_1/2)\Gamma(\nu_2/2)} x^{\nu_1/2-1} (\nu_2 + \nu_1 x)^{-(\nu_1+\nu_2)/2}.$$

The F distribution is used in analysis of variance tests. F is the ratio of independent $\chi^2_{\nu_1}$ and $\chi^2_{\nu_2}$ random variables.

Summary

random variable	R	parameters	mean	variance	characteristic function
beta	beta	α, β	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$F_{1,1}(a, b; \frac{i\theta}{2\pi})$
chi-squared	chisq	ν	ν	2ν	$\frac{1}{(1-2i\theta)^\nu/2}$
exponential	exp	λ	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{i\lambda}{\theta+i\lambda}$
log-normal	lnorm	μ, σ	$\exp(\mu + \sigma^2/2)$	$(e^{\sigma^2} - 1) \exp(2\mu + \sigma^2)$	
F	f	ν_1, ν_2	$\frac{\nu_2}{\nu_2-2}, \nu_2 > 2$	$2\nu_2^2 \frac{\nu_1+\nu_2-2}{\nu_1(\nu_2-4)(\nu_2-2)^2}$	
logistic	logis	μ, s	μ	$s^2\pi^2/3$	$\pi e^{it\mu} st / \sinh(\pi st)$
gamma	gamma	α, β	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	$\left(\frac{i\beta}{\theta+i\beta}\right)^\alpha$
normal	norm	μ, σ^2	μ	σ^2	$\exp(i\mu\theta - \frac{1}{2}\sigma^2\theta^2)$
Pareto	pareto	α, β	$\frac{\alpha\beta}{\beta-1}, (\beta > 1)$	$\frac{\alpha^2\beta}{(\beta-1)^2(\beta-2)}, (\beta > 2)$	
t	t	ν, a, σ	$a, (\nu > 1)$	$\sigma^2 \frac{a}{a-2}, (\nu > 2)$	
uniform	unif	a, b	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$-i \frac{\exp(i\theta b) - \exp(i\theta a)}{\theta(b-a)}$

R Commands

R can compute a variety of values for many families of distributions.

- `dfamily(x, parameters)` is the **mass function** (for discrete random variables) or **probability density** (for continuous random variables) of `family` evaluated at `x`.
- `qfamily(p, parameters)` returns `x` satisfying $P\{X \leq x\} = p$, the `p`-th **quantile** where `X` has the given distribution,
- `pfamily(x, parameters)` returns $P\{X \leq x\}$ where `X` has the given distribution.
- `rfamily(n, parameters)` generates `n` random variables having the given distribution.

R Commands

Exercise.

- Find the quintiles of a gamma random variable with $\alpha = 4$ and $\beta = 5$

```
quintile<-seq(0,0.8,0.2); value<-qgamma(quintile,4,5);  
data.frame(quintile,value)
```

Now draw the density function and show the quintiles.

```
curve(dgamma(x,4,5),0,3);lines(value,dgamma(value,4,5),type="h",lty=2)
```

- Simulate 1000 independent observations of a $Beta(2,5)$ random variable and gives the quartiles of the simulation.

```
x<-rbeta(1000,2,5); quantile(x)
```

Compare this to the distribution values.

```
p<-0:4/4; qbeta(p,2,5)
```