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Multivariate Distributions

We will now consider more than one random variable at a time. As we shall see,
developing the theory of multivariate distributions will allow us to consider situations
that model the actual collection of data and form the foundation of inference based on
those data.
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Discrete Random Variables

As with univariate random variables, we compute probabilities by adding the
appropriate entries in the table.

P{(X1,X2) ∈ B} =
∑

(x1,x2)∈B

fX1,X2(x1, x2).

As before, the mass function has two basic properties.

• fX1,X2(x1, x2) ≥ 0 for all x1 and x2.

•
∑

x1,x2
fX1,X2(x1, x2) = 1.

The distribution of an individual random variable is call the marginal distribution. The
marginal mass function for X1 is found by summing over the appropriate column and
the marginal mass function for X2 can be found be summing over the appropriate row.
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Discrete Random Variables
Example. For X1 and X2 each having finite range, we can display the mass function in
a table.

x1
0 1 2 3 4

0 0.02 0.02 0 0.10 0
1 0.02 0.04 0.10 0 0

x2 2 0.02 0.06 0 0.10 0
3 0.02 0.08 0.10 0 0.05
4 0.02 0.10 0 0.10 0.05

Exercise. Find

1. P{X1 = X2}. 0.11
2. P{X1 + X2 ≤ 3}. 0.40
3. P{X1X2 = 0}. 0.22
4. P{X1 = 3}. 0.30 5 / 19
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Discrete Random Variables
For the marginal mass functions;

x1
0 1 2 3 4 fX2(x2)

0 0.02 0.02 0 0.10 0 0.14
1 0.02 0.04 0.10 0 0 0.16

x2 2 0.02 0.06 0 0.10 0 0.18
3 0.02 0.08 0.10 0 0.05 0.25
4 0.02 0.10 0 0.10 0.05 0.27

fX1(x1) 0.10 0.30 0.20 0.30 0.10

The definition of expectation in the case of a finite sample space S is a
straightforward generalization of the univariate case.

Eg(X1,X2) =
∑
x1,x2

g(x1, x2)fX1,X2(x1, x2).

Exercise Compute EX1X2 in the example above.
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Continuous Random Variables
For continuous random variables, we have the notion of the joint (probability) density
function

fX1,X2(x1, x2)∆x1∆x2 ≈ P{x1 < X1 ≤ x1 + ∆x1, x2 < X2 ≤ x2 + ∆x2}.

We can write this in integral form as

P{(X1,X2) ∈ B} =

∫ ∫
B
fX1,X2(x1, x2) dx2dx1.

The basic properties of the joint density function are

• fX1,X2(x1, x2) ≥ 0 for all x1 and x2.

•
∫∞
−∞

∫∞
−∞ fX1,X2(x , x2) dx2dx1 = 1.
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Continuous Random Variables
The joint cumulative distribution function is defined as

FX1,X2(x1, x2) = P{X1 ≤ x1,X2 ≤ x2}.

For the case of continuous random variables, we have

FX1,X2(x1, x2) =

∫ x1

−∞

∫ x2

−∞
fX1,X2(s1, s2) ds2 ds1.

By two applications of the fundamental theorem of calculus, we find that

∂

∂x1
FX1,X2(x1, x2) =

∫ x2

−∞
fX1,X2(x1, s2) ds2 and

∂2

∂x1∂x2
FX1,X2(x1, x2) = fX1,X2(x1, x2).
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Continuous Random Variables
Example. Let (X1,X2) have joint density

fX1,X2(x1, x2) =

{
c(x1x2 + x1 + x2) for 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,
0 otherwise.
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Continuous Random Variables
Then ∫ ∞

−∞

∫ ∞
−∞

fX1,X2(x1, x2) dx2dx1 =

∫ 1

0

∫ 1

0
c(x1x2 + x1 + x2) dx2dx1

= c

∫ 1

0

(
1

2
x1x

2
2 + x1x2 +

1

2
x22

) ∣∣∣1
0
dx1 = c

∫ 1

0

(
3

2
x1 +

1

2

)
dx1

= c

(
3

4
x21 +

1

2
x1

) ∣∣∣1
0

=
5c

4

and c = 4/5

P{X1 ≥ X2} =

∫ 1

0

∫ x1

0

4

5
(x1x2 + x1 + x2) dx2dx1 =

4

5

∫ 1

0

(
1

2
x1x

2
2 + x1x2 +

1

2
x22

) ∣∣∣x1
0
dx1

=
4

5

∫ 1

0

(
1

2
x31 +

3

2
x21

)
dx1 =

4

5

(
1

8
x41 +

1

2
x31

) ∣∣∣1
0

=
4

5
· 5

8
=

1

2
.
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Continuous Random Variables
The formula for expectations can be obtained from discrete random variables using a
similar limiting argument to obtain a Riemann sum for a multivariate definite integral.
Thus,

Eg(X1,X2) =

∫ ∞
−∞

∫ ∞
−∞

g(x1, x2)fX1,X2(x1, x2) dx2dx1.

Exercise. For the density above, find EX1X2.

EX1X2 =

∫ ∞
−∞

∫ ∞
−∞

x1x2fX1,X2(x1, x2) dx2dx1 =
4

5

∫ 1

0

∫ 1

0

x1x2(x1x2 + x1 + x2) dx2dx1

=
4

5

∫ 1

0

∫ 1

0

(x21 x
2
2 + x21 x2 + x1x

2
2 ) dx2dx1 =

4

5

∫ 1

0

(
1

3
x21 x

3
2 +

1

2
x21 x

2
2 +

1

3
x1x

3
2

) ∣∣∣1
0
dx1

=
4

5

∫ 1

0

(
5

6
x21 +

1

3
x1

)
dx1 =

4

5

(
5

18
x31 +

1

6
x21

) ∣∣∣1
0

=
4

5

5 + 3

18
=

16

45
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Independent Random Variables

We say that two random variables X1 and X2 are independent if for any (measurable)
sets B1 and B2, the events {X1 ∈ B1} and {X2 ∈ B2} are independent.

P{X1 ∈ B1,X2 ∈ B2} = P{X1 ∈ B1}P{X2 ∈ B2}.

For the particular choice of B1 = (−∞, x1] and B2 = (−∞, x2], we have that

FX1,X2(x1, x2) = P{X1 ≤ x1,X2 ≤ x2} = P{X1 ≤ x1}P{X2 ≤ x2} = FX1(x1)FX2(x2).

In words, the joint cumulative probability distribution function is the product of the
marginal distribution functions.
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Independent Random Variables

For continuous random variables, we take partial derivatives to find that

fX1,X2(x1, x2) =
∂2

∂x1∂x2
FX1,X2(x1, x2) =

∂

∂x1
FX1(x1)

∂

∂x2
FX2(x2) = fX1(x1)fX2(x2)

and the joint density function is the product of the marginal density functions.

Similarly, for discrete random variables, take B1 = {x1} and B2 = {x2} to obtain

fX1,X2(x1, x2) = P{X1 = x ,X2 = x2} = P{X1 = x1}P{X2 = x2} = fX1(x1)fX2(x2)

and the joint mass function is the product of the marginal mass functions.
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Expectation
For both continuous and discrete random variables, we can write the expectation as a
double integral

Eg(X1,X2) =

∫ ∞
−∞

∫ ∞
−∞

g(x1, x2) dFX1,X2(x1, x2).

If g(x1, x2) = g1(x1)g2(x2) and X1 and X2 are independent,then the identity above
becomes

Eg1(X1)g2(X2) =

∫ ∞
−∞

∫ ∞
−∞

g1(x1)g2(x2) dFX1(x1)dFX2(x2)

=

(∫ ∞
−∞

g1(x1) dFX1(x1)

)(∫ ∞
−∞

g2(x2) dFX2(x2)

)
= Eg1(X1)Eg2(X2).

and the expectation of the product and the expectation of the product is equal to the
product of the expectations.
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Variance

For independent X1 and X2

Var(X1 + X2) = E [((X1 + X2)− (µX1 + µX2))2] = E [((X1 − µX1) + (X2 − µX2))2]

= E [(X1 − µX1)2] + 2E [(X1 − µX1)(X2 − µX2)] + E [(X2 − µX2)2]

= Var(X1) + 2E [X1 − µX1 ]E [X2 − µX2 ] + Var(X2)

= Var(X1) + 0 + Var(X2)

and the variance of the sum is the sum of the variances.

Exercise. For independent Xi , 1 ≤ i ≤ n,

Var(X1 + · · ·+ Xn) = Var(X1) + · · ·+ Var(Xn)
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Example

For independent Xi , 1 ≤ i ≤ n, values on throws of a fair die. Then

E

[
n∏

i=1

Xi

]
=

n∏
i=1

E [Xi ] =

(
7

2

)n

.

In addition,

Var(Xi ) =
62 − 1

12
=

35

12
.

Thus,

Var(X1 + · · ·+ Xn) =
35n

12
.
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Example
Exercise. For Xi , 1 ≤ i ≤ n, define the sample mean

X̄ =
1

n
(X1 + · · ·+ Xn)

• Then, if the Xi each have mean µ, then E [X̄ ] = µ,

E [X̄ ] = E

[
1

n
(X1 + · · ·+ Xn)

]
=

1

n
(EX1 + · · ·+ EXn) =

1

n
nµ = µ

• Then, if the variables are independent each with variance σ2, Var(X̄ ) = σ2/n.

Var(X̄ ) = Var

(
1

n
(X1 + · · ·+ Xn)

)
=

1

n2
(Var(X1) + · · ·+ Var(Xn)) =

1

n2
nσ2 =

σ2

n

Thus for n rolls of a fair die E [X̄ ] = 7/2 and Var(X̄ ) = 35/(12n).
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Skewness

Now, let the Xi , 1 ≤ i ≤ n, be independent with a common distribution having mean
µ, variance σ2, and skewness

γ1 = E

[(
Xi − µ
σ

)3
]

To find the skewness of X̄ , we standardize(
X̄ − µ
σ/
√
n

)3

=

(∑n
i=1 Xi − nµ

σ
√
n

)3

=
1

n3/2

(
n∑

i=1

Xi − µ
σ

)3

=
1

n3/2

(
n∑

i=1

X ∗i

)3

where X ∗i is the stardardization of Xi ,
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Skewness
Note that EX ∗i = 0, E (X ∗i )2 = 1, and E (X ∗i )3 = γ1. Next, expand the cube of the
sum on the X ∗i , take expectation and use its linearity. Then we find terms
• where the indices i , j , k all differ. Then,

E [X ∗i X
∗
j X
∗
k ] = E [X ∗i ]E [X ∗j ]E [X ∗k ] = 0 · 0 · 0 = 0.

• where exactly two indices are the same i = j 6= k . Then,

E [X ∗i X
∗
j X
∗
k ] = E [(X ∗i )2]E [X ∗k ] = 1 · 0 = 0.

• where the three indices are the same i = j = k . Then,

E [X ∗i X
∗
j X
∗
k ] = E [(X ∗i )3] = γ1.

Thus, E (
∑n

i=1 X
∗
i )3 =

∑n
i=1 E (X ∗i )3 = nγ1, and the skewness of X̄ is γ1/

√
n
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