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Chapter 4
Examples of Mass Functions and Densities

Covariance and Correlation
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Covariance

Recall that for X;,i=1,...,n
ar (Z b,-X,-> bibjCov(X;, X;)
i=1 i=1 j=1

We can write this more compactly by introducing the vector b = (by, ..., b,)" and the
n x n covariance matrix Var(X) with 7, j entry Cov(Xj, Xj), then

Var <Z b,-X,-) = b"Var(X)b.
i=1
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Linear Transformations

For X = (Xi1,...,X,) , let Y = AX be a linear transformation X. Then,

Cov(Y); = Cov(Y;,Y;) = Cov((AX);, (AX);)
= Cov (2{:/%k)qwj£:/4q)Q>
k=1 (=1

= > > AuCov(Xi, Xp) Ay = (A Cov(X)AT);
(=1 k=1

In particular, if X = (X1,...,X,) are independent with common variance o2, then
Var(X) = 021 and Var(Y) = 02 AAT
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Multivariate Normal Distributions

Returning to a multivariate normal variable with density

B 1 y (AAT) ly
YO = ey < 2 )

For Z = (Z1,...,Z,) consisting of independent N(0,1). Cov(Z) =/, the identity
matrix, ¥ = Cov(Y) = AAT. Note that

det X = det(AAT) = det A-det AT = (det A)>.
det A| = VdetX, and

B 1 _yTz—ly
= T sn)n " ( 2 )

Thus,
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Covariance Matrices

Covariance matrices have two important properties.
e > is symmetric
Z,-j = COV(X,‘, XJ) = COV()(j,X,') = ZJi

e ) is non-negative definite

b’Y¥b >0, beR"

This leads to a variety of properties for =

e The eigenvalues are non-negative. Let u be a unit eigenvector for ¥ with
eigenvalue A

OSUTZU:)\uTu:)\
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Covariance Matrices

e Eigenvectors corresponding to distinct eigenvalues are orthogonal . Let u;, /1 = 1,2
be a unit eigenvectors with distinct eigenvalues A\;, i = 1,2

/\gulTuQ = UZTZTUI = u2TZu1 = /\1u1Tuz

Thus, (A2 — )\1)u1Tuz and u;,/ = 1,2 are orthogonal

Consequently, we can find a orthonormal basis U of eigenvectors.
U= (Ull"‘ ‘Un)
and a diagonal matrix A = diag(A1 ..., A,) so that

>U = UA



Multivariate Normal Distributions
00e00

Covariance Matrices

Because the rows of U are orthogonal, UUT = UY = | and
Y = UAUT.

It is common practice to order the eigenvalues (and corresponding eigenvectors) from
largest to smallest and call the eigen vectors principle components

Again, let Z = (Zy,...,Z,)" be independent N(0,1) and let A'/? be the diagonal
matrix whose entries are the square roots of the entries in A. Set Y = UA2Z. Then,

Cov(Y) = UNY2AY2uT = UAUT =

Thus, given an non-negative symmetric positive definite matrix, we can construct a set
of random variables Y7, ..., Y, whose covariance matrix is >
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Covariance Matrices

Example In two dimensions, orthogonal ma-
trices are rotations by an angle 0

cosf sinf
U= < —sinf cos® )
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Figure: \y =5, X, =1,0 =7/6
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Covariance Matrices

¢ Non-negative symmetric matrices are closed under addition and multiplication by
a positive constant. So for such matrices ¥ 1. >» and non-negative constants ci, ¢

aXi+ oo

is @ non-negative symmetric matrix.

e If Alis an n x p matrix. Then AAT is a symmetric n x n matrix. Also, for b € R",
then ATb € RP

b"(AAT)b=(ATb)"(Ab) = [|[ATb|| >0

showing that AAT is non-negative definite.
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Principal Component Analysis

e Many modern statistical questions can start out with a hundreds to thousands
number of correlated variables.
e We have used the structure of the covariance matrix = to determine
e A set of non-negative eigenvalues

A=A > 2> A,

e An orthogonal matrix U whose rows are the corresponding eigenvectors

Zu,- = )\,‘U,‘

e the original random variables Y; can be written as a linear combination of ¢;Z;,
2 .
of =\
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Principal Component Analysis

Principal Component Analysis is a dimension-reduction tool that can be used
advantageously in such situations. In this situation, we keep enough of the ransom
variables o;Z; to capture a large fraction of the variance in the Y;.

In many applications n > p. Thus, AA” is n x n and the computational demand can
be very high. However, AT A is much smaller, namely, p x p and thus is much more
manageable for our needs. To show how this happens, let vi,..., v, be eigenvectors
for AT A with corresponding eigenvalues \q,. ... Ap. Then

ATAv; = Nivi, AATAv, = NAv,, AATu; = \ju;

where u; = Av; are eigenvectors for AAT.
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Principal Component Analysis

Example.  We consider two indigenous
Siberian populations, the Nganasan (no-
madic hunters, NGA, n = 21) from the
Taymyr Peninsula in the Arctic Ocean, and
the Yakut (herders, YAK, n = 21) of North-
Central Siberia.

The data at each DNA site is either 0, 1, or
2 depending on the number of alleles that
match a reference allele.

The estimated covariance matrix ¥ is deter-
mined from from an n x p data matrix where
p is tens of thousands.

PC2

pPC4

PC6

03
02
01
00

-01

-02

ngsPopGen: PC1 (4.08%) / PC2 (2.8
a

a
. goup

auly 4 NGA
Aty -
i

-02 -01 00 01 02
pPC1

ngsPopGen: PC3 (2.87%) / PC4 (2.8

group
» NGA
N
a
N
H

A vAK

02 00 02
PC3

ngsPopGen: PC5 (2.79%) / PC6 (2.7

17



Covariance

[e]

Multinomial Distribution
We first recall the multinomial theorem

|x|=n

where x = (xq, -+, xx), [x| = x1 + -+ + xx, and

n n!
x)  xleeoxg!

Multivariate Normal Distributions
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.A vector-valued random variable X = (X, ..., X) is said to have a multinomial
distribution with parameters n and p = (p1, . . . ,pk),zllle pi =1 ( X ~ Multi(n,p)) if

its mass function
n
Ax(eln.p) = (7)ot o7
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Multinomial Distribution

Exercise. X; Bin(n, p;) We check the case i = 1,

n X: X
le (Xl) = z (X) pll e pkk

X2+ X =n—Xx1

_ my x n=x X2k
(X1>p1 Z <X1, C ,Xk> pl pk

Xo 4=+ X =n—X1

n X1 n—x

f— 1 — 1
(Xl) P1 ( Pl)

EX; = np;, and Var(X;) = npl — ip;).

Thus,
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Multinomial Distribution
The probability generating function

X X n X X X X
E[z%---2% = Z()()(le...zkk)pll...pkk

|x|=n
n
= D, (x>(l7121)Xl copkzk)* = (p1z1 + - + prz)”
[x|=n

Thus, we can write
X=Y1+---4+Y,

as n independent Multi(1,p) random variables. Then X; = Yi; + -+ Y, ;. Then, for
i #j,YeiYij = 0 (Both cannot differ from zero in one with only one trial. Thus,

COV( Yg,’, ng) = EYg,‘ ng — EYg,‘ . EY[] = —p;pj.
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Multinomial Distribution
Exercise. Cov(Xi, Xj) = —np;p;
For ( # m, Y;; and Y,,; are independent,

Cov(X;, X;) ZZCOV (Yei, Yimj) Zcov (Yei, Yej) = —npip;
(=1 m=1 (=1

The correlation
Cov(X;, X;) —npip;
pX,',X' f— e
' VVar(Xi)\Var(X;) - /npi(1 = pi)\/np;(1 = p})

_ \/ Pipj
(1—=pi)(1—p)

which depends on the odds but not on the number of trials. If each of the p; = 1/k
then the correlation is —1/(k — 1)
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