Chapter 4
Examples of Mass Functions and Densities
Covariance and Correlation

## Outline

Covariance
Linear Transformations

Multivariate Normal Distributions
Covariance Matrices
Principal Component Analysis
Multinomial Distribution

## Covariance

Recall that for $X_{i}, i=1, \ldots, n$,

$$
\operatorname{Var}\left(\sum_{i=1}^{n} b_{i} X_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i} b_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

We can write this more compactly by introducing the vector $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)^{T}$ and the $n \times n$ covariance matrix $\operatorname{Var}(X)$ with $i, j$ entry $\operatorname{Cov}\left(X_{i}, X_{j}\right)$, then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} b_{i} X_{i}\right)=\mathbf{b}^{\boldsymbol{\top}} \operatorname{Var}(X) \mathbf{b}
$$

## Linear Transformations

For $X=\left(X_{1}, \ldots, X_{n}\right)$, let $Y=A X$ be a linear transformation $X$. Then,

$$
\begin{aligned}
\operatorname{Cov}(Y)_{i j} & =\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=\operatorname{Cov}\left((A X)_{i},(A X)_{j}\right) \\
& =\operatorname{Cov}\left(\sum_{k=1}^{n} A_{i k} X_{k}, \sum_{\ell=1}^{n} A_{\ell j} X_{\ell}\right) \\
& =\sum_{\ell=1}^{n} \sum_{k=1}^{n} A_{i k} \operatorname{Cov}\left(X_{k}, X_{\ell}\right) A_{j \ell}^{T}=\left(A \operatorname{Cov}(X) A^{T}\right)_{i j}
\end{aligned}
$$

In particular, if $X=\left(X_{1}, \ldots, X_{n}\right)$ are independent with common variance $\sigma^{2}$, then $\operatorname{Var}(X)=\sigma^{2} I$ and $\operatorname{Var}(Y)=\sigma^{2} A A^{T}$

## Multivariate Normal Distributions

Returning to a multivariate normal variable with density

$$
f_{Y}(\mathbf{y})=\frac{1}{|\operatorname{det}(A)|(2 \pi)^{n / 2}} \exp \left(-\frac{\mathbf{y}^{\top}\left(A A^{T}\right)^{-1} \mathbf{y}}{2}\right)
$$

For $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ consisting of independent $N(0,1) \cdot \operatorname{Cov}(Z)=I$, the identity matrix, $\Sigma=\operatorname{Cov}(Y)=A A^{T}$. Note that

$$
\operatorname{det} \Sigma=\operatorname{det}\left(A A^{T}\right)=\operatorname{det} A \cdot \operatorname{det} A^{T}=(\operatorname{det} A)^{2} .
$$

Thus, $|\operatorname{det} A|=\sqrt{\operatorname{det} \Sigma}$, and

$$
f_{Y}(\mathbf{y})=\frac{1}{\sqrt{\operatorname{det} \Sigma(2 \pi)^{n}}} \exp \left(-\frac{\mathbf{y}^{\top} \Sigma^{-1} \mathbf{y}}{2}\right)
$$

## Covariance Matrices

Covariance matrices have two important properties.

- $\Sigma$ is symmetric

$$
\Sigma_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)=\operatorname{Cov}\left(X_{j}, X_{i}\right)=\Sigma_{j i}
$$

- $\Sigma$ is non-negative definite

$$
\mathbf{b}^{T} \Sigma \mathbf{b} \geq 0, \quad \mathbf{b} \in \mathbb{R}^{n}
$$

This leads to a variety of properties for $\Sigma$

- The eigenvalues are non-negative. Let $\mathbf{u}$ be a unit eigenvector for $\Sigma$ with eigenvalue $\lambda$

$$
0 \leq \mathbf{u}^{T} \Sigma \mathbf{u}=\lambda \mathbf{u}^{T} \mathbf{u}=\lambda
$$

## Covariance Matrices

- Eigenvectors corresponding to distinct eigenvalues are orthogonal. Let $\mathbf{u}_{\mathbf{i}}, i=1,2$ be a unit eigenvectors with distinct eigenvalues $\lambda_{i}, i=1,2$

$$
\lambda_{2} \mathbf{u}_{1}^{T} \mathbf{u}_{2}=\mathbf{u}_{2}^{T} \Sigma^{T} \mathbf{u}_{1}=\mathbf{u}_{2}^{T} \Sigma \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1}^{T} \mathbf{u}_{2}
$$

Thus, $\left(\lambda_{2}-\lambda_{1}\right) \mathbf{u}_{1}^{T} \mathbf{u}_{2}$ and $\mathbf{u}_{\mathbf{i}}, i=1,2$ are orthogonal
Consequently, we can find a orthonormal basis $U$ of eigenvectors.

$$
U=\left(\mathbf{u}_{1}|\cdots| \mathbf{u}_{n}\right)
$$

and a diagonal matrix $\Lambda=\operatorname{diag}\left(\lambda_{1} \ldots, \lambda_{v}\right)$ so that

$$
\Sigma U=U \wedge .
$$

## Covariance Matrices

Because the rows of $U$ are orthogonal, $U U^{T}=U^{U}=I$ and

$$
\Sigma=U \wedge U^{T} .
$$

It is common practice to order the eigenvalues (and corresponding eigenvectors) from largest to smallest and call the eigen vectors principle components Again, let $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$ be independent $N(0,1)$ and let $\Lambda^{1 / 2}$ be the diagonal matrix whose entries are the square roots of the entries in $\Lambda$. Set $Y=U \Lambda^{1 / 2} Z$. Then,

$$
\operatorname{Cov}(Y)=U \Lambda^{1 / 2} \Lambda^{1 / 2} U^{T}=U \Lambda U^{T}=\Sigma
$$

Thus, given an non-negative symmetric positive definite matrix, we can construct a set of random variables $Y_{1}, \ldots, Y_{n}$ whose covariance matrix is $\Sigma$

## Covariance Matrices

Example In two dimensions, orthogonal matrices are rotations by an angle $\theta$

$$
U=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

$$
\binom{Y_{1}}{Y_{2}}=U\left(\begin{array}{cc}
\sqrt{\lambda_{1}} & 0 \\
0 & \sqrt{\lambda_{2}}
\end{array}\right)\binom{Z_{1}}{Z_{2}}
$$



Figure: $\lambda_{1}=5, \stackrel{n}{\lambda_{2}}=1, \theta=\pi / 6$

## Covariance Matrices

- Non-negative symmetric matrices are closed under addition and multiplication by a positive constant. So for such matrices $\Sigma_{1}, \Sigma_{2}$ and non-negative constants $c_{1}, c_{2}$

$$
c_{1} \Sigma_{1}+c_{2} \Sigma_{2}
$$

is a non-negative symmetric matrix.

- If $A$ is an $n \times p$ matrix. Then $A A^{T}$ is a symmetric $n \times n$ matrix. Also, for $\mathbf{b} \in \mathbb{R}^{n}$, then $A^{T} \mathbf{b} \in \mathbb{R}^{p}$

$$
\mathbf{b}^{T}\left(A A^{T}\right) \mathbf{b}=\left(A^{T} \mathbf{b}\right)^{T}\left(A^{T} \mathbf{b}\right)=\left\|A^{T} \mathbf{b}\right\| \geq 0
$$

showing that $A A^{T}$ is non-negative definite.

## Principal Component Analysis

- Many modern statistical questions can start out with a hundreds to thousands number of correlated variables.
- We have used the structure of the covariance matrix $\Sigma$ to determine
- A set of non-negative eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

- An orthogonal matrix $U$ whose rows are the corresponding eigenvectors

$$
\Sigma \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}
$$

- the original random variables $Y_{i}$ can be written as a linear combination of $\sigma_{i} Z_{i}$, $\sigma_{i}^{2}=\lambda_{i}$


## Principal Component Analysis

Principal Component Analysis is a dimension-reduction tool that can be used advantageously in such situations. In this situation, we keep enough of the ransom variables $\sigma_{i} Z_{i}$ to capture a large fraction of the variance in the $Y_{i}$.

In many applications $n \gg p$. Thus, $A A^{T}$ is $n \times n$ and the computational demand can be very high. However, $A^{T} A$ is much smaller, namely, $p \times p$ and thus is much more manageable for our needs. To show how this happens, let $v_{1}, \ldots, v_{p}$ be eigenvectors for $A^{T} A$ with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$. Then

$$
A^{T} A v_{i}=\lambda_{i} v_{i}, \quad A A^{T} A v_{i}=\lambda_{i} A v_{i}, \quad A A^{T} u_{i}=\lambda_{i} u_{i}
$$

where $u_{i}=A v_{i}$ are eigenvectors for $A A^{T}$.

## Principal Component Analysis

Example. We consider two indigenous Siberian populations, the Nganasan (nomadic hunters, NGA, $n=21$ ) from the Taymyr Peninsula in the Arctic Ocean, and the Yakut (herders, YAK, $n=21$ ) of NorthCentral Siberia.

The data at each DNA site is either 0,1 , or 2 depending on the number of alleles that match a reference allele.

The estimated covariance matrix $\hat{\Sigma}$ is determined from from an $n \times p$ data matrix where $p$ is tens of thousands.
ngsPopGen: PC1 (4.08\%) / PC2 (2.9


ngsPopGen: PC5 (2.79\%) / PC6 (2.7


## Multinomial Distribution

We first recall the multinomial theorem

$$
\left(a_{1}+\cdots+a_{k}\right)^{n}=\sum_{|\mathbf{x}|=n}\binom{n}{\mathbf{x}} a_{1}^{x_{1}} \cdots a_{k}^{x_{k}}
$$

where $\mathbf{x}=\left(x_{1}, \cdots, x_{k}\right),|\mathbf{x}|=x_{1}+\cdots+x_{k}$, and

$$
\binom{n}{x}=\frac{n!}{x_{1}!\cdots x_{k}!}
$$

.A vector-valued random variable $X=\left(X_{1}, \ldots, X_{k}\right)$ is said to have a multinomial distribution with parameters $n$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right), \sum_{i=1}^{k} p_{i}=1(X \sim \operatorname{Multi}(n, \mathbf{p}))$ if its mass function

$$
f_{X}(\mathbf{x} \mid n, \mathbf{p})=\binom{n}{\mathbf{x}} p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}
$$

## Multinomial Distribution

Exercise. $X_{i} \operatorname{Bin}\left(n, p_{i}\right)$ We check the case $i=1$,

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right) & =\sum_{x_{2}+\cdots x_{k}=n-x_{1}}\binom{n}{\mathbf{x}} p_{1}^{x_{1}} \cdots p_{k}^{x_{k}} \\
& =\binom{n}{x_{1}} p_{1}^{x_{1}} \sum_{x_{2}+\cdots x_{k}=n-x_{1}}\binom{n-x_{1}}{x_{1}, \ldots, x_{k}} p_{1}^{x_{2}} \cdots p_{k}^{x_{k}} \\
& =\binom{n}{x_{1}} p_{1}^{x_{1}}\left(1-p_{1}\right)^{n-x_{1}}
\end{aligned}
$$

Thus,

$$
E X_{i}=n p_{i}, \quad \text { and } \quad \operatorname{Var}\left(X_{i}\right)=n p_{( }\left(1-i p_{i}\right)
$$

## Multinomial Distribution

The probability generating function

$$
\begin{aligned}
E\left[z_{1}^{X_{1}} \cdots z_{k}^{X_{k}}\right] & =\sum_{|\mathbf{x}|=n}\binom{n}{\mathbf{x}}\left(z_{1}^{x_{1}} \cdots z_{k}^{x_{k}}\right) p_{1}^{x_{1}} \cdots p_{k}^{x_{k}} \\
& \left.=\sum_{|\mathbf{x}|=n}\binom{n}{\mathbf{x}}\left(p_{1} z_{1}\right)^{x_{1}} \cdots p_{k} z_{k}\right)^{x_{k}}=\left(p_{1} z_{1}+\cdots+p_{k} z_{k}\right)^{n}
\end{aligned}
$$

Thus, we can write

$$
X=Y_{1}+\cdots+Y_{n}
$$

as $n$ independent $\operatorname{Multi}(1, \mathbf{p})$ random variables. Then $X_{i}=Y_{1 i}+\cdots+Y_{n, i}$. Then, for $i \neq j, Y_{\ell i} Y_{\ell j}=0$ (Both cannot differ from zero in one with only one trial. Thus,

$$
\operatorname{Cov}\left(Y_{\ell i}, Y_{\ell j}\right)=E Y_{\ell i} Y_{\ell j}-E Y_{\ell i} \cdot E Y_{\ell j}=-p_{i} p_{j}
$$

## Multinomial Distribution

Exercise. $\operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}$
For $\ell \neq m, Y_{\ell i}$ and $Y_{m j}$ are independent,

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\sum_{\ell=1}^{n} \sum_{m=1}^{n} \operatorname{Cov}\left(Y_{\ell i}, Y_{m j}\right)=\sum_{\ell=1}^{n} \operatorname{Cov}\left(Y_{\ell i}, Y_{\ell j}\right)=-n p_{i} p_{j}
$$

The correlation

$$
\begin{aligned}
\rho_{X_{i}, X_{j}} & =\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\sqrt{\operatorname{Var}\left(X_{i}\right)} \sqrt{\operatorname{Var}\left(X_{j}\right)}}=\frac{-n p_{i} p_{j}}{\sqrt{n p_{i}\left(1-p_{i}\right)} \sqrt{n p_{j}\left(1-p_{j}\right)}} \\
& =-\sqrt{\frac{p_{i} p_{j}}{\left(1-p_{i}\right)\left(1-p_{j}\right)}}
\end{aligned}
$$

which depends on the odds but not on the number of trials. If each of the $p_{i}=1 / k$ then the correlation is $-1 /(k-1)$

