
Covariance Multivariate Normal Distributions

Chapter 4
Examples of Mass Functions and Densities

Covariance and Correlation
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Covariance Multivariate Normal Distributions

Covariance

Recall that for Xi , i = 1, . . . , n,

Var

(
n∑

i=1

biXi

)
=

n∑
i=1

n∑
j=1

bibjCov(Xi ,Xj)

We can write this more compactly by introducing the vector b = (b1, . . . , bn)T and the
n × n covariance matrix Var(X ) with i , j entry Cov(Xi ,Xj), then

Var

(
n∑

i=1

biXi

)
= bTVar(X )b.
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Covariance Multivariate Normal Distributions

Linear Transformations

For X = (X1, . . . ,Xn) , let Y = AX be a linear transformation X . Then,

Cov(Y )ij = Cov(Yi ,Yj) = Cov((AX )i , (AX )j)

= Cov

(
n∑

k=1

AikXk ,

n∑
`=1

A`jX`

)

=
n∑

`=1

n∑
k=1

AikCov (Xk ,X`)A
T
j` = (A Cov(X )AT )ij

In particular, if X = (X1, . . . ,Xn) are independent with common variance σ2, then
Var(X ) = σ2I and Var(Y ) = σ2AAT
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Covariance Multivariate Normal Distributions

Multivariate Normal Distributions
Returning to a multivariate normal variable with density

fY (y) =
1

| det(A)|(2π)n/2
exp

(
−yT (AAT )−1y

2

)
For Z = (Z1, . . . ,Zn) consisting of independent N(0, 1). Cov(Z ) = I , the identity
matrix, Σ = Cov(Y ) = AAT . Note that

det Σ = det(AAT ) = detA · detAT = (detA)2.

Thus, | detA| =
√

det Σ, and

fY (y) =
1√

det Σ(2π)n
exp

(
−yTΣ−1y

2

)
5 / 17



Covariance Multivariate Normal Distributions

Covariance Matrices

Covariance matrices have two important properties.

• Σ is symmetric
Σij = Cov(Xi ,Xj) = Cov(Xj ,Xi ) = Σji

• Σ is non-negative definite

bTΣb ≥ 0, b ∈ Rn.

This leads to a variety of properties for Σ

• The eigenvalues are non-negative. Let u be a unit eigenvector for Σ with
eigenvalue λ

0 ≤ uTΣu = λuTu = λ
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Covariance Multivariate Normal Distributions

Covariance Matrices

• Eigenvectors corresponding to distinct eigenvalues are orthogonal . Let ui, i = 1, 2
be a unit eigenvectors with distinct eigenvalues λi , i = 1, 2

λ2u
T
1 u2 = u2

TΣTu1 = uT2 Σu1 = λ1u
T
1 u2

Thus, (λ2 − λ1)uT1 u2 and ui, i = 1, 2 are orthogonal

Consequently, we can find a orthonormal basis U of eigenvectors.

U = (u1| · · · |un)

and a diagonal matrix Λ = diag(λ1 . . . , λv ) so that

ΣU = UΛ.
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Covariance Multivariate Normal Distributions

Covariance Matrices

Because the rows of U are orthogonal, UUT = UU = I and

Σ = UΛUT .

It is common practice to order the eigenvalues (and corresponding eigenvectors) from
largest to smallest and call the eigen vectors principle components

Again, let Z = (Z1, . . . ,Zn)T be independent N(0, 1) and let Λ1/2 be the diagonal
matrix whose entries are the square roots of the entries in Λ. Set Y = UΛ1/2Z . Then,

Cov(Y ) = UΛ1/2Λ1/2UT = UΛUT = Σ

Thus, given an non-negative symmetric positive definite matrix, we can construct a set
of random variables Y1, . . . ,Yn whose covariance matrix is Σ
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Covariance Multivariate Normal Distributions

Covariance Matrices

Example In two dimensions, orthogonal ma-
trices are rotations by an angle θ

U =

(
cos θ sin θ
− sin θ cos θ

)

(
Y1

Y2

)
= U

( √
λ1 0
0

√
λ2

)(
Z1

Z2

)
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Figure: λ1 = 5, λ2 = 1, θ = π/6
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Covariance Multivariate Normal Distributions

Covariance Matrices

• Non-negative symmetric matrices are closed under addition and multiplication by
a positive constant. So for such matrices Σ1,Σ2 and non-negative constants c1, c2

c1Σ1 + c2Σ2

is a non-negative symmetric matrix.

• If A is an n× p matrix. Then AAT is a symmetric n× n matrix. Also, for b ∈ Rn,
then ATb ∈ Rp

bT (AAT )b = (ATb)T (ATb) = ||ATb|| ≥ 0

showing that AAT is non-negative definite.
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Covariance Multivariate Normal Distributions

Principal Component Analysis

• Many modern statistical questions can start out with a hundreds to thousands
number of correlated variables.

• We have used the structure of the covariance matrix Σ to determine
• A set of non-negative eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn

• An orthogonal matrix U whose rows are the corresponding eigenvectors

Σui = λiui

• the original random variables Yi can be written as a linear combination of σiZi ,
σ2i = λi
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Covariance Multivariate Normal Distributions

Principal Component Analysis

Principal Component Analysis is a dimension-reduction tool that can be used
advantageously in such situations. In this situation, we keep enough of the ransom
variables σiZi to capture a large fraction of the variance in the Yi .

In many applications n� p. Thus, AAT is n × n and the computational demand can
be very high. However, ATA is much smaller, namely, p × p and thus is much more
manageable for our needs. To show how this happens, let v1, . . . , vp be eigenvectors
for ATA with corresponding eigenvalues λ1, . . . , λp. Then

ATAvi = λivi , AATAvi = λiAvi , AATui = λiui

where ui = Avi are eigenvectors for AAT .
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Covariance Multivariate Normal Distributions

Principal Component Analysis

Example. We consider two indigenous
Siberian populations, the Nganasan (no-
madic hunters, NGA, n = 21) from the
Taymyr Peninsula in the Arctic Ocean, and
the Yakut (herders, YAK, n = 21) of North-
Central Siberia.

The data at each DNA site is either 0, 1, or
2 depending on the number of alleles that
match a reference allele.

The estimated covariance matrix Σ̂ is deter-
mined from from an n×p data matrix where
p is tens of thousands.
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Covariance Multivariate Normal Distributions

Multinomial Distribution
We first recall the multinomial theorem

(a1 + · · ·+ ak)n =
∑
|x|=n

(
n

x

)
ax11 · · · a

xk
k

where x = (x1, · · · , xk), |x| = x1 + · · ·+ xk , and(
n

x

)
=

n!

x1! · · · xk !

.A vector-valued random variable X = (X1, . . . ,Xk) is said to have a multinomial
distribution with parameters n and p = (p1, . . . , pk),

∑k
i=1 pi = 1 ( X ∼ Multi(n,p)) if

its mass function

fX (x|n,p) =

(
n

x

)
px11 · · · p

xk
k
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Covariance Multivariate Normal Distributions

Multinomial Distribution

Exercise. Xi Bin(n, pi ) We check the case i = 1,

fX1(x1) =
∑

x2+···xk=n−x1

(
n

x

)
px11 · · · p

xk
k

=

(
n

x1

)
px11

∑
x2+···xk=n−x1

(
n − x1

x1, . . . , xk

)
px21 · · · p

xk
k

=

(
n

x1

)
px11 (1− p1)n−x1

Thus,
EXi = npi , and Var(Xi ) = np(1− ipi ).
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Covariance Multivariate Normal Distributions

Multinomial Distribution
The probability generating function

E [zX1
1 · · · z

Xk
k ] =

∑
|x|=n

(
n

x

)
(zx11 · · · z

xk
k )px11 · · · p

xk
k

=
∑
|x|=n

(
n

x

)
(p1z1)x1 · · · pkzk)xk = (p1z1 + · · ·+ pkzk)n

Thus, we can write
X = Y1 + · · ·+ Yn

as n independent Multi(1,p) random variables. Then Xi = Y1i + · · ·+ Yn,i . Then, for
i 6= j ,Y`iY`j = 0 (Both cannot differ from zero in one with only one trial. Thus,

Cov(Y`i ,Y`j) = EY`iY`j − EY`i · EY`j = −pipj .
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Covariance Multivariate Normal Distributions

Multinomial Distribution
Exercise. Cov(Xi ,Xj) = −npipj
For ` 6= m, Y`i and Ymj are independent,

Cov(Xi ,Xj) =
n∑

`=1

n∑
m=1

Cov(Y`i ,Ymj) =
n∑

`=1

Cov(Y`i ,Y`j) = −npipj

The correlation

ρXi ,Xj
=

Cov(Xi ,Xj)√
Var(Xi )

√
Var(Xj)

=
−npipj√

npi (1− pi )
√
npj(1− pj)

= −
√

pipj
(1− pi )(1− pj)

which depends on the odds but not on the number of trials. If each of the pi = 1/k
then the correlation is −1/(k − 1)

17 / 17


	Covariance
	Linear Transformations

	Multivariate Normal Distributions
	Covariance Matrices
	Principal Component Analysis
	Multinomial Distribution


