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Monte Carlo Integration

Monte Carlo methods is a collection of computational algorithms that use stochastic
simulations to approximate solutions to questions that are very difficult to solve
analytically.

This approach has seen widespread use in fields as diverse as statistical physics,
astronomy, population genetics, protein chemistry, and finance.
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Monte Carlo Integration
Let X1,X2, . . . be independent random variables uniformly distributed on the interval
[a, b] and write fX for their common density.

Then, by the law of large numbers, for n large we have that

g(X )n =
1

n

n∑
i=1

g(Xi ) ≈ Eg(X1) =

∫ b

a
g(x)fX (x) dx =

1

b − a

∫ b

a
g(x) dx .

Thus, Ig =

∫ b

a
g(x) dx ≈ (b − a)g(X )n = Îgn.

Recall that in calculus, we defined the average of g to be

1

b − a

∫ b

a
g(x) dx .

We can now interpret this integral as an expected value.
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Monte Carlo Integration

Thus, Monte Carlo integration leads to a procedure for estimating integrals.

• Simulate uniform random variables X1,X2, . . . ,Xn on the interval [a, b],

• Evaluate g(X1), g(X2), . . . , g(Xn).

• Average this values and multiply by b − a to estimate the integral.

Let g(x) = ln(2 + sin3(x)) (g<-function(x) log(2+sin(x)^3)) for x ∈ [−π, π], to
find

∫ π
−π g(x) dx .

The three steps above become the following R code.

> sim<-runif(250,-pi,pi)

> gsim<-g(sim)

> 2*pi*mean(gsim)

[1] 4.155533
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Monte Carlo Integration
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Monte Carlo integration of g(x) = ln(2 + sin3(x)) Simulations of 50, 150, and 250
values are shown.
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Monte Carlo Integration
The variance Var(Îgn) = Var((b − a)g(X )n) = (b−a)2

n Var(g(X1)) where

σ2 = Var(g(X1)) = E (g(X1)− µg(X1))
2 =

1

b − a

∫ b

a

(g(x)− µg(X1))
2 dx .

Typically this integral is more difficult to estimate than
∫ b
a g(x) dx . However we can

use the simulation to estimate the standard deviation of Îg .

> sd(gsim)*2*pi/sqrt(250)

[1] 0.126093

R does integration numerically using the integrate command.

>(Ig<-integrate(g,-pi,pi)); (mean(gsim)*2*pi-Ig$value)/(sd(gsim)*2*pi/sqrt(250))

4.083949 with absolute error < 1.7e-06

[1] 0.5677076

Thus, the estimate is off by approximately 0.567 standard deviations.
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Monte Carlo Integration
With only a small change in the algorithm, we can also use this to evaluate
multivariate integrals. For example, in three dimensions, the integral∫ b1

a1

∫ b2

a2

∫ b3

a3

g(x , y , z) dz dy dx ≈ (b1 − a1)(b2 − a2)(b3 − a3)
1

n

n∑
i=1

g(Xi ,Yi ,Zi ).

where Xi ∼ U(a1, b1), Yi ∼ U(a2, b2), and Zi ∼ U(a3, b3)

Example. To estimate ∫ 2

−2

∫ 1

1/2

∫ 1

0

e−x
2/2y

x2z + 1
dz dy dx

> x<-runif(250,-2,2);y<-runif(250,1/2,1);z<-runif(250)

> g<-exp(-x^2/(2*y))/(x^2*z+2)

> 4*0.5*1*mean(g)

[1] 0.4550264
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Monte Carlo Integration
Monte Carlo integration uses the averages of a simulated random sample and
consequently, its value is itself random.To obtain a sense of the distribution of the
approximations to the integral ∫ 8

0

1 + e−x/2

3
√
x

dx ,

we perform 1000 simulations using 250 uniform random variables.

> Ighat<-numeric(1000)

> for (i in 1:1000){x<-runif(250,0,8);Ighat[i]<-8*mean((1+exp(-x/2))/x^(1/3))}

> mean(Ighat)

[1] 8.120468

> sd(Ighat)

[1] 0.4715746
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Monte Carlo Integration

To reduce the standard deviation, we can

• Increase the size of the simulation.
• An increase from 250 to 1000

decreases the variance by a factor of
4 and thus the standard deviation by
a factor of 2.

• Concentrate the values of x where the
function g changes rapidly.

• Such a strategy is called importance
sampling. 0 2 4 6 8
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The graph of g(x)
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Importance Sampling
Goal. Reduce the standard deviation in the approximation of the integral∫ b

a
g(x)dx

Write g(x) = w(x)fX (x) where

• fX (x) is a density function that captures the change in g(x) and has an easy to
determine distribution function FX (x).

• fX is called the importance sampling function or the proposal density.
• w is called the importance sampling weight.

Now, simulate X1,X2, . . . ,Xn independent random variables with common density fX .
Then by the law of large numbers.

1

n

n∑
i=1

w(Xi ) ≈ Ew(X1) =

∫ b

a
w(x)fX (x) dx =

∫ b

a
g(x) dx .
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Importance Sampling

∫ 8

0

1 + e−x/2

3
√
x

dx =

∫ 8

0
(1 + e−x/2)

1
3
√
x
dx

The distribution function

Fx(x) = c

∫ x

0

1
3
√
t
dt =

3c

2
t2/3

∣∣∣x
0

=
3c

2
x2/3

Now, 1 = FX (8) =
3c

2
82/3 =

3c

2
4 = 6c .

So, c = 1/6 and fX (x) =
1

6 3
√
x

is a density

and distribution function FX (x) =
1

4
x2/3 on [0, 8].
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The graph of g(x) (black) and

the proposal density fX (x) (red)
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Importance Sampling

∫ b

a
g(x) dx =

∫ b

a
w(x)fX (x) dx∫ 8

0

1 + e−x/2

3
√
x

dx =

∫ 8

0
6(1 + e−x/2)

1

6

1
3
√
x
dx

So,

the density fX (x) =
1

6 3
√
x

and the weight function w(x) = 6(1 + ex/2).

To simulate the Xi we use the probability transform.

u = FX (x) =
1

4
x2/3. Thus, x = (4u)3/2.
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Importance Sampling
For the probability transform in R we enter u<-runif(250);x<-(4*u)̂ 3/2. Thus, for
1000 importance sampling approximations, we find

> ISg<-numeric(1000)

> for (i in 1:1000){u<-runif(250);x<-(4*u)^(3/2);ISg[i]<-mean(6*(1+exp(-x/2)))}

> mean(ISg)

[1] 8.132918

> sd(ISg)

[1] 0.1164385

Compare this with simple Monte Carlo.

> sd(Ig)

[1] 0.4715746

The standard deviation is reduced by a factor of ∼ 4 and thus, we would need to
increase the number of simulations by a factor of ∼ 16 for simple Monte Carlo to meet
the same standard deviation.
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Rejection Sampling

We now apply Monte Carlo ideas to estimate probabilities.

Let Y be a continuous random variable with density fY on an interval [0, 1] and choose
c greater than the maximum value fY (y). Here is the rejection sampling algorithm

1. Choose a point
(U,V ) ∈ [0, 1]× [0, c] uniformly
on the rectangle.

2. If the value is below the graph of
fY then choose Y = y , otherwise
reject the value and try again.
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Four choices of uniformly distributed on the rectangle. Two above the curve fY are rejected. The two

below are simulation from the distribution of Y
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Rejection Sampling
Exercise. P{V ≤ y |U < fY (V )} = P{Y ≤ y}.

P{V ≤ y |U < fY (V )} =
P{V ≤ y ,U < fY (V )}

P{U < fY (V )}
.

and

P{V ≤ y ,U < fY (V )} =

∫ y

0

∫ fY (v)

0

1

c
du dv =

1

c

∫ y

0
fY (v)dv =

1

c
P{Y ≤ y}.

To find P{U < fY (V )}, take y = 1 in the previous computation.

P{U < fY (V )} =
1

c
P{Y ≤ 1} =

1

c
.

Taken together, we find that P{V ≤ y |U < fY (V )} = P{Y ≤ y}.
Note that the probability of accepting the choice is 1/c .
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Rejection Sampling

To improve on this:

• Choose a second density fV that looks like fY with a distribution FV that is easy
to determine.

• Use the probability transform FV on Y .

• Then, the transformed Y is close to uniform resulting in samples are often
accepted.

The algorithm to generate a random sample is as follows:

1. Set c ≥ supy
fY (y)
fV (y)

.

2. Generate two independent samples - U ∼ U[0, 1] and V with density fV .

3. If U < fY (V )/(cfV (v)), set Y = V . Otherwise, return to step 1.
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Rejection Sampling
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The goal is to create a sample from Y with the density shown. Find a second random variable

V whose distribution is easy to find. Multiply the density of V by a constant c so that it lies

above the density of Y . Sample according the density of V and cU. Plot the point (cU,V ).

Accept those samples that are found below the density of Y .
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Rejection Sampling
To show that these sample have the same distribution of Y , we compute

P{V ≤ y |U < fY (V )/(cfV (V ))} =
P{V ≤ y ,U < fY (V )/(cfV (V )}

P{U < fY (V )/(cfV (V ))}
.

The numerator P{V ≤ y ,U < fY (V )/(cfV (v))}

=

∫ y

−∞

∫ fY (v)/(cfV (v))

−∞
fV (v)du dv =

∫ y

−∞

fY (v)

cfV (v)
fV (v)dv

=
1

c

∫ y

−∞
fY (v)du dv =

1

c
P{Y ≤ y}

The value of the denominator, 1/c , can be found taking y →∞ in the previous
computation. Therefore,

P{V ≤ y |U < fY (V )/(cfV (V ))} = P{Y ≤ y}.
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Rejection Sampling
Example. We will find samples for Y , the t distribution with 6 degrees of freedom. We
will use the Cauchy distribution with density and distribution

fV (v) =
1

π

1

1 + v2
, FV (v) =

1

π
arctan(v) +

1

2
, F−1V (q) = tan

(
π

(
q − 1

2

))

The choice of c = 3/2 places cfV (v) above fY (v).

> f<-function (v) 1/(pi*(1+v^2))

> Q<-function (q) tan(pi*(q-1/2))

> v<-Q(runif(200)) #samples for the Cauchy distribution

> u<-runif(200)

> sum(u<dt(v,6)/(c*f(v))) #number of accepted samples

[1] 141

> va<-v[u<dt(v,6)/(c*f(v))] #values of accepted samples
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Rejection Sampling

> plot(ecdf(va),xlim=c(-4,4),ylim=c(0,1),col="aquamarine3")

> par(new=TRUE)

> curve(pt(x,6),-4,4,ylim=c(0,1))
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