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Introduction

Even a fairly simple experiment can have an enormous number of outcomes. For
example, flip a coin 333 times. Then the number of outcomes is more than a google
(10100) - a number at least 100 quintillion times the number of elementary particles in
the known universe. Our parameter estimate or hypothesis may be sufficiently
addressed by an analysis that does not considers separately every possible outcome but
rather some simpler concept like the number of heads or the longest run of tails.

Definition. A statistic T (X) is a function of the sample X = (X1 . . . ,Xn). The
probability distribution of a T (X) is called the sampling distribution.

A statistic can not be a function of the unknown parameter.

Thus, if X1 . . . ,Xn ∼ N(µ, 1) are independent, then X̄ + 1 is a statistic and X̄ + µ is
not a statistic
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Statistics

Exercise. For X = (X1, . . . ,Xn), name some statistics.

n∑
i=1

Xi , X̄ , X(k), S
2, X1X2 + 3X3,

n∏
i=1

sin(Xi ),
1

n

n∑
i=1

((Xi − X̄ )/S)3,

Denote

• X - the state space for X.

• T - the image of X under T , i.e.,

T = {t; t = T (x) for some x ∈ X}.

• At = {x;T (x) = t}.
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Statistics
Any function T induces an equivalence relation, ∼, on its domain X , namely,

x1 ∼ x2 if and only if T (x1) = T (x2).

Exercise. Check that ∼ is an equivalence relation.
Show reflexivity, symmetry, transitivity

The equivalence relation induces a partition of X ,

A = {At ; t ∈ T }

.
Exercise. Let X = (X1,X2,X3) be Bernoulli trials and T (x) = x1 + x2 + x3. Define X ,
T , and A.

X = {0, 1}3, T = {0, 1, 2, 3}
.
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Statistics

Exercise. Let S be a one-to-one mapping from T . What is the resulting induced
partition of S ◦ T? A again.

Desired properties for T (X):

• Contains all the information necessary for parameter estimation from
X = (X1 . . . ,Xn). (related to sufficiency)

• Summarizes information in the most parsimoniously way possible (related to
minimal sufficiency)

• The dimension of the image of dim image(T (X)) < n, the sample size.
(guaranteed for exponential families)
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Conditional Probabilities

For X, a discrete random vector,

fX|T (X)(x |t) =
P{X = x,T (X) = t}

P{T (X) = t}
I{t}(T (x))

=
P{X = x,T (X) = T (x)}

P{T (X) = T (x)}
I{t}(T (x))

=
P{X = x}

P{T (X) = T (x)}
I{t}(T (x))

=
fX(x)

fT (X)(T (x))
I{t}(T (x))

Note that {X = x} ⊂ {T (X) = T (x)}.

The corresponding formula holds for X, a continuous random vector.
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Definition of Sufficiency
Now consider a family of distributions indexed by a parameter θ ∈ Θ and rewrite the
formula on the previous slide for the parameter set.

fX|T (X)(x |T (x), θ) =
fX(x|θ)

fT (X)(T (x)|θ)
= hθ(x)

Definition. T is sufficient if the conditional distribution of X given T (X) does not
depend on θ.

In other words, the function hθ(x) does not depend on θ and given T (X) = T (x), one
can generate the conditional distribution of X without any knowledge of the parameter
θ. Thus, if T is sufficient, then

fX(x|θ) = fT (X)(T (x)|θ)h(x).

So all the information about θ is contained in the distribution of T (x).
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Example

Example. Let X be n independent Ber(θ) random variables and set T (x) =
∑n

i=1 xi .
Then,

fX|T (X)(x |T (x), θ) =
Pθ{X = x}

Pθ{T (X) = T (x)}
=

θt(1− θ)n−T (x)( n
T (x)

)
θt(1− θ)n−T (x)

=

(
n

T (x)

)−1

= h(x),

a distribution that is uniformly distributed on the
( n
T (x)

)
sequences for the given value

of T (x) and, in particular, does not depend on θ. Also,

fX(x|θ) = fT (X)(T (x)|θ)h(x) =

(
n

T (x)

)
θT (x)(1− θ)n−T (x) ·

(
n

T (x)

)−1

= θT (x)(1− θ)n−T (x).
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Example

For a simulation,

> n<-25;t<-rbinom(1,n,0.6)

> sample(c(rep(0,n-t),rep(1,t)))

[1] 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 1 1 1

> sample(c(rep(0,n-t),rep(1,t)))

[1] 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1

The order statistics are always sufficient. In fact, the empirical cumulative distribution
function

Fn(x) =
1

n

n∑
i=1

I(−∞,x](Xi ).

is sufficient and is equivalent to knowing the order statistic.
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Sufficiency
Notice that if we can choose T (x) so that the ratio

fX(x|θ)
/
fT (X)(T (x)|θ)

does not depend on θ, then T (x) is a sufficient statistic.

Example. For X = (X1, . . . ,Xn) independent Γ(α0, β), α0 known,
T (X) =

∑n
i=1 Xi ∼ Γ(nα0, β). Then, the joint density

fX(x|β) =
βα0

Γ(α0)
xα0−1

1 e−βx1 · · · β
α0

Γ(α0)
xα0−1
n e−βxn =

βnα0

Γ(α0)n

(
n∏

i=1

xi

)α0−1

e−βT (x)

fT (X)(T (x)|β) =
βnα0

Γ(nα0)
T (x)nα0−1e−βT (x)

The ratio does not depend on β.

Γ(nα0)

Γ(α0)n

(∏n
i=1 xi

)α0−1

T (x)nα0−1
.
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Neyman-Fisher Factorization Theorem

Theorem. Neyman-Fisher Factorization Theorem. The statistic T is sufficient for the
parameter θ if and only if functions g and h can be found such that

fX (x|θ) = h(x)g(θ,T (x))

The central idea in proving this theorem can be found in the case of discrete random
variables.
Proof. Because T is a function of x,

fX (x|θ) = fX ,T (X )(x,T (x)|θ) = fX |T (X )(x|T (x), θ)fT (X )(T (x)|θ).

If we assume that T is sufficient, then fX |T (X )(x|T (x), θ) is not a function of θ and we
can set it to be h(x). The second term is a function of T (x) and θ. We will write it
g(θ,T (x)).
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Neyman-Fisher Factorization Theorem
If we assume the factorization

fX (x|θ) = h(x)g(θ,T (x))

then, by the definition of conditional expectation,

Pθ{X = x|T (X ) = t} =
Pθ{X = x,T (X ) = t}

Pθ{T (X ) = t}
.

fX |T (X )(x|t, θ) =
fX ,T (X )(x, t|θ)

fT (X )(t|θ)
.

The numerator is 0 if T (x) 6= t and is

fX (x|θ) = h(x)g(θ, t)

otherwise.
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Neyman-Fisher Factorization Theorem

The denominator

fT (X )(t|θ) =
∑

x̃:T (x̃)=t

fX (x̃|θ) =
∑

x̃:T (x̃)=t

h(x̃)g(θ, t).

The ratio

fX |T (X )(x|t, θ) =
fX ,T (X )(x, t|θ)

fT (X )(t|θ)
=

h(x)g(θ, t)∑
x̃:T (x̃)=t h(x̃)g(θ, t)

=
h(x)∑

x̃:T (x̃)=t h(x̃)
,

which is independent of θ and, therefore, T is sufficient.
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Neyman-Fisher Factorization Theorem

Example. Let X = (X1, . . . ,Xn) be independent Pois(λ) random variables. Then,

fX(x|λ) =
λx1

x1!
e−λ · · · λ

xn

xn!
e−λ =

e−nλ

x1! · · · xn!
λT (x)

and T (x) =
∑n

i=1 xi is sufficient.

Example. Let X = (X1, . . . ,Xn) be independent Beta(α, β) random variables. Then,

fX(x|α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1

1 (1− x1)β−1 · · · Γ(α + β)

Γ(α)Γ(β)
xα−1
n (1− xn)β−1

=

(
Γ(α + β)

Γ(α)Γ(β)

)n

T1(x)α−1T2(x)β−1

and T (x) = (T1(x),T2(x)) = (
∏n

i=1 xi ,
∏n

i=1(1− xi )) is sufficient.
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Neyman-Fisher Factorization Theorem

Example. Let X = (X1, . . . ,Xn) be independent Unif (0, θ) random variables. Then,

fX(x|λ) =
1

θ
I[0,θ](x1) · · · 1

θ
I[0,θ](xn)

=

{
1
θn if all xi ≤ θ
0 if some xi > θ

=
1

θn
I[0,θ](T (x))

and T (x) = maxi xi is sufficient.
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Neyman-Fisher Factorization Theorem
Example. Let X = (X1, . . . ,Xn) be independent N(µ, σ2) random variables.

fX(x|λ) =
1

σ
√

2π
exp

(
−(x1 − µ)2

2σ2

)
· · · 1

σ
√

2π
exp

(
−(xn − µ)2

2σ2

)
=

1

(σ
√

2π)n
exp

(
− 1

2σ2

n∑
k=1

(xk − µ)2

)

=
1

(σ
√

2π)n
exp

(
− 1

2σ2

n∑
k=1

(x2
k − 2µxk + µ2)

)

=
1

(σ
√

2π)n
exp

(
− n

2σ2
(x2 − 2x̄ + µ2)

)
=

1

(σ
√

2π)n
exp

(
− n

2σ2
T2(x)− 2T1(x) + µ2)

)
and T (x) = (T1(x),T2(x)) = (x̄ , x2) is sufficient.
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Neyman-Fisher Factorization Theorem

Example. Let X = (X1, . . . ,Xn) be independent random variables from an exponential
family, the probability density functions can be expressed in the form

fX (x|η) =
n∏

j=1

h(xi ) · exp

 n∑
j=1

〈η, t(xj)〉

 e−nA(η), x ∈ S .

Then, take

h(x) =
n∏

j=1

h(xi )

and T (x) =
∑n

j=1 t(xj) is sufficient.
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Transformations of Sufficient Statistics

If T is sufficient for θ, and U = u(T ) for u one-to-one, then U is also sufficient.
Examples.

• If T (x) =
∑n

i=1 xi is sufficient then so is U(x) = x̄ .

• If T (x) = (T1(x),T2(x)) = (
∏n

i=1 xi ,
∏n

i=1(1− xi )) is sufficient then so is

U(x) = (U1(x),U2(x)) = (ln x , ln(1− x).

• If T (x) = (T1(x),T2(x)) = (x̄ , x2) is sufficient then so is
U(x) = (U1(x),U2(x)) = (x̄ , s2).

If T is sufficient for θ, and T = c(U) a function of some other statistic U, then U, is
also sufficient.

• If T (x) = U1(x) + U2(x) is sufficient then so is U(x) = (U1(x),U2(x)).

• If T (x) is sufficient then so is U(x) = (T (x),U2(x)) for any statistic U2.
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Bayesian Sufficiency
Definition. T is Bayesian sufficient for every prior density π, there exist posterior
densities fΨ|X and fΨ|T (X) so that

fΨ|X(θ|x) = fΨ|T (X)(θ|T (x)).

The posterior density is a function of the sufficient statistic.
Theorem. If T is sufficient in the classical sense, then T is sufficient in the Bayesian
sense.
Proof. Bayes formula states the posterior density

fΨ|X(θ|x) =
fX(x|θ)π(θ)∫

Θ
fX(x|ψ)π(ψ)ν(dψ)

By the Neyman-Fisher factorization theorem, fX (x|θ) = h(x)g(θ,T (x))

fΨ|X(θ|x) =
h(x)g(θ,T (x))π(θ)∫

Θ
h(x)g(ψ,T (x))π(ψ)ν(dψ)

=
g(θ,T (x))π(θ)∫

Θ
g(θ,T (x))π(ψ)ν(dψ)

= fΨ|T (X)(θ|Tx)) = fΨ|T (X)(θ|T (x))
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