Chapter 6 Principle of Data Deduction Completeness

Outline

Introduction

Definition

Examples

Basu's Theorem

Remarks

Introduction

Completeness addresses the question:

If $E_{\nu}g(T(X)) = 0$, for some collection of probability distributions $\nu \in \mathcal{F}$, can we have $g(T(X)) \neq 0$ with positive probability for some $\nu \in \mathcal{F}$?

If $\mathcal F$ consists solely of the Bin(2,1/2) distribution and $\mathcal T(X)$ is the number of successes, then

$$E_{1/2}g(T(X)) = (g(0) + 2g(1) + g(2))\frac{1}{4}$$

Thus, any function that satisfies g(0) + 2g(1) + g(2) = 0 has $E_{1/2}g(T(X)) = 0$.

However, If \mathcal{F} consists of the Bin(2, p) distributions, then

$$E_{p}g(T(X)) = g(0)(1-p)^{2} + 2g(1)p(1-p) + g(2)p^{2}$$

$$= (1-p)^{2} \left((g(0) + 2g(1) \left(\frac{p}{1-p} \right) + g(2) \left(\frac{p}{1-p} \right)^{2} \right)$$

This is 0 for all $p \in (0,1)$ if and only if $P_p\{g(T(X) = 0\} = 1$.

Definition

Definition. Let $T: \mathcal{X} \to \mathcal{T}$ be a statistic. Then the family of probability densities $\{f_{\mathcal{T}(X)}(t|\theta), \theta \in \Theta\}$ is called complete if

$$E_{\theta}g(T(X)) = 0$$
 for all $\theta \in \Theta$

implies that

$$P_{\theta}\{g(T(X))=0\}=1 \text{ for all } \theta \in \Theta$$

In this case, T(X) is called a complete statistic.

Completeness, as a theoretical concept depends both on the choice of the statistic T and the choice of densities $\{f_{T(X)}(t|\theta), \theta \in \Theta\}$.

Example. Let T(X) = X, then $Pois(\lambda)$; $\lambda > 0$ is complete.

$$E_{\lambda}g(X) = \sum_{x=0}^{\infty} g(x) \frac{e^{-\lambda}}{x!} \lambda^{x}$$

is a power series in λ . By the uniqueness of power series expansions, $E_{\lambda}g(X)=0$ if and only if the coefficients of λ^{\times}

$$g(x)\frac{e^{-\lambda}}{x!}=0, \quad x=0,1,2,...$$

Thus, g(x)=0 for all x, and $P_{\lambda}\{g(T(X))=0\}=1$.

Example. Let $\mathbf{X}=(X_1,\ldots,X_n)$ be independent $Unif(0,\theta),\theta>0$ random variables and Let $T(X)=X_{(n)}=\max_{1\leq i\leq n}X_i$. Then,

$$F_{\mathcal{T}(X)}(t) = P_{\theta}\{T(X) \leq t\} = P_{\theta}\{X_1 \leq t, \ldots, X_n \leq t\} = P_{\theta}\{X_1 \leq t\}^n = \left(\frac{t}{\theta}\right)^n = \frac{t^n}{\theta^n}.$$

Thus, the density

$$f_{T(X)}(t) = \frac{nt^{n-1}}{\theta^n}.$$

$$\theta^n E_{\theta} g(T(X)) = \int_0^{\theta} g(t) n t^{n-1} dt, \quad \frac{d}{d\theta} (\theta^n E_{\theta} g(T(X))) = g(\theta) n \theta^{n-1}$$

So, if $E_{\theta}g(T(X)) = 0$ for all $\theta > 0$, $g(\theta) = 0$ for all $\theta > 0$, and $P_{\theta}\{g(T(X)) = 0\} = 1$ for all $\theta > 0$.

Let $X = (X_1, ..., X_n)$ be independent random variables from an exponential family, the probability density functions can be expressed in the form

$$\mathbf{f}_X(\mathbf{x}|\eta) = \prod_{j=1}^n h(x_j) \cdot \exp\left(\sum_{j=1}^n \langle \eta, \mathbf{t}(x_j) \rangle\right) e^{-nA(\eta)}, \quad x \in S.$$

Then, $T(\mathbf{x}) = \sum_{j=1}^{n} \mathbf{t}(x_j)$ is sufficient if the parameter space contains an open subset.

The requirements for an open subset allow us to take advantage of the uniqueness of power series for the analytic function $E_{\eta g}(T(X))$.

Thus, the sufficient statistics from the normal, binomial, gamma, beta, Poisson, ... are also complete.

Basu's Theorem

Theorem. Any boundedly complete minimal sufficient statistic is independent of any ancillary statistic.

Let T(X) be a boundedly complete minimal sufficient statistic with distribution $\mu_{\theta}^{T}(B) = P_{\theta}\{T(X) \in B\}$ and let V(X) be ancillary $\mu_{\theta}^{V}(B) = P_{\theta}\{V(X) \in B\}$

To guarantee independence we will show that the condition probability of V given T does not depend on t. In other words, for every t,

$$\mu_{\theta}^{V}(B|T(X)=t)=\mu_{\theta}^{V}(B).$$

Basu's Theorem

Use, first the law of total probability, the sufficiency of $\mathcal{T}(X)$ and then ancillarity of $\mathcal{V}(X)$ to obtain

$$\mu_{\theta}^{V}(B) = \int_{\mathcal{T}} \mu_{\theta}^{V}(B|T(X) = t) \mu_{\theta}^{T}(dt)$$

$$= \int_{\mathcal{T}} \mu^{V}(B|T(X) = t) \mu_{\theta}^{T}(dt)$$

$$\mu^{V}(B) = \int_{\mathcal{T}} \mu^{V}(B|T(X) = t) \mu_{\theta}^{T}(dt)$$

$$0 = \int_{\mathcal{T}} (\mu^{V}(B|T(X) = t) - \mu^{V}(B)) \mu_{\theta}^{T}(dt)$$

Basu's Theorem

$$0 = \int_{\mathcal{T}} (\mu^{V}(B|T(X) = t) - \mu^{V}(B))\mu_{\theta}^{T}(dt)$$
$$= \int_{\mathcal{T}} g(t)\mu_{\theta}^{T}(dt) = E_{\theta}g(T(X))$$

where

$$g(t) = \mu^{V}(B|T(X) = t) - \mu^{V}(B).$$

Because T(X) is boundedly complete, g(t) is equal to 0 for every t.

Example. For $X_1, \ldots, X_n \sim Exp(\beta)$, we have that

• $Exp(\beta)$ is a single parameter exponential family, with complete minimal sufficient statistic

$$T(\mathbf{X}) = \sum_{i=1}^{n} X_i.$$

• $Exp(\beta)$ is a scale family, thus

$$V(\mathbf{X}) = \frac{X_1}{T(\mathbf{X})}$$

is ancillary.

By Basu's Theorem, T(X) and V(X) are independent. Thus, for any β ,

$$\frac{1}{\beta}E_{\beta}[X_1] = E_{\beta}[T(\mathbf{X})V(\mathbf{X})] = E_{\beta}[T(\mathbf{X})]E_{\beta}[V(\mathbf{X})] = \frac{n}{\beta}E_{\beta}[V(\mathbf{X})]$$

and $E_{\beta}[V(\mathbf{X})] = 1/n$.

Example. For $X_1, \ldots, X_n \sim Unif(0, \theta), \theta > 0$ random variables. Then, $T(X) = X_{(n)} = \max_{1 \leq i \leq n} X_i$ is complete.

Define

$$U_i=\frac{X_i}{\theta},$$

then $U_1, \ldots, U_n \sim Unif(0,1)$. For i and j between 1 and n, the ratio

$$\frac{X_{(i)}}{X_{(j)}} = \frac{\theta U_{(i)}}{\theta U_{(j)}} = \frac{U_{(i)}}{U_{(j)}}$$

is ancillary. Moreover $U_{(i)} \sim Beta(i, n+1-i)$

By Basu's Theorem, $T(\mathbf{X}) = X_{(n)}$ and $V(\mathbf{X}) = X_{(i)}/X_{(n)}$ are independent. Thus, for any θ ,

$$E_{\theta}[X_{(i)}] = E_{\theta}\left[X_{(n)}\frac{X_{(i)}}{X_{(n)}}\right] = E_{\theta}X_{(n)}E_{\theta}\left[\frac{X_{(i)}}{X_{(n)}}\right]$$

Thus,

$$E_{\theta}\left[\frac{X_{(i)}}{X_{(n)}}\right] = \frac{E_{\theta}X_{(i)}}{E_{\theta}X_{(n)}} = \frac{E[\theta U_{(i)}]}{E[\theta U_{(n)}]} = \frac{E[U_{(i)}]}{E[U_{(n)}]} = \frac{i/(n+1)}{n/(n+1)} = \frac{i}{n}$$

Example. For $X_1, \ldots, X_n \sim N(\mu, \sigma_0^2), \ \sigma_0^2$ known.

• $N(\mu, \sigma_0^2)$ s a single parameter exponential family, with complete minimal sufficient statistic

$$T(\mathbf{X}) = \sum_{i=1}^{n} X_i.$$

• $N(\mu, \sigma_0^2)$ is a location family, thus

$$V(\mathbf{X}) = S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

is ancillary.

By Basu's Theorem, T(X) and V(X) are independent.

$$E_{\mu}T = E_{\mu} \left[\frac{\bar{X} - \mu}{S / \sqrt{n}} \right]$$

Student's T distribution with n-1 degrees of freedom is based on $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$,

$$E_{\mu}T = E_{\mu} \left[\frac{\bar{X} - \mu}{S / \sqrt{n}} \right] = E_{\mu} [\sqrt{n} (\bar{X} - \mu)] \cdot E \left[\frac{1}{S} \right] = 0$$

$$\operatorname{Var}_{\mu}(T) = E_{\mu} [T^{2}] = E_{\mu} \left[\left(\frac{\bar{X} - \mu}{S / \sqrt{n}} \right)^{2} \right] = E_{\mu} [n(\bar{X} - \mu)^{2}] \cdot E \left[\frac{1}{S^{2}} \right] = 1 \cdot E \left[\frac{1}{S^{2}} \right]$$

Now $(n-1)S^2 \sim \chi^2_{n-1}$. Its reciprocal is called an inverse χ^2_{n-1} . Its mean is 1/(n-3).

$$\operatorname{Var}_{\mu}(T) = E\left[\frac{n-1}{(n-1)S^2}\right] = \frac{n-1}{n-3}$$

Thus, a T distribution with ν degrees of freedom has mean

$$\frac{\nu}{\nu-2}$$

Remarks

Remark. If T(X) is a complete statistic, c(T(X)) is also complete.

Go back to the definition of completeness and replace g with g o c

Remark. If T(X) is a complete statistic with respect to a family of distributions \mathcal{F} . then T(X) is also complete to any family of distributions $\mathcal{F}^* \supset \mathcal{F}$.

• Adding more distributions makes it harder for $P_{\mathcal{F}}\{g(T(X))=0\}<1$.

Remark. If V(X) is a nondegenerate ancillary statistic, then it is not complete.

- Take g(t) = t EV(X), then $E_{\theta}g(V(X)) = 0$ and $P_{\theta}\{g(V(X)) = 0\} < 1$.
- Intuitively, if expection does not depend on the parameter θ then the size of the parameter space cannot force $P_{\theta}\{g(V(X))=0\}=1$.

Remarks

Theorem. (Bahadur) If T(X) is complete sufficient, then T(X) is minimal sufficient.

- Thus, we can limit our search for complete sufficient statistics to those that are minimal sufficient.
- If a minimal sufficient statistic is not complete, then there are no complete and sufficient statistics for the family. If $\tilde{T}(X)$ is also minimal sufficient, then $T(X) = c(\tilde{T}(X))$ for some one to one

for I(X) is also minimal sufficient, then I(X) = c(I(X)) for some one to one function c. If I(X) is not complete then there exist a function g and parameter value θ so that $E_{\theta}g(I(X)) = 0$, but $P_{\theta}\{g(I(X)) = 0\} < 1$. However

$$E_{ heta}(g\circ c)(ilde{T}(X))=0 \quad P_{ heta}\{(g\circ c)(ilde{T}(X))=0\}<1$$

and $\tilde{T}(X)$ is not complete.

• Completeness formalizes our ideal notion of optimal data reduction, whereas minimal sufficiency is our achievable notion of data reduction.