Two-Sided Tests

Normal Observations

Two-Sample Proportions

Chapter 8 Hypothesis Tests Extensions on the Likelihood Ratio One and Two Sided Tests

Two-Sided Tests

Normal Observations

Two-Sample Proportions

Outline

One-Sided Tests

Karlin-Rubin Theorem Binomial Test Proportion Test

Two-Sided Tests

Normal Observations

Two-Sample Proportions Power Analysis

Two-Sided Test

Normal Observations

Two-Sample Proportions

Introduction

For a composite hypothesis

 $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$,

we have seen critical regions defined by taking a statistic T(x) and defining the critical region based on a critical value \tilde{k}_{α} . For a one-sided test, we have seen critical regions

$$\{\mathbf{x}; \, T(\mathbf{x}) \geq \tilde{k}_{lpha}\} \quad ext{or} \quad \{\mathbf{x}; \, T(\mathbf{x}) \leq \tilde{k}_{lpha}\}.$$

For a two-sided test, we saw

 $\{\mathbf{x}; |T(\mathbf{x})| \geq \tilde{k}_{\alpha}\}.$

 \bar{k}_{α} is determined by the level α . We thus use commands qnorm, qbinom, or qhyper when $\mathcal{T}(\mathbf{x})$ has, respectively, a normal, binomial, or hypergeometric distribution under a appropriate choice of $\theta \in \Theta_0$. We now examine extensions of the likelihood ratio test for simple hypotheses that have desirable properties for a critical region.

Normal Observations

Two-Sample Proportions

One-Sided Tests

In testing for the invasion of a mimic butterfly by a model species, we collected a simple random sample modeled as independent normal observations with unknown mean and known variance σ_0^2 .

We discovered, in the case of a simple hypothesis test,

 $H_0: \mu = \mu_0$ versus $H_1: \mu = \mu_1$

that the critical region as determined by the Neyman-Pearson lemma depends only on whether or not μ_1 was greater than μ_0 . For example, if $\mu_1 > \mu_0$, then the critical region

 $C = \{\mathbf{x}; \bar{\mathbf{x}} \ge \tilde{k}_{lpha}\}$

shows that we reject H_0 whenever the sample mean is higher than some threshold value \tilde{k}_{α} *irrespective* of the difference between μ_0 and μ_1 .

Two-Sample Proportions

One-Sided Tests

- If a test is most powerful against *each* possible alternative in a simple hypothesis test, when we can say that this test is in some sense *best overall* for a composite hypothesis?
- Does this test have the property that its power function π is greater for every value of θ ∈ Θ₁ than the power function of any other test? Such a test is called uniformly most powerful.
- We can hope for such a test if the procedures from simple hypotheses results in a common critical region for all values of the alternative.
- In the example above using independent normal data. In this case, the power function

$$\pi(\mu)= extsf{P}_{\mu}\{ar{X}\geq ilde{k}_{lpha}\}$$

increases as μ increases and so the test has the intuitive property of becoming more powerful with increasing μ .

Normal Observations

Two-Sample Proportions

Karlin-Rubin Theorem

In general, we look for a test statistic T(x). Next, we check that the likelihood ratio,

 $rac{L(heta_2|\mathbf{x})}{L(heta_1|\mathbf{x})}, \quad heta_1 < heta_2.$

depends on the data x only through the value of statistic T(x) and, in addition, this ratio is a monotone increasing function of T(x).

Note that for any sufficient statistic, T(x), we have by the Fisher-Neyman factorization theorem,

$$\frac{L(\theta_2|\mathbf{x})}{L(\theta_1|\mathbf{x})} = \frac{h(\mathbf{x})g(\theta_2, T(\mathbf{x}))}{h(\mathbf{x})g(\theta_1, T(\mathbf{x}))} = \frac{g(\theta_2, T(\mathbf{x}))}{g(\theta_1, T(\mathbf{x}))}.$$

and thus the likelihood ratio depends only on T(x).

Two-Sided Tests

Normal Observations

Two-Sample Proportions

Karlin-Rubin Theorem

The Karlin-Rubin theorem states:

If these conditions hold, then for an appropriate value of \tilde{k}_{α} ,

 $C = \{\mathbf{x}; T(\mathbf{x}) \geq \widetilde{k}_{lpha}\}$

is the critical region for a uniformly most powerful α level test for the one-sided alternative hypothesis

 $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$.

Proof. Let $\pi(\theta)$ be the power function for this test. We first show that $\pi(\theta)$ is an increasing function of θ .

Two-Sided Test

Normal Observations

Two-Sample Proportions

Karlin-Rubin Theorem

We can write the monotone increasing function property in terms of the density function for T. For $\theta_1 < \theta_2$, $t_1 < t_2$.

$$egin{array}{rll} rac{f_{\mathcal{T}}(t_2| heta_2)}{f_{\mathcal{T}}(t_2| heta_1)} &\geq& rac{f_{\mathcal{T}}(t_1| heta_2)}{f_{\mathcal{T}}(t_1| heta_1)} \ f_{\mathcal{T}}(t_1| heta_1)f_{\mathcal{T}}(t_2| heta_2) &\geq& f_{\mathcal{T}}(t_1| heta_2)f_{\mathcal{T}}(t_2| heta_1) \end{array}$$

Now, integrate both sides with respect to t_1 on $(-\infty, t_2)$ to obtain

$$\begin{array}{rcl} F_{\mathcal{T}}(t_2|\theta_1)f_{\mathcal{T}}(t_2|\theta_2) & \geq & F_{\mathcal{T}}(t_2|\theta_2)f_{\mathcal{T}}(t_2|\theta_1) \\ \\ & \frac{f_{\mathcal{T}}(t|\theta_2)}{f_{\mathcal{T}}(t|\theta_1)} & \geq & \frac{F_{\mathcal{T}}(t|\theta_2)}{F_{\mathcal{T}}(t|\theta_1)} \end{array}$$

for all t.

Two-Sided Test

Normal Observations

Two-Sample Proportions

Karlin-Rubin Theorem

$f_{\mathcal{T}}(t_1|\theta_1)f_{\mathcal{T}}(t_2|\theta_2) \geq f_{\mathcal{T}}(t_1|\theta_2)f_{\mathcal{T}}(t_2|\theta_1)$

Now, integrate both sides with respect to t_2 on (t_1,∞) to obtain

for all t. Thus,

$$\frac{1 - F_{\mathcal{T}}(t|\theta_2)}{1 - F_{\mathcal{T}}(t|\theta_1)} \geq \frac{f_{\mathcal{T}}(t_2|\theta_2)}{f_{\mathcal{T}}(t_2|\theta_1)} \geq \frac{F_{\mathcal{T}}(t|\theta_2)}{F_{\mathcal{T}}(t|\theta_1)}$$
$$\frac{F_{\mathcal{T}}(t|\theta_1)}{1 - F_{\mathcal{T}}(t|\theta_1)} \geq \frac{F_{\mathcal{T}}(t|\theta_2)}{1 - F_{\mathcal{T}}(t|\theta_2)}$$

Normal Observations

Two-Sample Proportions

Karlin-Rubin Theorem

Now, the mapping from probability to odds $p \mapsto p/(1-p)$ is one-to-one and increasing. So is its inverse $o \mapsto o/(1+o)$

 $F_T(t| heta_1) \ge F_T(t| heta_2)$ for all t

The power

 $\pi(\theta_1) = P_{\theta_1}\{T > \tilde{k}_\alpha\} = 1 - F_T(\tilde{k}_\alpha | \theta_1) \le 1 - F_T(\tilde{k}_\alpha | \theta_2) = P_{\theta_2}\{T > \tilde{k}_\alpha\} = \pi(\theta_2)$

and $\pi(\theta)$ is an increasing function of θ .

If we set \tilde{k}_{α} so that $\pi(\theta_0) = P_{\theta_0}\{T > \tilde{k}_{\alpha}\} = \alpha$, then $\pi(\theta) \le \alpha$ for $\theta \le \theta_0$ and so the test is an α -level test.

Two-Sided Tests

Normal Observations

Two-Sample Proportions

Karlin-Rubin Theorem

Next, set $\tilde{\theta} > \theta_0$ and consider the simple hypothesis

 $ilde{H}_0: heta= heta_0$ versus $ilde{H}_1: heta= ilde{ heta}_0.$

Because the likelihood ratio is monotone in T(X), the requirement that $T(X) > \tilde{k}_{\alpha}$, is equivalent to the the likelihood ratio exceeding some value (say k_{α}). Thus, the critical region determined by a threshold level for T(X) is also a threshold level for the likelihood ratio. Thus, by the Neyman-Pearson lemma, this critical region is most powerful.

Because this holds for every value of $\tilde{\theta}$, the test is simultaneously most powerful for every $\tilde{\theta} > \theta_0$, thus it uniformly most powerful. QED

Two-Sample Proportions

Karlin-Rubin Theorem

A corresponding criterion holds for the one sided test a "less than" alternative.

Exercise. Verify that the likelihood ratio is an appropriate monotone function of the given test statistic, T.

1. For mark and recapture, use the hypothesis

 $H_0: N \ge N_0$ versus $H_1: N < N_0$,

use the test statistic T(x) = r(x), the number tagged in the second capture.
2. For X = (X₁,...,X_n) is a sequence of Bernoulli trials with unknown success probability p, and the one-sided test

 $H_0: p \leq p_0$ versus $H_1: p > p_0$,

use the test statistic $T(x) = \hat{\rho}(x)$, the sample proportion of successes.

Normal Observations

Two-Sample Proportions

Binomial Test

If 20 out of 36 bee hives survive a severe winter, for an $\alpha = 0.05$ level test for

 $H_0: p \ge 0.7$ versus $H_1: p < 0.7$,

we use the binomial distribution for the number of successes using binom.test.

```
> binom.test(20,36,p=0.7,alternative=c("less"))
```

Exact binomial test

```
data: 20 and 36
number of successes = 20, number of trials = 36, p-value = 0.04704
alternative hypothesis: true probability of success is less than 0.7
```

Exercise. Do we reject the hypothesis at the 5% level? the 1% level? Find the p-value using the pbinom command.

Normal Observations

Two-Sample Proportions

Proportion Test

If 250 out of 336 bee hives survive a mild winter, for an $\alpha = 0.05$ level test for

 $H_0: p \le 0.7$ versus $H_1: p > 0.7$,

we use the normal approximation for the number of successes using prop.test.

> prop.test(250,336,p=0.7,alternative=c("greater"))

1-sample proportions test with continuity correction

```
data: 250 out of 336, null probability 0.7
X-squared = 2.8981, df = 1, p-value = 0.04434
```

and we reject the null hypothesis.

Normal Observations

Two-Sample Proportions

Continuity Correction

The *p*-value is $P\{X \ge 250\}$ where X is Bin(336, 0.7). We compute this using R.

 $P\{X \ge 250\} = 1 - P\{X \le 249\}$

> 1-pbinom(249,336,0.7)
[1] 0.0428047

The command prop.test uses a normal approximation and a continuity correction to obtain a *p*-value 0.04434

The *p*-value $P\{X \ge x\} = \sum_{y=x}^{n} P\{X = y\}$ can be realized as the area of rectangles, height $P\{X = y\}$ and width 1.

Normal Observations

Two-Sample Proportions

Continuity Correction

The rectangles look like a Riemann sum for the integral of the density of a $N(np_0, \sqrt{np_0(1-p_0)})$ random variable with lower limit x - 1/2.

- > mu<-0.7*336
- > sigma<-sqrt(336*0.7*0.3)
- > x<-c(249,249.5,250)</pre>
- > prob<-1-pnorm(x,mu,sigma)</pre>
- > data.frame(x,prob)

x prob 1 249.0 0.05020625 2 249.5 0.04434199 3 250.0 0.03904269

The continuity correction replaces the binomial by finding the area under the normal density with lower limit x - 1/2.

Normal Observations

Two-Sample Proportions

Two-Sided Tests

- The likelihood ratio test is a popular choice for composite hypothesis when ⊖₀ is a subspace ⊖ the parameter space.
- The rationale for this approach is that the null hypothesis is unlikely to be true if the maximum likelihood on ⊖₀ is sufficiently smaller that the likelihood maximized over ⊖. Let
 - $\hat{ heta}_0$ be the parameter value that maximizes the likelihood for $heta\in\Theta_0$ and
 - $\hat{\theta}$ be the parameter value that maximizes the likelihood for $\theta \in \Theta$.
- The likelihood ratio

$$\Lambda(\mathbf{x}) = \frac{L(\hat{\theta}_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})}$$

Normal Observations

Two-Sample Proportions

Overview

We have two optimization problems - maximize $L(\theta|\mathbf{x})$ on the parameter space Θ and on the null hypothesis space Θ_0 .

The critical region for an α -level likelihood ratio test is

 $\{\Lambda(\mathbf{x}) \leq \lambda_{\alpha}\}.$

As with any α level test, λ_{α} is chosen so that

 $P_{\theta}\{\Lambda(X) \leq \lambda_{\alpha}\} \leq \alpha \text{ for all } \theta \in \Theta_0.$

NB. This ratio is the reciprocal from the version given by the Neyman-Pearson lemma. Thus, the critical region consists of those values that are *below* a critical value.

Two-Sided Tes

Normal Observations

.

Two-Sample Proportions

Normal Observations

Consider the two-sided hypothesis

 $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$.

Here the data are *n* independent $N(\mu, \sigma_0)$ random variables with known variance σ_0^2 . The parameter space Θ is one dimensional giving the value μ for the mean. As we have seen before $\hat{\mu} = \bar{x}$. Θ_0 is the single point $\{\mu_0\}$ and so $\hat{\mu}_0 = \mu_0$.

$$L(\hat{\mu}_0|\mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\sigma_0^2}}\right)^n \exp{-\frac{1}{2\sigma_0^2}\sum_{i=1}^n (x_i - \mu_0)^2}, \quad L(\hat{\mu}|\mathbf{x}) = \left(\frac{1}{\sqrt{2\pi\sigma_0^2}}\right)^n \exp{-\frac{1}{2\sigma_0^2}\sum_{i=1}^n (x_i - \bar{x})^2}$$

and

$$\Lambda(\mathbf{x}) = \exp -\frac{1}{2\sigma_0^2} \left(\sum_{i=1}^n ((x_i - \mu_0)^2 - (x_i - \bar{x})^2) \right) = \exp -\frac{n}{2\sigma_0^2} (\bar{x} - \mu_0)^2$$

Notice that

$$-2\ln\Lambda(\mathbf{x}) = \frac{n}{\sigma_0^2}(\bar{x}-\mu_0)^2 = \left(\frac{\bar{x}-\mu_0}{\sigma_0/\sqrt{n}}\right)^2$$

Two-Sided Test

Normal Observations

Two-Sample Proportions

Normal Observations

Then, critical region,

$$\{\Lambda(\mathbf{x}) \leq \lambda_{\alpha}\} = \left\{ \left(\frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}\right)^2 \geq -2 \ln \lambda_{\alpha} \right\}.$$

Under the null hypothesis, $(\bar{X} - \mu_0)/(\sigma_0/\sqrt{n})$ is a standard normal random variable, and thus $-2\ln \Lambda(X)$ is the square of a single standard normal. This is the defining property of a χ -square random variable with 1 degree of freedom.

Naturally we can use both

$$\left(\frac{ar{x}-\mu_0}{\sigma_0/\sqrt{n}}
ight)^2$$
 and $\left|\frac{ar{x}-\mu_0}{\sigma_0/\sqrt{n}}
ight|^2$

as a test statistic. We have seen the second choice in the example of a possible invasion of a model butterfly by a mimic.

00000000 0 0000

Two-Sided Tests

Normal Observations

Two-Sample Proportions

Two-Sample Proportions

For the two-sided two-sample α -level likelihood ratio test for population proportions p_1 and p_2 , based on the hypothesis

 $H_0: p_1 = p_2 \quad \text{versus} \quad H_1: p_1 \neq p_2,$

- we maximize the likelihood over the subspace $\Theta_0 = \{(p_1, p_2); p_1 = p_2\}$ (the blue line) and
- over the entire parameter space, $\Theta = [0,1] \times [0,1]$, shown as the square, and
- then take the ratio, simplify and make appropriate approximations.

Two-Sided Tests

Normal Observations

Two-Sample Proportions

Two-Sample Proportions

The likelihood ratio test is approximately equivalent to the critical region

 $|z| \geq z_{\alpha/2}$

where

$$z = rac{\hat{
ho}_1 - \hat{
ho}_2}{\sqrt{\hat{
ho}_0(1-\hat{
ho}_0)\left(rac{1}{n_1}+rac{1}{n_2}
ight)}}$$

with \hat{p}_i , the sample proportion of successes from the observations from population *i* and \hat{p}_0 , the pooled proportion

$$\hat{p}_0 = rac{1}{n_1 + n_2} \left((x_{1,1} + \dots + x_{1,n_1}) + (x_{2,1} + \dots + x_{2,n_2})
ight) = rac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$$

.

Two-Sample Proportions

Two-Sample Proportions

The subsequent winter had 167 out of 250 hives surviving. To test if the two survival probabilities are significantly different:

```
> prop.test(c(250,167),c(332,250))
```

2-sample test for equality of proportions with continuity correction

```
data: c(250, 167) out of c(332, 250)
X-squared = 4.664, df = 1, p-value = 0.0308
alternative hypothesis: two.sided
95 percent confidence interval:
    0.006942351 0.163081746
sample estimates:
    prop 1 prop 2
0.753012 0.668000
```

Two-Sample Proportions

Power analyses can be executed in R using the power.prop.test command. If we want to be able to detect a difference between two proportions $p_1 = 0.7$ and $p_2 = 0.6$ in a one-sided test with a significance level of $\alpha = 0.05$ and power $1 - \beta = 0.8$.

We will need a sample of n = 281 from each group.

Normal Observations

Two-Sample Proportions

Two-Sample Proportions

If we vary p_2 and determine the power.

Now, let's vary sample size.

Exercise. Determine the reduction in power when the significance level $\alpha = 0.02$ for the sample sizes above. Why is the power reduced?