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Chapter 8
Hypothesis Tests

Extensions on the Likelihood Ratio
One and Two Sided Tests
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Introduction
For a composite hypothesis

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,

we have seen critical regions defined by taking a statistic T (x) and defining the critical
region based on a critical value k̃α. For a one-sided test, we have seen critical regions

{x;T (x) ≥ k̃α} or {x;T (x) ≤ k̃α}.

For a two-sided test, we saw
{x; |T (x)| ≥ k̃α}.

k̃α is determined by the level α. We thus use commands qnorm, qbinom, or qhyper
when T (x) has, respectively, a normal, binomial, or hypergeometric distribution under
a appropriate choice of θ ∈ Θ0. We now examine extensions of the likelihood ratio test
for simple hypotheses that have desirable properties for a critical region.
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One-Sided Tests

In testing for the invasion of a mimic butterfly by a model species, we collected a
simple random sample modeled as independent normal observations with unknown
mean and known variance σ20.

We discovered, in the case of a simple hypothesis test,

H0 : µ = µ0 versus H1 : µ = µ1

that the critical region as determined by the Neyman-Pearson lemma depends only on
whether or not µ1 was greater than µ0. For example, if µ1 > µ0, then the critical region

C = {x; x̄ ≥ k̃α}

shows that we reject H0 whenever the sample mean is higher than some threshold
value k̃α irrespective of the difference between µ0 and µ1.
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One-Sided Tests

• If a test is most powerful against each possible alternative in a simple hypothesis
test, when we can say that this test is in some sense best overall for a composite
hypothesis?

• Does this test have the property that its power function π is greater for every
value of θ ∈ Θ1 than the power function of any other test? Such a test is called
uniformly most powerful.

• We can hope for such a test if the procedures from simple hypotheses results in a
common critical region for all values of the alternative.

• In the example above using independent normal data. In this case, the power
function

π(µ) = Pµ{X̄ ≥ k̃α}
increases as µ increases and so the test has the intuitive property of becoming
more powerful with increasing µ.
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Karlin-Rubin Theorem

In general, we look for a test statistic T (x). Next, we check that the likelihood ratio,

L(θ2|x)

L(θ1|x)
, θ1 < θ2.

depends on the data x only through the value of statistic T (x) and, in addition, this
ratio is a monotone increasing function of T (x).

Note that for any sufficient statistic, T (x), we have by the Fisher-Neyman
factorization theorem,

L(θ2|x)

L(θ1|x)
=

h(x)g(θ2,T (x))

h(x)g(θ1,T (x))
=

g(θ2,T (x))

g(θ1,T (x))
.

and thus the likelihood ratio depends only on T (x).
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Karlin-Rubin Theorem

The Karlin-Rubin theorem states:

If these conditions hold, then for an appropriate value of k̃α,

C = {x;T (x) ≥ k̃α}

is the critical region for a uniformly most powerful α level test for the one-sided
alternative hypothesis

H0 : θ ≤ θ0 versus H1 : θ > θ0.

Proof. Let π(θ) be the power function for this test. We first show that π(θ) is an
increasing function of θ.
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Karlin-Rubin Theorem

We can write the monotone increasing function property in terms of the density
function for T . For θ1 < θ2, t1 < t2.

fT (t2|θ2)

fT (t2|θ1)
≥ fT (t1|θ2)

fT (t1|θ1)

fT (t1|θ1)fT (t2|θ2) ≥ fT (t1|θ2)fT (t2|θ1)

Now, integrate both sides with respect to t1 on (−∞, t2) to obtain

FT (t2|θ1)fT (t2|θ2) ≥ FT (t2|θ2)fT (t2|θ1)

fT (t|θ2)

fT (t|θ1)
≥ FT (t|θ2)

FT (t|θ1)

for all t.
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Karlin-Rubin Theorem

fT (t1|θ1)fT (t2|θ2) ≥ fT (t1|θ2)fT (t2|θ1)

Now, integrate both sides with respect to t2 on (t1,∞) to obtain

fT (t1|θ1)(1− FT (t1|θ2)) ≥ fT (t1|θ2)(1− FT (t2|θ1))

1− FT (t|θ2)

1− FT (t|θ1)
≥ fT (t|θ2)

fT (t|θ1)

for all t. Thus,

1− FT (t|θ2)

1− FT (t|θ1)
≥ fT (t2|θ2)

fT (t2|θ1)
≥ FT (t|θ2)

FT (t|θ1)

FT (t|θ1)

1− FT (t|θ1)
≥ FT (t|θ2)

1− FT (t|θ2)
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Karlin-Rubin Theorem
Now, the mapping from probability to odds
p 7→ p/(1−p) is one-to-one and increasing.
So is its inverse o 7→ o/(1 + o)

FT (t|θ1) ≥ FT (t|θ2) for all t

The power
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π(θ1) = Pθ1{T > k̃α} = 1− FT (k̃α|θ1) ≤ 1− FT (k̃α|θ2) = Pθ2{T > k̃α} = π(θ2)

and π(θ) is an increasing function of θ.

If we set k̃α so that π(θ0) = Pθ0{T > k̃α} = α, then π(θ) ≤ α for θ ≤ θ0 and so the
test is an α-level test.
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Karlin-Rubin Theorem

Next, set θ̃ > θ0 and consider the simple hypothesis

H̃0 : θ = θ0 versus H̃1 : θ = θ̃0.

Because the likelihood ratio is monotone in T (X), the requirement that T (X) > k̃α, is
equivalent to the the likelihood ratio exceeding some value (say kα). Thus, the critical
region determined by a threshold level for T (X) is also a threshold level for the
likelihood ratio. Thus, by the Neyman-Pearson lemma, this critical region is most
powerful.

Because this holds for every value of θ̃, the test is simultaneously most powerful for
every θ̃ > θ0, thus it uniformly most powerful. QED
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Karlin-Rubin Theorem
A corresponding criterion holds for the one sided test a “less than” alternative.

Exercise. Verify that the likelihood ratio is an appropriate monotone function of the
given test statistic, T .

1. For mark and recapture, use the hypothesis

H0 : N ≥ N0 versus H1 : N < N0,

use the test statistic T (x) = r(x), the number tagged in the second capture.

2. For X = (X1, . . . ,Xn) is a sequence of Bernoulli trials with unknown success
probability p, and the one-sided test

H0 : p ≤ p0 versus H1 : p > p0,

use the test statistic T (x) = p̂(x), the sample proportion of successes.
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Binomial Test
If 20 out of 36 bee hives survive a severe winter, for an α = 0.05 level test for

H0 : p ≥ 0.7 versus H1 : p < 0.7,

we use the binomial distribution for the number of successes using binom.test.

> binom.test(20,36,p=0.7,alternative=c("less"))

Exact binomial test

data: 20 and 36

number of successes = 20, number of trials = 36, p-value = 0.04704

alternative hypothesis: true probability of success is less than 0.7

Exercise. Do we reject the hypothesis at the 5% level? the 1% level? Find the p-value
using the pbinom command.
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Proportion Test

If 250 out of 336 bee hives survive a mild winter, for an α = 0.05 level test for

H0 : p ≤ 0.7 versus H1 : p > 0.7,

we use the normal approximation for the number of successes using prop.test.

> prop.test(250,336,p=0.7,alternative=c("greater"))

1-sample proportions test with continuity correction

data: 250 out of 336, null probability 0.7

X-squared = 2.8981, df = 1, p-value = 0.04434

and we reject the null hypothesis.
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Continuity Correction

The p-value is P{X ≥ 250}
where X is Bin(336, 0.7). We
compute this using R.

P{X ≥ 250} = 1− P{X ≤ 249}

> 1-pbinom(249,336,0.7)

[1] 0.0428047

The command prop.test uses a
normal approximation and a con-
tinuity correction to obtain a p-
value 0.04434
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The p-value P{X ≥ x} =
∑n

y=x P{X = y} can be realized

as the area of rectangles, height P{X = y} and width 1.
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Continuity Correction
The rectangles look like a
Riemann sum for the in-
tegral of the density of a
N(np0,

√
np0(1− p0)) random

variable with lower limit x − 1/2.

> mu<-0.7*336

> sigma<-sqrt(336*0.7*0.3)

> x<-c(249,249.5,250)

> prob<-1-pnorm(x,mu,sigma)

> data.frame(x,prob)

x prob

1 249.0 0.05020625

2 249.5 0.04434199

3 250.0 0.03904269
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The continuity correction replaces the binomial by finding

the area under the normal density with lower limit x−1/2.
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Two-Sided Tests

• The likelihood ratio test is a popular choice for composite hypothesis when Θ0 is
a subspace Θ the parameter space.

• The rationale for this approach is that the null hypothesis is unlikely to be true if
the maximum likelihood on Θ0 is sufficiently smaller that the likelihood
maximized over Θ. Let

• θ̂0 be the parameter value that maximizes the likelihood for θ ∈ Θ0 and
• θ̂ be the parameter value that maximizes the likelihood for θ ∈ Θ.

• The likelihood ratio

Λ(x) =
L(θ̂0|x)

L(θ̂|x)
.
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Overview

We have two optimization problems - maximize L(θ|x) on the parameter space Θ and
on the null hypothesis space Θ0.

The critical region for an α-level likelihood ratio test is

{Λ(x) ≤ λα}.

As with any α level test, λα is chosen so that

Pθ{Λ(X ) ≤ λα} ≤ α for all θ ∈ Θ0.

NB. This ratio is the reciprocal from the version given by the Neyman-Pearson lemma.
Thus, the critical region consists of those values that are below a critical value.
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Normal Observations
Consider the two-sided hypothesis

H0 : µ = µ0 versus H1 : µ 6= µ0.

Here the data are n independent N(µ, σ0) random variables with known variance σ20.
The parameter space Θ is one dimensional giving the value µ for the mean. As we
have seen before µ̂ = x̄ . Θ0 is the single point {µ0} and so µ̂0 = µ0.

L(µ̂0|x) =

(
1√

2πσ2
0

)n

exp− 1

2σ2
0

n∑
i=1

(xi − µ0)2, L(µ̂|x) =

(
1√

2πσ2
0

)n

exp− 1

2σ2
0

n∑
i=1

(xi − x̄)2

and

Λ(x) = exp− 1

2σ2
0

(
n∑

i=1

((xi − µ0)2 − (xi − x̄)2)

)
= exp− n

2σ2
0

(x̄ − µ0)2.

Notice that

−2 ln Λ(x) =
n

σ2
0

(x̄ − µ0)2 =

(
x̄ − µ0

σ0/
√
n

)2

.
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Normal Observations
Then, critical region,

{Λ(x) ≤ λα} =

{(
x̄ − µ0
σ0/
√
n

)2

≥ −2 lnλα

}
.

Under the null hypothesis, (X̄ − µ0)/(σ0/
√
n) is a standard normal random variable,

and thus −2 ln Λ(X ) is the square of a single standard normal. This is the defining
property of a χ-square random variable with 1 degree of freedom.

Naturally we can use both (
x̄ − µ0
σ0/
√
n

)2

and

∣∣∣∣ x̄ − µ0σ0/
√
n

∣∣∣∣.
as a test statistic. We have seen the second choice in the example of a possible
invasion of a model butterfly by a mimic.
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Two-Sample Proportions
For the two-sided two-sample α-level likelihood ratio
test for population proportions p1 and p2, based on
the hypothesis

H0 : p1 = p2 versus H1 : p1 6= p2,

• we maximize the likelihood over the subspace
Θ0 = {(p1, p2); p1 = p2} (the blue line) and

• over the entire parameter space,
Θ = [0, 1]× [0, 1], shown as the square, and

• then take the ratio, simplify and make
appropriate approximations.
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The data are observations on n1 Bernoulli trials, x1,1, x1,2, . . . , x1,n1 from the first
population and, independently, n2 Bernoulli trials, x2,1, x2,2, . . . , x2,n2 from the second.
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Two-Sample Proportions

The likelihood ratio test is approximately equivalent to the critical region

|z | ≥ zα/2

where

z =
p̂1 − p̂2√

p̂0(1− p̂0)
(

1
n1

+ 1
n2

)
with p̂i , the sample proportion of successes from the observations from population i
and p̂0, the pooled proportion

p̂0 =
1

n1 + n2
((x1,1 + · · ·+ x1,n1) + (x2,1 + · · ·+ x2,n2)) =

n1p̂1 + n2p̂2
n1 + n2

.
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Two-Sample Proportions
The subsequent winter had 167 out of 250 hives surviving. To test if the two survival
probabilities are significantly different:

> prop.test(c(250,167),c(332,250))

2-sample test for equality of proportions with continuity correction

data: c(250, 167) out of c(332, 250)

X-squared = 4.664, df = 1, p-value = 0.0308

alternative hypothesis: two.sided

95 percent confidence interval:

0.006942351 0.163081746

sample estimates:

prop 1 prop 2

0.753012 0.668000
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Two-Sample Proportions
Power analyses can be executed in R using the power.prop.test command. If we
want to be able to detect a difference between two proportions p1 = 0.7 and p2 = 0.6
in a one-sided test with a significance level of α = 0.05 and power 1− β = 0.8.

> power.prop.test(p1=0.70,p2=0.6,sig.level=0.05,power=0.8,

alternative = c("one.sided"))

Two-sample comparison of proportions power calculation

n = 280.2581

p1 = 0.7

p2 = 0.6

sig.level = 0.05

power = 0.8

alternative = one.sided

NOTE: n is number in *each* group

We will need a sample of n = 281 from each group.
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Two-Sample Proportions
If we vary p2 and determine the power.

> power.prop.test(n=250,p1=0.70,p2=c(0.6,0.65),sig.level=0.05,

alternative = c("one.sided"))

p2 = 0.60, 0.65

power = 0.7589896, 0.3256442

Now, let’s vary sample size.

> power.prop.test(n=c(250,350,450,550),p1=0.70,p2=0.60,sig.level=0.05,

alternative = c("one.sided"))

n = 250, 350, 450, 550

power = 0.7589896, 0.8717915, 0.9342626, 0.9672670

Exercise. Determine the reduction in power when the significance level α = 0.02 for
the sample sizes above. Why is the power reduced?
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