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Introduction

For a composite hypothesis
Hy:0 € ©y versus Hy:0 e Oq,

we have seen critical regions defined by taking a statistic 7(x) and defining the critical
region based on a critical value k,. For a one-sided test, we have seen critical regions

{x; T(x) > kot or {x;T(x) < ky}.

For a two-sided test, we saw

{x; | T(x)| > kol

k. is determined by the level .. We thus use commands qnorm, gbinom, or ghyper
when T (x) has, respectively, a normal, binomial, or hypergeometric distribution under
a appropriate choice of 0 € ©y. We now examine extensions of the likelihood ratio test
for simple hypotheses that have desirable properties for a critical region.
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One-Sided Tests

One-Sided Tests

In testing for the invasion of a mimic butterfly by a model species, we collected a
simple random sample modeled as independent normal observations with unknown
mean and known variance 0(2).

We discovered, in the case of a simple hypothesis test,
Ho @ ppo= o versus Hy =g

that the critical region as determined by the Neyman-Pearson lemma depends only on
whether or not ;11 was greater than 1. For example, if 111 > 110, then the critical region

C:{X;QE /;(\}

shows that we reject Hy whenever the sample mean is higher than some threshold
value k., irrespective of the difference between 1o and /1.



One-Sided Tests

If a test is most powerful against each possible alternative in a simple hypothesis
test, when we can say that this test is in some sense best overall for a composite
hypothesis?

Does this test have the property that its power function 7 is greater for every
value of 0 € ©; than the power function of any other test? Such a test is called
uniformly most powerful.

We can hope for such a test if the procedures from simple hypotheses results in a
common critical region for all values of the alternative.

In the example above using independent normal data. In this case, the power

function o
m(p) = P {X > ku}

increases as // increases and so the test has the intuitive property of becoming
more powerful with increasing /..



One-Sided Tests Two-Sided Tests Normal Observations Two-Sample Proportions
000000 00

Karlin-Rubin Theorem
In general, we look for a test statistic 7(x). Next, we check that the likelihood ratio,

L(62|x
L(61]x)’

~—

01 < 6,.

depends on the data x only through the value of statistic 7(x) and, in addition, this
ratio is a monotone increasing function of T(x).

Note that for any sufficient statistic, 7(x), we have by the Fisher-Neyman
factorization theorem,

L(62]x) _ h(x)g(b2, T(x)) _ g(02, T(x))

L(1lx)  h(x)g(61, T(x))  g(f1, T(x))"
and thus the likelihood ratio depends only on 7(x).
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Karlin-Rubin Theorem

The Karlin-Rubin theorem states:

If these conditions hold, then for an appropriate value of k.,
C={x;T(x)> /2(1}

is the critical region for a uniformly most powerful « level test for the one-sided
alternative hypothesis
Ho 0 <0y wversus Hi:0 > 0.

Proof. Let 7(0) be the power function for this test. We first show that 7(¢) is an
increasing function of 0.

/25



One-Sided Tests Two-Sided Tests Normal Observations Two-Sample Proportions
00e0000 00
]

[e]e]e}

Karlin-Rubin Theorem

We can write the monotone increasing function property in terms of the density
function for 7. For 01 < 6>, t1 < t».

fT(tgwg) > fT(tlwg)
fr(t2|01) —  fr(ti|61)
fr(t|01)fr(t2]62) > fr(ta]62)fr(t2]01)

Now, integrate both sides with respect to t; on (—oc. >) to obtain

Fr(t2]01)fr(t2|02) > Fr(t2]02)fr(t2|01)
fr(tlf2) _  Fr(t]62)
fr(tl) —  Fr(t[6h)

for all t.
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Karlin-Rubin Theorem

fr(t1]01)fr(t2]02) > fr(t1]|62)fr(t261)

Now, integrate both sides with respect to > on (#;.50) to obtain

fr(ta|01)(1 — Fr(tal02)) > fr(t1|02)(1 — Fr(t2[61))

L Fr(tls) _ fr(tl6)
1-— FT(tlel) o fT(t|91)
for all . Thus,
1-— FT(th) > fT(t2‘62) > FT(t|92)
1— Fr(tlfr) —  fr(t2l61) — Fr(t|61)
Fr(tlon) —_ Fr(t]62)
1-— FT(twl) - 1- FT(t’QQ)
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Karlin-Rubin Theorem
Now, the mapping from probability to odds
p+— p/(1—p) is one-to-one and increasing.
So is its inverse o0~ o/(1 + 0)

probabilty
0.

FT(t|91) > FT(t|92) for all t R

The power
7(01) = Po,{T > ko} =1 — Fr(ka|61) <1 — Fr(ka|02) = Po,{T > ko} = n(62)

and 77(¢) is an increasing function of 0.

If we set k., so that w(0o) = Pg,{T > /;a} = «, then 7(0) < o for 0 < 0y and so the
test is an a-level test.
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Karlin-Rubin Theorem

Next, set ¢/ > 0 and consider the simple hypothesis
/:/0 -0 =0y versus Hy: 0= 670.

Because the likelihood ratio is monotone in 7(X), the requirement that 7(X) > k,, is
equivalent to the the likelihood ratio exceeding some value (say k.). Thus, the critical
region determined by a threshold level for 7(X) is also a threshold level for the
likelihood ratio. Thus, by the Neyman-Pearson lemma, this critical region is most
powerful.

Because this holds for every value of 0, the test is simultaneously most powerful for
every ) > 0y, thus it uniformly most powerful. QED
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Karlin-Rubin Theorem
A corresponding criterion holds for the one sided test a “less than” alternative.

Exercise. Verify that the likelihood ratio is an appropriate monotone function of the
given test statistic, 7.

1. For mark and recapture, use the hypothesis
Ho: N > Ny wversus Hp: N < No,

use the test statistic 7 (x) = r(x), the number tagged in the second capture.

2. For X = (Xq,..., X,) is a sequence of Bernoulli trials with unknown success

probability p, and the one-sided test
Ho:p < pop wversus Hi:p > po,

use the test statistic 7(x) = p(x), the sample proportion of successes.
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One-Sided Tests

Binomial Test

If 20 out of 36 bee hives survive a severe winter, for an v = 0.05 level test for

Ho:p>0.7 wversus Hi:p<0.7,
we use the binomial distribution for the number of successes using binom.test.
> binom.test(20,36,p=0.7,alternative=c("less"))

Exact binomial test

data: 20 and 36
number of successes = 20, number of trials = 36, p-value = 0.04704
alternative hypothesis: true probability of success is less than 0.7

Exercise. Do we reject the hypothesis at the 5% level? the 1% level? Find the p-value
using the pbinom command.
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Proportion Test

If 250 out of 336 bee hives survive a mild winter, for an v = 0.05 level test for

Ho:p <07 wversus Hp:p=>07,

we use the normal approximation for the number of successes using prop.test.

> prop.test(250,336,p=0.7,alternative=c("greater"))
1-sample proportions test with continuity correction

data: 250 out of 336, null probability 0.7
X-squared = 2.8981, df = 1, p-value = 0.04434

and we reject the null hypothesis.
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Continuity Correction

The p-value is P{X > 250}
where X is Bin(336,0.7). We
compute this using R. -

0.04
1

0.03
1

P{X > 250} = 1 — P{X < 249}

0.02
1

> 1-pbinom(249,336,0.7)
[1] 0.0428047

0.01
1

0.00
1

The command prop.test uses a 20 o5 50 255 50
normal approximation and a con- number of success

tinuity correction to obtain a p- The p-value P{X > x} =5 7 P{X = y} can be realized
value 0.04434 as the area of rectangles, height P{X =y} and width 1.
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The rectangles
Riemann  sum
tegral

look
for

N(npo, \/npo(1 — po)) ’
variable with lower limit x —1/2.

mu<-0.7%*336

V V V V V

prob

[Er

24

w N
N

5

X
9.0 0.05020625
249.5 0.04434199
0.0 0.03904269

like a
the in-

of the density of a

random

sigma<-sqrt(336%0.7%0.3)
x<-c(249,249.5,250)
prob<-1-pnorm(x,mu,sigma)
data.frame(x,prob)

0.02 0.03
1 1

o
1

T T T T T
240 245 250 255 260

number of success

The continuity correction replaces the binomial by finding

the area under the normal density with lower limit x — 1/

2.
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Two-Sided Tests
Two-Sided Tests

o The likelihood ratio test is a popular choice for composite hypothesis when ©g is
a subspace © the parameter space.

e The rationale for this approach is that the null hypothesis is unlikely to be true if
the maximum likelihood on ©j is sufficiently smaller that the likelihood
maximized over ©. Let

° H:o be the parameter value that maximizes the likelihood for ¢/ € ©y and
o () be the parameter value that maximizes the likelihood for 0 € ©.

e The likelihood ratio

17/25



Two-Sided Tests

Overview

We have two optimization problems - maximize L(¢|x) on the parameter space © and
on the null hypothesis space O.

The critical region for an a-level likelihood ratio test is
{\(x) < Ao}
As with any o level test, )\, is chosen so that

P(){/\(X) < /\“} < o for all 6 € O.

NB. This ratio is the reciprocal from the version given by the Neyman-Pearson lemma.

Thus, the critical region consists of those values that are below a critical value.
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Normal Observations
Consider the two-sided hypothesis

Ho @ po= o versus  Hy ot # .

Here the data are 1 independent (/.. o) random variables with known variance o7.

The parameter space © is one dimensional giving the value ;. for the mean. As we
have seen before /i = x. O is the single point {0} and so [ig = /1.

Y Y 1
L(f1g]x) = e exp 1 s (i|x) = s eEXp ——= X
(/ 0| ) <W> 2 ZZ /0 (/ ‘ ) <\/ﬂ) p 20(2) ;(

and i
A(x) = exp 72%2 <Z((x,- — o) — (xi — 2)2)> — exp f%(; ~ o)

Notice that
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Normal Observations

Normal Observations

IA(X) < Ao} = {(i(&%)z > 2|n)\”}.

Under the null hypothesis, (X — ji10)/(00/+/n) is a standard normal random variable,
and thus —21n A(X) is the square of a single standard normal. This is the defining
property of a y-square random variable with 1 degree of freedom.

X — o

- 2
X — Ho
and =
(Uo/ ﬁ) oo/+/n
as a test statistic. We have seen the second choice in the example of a possible
invasion of a model butterfly by a mimic.

Then, critical region,

Naturally we can use both
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Two-Sample Proportions

Two-Sample Proportions
For the two-sided two-sample a-level likelihood ratio

test for population proportions p; and p», based on '
the hypothesis

Ho:py = p2 versus Hi:py # po,

e we maximize the likelihood over the subspace
©o = {(p1.p2); p1 = p2} (the blue line) and
o over the entire parameter space,
© = [0.1] x [0, 1], shown as the square, and

e then take the ratio, simplify and make ° 5 ‘
appropriate approximations.

The data are observations on n; Bernoulli trials, x1 1. x10, ..., X1, from the first

population and, independently, no Bernoulli trials, > 1, %00, .. ., X2, from the second.
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Two-Sample Proportions
The likelihood ratio test is approximately equivalent to the critical region
‘Z| > Zo /2

where R .
P1— P2

o= o) (£ + 1)

with p;, the sample proportion of successes from the observations from population /
and pp, the pooled proportion

zZ =

~

1 _ mp1+ mpo
Po = m+ ((X171 + + X1,n1) + (X2,1 + + X2,n2)) — ot
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Two-Sample Proportions

The subsequent winter had 167 out of 250 hives surviving. To test if the two survival
probabilities are significantly different:

> prop.test(c(250,167),c(332,250))
2-sample test for equality of proportions with continuity correction

data: c¢(250, 167) out of c(332, 250)
X-squared = 4.664, df = 1, p-value = 0.0308
alternative hypothesis: two.sided
95 percent confidence interval:

0.006942351 0.163081746
sample estimates:

prop 1 prop 2
0.753012 0.668000
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Two-Sample Proportions
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Two-Sample Proportions

Power analyses can be executed in R using the power.prop.test command. If we
want to be able to detect a difference between two proportions p; = 0.7 and p» = 0.6
in a one-sided test with a significance level of & = 0.05 and power 1 — 3§ = 0.8.

> power.prop.test(pl1=0.70,p2=0.6,sig.level=0.05,power=0.8,
alternative = c("one.sided"))
Two-sample comparison of proportions power calculation

n = 280.2581
pl = 0.7
p2 = 0.6
sig.level = 0.05
power = 0.8

alternative = one.sided
NOTE: n is number in *each* group

We will need a sample of n = 281 from each group.
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Two-Sample Proportions
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If we vary p> and determine the power.

> power.prop.test(n=250,p1=0.70,p2=c(0.6,0.65) ,sig.level=0.05,
alternative = c("one.sided"))
p2 = 0.60, 0.65
power = 0.7589896, 0.3256442

Now, let's vary sample size.

> power.prop.test(n=c(250,350,450,550) ,p1=0.70,p2=0.60,sig.level=0.05,
alternative = c("one.sided"))
n = 250, 350, 450, 550
power = 0.7589896, 0.8717915, 0.9342626, 0.9672670

Exercise. Determine the reduction in power when the significance level oo = 0.02 for
the sample sizes above. Why is the power reduced?
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