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Motivation
For the law of large numbers, the sample means from a sequence of independent
random variables converge to their common distributional mean as the number n of
random variables increases.

1

n
Sn = X̄n → µ as n→∞.

Moreover, the standard deviation of X̄n is inversely proportional to
√
n. For example,

for independent random variables, uniformly distributed on [0, 1], X̄n converges to

µ =

∫ 1

0
xfX (x) dx =

∫ 1

0
x dx =

x2

2

∣∣∣1
0

=
1

2

Because the standard deviation σX̄n
∝ 1/

√
n, we magnify the difference between the

running average and the mean by a factor of
√
n and investigate the graph of

√
n

(
1

n
Sn − µ

)
versus n
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Motivation

Does the distribution of the size of these fluctuations have any regular and predictable
structure? Let’s begin by examining the distribution for the sum of X1,X2 . . .Xn,
independent and identically distributed random variables

Sn = X1 + X2 + · · ·+ Xn.

What distribution do we see? We begin with the simplest case, Xi Bernoulli random
variables. The sum Sn is a binomial random variable. We examine two cases.

• keep the number of trials the same at n = 100 and vary the success probability p.

• keep the success probability the same at p = 1/2, but vary the number of trials.
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Bernoulli Random Variables
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Successes in 100 Bernoulli trials with p = 0.2, 0.4, 0.6 and 0.8.
6 / 16



Motivation The Classical Central Limit Theorem Examples

Bernoulli Random Variables
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Successes in 20, 40, and 80 Bernoulli trials with p = 0.5.
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Bernoulli Random Variables

The binomial random variable Sn has

mean np and standard deviation
√

np(1− p).

Thus, if we take the standadized version of these sums of Bernoulli random variables

Zn =
Sn − np√
np(1− p)

,

then these bell curve graphs would lie on top of each other.

Now, let’s consider exponential random variables . . . .
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Exponential Random Variables
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The density of the standardized random variables that result from the sum of 2,4,8,16, and 32

exponential random variables
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The Classical Central Limit Theorem

To obtain the standardized random variables,

• we can either standardize using the sum Sn having mean nµ and standard
deviation σ

√
n, , or

• we can standardize using the sample mean X̄n having mean µ and standard
deviation σ/

√
n.

This yields two equivalent versions of the standardized score or z-score.

Zn =
Sn − nµ

σ
√
n

=
X̄n − µ
σ/
√
n

=

√
n

σ
(X̄n − µ).

The theoretical result behind these numerical explorations is called the classical central
limit theorem.
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The Classical Central Limit Theorem

Theorem. Let {Xi ; i ≥ 1} be independent random variables having a common
distribution. Let µ be their mean and σ2 be their variance. Then Zn, the standardized
scores, converges in distribution to Z a standard normal random variable, i.e., the
distribution function FZn converges to Φ, the distribution function of the standard
normal for every value z .

lim
n→∞

FZn(z) = lim
n→∞

P{Zn ≤ z} =
1√
2π

∫ z

−∞
e−x

2/2 dx = Φ(z).

In practical terms the central limit theorem states that

P{a < Zn ≤ b} ≈ P{a < Z ≤ b} = Φ(b)− Φ(a).

The number value is obtained in R using the command pnorm(b)-pnorm(a).
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Uniform Random Variables

Example.

• For a single U(0, 1) random variables,
• mean µ = 1/2 and standard deviation σ = 1/

√
12.

• For X̄ the sample mean of 2000 independent of U(0, 1) random variables, then X̄
• has mean µ = 1/2 and standard deviation σ = 1/

√
24000.

We show the empirical cumulative distribution function for 100 simulations and
compare it to the distribution function of a normal with mean µ = 1/2 and standard
deviation σ = 1/

√
24000.

Exercise. Show that the standard deviation of a U(0, 1) random variable is 1/
√

12.
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Uniform Random Variables
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Bernoulli Trials
For a 100 question multiple choice exam with 4 options per question, a student
randomly guesses. Each guess is a Bernoulli trial with success probability p = 1/4.
Thus, the number of correct answers S100 has a binomial distribution with

mean np = 100 · 1

4
= 25 and standard deviation

√
np(1− p) =

√
100 · 1

4
· 3

4
=

5

2

√
3 ≈ 13

3

A student has 7 correct answers. This has a z-score

z ≈ 7− 25

13/3
=

54

13
< −4

Did this student try to give incorrect answers?

Exercise. Find the exact z-score and use pnorm to estimate the probability of 7 or
fewer correct answers. Compare this value to the value obtained using pbinom.
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Exponential Random Variables
Times between of customer arrivals at a bank are modeled as independent Exp(1)
random variables. These random variables have mean and standard deviation 1. We
approximate the probability that the 50-th customer arrives within the first hour of
business. Sn, the time of arrival of the n-th customer, is the sum of the times between
arrivals and thus is the sum of n Exp(1) random variables. S50 has mean 50 and
standard deviation

√
50. We are asking

P{S50 ≤ 60} = P{S50 − 50 ≤ 10} = P

{
Zn =

S50 − 50√
50

≤ 10√
50

}
.

By the central limit theorem, we have the approximation

> pnorm((60-50)/sqrt(50))

[1] 0.9213504

We can obtain the same answer using pnorm(60,50,sqrt(50)).
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Example

You want to store 400 pictures on your smart phone. Pictures have a mean size of 450
kilobytes (KB) and a standard deviation of 50 KB. Assume that the size of the pictures
are independent. S400, the total storage space needed for the 400 pictures, has

mean 400× 450 = 180, 000 KB and standard deviation 50
√

400 = 1000 KB.

To estimate the space required to be 99% certain that the pictures will have storage
space on the phone, note that

> qnorm(0.99,400*450,50*sqrt(400))

[1] 182326.3

So we need about 182.3 megabytes (MB).

Exercise. Give the storage space to be 95% certain to have the space for 300 pictures.
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