Topic 16
Interval Estimation
Additional Topics

Outline

Linear Regression

Sample Proportions

Interpretation of the Confidence Interval

Linear Regression

For ordinary linear regression, we have given least squares estimates for the slope β and the intercept α . For data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$, our model is

$$y_i = \alpha + \beta x_i + \epsilon_i$$

where ϵ_i are independent $N(0, \sigma)$ random variables. Recall that the estimator for the slope

$$\hat{\beta}(x,y) = \frac{\operatorname{cov}(x,y)}{\operatorname{var}(x)}$$

is unbiased.

Exercise. Show that the variance of $\hat{\beta}$ equals

$$\frac{\sigma^2}{(n-1)\mathsf{var}(x)}$$

Linear Regression

Generally, σ is unknown. However, the variance of the residuals,

$$s_u^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - (\hat{\alpha} - \hat{\beta}x_i))^2$$

is an unbiased estimator of σ^2 and s_u/σ has a t distribution with n-2 degrees of freedom. This gives the t-interval

$$\hat{\beta} \pm t_{n-2,(1-\gamma)/2} \frac{s_u}{s_v \sqrt{n-1}}.$$

Exercise. For the data on the humerus and femur of the five specimens of Archeopteryx, we have $\hat{\beta} = 1.197$. $s_u = 1.982$, $s_x = 13.2$, and $t_{3,0.025} = 3.1824$, Use this to find a 95% confidence interval for the slope.

Sample Proportions

For *n* Bernoulli trials with success parameter p, the sample proportion \hat{p} has

mean
$$p$$
 and variance $\frac{p(1-p)}{p}$.

The parameter p appears in the variance. Thus, we need to make a choice \tilde{p} to replace p in the confidence interval

$$\hat{p}\pm z_{(1-\gamma)/2}\sqrt{rac{ ilde{p}(1- ilde{p})}{n}}.$$

One simple choice for \tilde{p} is \hat{p} . Based on extensive numerical experimentation, one recent popular choice is

$$\tilde{p} = \frac{x+2}{n+4}$$

where x is the number of successes.

Sample Proportions

In order for a normal random variable to be a good approximation to the binomial, we ask that the mean number of successes np and the mean number of failures n(1-p) each be at least 10.

For Mendel's data the F_2 generation consisted 428 for the dominant allele green pods and 152 for the recessive allele yellow pods. Thus, the sample proportion of green pod alleles is

$$\hat{p} = \frac{428}{428 + 152} = 0.7379.$$

The confidence interval, using $\tilde{p} = 0.7363$ is

$$0.7379 \pm z_{(1-\gamma)/2} \sqrt{\frac{0.7363 \cdot 0.2637}{580}} = 0.7379 \pm z_{(1-\gamma)/2} 0.0183 = 0.7379 \pm 0.0426$$

for $\gamma = 0.98$, $z_{0.01} = 2.326$. Note that this interval contains the predicted value of 3/4.

For the difference in two proportions p_1 and p_2 based on n_1 and n_2 independent trials. We have, for the difference $p_1 - p_2$, the confidence interval

$$\hat{p}_1 - \hat{p}_2 \pm z_{(1-\gamma)/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}.$$

Exercise. Let p_{2001} be the fraction of the US adult population that *opposed* same sex marriage in 2001 and let p_{2013} be the corresponding number in 2013. We have the following data from the Pew Research Center.

year

$$\hat{p}_{year}$$
 n_{year}

 2001
 0.59
 3181

 2013
 0.43
 3001

Find the 95% confidence interval for the difference $p_{2013} - p_{2001}$.

Interpretation of the Confidence Interval

- The confidence interval for a parameter θ is based on two statistics
 - $\hat{\theta}_{\ell}(\mathbf{x})$, the lower end of the confidence interval and
 - $\hat{\theta}_{\mu}(\mathbf{x})$, the upper end of the confidence interval.
- As with all statistics, these two statistics cannot be based on the value of the parameter.
 - Their formulas are determined in advance of having the actual data.
- Thus, the term confidence can be related to the *production* of confidence intervals.
 - If we produce independent confidence intervals repeatedly, then
 - each time, we may either succeed or fail to include the true parameter in the confidence interval.
 - The inclusion of the parameter value in the confidence interval is a Bernoulli trial with success probability γ .

Interpretation of the Confidence Interval

Exercise. Below are 100 confidence interval built from simulating independent normal random variables and constructing 95% confidence intervals. Which fail to include the mean value - 0?

