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One-Sided Tests

Introduction
For a composite hypothesis

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1,

we have seen critical regions defined by taking a statistic T (x) and defining the critical
region based on a critical value k̃α. For a one-sided test, we have seen critical regions

{x;T (x) ≥ k̃α} or {x;T (x) ≤ k̃α}.

For a two-sided test, we saw
{x; |T (x)| ≥ k̃α}.

k̃α is determined by the level α. We thus use commands qnorm, qbinom, or qhyper
when T (x) has, respectively, a normal, binomial, or hypergeometric distribution under
a appropriate choice of θ ∈ Θ0. We now examine extensions of the likelihood ratio test
for simple hypotheses that have desirable properties for a critical region.
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One-Sided Tests

One-Sided Tests

In testing for the invasion of a mimic butterfly by a model species, we collected a
simple random sample modeled as independent normal observations with unknown
mean and known variance σ20.

We discovered, in the case of a simple hypothesis test,

H0 : µ = µ0 versus H1 : µ = µ1

that the critical region as determined by the Neyman-Pearson lemma depends only on
whether or not µ1 was greater than µ0. For example, if µ1 > µ0, then the critical region

C = {x; x̄ ≥ k̃α}

shows that we reject H0 whenever the sample mean is higher than some threshold
value k̃α irrespective of the difference between µ0 and µ1.
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One-Sided Tests

One-Sided Tests

• If a test is most powerful against each possible alternative in a simple hypothesis
test, when we can say that this test is in some sense best overall for a composite
hypothesis?

• Does this test have the property that its power function π is greater for every
value of θ ∈ Θ1 than the power function of any other test. Such a test is called
uniformly most powerful.

• We can hope such a test if the procedures from simple hypotheses results in a
common critical region for all values of the alternative.

• In the example above using independent normal data. In this case, the power
function

π(µ) = Pµ{X̄ ≥ kα}
increases as µ increases and so the test has the intuitive property of becoming
more powerful with increasing µ.
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One-Sided Tests

Karlin-Rubin Theorem
In general, we look for a test statistic T (x). Next, we check that the likelihood ratio,

L(θ2|x)

L(θ1|x)
, θ1 < θ2.

depends on the data x only through the value of statistic T (x) and, in addition, this
ratio is a monotone increasing function of T (x).

The Karlinin-Rubin theorem states:

If these conditions hold, then for an appropriate value of k̃α,

C = {x;T (x) ≥ k̃α}

is the critical region for a uniformly most powerful α level test for the one-sided
alternative hypothesis

H0 : θ ≤ θ0 versus H1 : θ > θ0.
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One-Sided Tests

Karlin-Rubin Theorem
A corresponding criterion holds for the one sided test a “less than” alternative.

Exercise. Verify that the likelihood ratio is an appropriate monotone function of the
given test statistic, T .

1. For mark and recapture, use the hypothesis

H0 : N ≥ N0 versus H1 : N < N0,

use the test statistic T (x) = r(x), the number tagged in the second capture.

2. For X = (X1, . . . ,Xn) is a sequence of Bernoulli trials with unknown success
probability p, and the one-sided test

H0 : p ≤ p0 versus H1 : p > p0,

use the test statistic T (x) = p̂(x), the sample proportion of successes.
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One-Sided Tests

Binomial Test
If 20 out of 36 bee hives survive a severe winter, for an α = 0.05 level test for

H0 : p ≥ 0.7 versus H1 : p < 0.7,

we use the binomial distribution for the number of successes using binom.test.

> binom.test(20,36,p=0.7,alternative=c("less"))

Exact binomial test

data: 20 and 36

number of successes = 20, number of trials = 36, p-value = 0.04704

alternative hypothesis: true probability of success is less than 0.7

Exercise. Do we reject the hypothesis at the 5% level? the 1% level? Find the p-value
using the pbinom command.

8 / 12



One-Sided Tests

Proportion Test

If 250 out of 336 bee hives survive a mild winter, for an α = 0.05 level test for

H0 : p ≤ 0.7 versus H1 : p > 0.7,

we use the normal approximation for the number of successes using prop.test.

> prop.test(250,336,p=0.7,alternative=c("greater"))

1-sample proportions test with continuity correction

data: 250 out of 336, null probability 0.7

X-squared = 2.8981, df = 1, p-value = 0.04434

and we reject the null hypothesis.

9 / 12



One-Sided Tests

Continuity Correction

The p-value is P{X ≥ 250}
where X is Bin(336, 0.7). We
compute this using R.

P{X ≥ 250} = 1− P{X ≤ 249}

> 1-pbinom(249,336,0.7)

[1] 0.0428047

The command prop.test uses a
normal approximation and a con-
tinuity correction to obtain a p-
value 0.04434
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The p-value P{X ≥ x} =
∑n

y=x P{X = y} can be realized

as the area of rectangles, height P{X = y} and width 1.
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One-Sided Tests

Continuity Correction
The rectangles look like a
Riemann sum for the in-
tegral of the density of a
N(np0,

√
np0(1− p0)) random

variable with lower limit x − 1/2.

> mu<-0.7*336

> sigma<-sqrt(336*0.7*0.3)

> x<-c(249,249.5,250)

> prob<-1-pnorm(x,mu,sigma)

> data.frame(x,prob)

x prob

1 249.0 0.05020625

2 249.5 0.04434199

3 250.0 0.03904269
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The continuity correction replaces the binomial by finding

the area under the normal density with lower limit x−1/2.
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One-Sided Tests

Continuity Correction

Exercise.

1. Create a table of p-values for the hypothesis above for the values
x = 240, . . . , 260 for the number of hives that survive the winter. Compare the
p-values using the binomial distribution and using the normal distribution with the
continuity correction.

2. Use the normal approximation to create a 95% confidence interval for the
proportion of hives that survive the winter.
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