Topic 19 Extensions on the Likelihood Ratio One-Sided Tests

Outline

One-Sided Tests Karlin-Rubin Theorem Binomial Test Proportion Test

Introduction

For a composite hypothesis

 $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$,

we have seen critical regions defined by taking a statistic T(x) and defining the critical region based on a critical value \tilde{k}_{α} . For a one-sided test, we have seen critical regions

$$\{\mathbf{x}; \, \mathcal{T}(\mathbf{x}) \geq \tilde{k}_{lpha}\} \quad ext{or} \quad \{\mathbf{x}; \, \mathcal{T}(\mathbf{x}) \leq \tilde{k}_{lpha}\}.$$

For a two-sided test, we saw

 $\{\mathbf{x}; |T(\mathbf{x})| \geq \tilde{k}_{lpha}\}.$

 k_{α} is determined by the level α . We thus use commands qnorm, qbinom, or qhyper when $\mathcal{T}(\mathbf{x})$ has, respectively, a normal, binomial, or hypergeometric distribution under a appropriate choice of $\theta \in \Theta_0$. We now examine extensions of the likelihood ratio test for simple hypotheses that have desirable properties for a critical region.

In testing for the invasion of a mimic butterfly by a model species, we collected a simple random sample modeled as independent normal observations with unknown mean and known variance σ_0^2 .

We discovered, in the case of a simple hypothesis test,

 $H_0: \mu = \mu_0$ versus $H_1: \mu = \mu_1$

that the critical region as determined by the Neyman-Pearson lemma depends only on whether or not μ_1 was greater than μ_0 . For example, if $\mu_1 > \mu_0$, then the critical region

 $C = \{\mathbf{x}; \bar{\mathbf{x}} \geq \tilde{k}_{lpha}\}$

shows that we reject H_0 whenever the sample mean is higher than some threshold value \tilde{k}_{α} *irrespective* of the difference between μ_0 and μ_1 .

One-Sided Tests

- If a test is most powerful against *each* possible alternative in a simple hypothesis test, when we can say that this test is in some sense *best overall* for a composite hypothesis?
- Does this test have the property that its power function π is greater for every value of θ ∈ Θ₁ than the power function of any other test. Such a test is called uniformly most powerful.
- We can hope such a test if the procedures from simple hypotheses results in a common critical region for all values of the alternative.
- In the example above using independent normal data. In this case, the power function

 $\pi(\mu) = P_{\mu}\{\bar{X} \ge k_{\alpha}\}$

increases as μ increases and so the test has the intuitive property of becoming more powerful with increasing $\mu.$

Karlin-Rubin Theorem

In general, we look for a test statistic $T(\mathbf{x})$. Next, we check that the likelihood ratio,

 $rac{L(heta_2|\mathbf{x})}{L(heta_1|\mathbf{x})}, \quad heta_1 < heta_2.$

depends on the data x only through the value of statistic T(x) and, in addition, this ratio is a monotone increasing function of T(x).

The Karlinin-Rubin theorem states:

If these conditions hold, then for an appropriate value of \tilde{k}_{α} ,

$$C = \{\mathbf{x}; T(\mathbf{x}) \geq \tilde{k}_{\alpha}\}$$

is the critical region for a uniformly most powerful α level test for the one-sided alternative hypothesis

$$H_0: \theta \leq \theta_0$$
 versus $H_1: \theta > \theta_0$.

Karlin-Rubin Theorem

A corresponding criterion holds for the one sided test a "less than" alternative.

Exercise. Verify that the likelihood ratio is an appropriate monotone function of the given test statistic, T.

1. For mark and recapture, use the hypothesis

 $H_0: N \ge N_0 \quad \text{versus} \quad H_1: N < N_0,$

use the test statistic T(x) = r(x), the number tagged in the second capture.
2. For X = (X₁,..., X_n) is a sequence of Bernoulli trials with unknown success probability p, and the one-sided test

 $H_0: p \leq p_0$ versus $H_1: p > p_0$,

use the test statistic $T(\mathbf{x}) = \hat{p}(\mathbf{x})$, the sample proportion of successes.

Binomial Test

If 20 out of 36 bee hives survive a severe winter, for an $\alpha = 0.05$ level test for

```
H_0: p \ge 0.7 versus H_1: p < 0.7,
```

we use the binomial distribution for the number of successes using binom.test.

```
> binom.test(20,36,p=0.7,alternative=c("less"))
```

Exact binomial test

```
data: 20 and 36
number of successes = 20, number of trials = 36, p-value = 0.04704
alternative hypothesis: true probability of success is less than 0.7
```

Exercise. Do we reject the hypothesis at the 5% level? the 1% level? Find the *p*-value using the pbinom command.

Proportion Test

If 250 out of 336 bee hives survive a mild winter, for an $\alpha = 0.05$ level test for

```
H_0: p \le 0.7 versus H_1: p > 0.7,
```

we use the normal approximation for the number of successes using prop.test.

> prop.test(250,336,p=0.7,alternative=c("greater"))

1-sample proportions test with continuity correction

```
data: 250 out of 336, null probability 0.7
X-squared = 2.8981, df = 1, p-value = 0.04434
```

and we reject the null hypothesis.

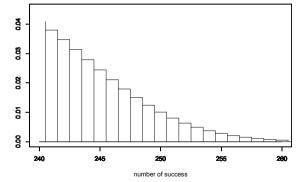
Continuity Correction

The *p*-value is $P\{X \ge 250\}$ where X is Bin(336, 0.7). We compute this using R.

 $P\{X \ge 250\} = 1 - P\{X \le 249\}$

> 1-pbinom(249,336,0.7)
[1] 0.0428047

The command prop.test uses a normal approximation and a continuity correction to obtain a *p*-value 0.04434



The *p*-value $P\{X \ge x\} = \sum_{y=x}^{n} P\{X = y\}$ can be realized as the area of rectangles, height $P\{X = y\}$ and width 1.

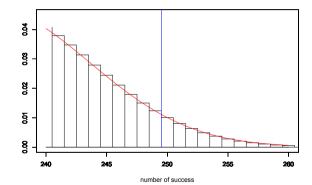
Continuity Correction

The rectangles look like a Riemann sum for the integral of the density of a $N(np_0, \sqrt{np_0(1-p_0)})$ random variable with lower limit x - 1/2.

- > mu<-0.7*336
- > sigma<-sqrt(336*0.7*0.3)
- > x<-c(249,249.5,250)</pre>
- > prob<-1-pnorm(x,mu,sigma)</pre>
- > data.frame(x,prob)

x prob 1 249.0 0.05020625 2 249.5 0.04434199

3 250.0 0.03904269



The continuity correction replaces the binomial by finding the area under the normal density with lower limit x - 1/2.

Continuity Correction

Exercise.

- 1. Create a table of *p*-values for the hypothesis above for the values $x = 240, \ldots, 260$ for the number of hives that survive the winter. Compare the *p*-values using the binomial distribution and using the normal distribution with the continuity correction.
- 2. Use the normal approximation to create a 95% confidence interval for the proportion of hives that survive the winter.