Convergence in Distribution& the Central Limit Theorem

Homework 12

Problems

- 1. Let X_1, X_2, \ldots, X_n are independent geometric random variables with parameter 1/4.
 - (a) Give the mean and standard deviation for these random variables.
 - (b) Compute the skewness of these random variables.
 - (c) Let $Y_n = (X_1 + \cdots + X_n)/n$. Find the mean, variance, and skewness of Y_n .
 - (d) Using Sugden's criterion, find the minimum sample size for the application of the central limit theorem.
 - (e) Simulate 10000 observations of Y_n for n = 100. Make histograms and describe them.
 - (f) Estimate $P\{Y_{100} > 3\}$ using the central limit theorem and compare this to the value given by the simulation.
 - (g) Estimate the value of y so that $P\{Y_{100} < y\} = 0.05$ using both the central limit theorem, the nagative binomial distribution, and the quantile command.
- 2. (Buffon's needle problem) "Suppose we have a floor made of parallel strips of wood, each the same width ℓ , and we drop a needle, length ℓ , onto the floor. What is the probability that the needle will lie across a line between two strips?"

The answer, $1/\pi$, gives us a way to estimate π . Just drop the needle n times and find the mean number of times that the needle lies across a line. For the i-th needle, set $B_i = 1$ if the needle crosses a line and 0 if it does not. Consequently,

$$EB_i = \frac{1}{\pi}, \quad Var(B_i) = \frac{\pi - 1}{\pi^2}.$$

Drop n needles. The case n = 10 is shown in the figure.

- (a) Find EB.
- (b) $Var(\bar{B})$.
- (c) Estimate π by using $\hat{\pi} = 1/B$. Use the delta method to estimate the standard deviation $\sigma_{\hat{\pi}}$ for n = 1600. (Hint: Use g(b) = 1/b and evaluate at $b = 1/\pi$.)

Challenging Problems

1. For the delta method example on bird fecunity, minimize over the choices for n_F, n_p, n_N

$$\left(\frac{\sigma_{\hat{B}}}{B}\right)^2 = \frac{1}{n_F} \left(\frac{\sigma_F}{F}\right)^2 + \frac{1}{n_p} \left(\frac{1-p}{p}\right) + \frac{1}{n_N} \left(\frac{\sigma_N}{N}\right)^2.$$

subject to a fixed cost $C = c_F n_F + c_p n_p + c_N n_N$ where c_F, c_p, c_N are the cost for each observation from each source. (This can be determined using Lagrange multipliers.)

2. Show that the t_{ν} density converges to the N(0,1) as the number of degrees of freedom $\nu \to \infty$. (Use Stirling's formula.)