
Topic 11: The Central Limit Theorem∗

October 11 and 18, 2011

1 Introduction
In the discussion leading to the law of large numbers, we saw visually that the sample means converges to the distri-
butional mean. In symbols,

X̄n → µ as n→∞.

Using the Pythagorean theorem for independent random variables, we obtained the more precise statement that the
standard deviation of X̄n is inversely proportional to

√
n, the square root of the number of observations. For example,

for simulations based on observations of independent random variables, uniformly distributed on [0, 1], we see, as
anticipated, the running averages converging to

µ =
∫ 1

0

xfX(x) dx =
∫ 1

0

x dx =
x2

2

∣∣∣1
0

=
1
2
,

the distributional mean.
Now, we zoom around the mean value of µ = 1/2. Because the standard deviation σX̄n

∝ 1/
√
n, we magnify the

difference between the running average and the mean by a factor of
√
n and investigate the graph of

√
n

(
1
n
Sn − µ

)
versus n. The results of a simulation are displayed in Figure 1.

As we see in Figure 2, even if we extend this simulation for larger values of n, we continue to see fluctuations
about the center of roughly the same size and the size of the fluctuations for a single realization of a simulation cannot
be predicted in advance.

Thus, we focus on addressing a broader question: Does the distribution of the size of these fluctuations have any
regular and predictable structure? This question and the investigation that led to led to its answer, the central limit
theorem, constitute one of the most important episodes in mathematics.

2 The Classical Central Limit Theorem
Let’s begin by examining the distribution for the sum ofX1, X2 . . . Xn, independent and identically distributed random
variables

Sn = X1 +X2 + · · ·+Xn,

what distribution do we see? Let’s look first to the simplest case, Xi Bernoulli random variables. In this case, the sum
Sn is a binomial random variable. We look at two cases - in the first we keep the number of trials the same at n = 100
and vary the success probability p. In the second case, we keep the success probability the same at p = 1/2, but vary
the number of trials.
∗ c© 2011 Joseph C. Watkins
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Figure 1: a. Running average of independent random variables, uniform on [0, 1]. b. Running average centered at the mean value of 1/2 and
magnified by

√
n.
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Figure 2: Running average centered at the mean value of 1/2 and magnified by
√

n extended to 2000 steps.

The curves in Figure 3 are looking like bell curves. Their center and spread vary in ways that are predictable. The
binomial random variable Sn has

mean np and standard deviation
√
np(1− p).
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Figure 3: a. Successes in 100 Bernoulli trials with p = 0.2, 0.4, 0.6 and 0.8. b. Successes in Bernoulli trials with p = 1/2 and n = 20, 40 and
80.

Thus, if we take the standarized version of these sums of Bernoulli random variables

Zn =
Sn − np√
np(1− p)

,

then these bell curve graphs would lie on top of each other.
For our next example, we look at the density of the sum of standardized exponential random variables. The

exponential density is strongly skewed and so we have have to wait for larger values of n before we see the bell curve
emerge. In order to make comparisons, we examine standardized versions of the random variables with mean µ and
variance σ2.

To accomplish this,

• we can either standardize using the sum Sn having mean nµ and standard deviation σ
√
n, or

• we can standardize using the sample mean X̄n having mean µ and standard deviation σ/
√
n.

This yields two equivalent versions of the z-score.

Zn =
Sn − nµ
σ
√
n

=
X̄n − µ
σ/
√
n

=
√
n

σ
(X̄n − µ). (1)

In Figure 4, we see the densities approaching that of the bell curve for a standard normal random variables. Even
for the case of n = 32, we see a small amount of skewness that is a remnant of the skewness in the exponential density.

The theoretical result behind these numerical explorations is called the classical central limit theorem:

Let {Xi; i ≥ 1} be independent random variables having a common distribution. Let µ be their mean and σ2 be
their variance. Then Zn, the standardized scores defined by equation (1), converges in distribution to Z a standard
normal random variable. More precisely, the distribution function FZn converges to Φ, the distribution function of the
standard normal.
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Figure 4: Displaying the central limit theorem graphically. Density of the standardized version of the sum of n independent
exponential random variables for n = 2 (dark blue), 4 (green), 8 (red), 16 (light blue), and 32 (magenta). Note how the skewness
of the exponential distribution slowly gives way to the bell curve shape of the normal distribution.

lim
n→∞

FZn(z) = lim
n→∞

P{Zn ≤ z} =
1√
2π

∫ z

−∞
e−x

2/2 dx = Φ(z).

We abbreviate convergence in distribution by writing

Zn →D Z

In practical terms the central limit theorem states that P{a < Zn ≤ b} ≈ P{a < Z ≤ b} = Φ(b)− Φ(a).
This theorem is an enormously useful tool in providing good estimates for probabilities of events depending on

either Sn or X̄n. We shall begin to show this in the following examples.

Example 1. For Bernoulli random variables, µ = p and σ =
√
p(1− p). Sn is the number of successes in n

Bernoulli trials. In this situation, the sample mean is the fraction of trials that result in a success. This is generally
denoted by p̂ to indicate the fact that it is a sample proportion.

The normalized versions of Sn and p̂ are equal to

Zn =
Sn − np√
np(1− p)

=
p̂n − p√
p(1− p)/n

,

For example, in 100 tosses of a fair coin, µ = 1/2 and σ =
√

1/2(1− 1/2) = 1/2. Thus,

Z100 =
S100 − 50

5
.

So,

P{S100 > 65} = P

{
S100 − 50

5
> 3
}
≈ P{Z100 > 3} ≈ 0.0013.

> 1-pnorm(3)
[1] 0.001349898
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Figure 5: Mass function for a Bin(100, 0.3) random variable (black) and approximating normal density N(100 · 0.3,
√

100 · ·0.3 · 0.7).

We could also write,

Z100 =
p̂− 1/2

1/20
= 20(p̂− 1/2).

and
P{p̂ ≤ 0.40} = P{20(p̂− 1/2) ≤ 20(0.4− 1/2)} = P{Zn ≤ −2} ≈ 0.023.

> pnorm(-2)
[1] 0.02275013

Remark 2. We can improve the normal approximation to the binomial random variable by employing the continuity
correction. For a binomial random variable X , the distribution function

P{X ≤ x} = P{X < x+ 1} =
x∑
y=0

P{X = y}

can be realized as the area of x+ 1 rectangles, height P{X = y}, y = 0, 1, . . . , x and width 1. These rectangles look
like a Riemann sum for the integral up to the value x+ 1/2. For the example in Figure 5, P{X ≤ 32} = P{X < 33}
is the area of 33 rectangles. This right side of rectangles is at the value 32.5. Thus, for the approximating normal
random variable Y , this suggests computing P{Y ≤ 32.5}. In this example the exact value

> pbinom(32,100,0.3)
[1] 0.7107186

Comparing this to possible choices for the normal approximations

> x<-c(32,32.5,33)
> data.frame(x,prob)

x prob
1 32.0 0.6687397
2 32.5 0.7073105
3 33.0 0.7436546

This shows a difference of 0.0034.
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Example 3. Opinion polls are generally designed to be modeled as Bernoulli trials. The number of trials n is set to
give a prescribed value m of two times the standard deviation of p̂. This value of m is an example of a margin of
error. The standard deviation √

p(1− p)/n

takes on its maximum value for p = 1/2. For this case,

m = 2

√
1
2

(
1− 1

2

)
/n =

1√
n

Thus,

n =
1
m2

We display the results in R for typical values of m.

> m<-seq(0.01,0.05,0.01)
> n<-1/mˆ2
> data.frame(m,n)

m n
1 0.01 10000.000
2 0.02 2500.000
3 0.03 1111.111
4 0.04 625.000
5 0.05 400.000

Exercise 4. We have two approximation methods for a large number n of Bernoulli trials - Poisson, which applies
then p is small and their product λ = np is moderate and normal when the mean number of successes np or the mean
number of failures n(1−p) is sufficiently large. Investigate the approximation of the distribution,X , a Poisson random
variable, by the distribution of a normal random variable, Y , for the case λ = 16. Use the continuity correction to
compare

P{X ≤ x} to P{Y ≤ x+
1
2
}.

Example 5. For exponential random variables µ = 1/λ and σ = 1/λ and therefore

Zn =
Sn − n/λ√

n/λ
=
λSn − n√

n
.

Let T64 be the sum of 64 independent with parameter λ = 1. Then, µ = 1 and σ = 1. So,

P{T64 < 60} = P

{
T64 − 64

8
< −60− 64

8

}
= P

{
T64 − 64

8
< −1

2

}
= P{Z64 < −0.5} ≈ 0.309.

Example 6. Video projector light bulbs are known to have a mean lifetime of µ = 100 hours and standard deviation
σ = 75. The university uses the projectors for 9000 hours per semester. How likely are 100 light bulbs to be sufficient
for the semester?

Let S100 be the total lifetime of the 100 bulbs. We are asking for the probability that {S100 > 9000}. Note that
this event is equivalent to

Z100 =
S100 − 10000

75 ·
√

100
>

9000− 10000
75 ·
√

100
= −4

3

and, by the central limit theorem, P{Z100 > 4/3} ≈ 0.909.

Exercise 7. Use the central limit theorem to estimate the number of light bulbs necessary to have a 1% chance of
running out of light bulbs before the semester ends.
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Exercise 8. Simulate 1000 times, x̄, the sample mean of 100 random variables, uniformly distributed on [0, 1]. Show
a histogram for these simulations to see the approximation to a normal distribution. Find the mean and standard
deviations for the simulations and compare them to their distributional values. Use both the simulation and the
central limit theorem to estimate the 35th percentile of X̄ .

3 Propagation of Error
Propagation of error or propagation of uncertainty is a strategy to estimate the impact on the standard deviation
of the consequences of a nonlinear transformation of a measured quantity whose measurement is subject to some
uncertainty.

For any random variable Y with mean µY and standard deviation σY , we will be looking at linear functions aY +b
for Y . Recall that

E[aY + b] = aµY + b, Var(aY + b) = a2Var(Y ).

We will apply this to the linear approximation of g(Y ) about the point µY .

g(Y ) ≈ g(µY ) + g′(µY )(Y − µY ). (2)

If we take expected values, then

Eg(Y ) ≈ E[g(µY ) + g′(µY )(Y − µY )] = g(µY ) + g′(µY )E]Y − µY ] = g(µY ) + 0 = g(µY ).

The variance

Var(g(Y )) ≈ Var(g′(µY )(Y − µY )) = g′(µY )2Var(Y − µY ) = g′(µY )2σ2
Y .

Thus, the standard deviation
σg(Y ) ≈ |g′(µY )|σY (3)

gives what is known as the propagation of error.
If Y is meant to be some measurement of a quantity q with a measurement subject to error, then saying that

q = µY = EY

is stating that Y is an unbiased estimator of q. In other words, Y does not systematically overestimate or under-
estimate q. The standard deviation σY gives a sense of the variability in the measurement apparatus. However, if
we measure Y but want to give not an estimate for q, but an estimate for a function of q, namely g(q), its standard
deviation is approximation by formula (3).

Example 9. Let Y be the measurement of a side of a cube with length `. Then Y 3 is an estimate of the volume of the
cube. If the measurement error has standard deviation σY , then, taking g(y) = y3, we see that the standard deviation
of the error in the measurement of the volume

σY 3 ≈ 3q2σY .

If we estimate q with Y , then
σY 3 ≈ 3Y 2σY .

To estimate the coefficient volume expansion α3 of a material, we begin with a material of known length `0 at
temperature T0 and measure the length `1 at temperature T1. Then, the coefficient of linear expansion

α1 =
`1 − `0

`0(T1 − T0)
.

If the measure length of `1 is Y . We estimate this by

α̂1 =
Y − `0

`0(T1 − T0)
.
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Then, if a measurement Y of `1 has variance σ2
Y , then

Var(α̂1) =
σ2
Y

`20(T1 − T0)2
σα̂1 =

σY
`0|T1 − T0|

.

Now, we estimate

α3 =
`31 − `30

`30(T1 − T0)
by α̂3 =

Y 3 − `30
`30(T1 − T0)

and
σα̂3 ≈ 3Y 2 σY

`30|T1 − T0|
.

Exercise 10. In a effort to estimate the angle θ of the sun, the length ` of a shadow from a 10 meter flag pole is
measured. If σˆ̀ is the standard deviation for the length measurement, use propagation of error to estimate σθ̂, the
standard deviation in the estimate of the angle.

Often, the function g is a function of several variables. We will show the multivariate propagation of error in
the two dimensional case noting that extension to the higher dimensional case is straightforward. Now, for random
variables Y1 and Y2 with means µ1 and µ2 and variances σ2

1 and σ2
2 , the linear approximation about the point (µ1, µ2)

is
g(Y1, Y2) ≈ g(µ1, µ2) +

∂g

∂y1
(µ1, µ2)(Y1 − µ1) +

∂g

∂y2
(µ1, µ2)(Y2 − µ2).

As before,
Eg(Y1, Y2) ≈ g(µ1, µ2).

For Y1 and Y2 independent, we also have that the random variables

∂g

∂y1
(µ1, µ2)(Y1 − µ1) and

∂g

∂y2
(µ1, µ2)(Y2 − µ2)

are independent. Because the variance of the sum of independent random variables is the sum of their variances, we
have the approximation

σ2
g(Y1,Y2) = Var(g(Y1, Y2)) ≈ Var(

∂g

∂y1
(µ1, µ2)(Y1 − µ1)) + Var(

∂g

∂y2
(µ1, µ2)(Y2 − µ2))

=
(
∂g

∂y1
(µ1, µ2)

)2

σ2
1 +

(
∂g

∂y2
(µ1, µ2)

)2

σ2
2 .

and consequently, the standard deviation,

σg(Y1,Y2) ≈

√(
∂g

∂y1
(µ1, µ2)

)2

σ2
1 +

(
∂g

∂y2
(µ1, µ2)

)2

σ2
2 .

Exercise 11. Repeat the exercise in the case that the height h if the flag poll is also unknown and is measured
independently of the shadow length with standard deviation σĥ. Comment on the case in which the two standard
deviations are equal.

Exercise 12. Generalize the formula for the variance to the case of g(Y1, Y2, . . . , Yd) for independent random vari-
ables Y1, Y2, . . . , Yd.

Example 13. In the previous example, we now estimate the volume of an `0×w0×h0 rectangular solid with the mea-
surements Y1, Y2, and Y3 for, respectively, the length `0, width w0, and height h0 with respective standard deviations
σ`, σw, and σh. Here, we take g(`, w, h) = `wh, then

∂g

∂`
(`, w, h) = wh,

∂g

∂w
(`, w, h) = `h,

∂g

∂h
(`, w, h) = `w
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and

σg(Y1,Y2,Y3) ≈

√(
∂g

∂`
(`0, w0, h0)

)2

σ2
` +

(
∂g

∂w
(`0, w0, h0)

)2

σ2
w +

(
∂g

∂h
(`0, w0, h0)

)2

σ2
h

=
√

(wh)2σ2
1 + (`h)2σ2

2 + (`w)2σ2
3 .

4 Delta Method

1 1.5 2
1

1.5

2

2.5

3

3.5

4

Figure 6: Illustrating the delta method. Here µ =
EX̄ = 1.5 and the blue curve g(x) = x2. Thus,
g(X̄) is approximately normal with approximate
mean 2.25 and σg(X̄) ≈ 3σX̄ . The bell curve on
the y-axis is the reflection of the bell curve on the
x-axis about the (black) tangent line y = g(µ) +
g′(µ)(x− µ).

Let’s use repeated independent measurements, Y1, Y2, . . . Yn to esti-
mate a quantity q by its sample mean Ȳ . If each measurement has
mean µY and variance σ2

Y , then Ȳ has mean q = µY and variance
σ2
Y /n. We can apply the propagation of error analysis based on a

linear approximation of g(Ȳ ) to obtain

g(Ȳ ) ≈ g(µY ), and Var(g(Ȳ ) ≈ g′(µY )2σ
2
Y

n
.

Thus, the reduction in the variance in the estimate of q “propagates”
to a reduction in variance in the estimate of g(q).

However, the central limit theorem gives us some additional in-
formation. Returning to the linear approximation (2)

g(Ȳ ) ≈ g(µY ) + g′(µY )(Ȳ − µY ).

The central limit theorem tells us that Ȳ has a nearly normal dis-
tribution. Thus, the linear approximation to g(Ȳ ) also has nearly
a normal distribution. Moreover, with repeated measurements, the
variance of Ȳ is the variance of a single measurement divided by n.
As a consequence, the linear approximation under repeated measure-
ments yields a better approximation because the reduction in vari-
ance implies that the difference Ȳ − µY is more likely to be small.

The delta method combines the central limit theorem and the
propagation of error. To see this write,

Zn =
g(Ȳ )− g(µy)
|g′(µY )|σY /

√
n
.

Then, Zn converges in distribution to a standard normal random
variable. In this way, the delta method greatly extends the applica-
bility of the central limit theorem.

Let’s return to our previous example on thermal expansion.

Example 14. Let Y1, Y2, . . . , Yn be repeated unbiased measurement
of a side of a cube with length `1 and temperature T1. We use Ȳ to
estimate the length at temperature T1 for the coefficient of linear
expansion.

α̂1 =
Ȳ − `0

`0(T1 − T0)
.

Then, if each measurement Yi has variance σ2
Y ,

Var(α̂1) =
σ2
Y

`20(T1 − T0)2n
σα̂1 =

σY
`0|T1 − T0|

√
n
.
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Now, we estimate the coefficient of volume expansion by

α̂3 =
Ȳ 3 − `30

`30(T1 − T0)

and

σα̂3 ≈
3Ȳ 2σY

`30|T1 − T0|
√
n
.

By the delta method,

Zn =
α̂3 − α3

σα̂3

has a distribution that can be well approximated by a standard normal random variable.

The next natural step is to take the approach used for the propagation of error in a multidimensional setting and ex-
tend the delta method. Focusing on the three dimensional case, we have three independent sequences (Y1,1, . . . , Y1,n1),
(Y2,1, . . . , Y2,n2) and (Y3,1, . . . , Y3,n3) of independent random variables. The observations in the i-th sequence have
mean µi and variance σ2

i for i = 1, 2 and 3. We shall use Ȳ1, Ȳ2 and Ȳ3 to denote the sample means for the three sets
of observations. Then, Ȳi has

mean µi and variance σ2
i

ni
for i = 1, 2, 3.

From the propagation of error linear approximation, we obtain

Eg(Ȳ1, Ȳ2, Ȳ3) ≈ g(µ1, µ2, µ3)

and

σ2
g(Ȳ1,Ȳ2,Ȳ3) = Var(g(Ȳ1, Ȳ2, Ȳ3)) ≈ ∂g

∂y1
(µ1, µ2, µ3)2σ

2
1

n1
+

∂g

∂y2
(µ1, µ2, µ3)2σ

2
2

n2
+

∂g

∂y3
(µ1, µ2, µ3)2σ

2
3

n3
. (4)

To obtain the normal approximation associated with the delta method, we need to have the additional fact that the sum
of independent normal random variables is also a normal random variable. Thus, we have that, for n large,

Zn =
g(Ȳ1, Ȳ2, Ȳ3)− g(µ1, µ2, µ3)

σg(Ȳ1,Ȳ2,Ȳ3)

is approximately a standard normal random variable.

Example 15. In avian biology, the fecundity B is defined as the number of female fledglings per female per year. B
is a product of three random variables,

B = F · p ·N,

where µF equals mean number of female fledglings per successful nest, p equals nest survival probability, and µN
equals the mean number of nests built per female per year. Let’s collect measurement on n1 nests to count female
fledglings in a successful nest, check n2 nests for survival probability, and follow n3 females to count the number of
successful nests per year. Our experimental design is structured so that measurements are independent. Then, using
(4), to B = g(F, p.N) = F · p ·N

σ2
B,n =

1
n1

(pµNσF )2 +
1
n2

(µFµFNσp)2 +
1
n3

(pµFσN )2.

Using the fact that σ2
p = p(1 − p) for a Bernoulli random variable, we can write the expression above upon dividing

by µ2
B = µ2

F p
2µ2
N as(

σ2
B,n

µB

)2

=
1
n1

(
σF
µF

)2

+
1
n2

(
σp
p

)2

+
1
n3

(
σN
µN

)2

=
1
n1

(
σF
µF

)2

+
1
n2

(
1− p
p

)
+

1
n3

(
σN
µN

)2

.
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This gives the individual contributions to the variance of B from each of the three data collecting activities. The
values of n1, n2, and n3 can be adjusted in the collection of data to minimize the variance of B under a variety of
experimental designs. In general, the largest choice of the ni should be chosen to reduce the highest of the three ratios
in parentheses..

Estimates for σ2
B,n can be found from the field data. Compute sample means

F̄ , p̂, and N̄ ,

and sample variance
s2
F , p̂(1− p̂) and s2

N .

So we estimate the variance in fecundity

s2
B,n =

1
n1

(p̂N̄sF )2 +
1
n2

(F̄ N̄)2p̂(1− p̂) +
1
n3

(p̂F̄ sN )2

Exercise 16. Give the formula for σ2
B,n in the case that measurements for F , p, and N are not independent.

This topic leads us naturally to the next topic - a more general discussion of estimation of parameters. We finish
the discussion on the central limit theorem with a summary of some of its applications.

5 Summary of Normal Approximations
The z-score of some random quantity is

Z =
random quantity−mean

standard deviation
.

The central limit theorem and extensions like the delta method tell us when the z-score has an approximately
standard normal distribution. Thus, using R, we can find good approximations for the probabilities of P{Z < z},
pnorm(z) and P{Z > z} using 1-pnorm(z) or P{z1 < Z < z2} using the difference pnorm(z2) -
pnorm(z1)

5.1 Sample Sum
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Figure 7: The density function for Sn for a random sample of size n = 10 (red), 20
(green), 30 (blue), and 40 (purple). In this example, the observations are normally
distributed with mean µ = 1 and standard deviation σ = 10.

If we have a sum Sn of n indepen-
dent random variables, X1, X2, . . . Xn

whose common distribution has mean
µ and variance σ2, then

• the mean ESn = nµ,

• the variance Var(Sn) = nσ2,

• the standard deviation is σ
√
n.

Thus, Sn is approximately normal with
mean nµ and variance nσ2. The z-
score in this case is

Zn =
Sn − nµ
σ
√
n

.

We can approximate P{Sn < x}
by noting that this is the same as com-
puting

Zn =
Sn − nµ
σ
√
n

<
x− nµ
σ
√
n

= z
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and finding P{Zn < z} using the standard normal distribution.

For the special case of Bernoulli trials with success probability p, µ = p and σ =
√
p(1− p). In this case, normal

approximations often use a continuity correction.

5.2 Sample Mean
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Figure 8: The density function for X̄ − µ for a random sample of
size n = 1 (black), 10 (red), 20 (green), 30 (blue), and 40 (pur-
ple). In this example, the observations are normally distributed
with standard deviation σ = 10.

For a sample mean X̄ = (X1 +X2 + · · ·+Xn)/n,

• the mean EX̄ = µ,

• the variance Var(X̄) = σ2/n,

• the standard deviation is σ/
√
n.

Thus, X̄ is approximately normal with mean µ and vari-
ance σ2/n. The z-score in this case is

Zn =
X̄ − µ
σ/
√
n
.

Thus,

X̄ < x is equivalent to Zn =
X̄ − µ
σ/
√
n
<
x− µ
σ/
√
n
.

5.3 Sample Proportion

For Bernoulli trials X1, X2, . . . Xn with success proba-
bility p, Let p̂ = (X1 +X2 + · · ·+Xn)/n be the sample
proportion. Then

• the mean Ep̂ = p,

• the variance Var(p̂) = p(1− p)/n,

• the standard deviation is
√
p(1− p)/n.

Thus, p̂ is approximately normal with mean p and variance p(1− p)/n. The z-score in this case is

Zn =
p̂− p√

p(1− p)/n
.

5.4 Delta Method

For the delta method in one variable using X̄ and a function g, for a sample mean X̄ = (X1 +X2 + · · ·+Xn)/n, we
have

• the mean Eg(X̄) ≈ g(µ),

• the variance Var(g(X̄)) ≈ g′(µ)2σ2/n,

• the standard deviation is |g′(µ)|σ/
√
n.
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Thus, g(X̄) is approximately normal with mean g(µ) and variance g′(µ)2σ2/n. The z-score is

Zn =
g(X̄)− g(µ)
|g′(µ)|σ/

√
n
.

For the two variable delta method, we now have two independent sequences of independent random variables,
X1, X2, . . . Xn1 whose common distribution has mean µ1 and variance σ2

1 and Y1, Y2, . . . Yn2 whose common distri-
bution has mean µ2 and variance σ2

2 . For a function g of the sample means, we have that

• the mean Eg(X̄, Ȳ ) ≈ g(µ1, µ2),

• the variance

Var(g(X̄, Ȳ )) = σ2
g,n ≈

(
∂

∂x
g(µ1, µ2)

)2
σ2

1

n1
+
(
∂

∂y
g(µ1, µ2)

)2
σ2

2

n2
,

• the standard deviation is σg,n.

Thus, g(X̄, Ȳ ) is approximately normal with mean g(µ1, µ2) and variance σ2
g,n. The z-score is

Zn =
g(X̄, Ȳ )− g(µ1, µ2)

σg,n
.

The generalization of the delta method to higher dimensional data will add terms to the variance formula.

6 Answers to Selected Exercises
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Figure 9: Circles indicate the mass function for a Pois(16) ran-
dom variable. The red curve is the density function of a N(16, 4)
random variable. The plots show that the Poisson random vari-
able is slightly more skewed to the right that the normal.

3. A Poisson random variable with parameter λ = 16 has mean
16 and standard deviation 4 =

√
16. Thus, we first look at the

maximum difference in the distribution function of a Pois(4)
random variable, X , and a N(16, 4) random variable, Y , by
comparing P{X ≤ x} to P{Y ≤ x+ 1

2} in a range around the
mean value of 16.

> x<-c(4:28)
> max(abs(pnorm(x+0.5,16,4)-ppois(x,16)))
[1] 0.01648312

The maximum difference between the distribution function is
approximately 1.6%. To compare the density functions, we
have

> poismass<-dpois(x,16)
> plot(x,poismass,ylim=c(0,0.1),

ylab="probability")
> par(new=TRUE)
> x<-seq(4,28,0.01)
> normd<-dnorm(x,16,4)
> plot(x,normd,ylim=c(0,0.1),

ylab="probability",type="l",col="red")

6. For Z a standard normal random variable to determine z0.01

that satisfies P{Z > z0.01} = 0.01, we use the R command
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> qnorm(0.99)
[1] 2.326348

Thus, we look for the value n that gives a standardized score of z0.01.

2.326348 = z0.01 =
100n− 9000

75 ·
√
n

=
4n− 360

3 ·
√
n

6.979044
√
n = 4n− 360

48.70705n = 129600− 2880n+ 16n2

0 = 129600− 2928.707n+ 16n2

By the quadratic formula, we solve for n.

n =
2928.707 +

√
(2928.707)2 − 4 · 16 · 129600

2 · 16
= 108.1442

So, take n = 109.
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Figure 10: Histogram of the sample means of 100 random vari-
ables, uniformly distrobuted on [0, 1].

7. The R code for the simulations is

> xbar<-rep(0,1000)
> for (i in 1:1000)

{x<-runif(100);xbar[i]<-mean(x)}
> hist(xbar)
> mean(xbar)
[1] 0.498483
> sd(xbar)
[1] 0.02901234
> quantile(xbar,0.35)

35%
0.488918
> qnorm(0.35)
[1] -0.3853205

The mean of a U [0, 1] random variable is µ = 1/2 and its
variance is σ2 = 1/12. Thus the mean of X̄ is 1/2, its standard
deviation is

√
1/(12 · 100) = 0.0289, close to the simulated

values.
The 35th percentile corresponds to a z-score of -0.3853205. Thus,

−0.3853 =
X̄ − µ
σ/
√
n

=
X̄ − 0.5
0.0289

X̄ = −0.3853 · 0.0289 + 0.5 = 0.4889,

agreeing to four decimal places the value given by the simulations of xbar.

10. Using right triangle trigonometry, we have that

θ = g(`) = tan1

(
`

10

)
. Thus, g′(`) =

1/10
1 + (`/10)2

=
10

100 + `2
.

So, σθ̂ ≈ 10/(100 + `2) · σ`. For example, set σ` = 0.1 meter and ` = 5. Then, σθ̂ ≈ 10/125 · 0.1 = 1/125 radians
= 0.49◦.
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11. In this case,

θ = g(`, h) = tan1

(
`

h

)
.

For the partial derivatives, we use the chain rule

∂g

∂`
(`, h) =

1
1 + (`/h)2

(
1
h

)
=

h

h2 + `2
∂g

∂h
(`, h) =

1
1 + (`/h)2

(
−`
h2

)
= − `

h2 + `2

Thus,

σθ̂ ≈

√(
h

h2 + `2

)2

σ2
` +

(
`

h2 + `2

)2

σ2
h =

1
h2 + `2

√
h2σ2

` + `2σ2
h.

If σh = σ`, let σ denote their common value. Then

σθ̂ ≈
1

h2 + `2

√
h2σ2 + `2σ2 =

σ√
h2 + `2

.

In other words, σθ̂ is inversely proportional to the length of the hypotenuse.

12. Let µi be the mean of the i-th measurement. Then

σg(Y1,Y2,·,Ydt) ≈

√(
∂g

∂y1
(µ1, . . . , µd)

)2

σ2
1 +

(
∂g

∂y2
(µ1, . . . , µd)

)2

σ2
2 + · · ·+

(
∂g

∂yd
(µ1, . . . , µd)

)2

σ2
d.

14. Recall that for random variables X1, X2, X3 and constants c1, c2, c3,

Var(c0 + c1X1 + c2X2 + c3X3) =
3∑
i=1

3∑
j=3

cicjCov(Xi, Xj) =
3∑
i=1

3∑
j=3

cicjρi,jσiσj .

where ρi,j is the correlation of Xi and Xj . Note that the correlation of a random variable with itself, ρi,i = 1 Let
F0, p0, N0 be the actual values of the variables under consideration. Then we have the linear approximation,

g(F̂ , p̂, N̂) ≈ g(F0, p0, N0) +
∂g

∂F
(F0, p0, N0)(F̂ − F0) +

∂g

∂p
(F0, p0, N0)(p̂− p0) +

∂g

∂N
(F0, p0, N0)(N̂ −N0).

= g(F0, p0, N0) + p0N0(F̂ − F0) + F0N0(p̂− p0) + F0p0(N̂ −N0)

Matching this to the covariance formula, we have

c0 = g(F0, p0, N0), c1 = p0N0, c2 = F0N0, c3 = F0p0,

X1 = F̂ , X2 = p̂, X3 = N̂ .

Thus,

σ2
B,n =

1
n1

(pNσF )2+
1
n2

(FNσp)2+
1
n3

(pFσN )2+2p0F0N
2
0 ρ1,2

σ1σ2√
n1n2

+2p2
0F0N0ρ1,3

σ1σ3√
n1n3

+2F 2
0 p0N0ρ2,3

σ2σ3√
n2n3

.
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