
Topic 13: Method of Moments∗

October 25, 2011

1 Introduction

Method of moments estimation is based solely on the law of large numbers, which we repeat here:

Let M1,M2, . . . be independent random variables having a common distribution possessing a mean µM . Then the
sample means converge to the distributional mean as the number of observations increase.

M̄n =
1
n

n∑
i=1

Mi → µM as n→∞.

To show how the method of moments determines an estimator, we first consider the case of one parameter. We
start with independent random variables X1, X2, . . . chosen according to the probability density fX(x|θ) associated
to an unknown parameter value θ.

The common mean of the Xi, µX , is a function k(θ) of a one dimensional parameter θ. For example, if the Xi are
continuous random variables, then

µX =
∫ ∞
−∞

xfX(x|θ) dx = k(θ).

The law of large numbers states that

X̄n =
1
n

n∑
i=1

Xi → µX as n→∞.

Thus, if the number of observations n is large, the distributional mean, µ = k(θ), should be well approximated by
the sample mean, i.e.,

X̄ ≈ k(θ).

This can be turned into an estimator θ̂ by setting

X̄ = k(θ̂).

and solving for θ̂.
We shall next describe the procedure in the case of a vector of parameters and then give several examples. We

shall see that the delta method can be used to estimate the variance of method of moment estimators.

∗ c© 2011 Joseph C. Watkins
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2 The Procedure
More generally, for independent random variables X1, X2, . . . chosen according to the probability distribution derived
from the parameter value θ and m a real valued function, if k(θ) = Eθm(X1), then

1
n

n∑
i=1

m(Xi)→ k(θ) as n→∞.

The method of moments results from the choices m(x) = xm. Write

µm = EXm = km(θ). (1)

for the m-th moment.
Our estimation procedure follows from these 4 steps to link the sample moments to parameter estimates.

• Step 1. If the model has d parameters, we compute the functions km in equation (1) for the first d moments,

µ1 = k1(θ1, θ2 . . . , θd), µ2 = k2(θ1, θ2 . . . , θd), . . . , µd = kd(θ1, θ2 . . . , θd),

obtaining d equations in d unknowns.

• Step 2. We then solve for the d parameters as a function of the moments.

θ1 = g1(µ1, µ2, · · · , µd), θ2 = g2(µ1, µ2, · · · , µd), . . . , θd = gd(µ1, µ2, · · · , µd). (2)

• Step 3. Now, based on the data x = (x1, x2, . . . , xn) we compute the first d sample moments,

x, x2, . . . , xd.

Using the law of large numbers, we have that µm ≈ xm.

• Step 4. We replace the distributional moments µm by the sample moments xm, then the solutions in (2) give us
formulas for the method of moment estimators (θ̂1, θ̂2, . . . , θ̂d). For the data, these estimates are

θ̂1(x) = g1(x̄, x2, · · · , xd), θ̂2(x) = g2(x̄, x2, · · · , xd), . . . , θ̂d(x) = gd(x̄, x2, · · · , xd).

How this abstract description works in practice can be best seen through examples.

3 Examples
Example 1. Let X1, X2, . . . , Xn be a simple random sample of Pareto random variables with density

fX(x|β) =
β

xβ+1
, x > 1.

The cumulative distribution function is
FX(x) = 1− x−β , x > 1.

The mean and the variance are, respectively,

µ =
β

β − 1
, σ2 =

β

(β − 1)2(β − 2)
.
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In this situation, we have one parameter, namely β. Thus, in step 1, we will only need to determine the first moment

µ1 = µ = k1(β) =
β

β − 1

to find the method of moments estimator β̂ for β.
For step 2, we solve for β as a function of the mean µ.

β = g1(µ) =
µ

µ− 1
.

Consequently, a method of moments estimate for β is obtained by replacing the distributional mean µ by the sample
mean X̄ .

β̂ =
X̄

X̄ − 1
.

A good estimator should have a small variance . To use the delta method to estimate the variance of β̂, we compute

g′1(µ) = − 1
(µ− 1)2

, giving g′1

(
β

β − 1

)
= − 1

( β
β−1 − 1)2

= − (β − 1)2

(β − (β − 1))2
= −(β − 1)2

and find that β̂ has mean approximately equal to β and variance

σ2
β̂
≈ g′1(µ)2

σ2

n
= (β − 1)4

β

n(β − 1)2(β − 2)
=
β(β − 1)2

n(β − 2)

As a example, let’s consider the case with β = 3 and n = 100. Then,

σ2
β̂
≈ 3 · 22

100 · 1
=

12
100

=
3
25
, σβ̂ ≈

√
3

5
= 0.346.

To simulate this, we first need to simulate Pareto random variables. Recall that the probability transform states that
if the Xi are independent Pareto random variables, then Ui = FX(Xi) are independent uniform random variables on
the interval [0, 1]. Thus, we can simulate Xi with F−1

X (Ui). If

u = FX(x) = 1− x−3, then x = (1− u)−1/3 = v−1/3, where v = 1− u.

Note that ifUi are uniform random variables on the interval [0, 1] then so are Vi = 1−Ui. Consequently,1/ β
√
V1, 1/ β

√
V2, · · ·

have the appropriate Pareto distribution.

> paretobar<-rep(0,1000)
> for (i in 1:1000){v<-runif(100);pareto<-1/vˆ(1/3);paretobar[i]<-mean(pareto)}
> hist(paretobar)
> betahat<-paretobar/(paretobar-1)
> hist(betahat)
> mean(betahat)
[1] 3.053254
> sd(betahat)
[1] 0.3200865
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The sample mean for the estimate for β at 3.053 is close to the simulated value of 3. In this example, the estimator
β̂ is biased upward, In other words, on average the estimate is greater than the parameter, i. e., Eβ β̂ > β. The
sample standard deviation value of 0.320 is close to the value 0.346 estimated by the delta method.

Exercise 2. The muon is an elementary particle with an electric charge of −1 and a spin (an intrinsic angular
momentum) of 1/2. It is an unstable subatomic particle with a mean lifetime of 2.2 µs. Muons have a mass of about
200 times the mass of an electron. Since the muon’s charge and spin are the same as the electron, a muon can be
viewed as a much heavier version of the electron. The collision of an accelerated proton (p) beam having energy 600
MeV with the nuclei of a production target produces positive pions (π+) under one of two possible reactions.

p+ p→ p+ n+ π+ or p+ n→ n+ n+ π+

From the subsequent decay of the pions (mean lifetime 26.03 ns), positive muons (µ+), are formed via the two body
decay

π+ → µ+ + νµ

where νµ is the symbol of a muon neutrino. Neutrinos have been recently reported as traveling faster than the speed
of light. The decay of a muon into a positron (e+), an electron neutrino (νe), and a muon antineutrino (ν̄µ)

µ+ → e+ + νe + ν̄µ

has a distribution angle t with density given by

f(t|α) =
1

2π
(1 + α cos t), 0 ≤ t ≤ 2π,

with t the angle between the positron trajectory and the µ+ -spin and anisometry parameter α ∈ [−1/3, 1/3]
depends the polarization of the muon beam and positron energy. Based on the measurement t1, . . . tn, give the method
of moments estimate α̂ for α. (Note: In this case the mean is 0 for all values of α, so we will have to compute the
second moment to obtain an estimator.)

Example 3 (Lincoln-Peterson method of mark and recapture). The size of an animal population in a habitat of interest
is an important question in conservation biology. However, because individuals are often too difficult to find, a census
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is not feasible. One estimation technique is to capture some of the animals, mark them and release them back into the
wild to mix randomly with the population.

Some time later, a second capture from the population is made. In this case, some of the animals were not in the
first capture and some, which are tagged, are recaptured. Let

• t be the number captured and tagged,

• k be the number in the second capture,,

• r be the number in the second capture that are tagged, and let

• N be the total population size,

We will use a method of moments strategy to estimate N . Let

Xi =
{

1 if the i-th individual in the second capture has a tag.
0 if the i-th individual in the second capture does not have a tag.

The Xi are Bernoulli random variables with success probability

P{Xi = 1} =
t

N
.

They are not Bernoulli trials because the outcomes are not independent. We are sampling without replacement.
For example,

P{the second individual is tagged|first individual is tagged} =
t− 1
N − 1

.

In words, we are saying that stthe probability model behind mark and recapture is one where the number recaptured is
random and follows a hypergeometric distribution. The number of tagged individuals is X = X1 +X2 + · · ·+Xk

and the expected number of tagged individuals is

µ = EX = EX1 + EX2 + · · ·+ EXk =
t

N
+

t

N
+ · · ·+ t

N
=
kt

N
.

Thus,

N =
kt

µ
.

Now in this case, we are only averaging one outcome, namely, we are estimating µ, the mean number of recaptured
with r, the actual number recaptured. So, to obtain the estimate N̂ . we replace µ with the previous equation by r.

N̂ =
kt

r

To simulate mark and capture, consider a population of 2000 fish, tag 200, and capture 400. We perform 1000
simulations of this experimental design.

> r<-rep(0,1000)
> fish<-c(rep(1,200),rep(0,1800))
> for (j in 1:1000){r[j]<-sum(sample(fish,400))}
> Nhat<-200*400/r
> mean(r)
[1] 40.09
> sd(r)
[1] 5.245705
> mean(Nhat)
[1] 2031.031
> sd(Nhat)
[1] 276.6233
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To estimate the population of pink salmon in Deep Cove Creek in southeastern Alaska, 1709 fish were tagged. Of
the 6375 carcasses that were examined, 138 were tagged. The estimate for the population size

N̂ =
6375× 1709

138
≈ 78948.

Exercise 4. Use the delta method to estimate Var(N̂) and σN̂ . Apply this to the simulated sample and to the Deep
Cove Creek data.

Example 5. Fitness is a central concept in the theory of evolution. Relative fitness is quantified as the average number
of surviving progeny of a particular genotype compared with average number of surviving progeny of competing
genotypes after a single generation.

Consequently, the distribution of fitness effects, that is, the distribution of fitness for newly arising mutations is a
basic question in evolution. A basic understanding of the distribution of fitness effects of newly arising mutations is
still in its early stages . Eyre-Walker (2006) examined one particular distribution of fitness effects, namely, deleterious
amino acid changing mutations in humans. His approach used a gamma-family of random variables and gave the
estimate of α̂ = 0.23 and β̂ = 5.35.

A Γ(α, β) random variable has mean α/β and variance α/β2. Because we have two parameters, we will need to
determine the first two moments.

E(α,β)X1 =
α

β
and E(α,β)X

2
1 = Var(α,β)(X1) + E(α,β)[X1]2 =

α

β2
+
(
α

β

)2

=
α(1 + α)

β2
.

Thus, for step 1, we find that

µ1 = k1(α, β) =
α

β
, µ2 = k2(α, β) =

α(1 + α)
β2

.

For step 2, we solve for α and β. Note that
µ2 − µ2

1 =
α

β2
,

µ1

µ2 − µ2
1

=
α/β

α/β2
= β,
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and

µ1 ·
µ1

µ2 − µ2
1

=
α

β
· β = α, or α =

µ2
1

µ2 − µ2
1

.

So set

X̄ =
1
n

n∑
i=1

Xi and X2 =
1
n

n∑
i=1

X2
i

to obtain estimators

β̂ =
X̄

X2 − (X̄)2
and α̂ = β̂X̄ =

(X̄)2

X2 − (X̄)2
.

To investigate the method of moments on simulated data using R, we consider 1000 repetitions of 100 independent
observations of a Γ(0.23, 5.35) random variable.

> xbar <- rep(0,1000)
> x2bar <- rep(0,1000)
> for (i in 1:1000){x<-rgamma(100,0.23,5.35);xbar[i]<-mean(x);x2bar[i]<-mean(xˆ2)}
> betahat <- xbar/(x2bar-(xbar)ˆ2)
> alphahat <- betahat*xbar
> mean(alphahat)
[1] 0.2599513
> sd(alphahat)
[1] 0.06628046
> mean(betahat)
[1] 6.331623
> sd(betahat)
[1] 2.046528
> hist(alphahat,probability=TRUE)
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Figure 1: The density of a Γ(0.23, 5.35) random variable.
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> hist(betahat,probability=TRUE)
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As we see, the variance in the estimate of β is quite large. We will revisit this example using another estimation
method in the hopes of reducing this variance.

4 Answers to Selected Exercises
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Figure 2: Densities f(t|α) for the values of α = −1 (yellow).
−1/3 (red), 0 (black), 1/3 (blue), 1 (light blue).

2. Let T be the random variable that is the angle between
the positron trajectory and the µ+-spin

µ2 = EαT
2 =

1
2π

∫ π

−π
t2(1 + α cos t)dt =

π2

3
− 2α

Thus, α = 3µ/3. This leads to the method of moments
estimate

α̂ =
1
2

(
t2 − π2

3

)
where t2 is the sample mean of the square of the observa-
tions.

4. Let X be the random variable for the number of tagged fish. Then, X is a hypergeometric random variable with

mean µX =
kt

N
and variance σ2

X = k
t

N

N − t
N

N − k
N − 1

N = g(µX) =
kt

µX
. Thus, g′(µX) = − kt

µ2
X

.

The variance of N̂

Var(N̂) ≈ g′(µ)2σ2
X =

(
kt

µ2
X

)2

k
t

N

N − t
N

N − k
N − 1

=
(
kt

µ2
X

)2

k
t

kt/µX

kt/µX − t
kt/µX

kt/µX − k
kt/µX − 1

=
(
kt

µ2
X

)2

k
µXt

kt

kt− µXt
kt

kt− kµX
kt− µX

=
(
kt

µ2
X

)2

k
µX
k

k − µX
k

k(t− µX)
kt− µX

=
k2t2

µ3
X

(k − µX)(t− µX)
kt− µX
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Now if we replace µX by its estimate r we obtain

σ2
N̂
≈ k2t2

r3
(k − r)(t− r)

kt− r
.

For t = 200, k = 400 and r = 40, we have the estimate σN̂ = 268.4. This compares to the estimate of 276.6 from
simulation.

For t = 1709, k = 6375 and r = 138, we have the estimate σN̂ = 6373.4.
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