
Topic 15: Maximum Likelihood Estimation∗

November 1 and 3, 2011

1 Introduction
The principle of maximum likelihood is relatively straightforward. As before, we begin with a sample X =
(X1, . . . , Xn) of random variables chosen according to one of a family of probabilities Pθ. In addition, f(x|θ),
x = (x1, . . . , xn) will be used to denote the density function for the data when θ is the true state of nature.

Then, the principle of maximum likelihood yields a choice of the estimator θ̂ as the value for the parameter that
makes the observed data most probable.

Definition 1. The likelihood function is the density function regarded as a function of θ.

L(θ|x) = f(x|θ), θ ∈ Θ. (1)

The maximum likelihood estimator (MLE),

θ̂(x) = arg max
θ

L(θ|x). (2)

We will learn that especially for large samples, the maximum likelihood estimators have many desirable properties.
However, especially for high dimensional data, the likelihood can have many local maxima. Thus, finding the global
maximum can be a major computational challenge.

This class of estimators has an important property. If θ̂(x) is a maximum likelihood estimate for θ, then g(θ̂(x))
is a maximum likelihood estimate for g(θ). For example, if θ is a parameter for the variance and θ̂ is the maximum

likelihood estimator, then
√
θ̂ is the maximum likelihood estimator for the standard deviation. This flexibility in

estimation criterion seen here is not available in the case of unbiased estimators.
Typically, maximizing the score function, ln L(θ|x), the logarithm of the likelihood, will be easier. Having the

parameter values be the variable of interest is somewhat unusual, so we will next look at several examples of the
likelihood function.

2 Examples
Example 2 (Bernoulli trials). If the experiment consists of n Bernoulli trial with success probability p, then

L(p|x) = px1(1− p)(1−x1) · · · pxn(1− p)(1−xn) = p(x1+···+xn)(1− p)n−(x1+···+xn).

ln L(p|x) = ln p(
n∑
i=1

xi) + ln(1− p)(n−
n∑
i=1

xi) = n(x̄ ln p+ (1− x̄) ln(1− p)).

∂

∂p
ln L(p|x) = n

(
x̄

p
− 1− x̄

1− p

)
= n

x̄− p
p(1− p)

This equals zero when p = x̄.
∗ c© 2011 Joseph C. Watkins
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Exercise 3. Check that this is a maximum.

Thus,
p̂(x) = x̄.

In this case the maximum likelihood estimator is also unbiased.

Example 4 (Normal data). Maximum likelihood estimation can be applied to a vector valued parameter. For a simple
random sample of n normal random variables, we can use the properties of the exponential function to simplify the
likelihood function.

L(µ, σ2|x) =
(

1√
2πσ2

exp
−(x1 − µ)2

2σ2

)
· · ·
(

1√
2πσ2

exp
−(xn − µ)2

2σ2

)
=

1√
(2πσ2)n

exp− 1
2σ2

n∑
i=1

(xi − µ)2.

The score function

ln L(µ, σ2|x) = −n
2

(ln 2π + lnσ2)− 1
2σ2

n∑
i=1

(xi − µ)2.

∂

∂µ
ln L(µ, σ2|x) =

1
σ2

n∑
i=1

(xi − µ) = .
1
σ2
n(x̄− µ)

Because the second partial derivative with respect to µ is negative,

µ̂(x) = x̄

is the maximum likelihood estimator. For the derivative of the score function with respect to the parameter σ2,

∂

∂σ2
ln L(µ, σ2|x) = − n

2σ2
+

1
2(σ2)2

n∑
i=1

(xi − µ)2 = − n

2(σ2)2

(
σ2 − 1

n

n∑
i=1

(xi − µ)2
)
.

Recalling that µ̂(x) = x̄, we obtain

σ̂2(x) =
1
n

n∑
i=1

(xi − x̄)2.

Note that the maximum likelihood estimator is a biased estimator.

Example 5 (Lincoln-Peterson method of mark and recapture). Let’s recall the variables in mark and recapture:

• t be the number captured and tagged,

• k be the number in the second capture,

• r the the number in the second capture that are tagged, and let

• N be the total population.

Here t and k is set by the experimental design; r is an observation that may vary. The total population N is
unknown. The likelihood function for N is the hypergeometric distribution.

L(N |r) =

(
t
r

)(
N−t
k−r
)(

N
k

)
We would like to maximize the likelihood given the number of recaptured individuals r. Because the domain for N
is the nonnegative integers, we cannot use calculus. However, we can look at the ratio of the likelihood values for
successive value of the total population.

L(N |r)
L(N − 1|r)
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Figure 1: Likelihood function (top row) and its logarithm, the score function, (bottom row) for Bernouli trials. The left column is based on 20 trials
having 8 and 11 successes. The right column is based on 40 trials having 16 and 22 successes. Notice that the maximum likelihood is approximately
10−6 for 20 trials and 10−12 for 40. In addition, note that the peaks are more narrow for 40 trials rather than 20. We shall later be able to associate
this property to the variance of the maximum likelihood estimator.
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N is more likely that N −1 precisely when this ratio is larger than one. The computation below will show that this
ratio is greater than 1 for small values of N and less than one for large values. Thus, there is a place in the middle
which has the maximum. We expand the binomial coefficients in the expression for L(N |r) and simplify.

L(N |r)
L(N − 1|r)

=

(
t
r

)(
N−t
k−r
)
/
(
N
k

)(
t
r

)(
N−t−1
k−r

)
/
(
N−1
k

) =

(
N−t
k−r
)(
N−1
k

)(
N−t−1
k−r

)(
N
k

) =
(N−t)!

(k−r)!(N−t−k+r)!
(N−1)!

k!(N−k−1)!

(N−t−1)!
(k−r)!(N−t−k+r−1)!

N !
k!(N−k)!

=
(N − t)!(N − 1)!(N − t− k + r − 1)!(N − k)!
(N − t− 1)!N !(N − t− k + r)!(N − k − 1)!

=
(N − t)(N − k)
N(N − t− k + r)

.

Thus, the ratio
L(N |r)

L(N − 1|r)
=

(N − t)(N − k)
N(N − t− k + r)

exceeds 1if and only if

(N − t)(N − k) > N(N − t− k + r)
N2 − tN − kN + tk > N2 − tN − kN + rN

tk > rN
tk

r
> N

Writing [x] for the integer part of x, we see that L(N |r) > L(N−1|r) forN < [tk/r] and L(N |r) ≤ L(N−1|r)
for N ≥ [tk/r]. This give the maximum likelihood estimator

N̂ =
[
tk

r

]
.

Thus, the maximum likelihood estimator is, in this case, obtained from the method of moments estimator by round-
ing down to the next integer.

Let look at the example of mark and capture from the previous topic. There N = 2000, the number of fish in the
population, is unknown to us. We tag t = 200 fish in the first capture event, and obtain k = 400 fish in the second
capture.

> N<-2000
> t<-200
> fish<-c(rep(1,t),rep(0,N-t))
> k<-400
> r<-sum(sample(fish,k))
> r
[1] 42

In this simulated example, we find r = 42 recaptured fish. For the likelihood function, we look at a range of values
for N that is symmetric about 2000. Here, N̂ = [200 · 400/42] = 1904.

> N<-c(1800:2200)
> L<-dhyper(r,t,N-t,k)
> plot(N,L,type="l",ylab="L(N|42)")

Example 6 (Linear regression). Our data are n observations with one explanatory variable and one response variable.
The model is that

yi = α+ βxi + εi
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Figure 2: Likelihood function L(N |42) for mark and recapture with t = 200 tagged fish, k = 400 in the second capture with r = 42 having tags
and thus recapture. Note that the maximum likelihood estimator for the total fish population is N̂ = 1904.

where the εi are independent mean 0 normal random variables. The (unknown) variance is σ2. Thus, the joint density
for the εi is

1√
2πσ2

exp− ε21
2σ2
· 1√

2πσ2
exp− ε22

2σ2
· · · 1√

2πσ2
exp− ε2n

2σ2
=

1√
(2πσ2)n

exp− 1
2σ2

n∑
i=1

ε2i

Since εi = yi − (α+ βxi), the likelihood function

L(α, β, σ2|y,x) =
1√

(2πσ2)n
exp− 1

2σ2

n∑
i=1

(yi − (α+ βxi))2.

The score function

lnL(α, β, σ2|y,x) = −n
2

(ln 2π + lnσ2)− 1
2σ2

n∑
i=1

(yi − (α+ βxi))2.

Consequently, maximizing the likelihood function for the parameters α and β is equivalent to minimizing

SS(α.β) =
n∑
i=1

(yi − (α+ βxi))2.

Thus, the principle of maximum likelihood is equivalent to the least squares criterion for ordinary linear regression.
The maximum likelihood estimators α and β give the regression line

ŷi = α̂+ β̂xi.

Exercise 7. Show that the maximum likelihood estimator for σ2 is

σ̂2
MLE =

1
n

n∑
k=1

(yi − ŷi)2.
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Frequently, software will report the unbiased estimator. For ordinary least square procedures, this is

σ̂2
U =

1
n− 2

n∑
k=1

(yi − ŷi)2.

For the measurements on the lengths in centimeters of the femur and humerus for the five specimens of Archeopteryx,
we have the following R output for linear regression.

> femur<-c(38,56,59,64,74)
> humerus<-c(41,63,70,72,84)
> summary(lm(humerus˜femur))

Call:
lm(formula = humerus ˜ femur)

Residuals:
1 2 3 4 5

-0.8226 -0.3668 3.0425 -0.9420 -0.9110

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.65959 4.45896 -0.821 0.471944
femur 1.19690 0.07509 15.941 0.000537 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.982 on 3 degrees of freedom
Multiple R-squared: 0.9883,Adjusted R-squared: 0.9844
F-statistic: 254.1 on 1 and 3 DF, p-value: 0.0005368

The residual standard error of 1.982 centimeters is obtained by squaring the 5 residuals, dividing by 3 = 5− 2 and
taking a square root.

Example 8 (weighted least squares). If we know the relative size of the variances of the εi, then we have the model

yi = α+ βxi + γ(xi)εi

where the εi are, again, independent mean 0 normal random variable with unknown variance σ2. In this case,

εi =
1

γ(xi)
(yi − α+ βxi)

are independent normal random variables, mean 0 and (unknown) variance σ2. the likelihood function

L(α, β, σ2|y,x) =
1√

(2πσ2)n
exp− 1

2σ2

n∑
i=1

w(xi)(yi − (α+ βxi))2

where w(x) = 1/γ(x)2. In other words, the weights are inversely proportional to the variances. The log-likelihood is

ln L(α, β, σ2|y,x) = −n
2

ln 2πσ2 − 1
2σ2

n∑
i=1

w(xi)(yi − (α+ βxi))2.
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Exercise 9. Show that the maximum likelihood estimators α̂w and βwxi. have formulas

β̂w =
covw(x, y)

varw(x)
, ȳw = α̂w + β̂wx̄w

where x̄w and ȳw are the weighted means

x̄w =
∑n
i=1 w(xi)xi∑n
i=1 w(xi)

, ȳw =
∑n
i=1 w(xi)yi∑n
i=1 w(xi)

.

The weighted covariance and variance are, respectively,

covw(x, y) =
∑n
i=1 w(xi)(xi − x̄w)(yi − ȳw)∑n

i=1 w(xi)
, varw(x) =

∑n
i=1 w(xi)(xi − x̄w)2∑n

i=1 w(xi)
,

The maximum likelihood estimator for σ2 is

σ̂2
MLE =

∑n
k=1 w(xi)(yi − ŷi)2∑n

i=1 w(xi)
.

In the case of weighted least squares, the predicted value for the response variable is

ŷi = α̂w + β̂wxi.

Exercise 10. Show that α̂w and β̂w are unbiased estimators of α and β. In particular, ordinary (unweighted) least
square estimators are unbiased.

In computing the optimal values using introductory differential calculus, the maximum can occur at either critical
points or at the endpoints. The next example show that the maximum value for the likelihood can occur at the end
point of an interval.

Example 11 (Uniform random variables). If our data X = (X1, . . . , Xn) are a simple random sample drawn from
uniformly distributed random variable whose maximum value θ is unknown, then each random variable has density

f(x|θ) =
{

1/θ if 0 ≤ x ≤ θ,
0 otherwise.

Therefore, the joint density or the likelihood

f(x|θ) = L(θ|x) =
{

1/θn if 0 ≤ xi ≤ θ for all i,
0 otherwise.

Conseqeuntly, the joint density is 0 whenever any of the xi > θ. Restating this in terms of likelihood, no value
of θ is possible that is less than any of the xi. Conseuently, any value of θ less than any of the xi has likelihood 0.
Symbolically,

L(θ|x) =
{

0 for θ < maxi xi = x(n),
1/θn for θ ≥ maxi xi = x(n).

Recall the notation x(n) for the top order statistic based on n observations.
The likelihood is 0 on the interval (0, x(n)) and is positive and decreasing on the interval [x(n),∞). Thus, to

maximize L(θ|x), we should take the minimum value of θ on this interval. In other words,

θ̂(x) = x(n).

Because the estimator is always less than the parameter value it is meant to estimate, the estimator

θ̂(X) = X(n) < θ,
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Figure 3: Likelihood function for uniform random variables on the interval [0, θ]. The likelihood is 0 up to max1≤i≤n xi and 1/θn afterwards.

Thus, we suspect it is biased downwards, i. e..
EθX(n) < θ.

For 0 ≤ x ≤ θ, the distribution function for X(n) = max1≤i≤nXi is

FX(n)(x) = P{ max
1≤i≤n

Xi ≤ x} = P{X1 ≤ x,X2 ≤ x, . . . ,Xn < x}

= P{X1 ≤ x}P{X2 ≤ x} · · ·P{Xn < x}

each of these random variables have the same distribution function

P{Xi ≤ x} =

0 for x ≤ 0,
x
θ for 0 < x ≤ θ,
1 for θ < x.

Thus, the distribution function

FX(n)(x) =


0 for x ≤ 0,(
x
θ

)n
for 0 < x ≤ θ,

1 for θ < x.

Take the derivative to find the density,

fX(n)(x) =


0 for x ≤ 0,
nxn−1

θn for 0 < x ≤ θ,
0 for θ < x.

The mean

EθX(n) =
∫ θ

0

x
nxn−1

θn
dx =

n

θn

∫ θ

0

xn dx =
n

(n+ 1)θn
xn+1

∣∣∣θ
0

=
n

n+ 1
θ.

This confirms the bias of the estimator X(n) and gives us a strategy to find an unbiased estimator. In particular, the
choice

d(X) =
n+ 1
n

X(n)

is an unbiased estimator of θ.
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3 Summary of Estimates
Look to the text above for the definition of variables.

parameter estimate
Bernoulli trials

p p̂ = 1
n

∑n
i=1 xi = x̄ unbiased

mark recapture
N N̂ =

[
kt
r

]
biased upward

normal observations
µ µ̂ = 1

n

∑n
i=1 xi = x̄ unbiased

σ2 σ̂2
mle = 1

n

∑n
i=1(xi − x̄)2 biased downward

σ̂2
u = 1

n−1

∑n
i=1(xi − x̄)2 unbiased

σ σ̂mle =
√

1
n

∑n
i=1(xi − x̄)2 biased downward

linear regression
β β̂ = cov(x,y)

var(x)
unbiased

α α̂ = ȳ − β̂x̄ unbiased
σ2 σ̂2

mle = 1
n

∑n
i=1(yi − (α̂ + β̂x))2 biased downward

σ̂2
u = 1

n−2

∑n
i=1(yi − (α̂ + β̂x))2 unbiased

σ σ̂mle =
√

1
n

∑n
i=1(yi − (α̂ + β̂x))2 biased downward

uniform [0, θ]

θ θ̂ = maxi xi biased downward
θ̂ = n+1

n
maxi xi unbiased

4 Asymptotic Properties
Much of the attraction of maximum likelihood estimators is based on their properties for large sample sizes. We
summarizes some the important properties below, saving a more technical discussion of these properties for later.

1. Consistency. If θ0 is the state of nature and θ̂n(X) is the maximum likelihood estimator based on n observations
from a simple random sample, then

θ̂n(X)→ θ0 as n→∞.

In words, as the number of observations increase, the distribution of the maximum likelihood estimator becomes
more and more concentrated about the true state of nature.

2. Asymptotic normality and efficiency. Under some assumptions that allows, among several analytical proper-
ties, the use of the delta method, a central limit theorem holds. Here we have

√
n(θ̂n(X)− θ0)

converges in distribution as n→∞ to a normal random variable with mean 0 and variance 1/I(θ0), the Fisher
information for one observation. Thus,

Varθ0(θ̂n(X)) ≈ 1
nI(θ0)

,
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the lowest variance possible under the Crámer-Rao lower bound. This property is called asymptotic efficiency.
We can write this in terms of the z-score. Let

Zn =
θ̂(X)− θ0
1/
√
nI(θ0)

.

Then, as with the central limit theorem, Zn converges in distribution to a standard normal random variable.

3. Properties of the log likelihood surface. For large sample sizes, the variance of a maximum likelihood estima-
tor of a single parameter is approximately the negative of the reciprocal of the the Fisher information

I(θ) = −E
[
∂2

∂θ2
lnL(θ|X)

]
.

the negative reciprocal of the second derivative, also known as the curvature, of the log-likelihood function. The
Fisher information can be approimated by the observed information based on the data x,

J(θ̂) = − ∂2

∂θ2
lnL(θ̂(x)|x),

giving the curvature of the likelihood surface at the maximum likelihood estimate θ̂(x) If the curvature is small
near the maximum likelihood estimator, then the likelihood surface is nearty flat and the variance is large. If the
curvature is large and thus the variance is small, the likelihood is strongly curved at the maximum.

We now look at these properties in some detail by revisiting the example of the distribution of fitness effects.
For this example, we have two parameters - α and β for the gamma distribution and so, we will want to extend the
properties above to circumstances in which we are looking to estimate more than one parameter.

5 Multidimensional Estimation
For a multidimensional parameter space θ = (θ1, θ2, . . . , θn), the Fisher information I(θ) is now a matrix. As with
one-dimensional case, the ij-th entry has two alternative expressions, namely,

I(θ)ij = Eθ

[
∂

∂θi
lnL(θ|X)

∂

∂θj
lnL(θ|X)

]
= −Eθ

[
∂2

∂θi∂θj
lnL(θ|X)

]
.

Rather than taking reciprocals to obtain an estimate of the variance, we find the matrix inverse I(θ)−1. This inverse will
provide estimates of both variances and covariances. To be precise, for n observations, let θ̂i,n(X) be the maximum
likelihood estimator of the i-th parameter. Then

Varθ(θ̂i,n(X)) ≈ 1
n
I(θ)−1

ii Covθ(θ̂i,n(X), θ̂j,n(X)) ≈ 1
n
I(θ)−1

ij .

When the i-th parameter is θi, the asymptotic normality and efficiency can be expressed by noting that the z-score

Zi,n =
θ̂i(X)− θi
I(θ)−1

ii /
√
n
.

is approximately a standard normal.

Example 12. To obtain the maximum likelihood estimate for the gamma family of random variables, write the likeli-
hood

L(α, β|x) =
(
βα

Γ(α)
xα−1

1 e−βx1

)
· · ·
(
βα

Γ(α)
xα−1
n e−βxn

)
=
(
βα

Γ(α)

)n
(x1x2 · · ·xn)α−1e−β(x1+x2+···+xn) .
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Figure 4: The graph of n(ln α̂ − ln x̄ − d
dα

ln Γ(α̂)) +
Pn
i=1 lnxi crosses the horizontal axis at α̂ = 0.2376. The fact that the graph of the

derivative is decreasing states that the score function moves from increasing to decreasing with α and thus is a maximum.

and the score function

ln L(α, β|x) = n(α lnβ − ln Γ(α)) + (α− 1)
n∑
i=1

lnxi − β
n∑
i=1

xi.

To determine the parameters that maximize the likelihood, we solve the equations

∂

∂α
ln L(α̂, β̂|x) = n(ln β̂ − d

dα
ln Γ(α̂)) +

n∑
i=1

lnxi = 0

and
∂

∂β
ln L(α̂, β̂|x) = n

α̂

β̂
−

n∑
i=1

xi = 0, or x̄ =
α̂

β̂
.

Substituting β̂ = α̂/x̄ into the first equation results the following relationship for α̂

n(ln α̂− ln x̄− d

dα
ln Γ(α̂)) +

n∑
i=1

lnxi = 0

which can be solved numerically. The derivative of the logarithm of the gamma function

ψ(α) =
d

dα
ln Γ(α)

is know as the digamma function and is called in R with digamma.
For the example for the distribution of fitness effects α = 0.23 and β = 5.35 with n = 100, a simulated data set

yields α̂ = 0.2376 and β̂ = 5.690 for maximum likelihood estimator. (See Figure 4.)

To determine the variance of these estimators, we first compute the Fisher information matrix. Taking the appro-
priate derivatives, we find that each of the second order derivatives are constant and thus the expected values used to
determine the entries for Fisher information matrix are the negative of these constants.

I(α, β)11 = − ∂2

∂α2
ln L(α, β|x) = n

d2

dα2
ln Γ(α), I(α, β)22 = − ∂2

∂β2
ln L(α, β|x) = n

α

β2
,
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I(α, β)12 = − ∂2

∂α∂β
ln L(α, β|x) = −n 1

β
.

This give a Fisher information matrix

I(α, β) = n

(
d2

dα2 ln Γ(α) − 1
β

− 1
β

α
β2

)
.

The second derivative of the logarithm of the gamma function

ψ1(α) =
d2

dα2
ln Γ(α)

is know as the trigamma function and is called in R with trigamma.
The inverse

I(α, β)−1 =
1

nα( d2

dα2 ln Γ(α)− 1)

(
α β

β β2 d2

dα2 ln Γ(α)

)
.

For the example for the distribution of fitness effects α = 0.23 and β = 5.35 and n = 100, and

I(0.23, 5.35)−1 =
1

100(0.23)(19.12804)

(
0.23 5.35
5.35 5.352(20.12804)

)
=
(

0.0001202 0.01216
0.01216 1.3095

)
.

Var(0.23,5.35)(α̂) ≈ 0.0001202, Var(0.23,5.35)(β̂) ≈ 1.3095.

σ(0.23,5.35)(α̂) ≈ 0.0110, σ(0.23,5.35)(β̂) ≈ 1.1443.

Compare this to the empirical values of 0.0662 and 2.046 for the method of moments. This gives the following
table of standard deviations for n = 100 observation

method α̂ β̂
maximum likelihood 0.0110 1.1443
method of moments 0.0662 2.046

ratio 0.166 0.559

Thus, the standard deviation for the maximum likelihood estimator is respectively 17% and 56% that of method of
moments estimator. We will look at the impact as we move on to our next topic - interval estimation and the confidence
intervals.

Exercise 13. If the data are a simple random sample of 100 observations of a Γ(0.23, 5.35) random variable. Use the
approximate normality of maximum likelihood estimators to estimate

P{α̂ ≥ 0.2376} P{β̂ ≥ 5.690}.

6 Choice of Estimators
With all of the desirable properties of the maximum likelihood estimator, the question arises as to why would one
choose a method of moments estimator?

One answer is that the use maximum likelihood techniques relies on knowing the density function explicitly in
order to be able to perform the necessary analysis to maximize the score function and find the Fisher information.

However, much less about the experiment is need in order to compute moments. Thus far, we have computed
moments using the density

EθX
m =

∫ ∞
−∞

xmfX(x|θ) dx.
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We could determine, for example, the (random) number of a given protein in the cells in a tissue by giving the
distribution of the number of cells and then the distribution of the number of the given protein per cell. This can be
used to calculate the mean and variance for the number of cells with some ease. However, giving an explicit expression
for the density and hence the likelihood function is more difficult to obtain and can lead to quite intricate computations
to carry out the desired analysis of the likelihood function.

7 Technical Aspects
We can use concepts previously introduced to obtain the properties for the maximum likelihood estimator. For exam-
ple, θ0 is more likely that a another parameter value θ

L(θ0|X) > L(θ|X) if and only if
1
n

n∑
i=1

ln
f(Xi|θ0)
f(Xi|θ)

> 0.

By the strong law of large numbers, this sum converges to

Eθ0

[
ln
f(X1|θ0)
f(X1|θ)

]
.

which is greater than 0. thus, for a large number of observations and a given value of θ, then with a probability nearly
one, L(θ0|X) > L(θ|X) and the so the maximum likelihood estimator has a high probability of being very near θ0.

For the asymptotic normality and efficiency, we write the linear approximation of the score function

d

dθ
lnL(θ|X) ≈ d

dθ
lnL(θ0|X) + (θ − θ0)

d2

dθ2
lnL(θ0|X).

Now substitute θ = θ̂ and note that d
dθ lnL(θ̂|X) = 0. Then

√
n(θ̂n(X)− θ0) ≈

√
n

d
dθ lnL(θ0|X)
d2

dθ2 lnL(θ0|X)
=

1√
n
d
dθ lnL(θ0|X)

− 1
n
d2

dθ2 lnL(θ0|X)

Now assume that θ0 is the true state of nature. Then, the random variables d ln f(Xi|θ0)/dθ are independent with
mean 0 and variance I(θ0). Thus, the distribution of numerator

1√
n

d

dθ
lnL(θ0|X) =

1√
n

n∑
i=1

d

dθ
ln f(Xi|θ0)

converges, by the central limit theorem, to a normal random variable with mean 0 and variance I(θ0). For the denom-
inator, −d2 ln f(Xi|θ0)/dθ2 are independent with mean I(θ0). Thus,

− 1
n

d2

dθ2
lnL(θ0|X) = − 1

n

n∑
i=1

d2

dθ2
ln f(Xi|θ0)

converges, by the law of large numbers, to I(θ0). Thus, the distribution of the ratio,
√
n(θ̂n(X)− θ0), converges to a

normal random variable with variance I(θ0)/I(θ0)2 = 1/I(θ0).

8 Answers to Selected Exercises
3. We have found that

∂

∂p
ln L(p|x) = n

x̄− p
p(1− p)

194



Introduction to Statistical Methodology Maximum Likelihood Estimation

Thus
∂

∂p
ln L(p|x) > 0 if p < x̄, and

∂

∂p
ln L(p|x) < 0 if p > x̄

In words, the score function ln L(p|x) is increasing for p < x̄ and ln L(p|x) is decreasing for p > x̄. Thus, p̂(x) = x̄
is a maximum.

7. The log-likelihood function

lnL(α, β, σ2|y,x) = −n
2

(ln(2π) + lnσ2)− 1
2σ2

n∑
i=1

(yi − (α+ βxi))2

leads to the ordinary least squares equations for the maximum likelihood estimates α̂ and β̂. Take the partial derivative
with respect to σ2,

∂

∂σ2
L(α, β, σ2|y,x) = − n

2σ2
+

1
2(σ2)2

n∑
i=1

(yi − (α+ βxi))2.

This partial derivative is 0 at the maximum likelihood estimates σ̂2, α̂ and β̂.

0 = − n

2σ̂2
+

1
2(σ̂2)2

n∑
i=1

(yi − (α̂+ β̂xi))2

or

σ̂2 =
1
n

n∑
i=1

(yi − (α̂+ β̂xi))2.

9. The maximum likelihood principle leads to a minimization problem for

SSw(α, β) =
n∑
i=1

ε2i =
n∑
i=1

w(xi)(yi − (α+ βxi))2.

Following the steps to derive the equations for ordinary least squares, take partial derivatives to find that

∂

∂β
SSw(α, β) = −2

n∑
i=1

w(xi)xi(yi − α− βxi)
∂

∂α
SSw(α, β) = −2

n∑
i=1

w(xi)(yi − α− βxi).

Set these two equations equal to 0 and call the solutions α̂w and β̂w.

0 =
n∑
i=1

w(xi)xi(yi − α̂w − β̂wxi) =
n∑
i=1

w(xi)xiyi − α̂w
n∑
i=1

w(xi)xi − β̂w
n∑
i=1

w(xi)x2
i (1)

0 =
n∑
i=1

w(xi)(yi − α̂w − β̂wxi) =
n∑
i=1

w(xi)yi − α̂w
n∑
i=1

w(xi)− β̂w
n∑
i=1

w(xi)xi (2)

Multiply these equations by the appropriate factors to obtain

0 =

(
n∑
i=1

w(xi)

)(
n∑
i=1

w(xi)xiyi

)
− α̂w

(
n∑
i=1

w(xi)

)(
n∑
i=1

w(xi)xi

)
− β̂w

(
n∑
i=1

w(xi)

)(
n∑
i=1

w(xi)x2
i

)
(3)

0 =

(
n∑
i=1

w(xi)xi

)(
n∑
i=1

w(xi)yi

)
− α̂w

(
n∑
i=1

w(xi)

)(
n∑
i=1

w(xi)xi

)
− β̂w

(
n∑
i=1

w(xi)xi

)2

(4)
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Now subtract the equation (4) from equation (3) and solve for β̂.

β̂ =
(
∑n
i=1 w(xi)) (

∑n
i=1 w(xi)xiyi)− (

∑n
i=1 w(xi)xi) (

∑n
i=1 w(xi)yi)

n
∑n
i=1 w(xi)x2

i − (
∑n
i=1 w(xi)xi)

2

=
∑n
i=1 w(xi)(xi − x̄w)(yi − ȳw)∑n

i=1 w(xi)(xi − x̄w)2
=

covw(x, y)
varw(x)

.

Next, divide equation (2) by
∑n
i=1 w(xi) to obtain

ȳw = α̂w + β̂wx̄w. (5)

10. Because the εi have mean zero,

E(α,β)yi = E(α,β)[α+ βxi + γ(xi)εi] = α+ βxi + γ(xi)E(α,β)[εi] = α+ βxi.

Next, use the linearity property of expectation to find the mean of ȳw.

E(α,β)ȳw =
∑n
i=1 w(xi)E(α,β)yi∑n

i=1 w(xi)
=
∑n
i=1 w(xi)(α+ βxi)∑n

i=1 w(xi)
= α+ βx̄w. (6)

Taken together, we have that E(α,β)[yi− ȳw] = (α+βxi.)− (α+βxi) = β(xi− x̄w). To show that β̂w is an unbiased
estimator, we see that

E(α,β)β̂w = E(α,β)

[
covw(x, y)

varw(x)

]
=
E(α,β)[covw(x, y)]

varw(x)
=

1
varw(x)

E(α,β)

[∑n
i=1 w(xi)(xi − x̄w)(yi − ȳw)∑n

i=1 w(xi)

]
=

1
varw(x)

∑n
i=1 w(xi)(xi − x̄w)E(α,β)[yi − ȳw]∑n

i=1 w(xi)
=

β

varw(x)

∑n
i=1 w(xi)(xi − x̄w)(xi − x̄w)∑n

i=1 w(xi)
= β.

To show that α̂w is an unbiased estimator, recall that ȳw = α̂w + β̂wx̄w. Thus

E(α,β)α̂w = E(α,β)[ȳw − β̂wx̄w] = E(α,β)ȳw − E(α,β)[β̂w]x̄w = α+ βx̄w − βx̄w = α,

using (6) and the fact that β̂w is an unbiased estimator of β

13. For α̂, we have the z-score

zα̂ =
α̂− 0.23√
0.0001202

≥ 0.2376− 0.23√
0.0001202

= 0.6841.

Thus, using the normal approximation,

P{α̂ ≥ 0.2367} = P{zα̂ ≥ 0.6841} = 0.2470.

For β̂, we have the z-score

zβ̂ =
β̂ − 5.35√

1.3095
≥ 5.690− 5.35√

1.3095
= 0.2971.

Here, the normal approximation gives

P{β̂ ≥ 5.690} = P{zβ̂ ≥ 0.2971} = 0.3832.
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Figure 5: (top) The score function near the maximum likelihood estimators. The domain is 0.1 ≤ α ≤ 0.4 and 4 ≤ β ≤ 8. (bottom) Graphs of
vertical slices through the score function surface. (left) β̂ = 5.690 and 0.1 ≤ α ≤ 0.4 varies. (right) α̂ = 0.2376 and 4 ≤ β ≤ 8. The variance of
the estimator is approximately the negative reciprocal of the second derivative of the score function at the maximum likelihood estimators. Note that
the score function is nearly flat as β varies. This leads to the interpretation that a range of values for β are nearly equally likely and that the variance
for the estimator for β̂ will be high. On the other hand, the score function has a much greater curvature for the α parameter and the estimator α̂ will
have a much smaller variance than β̂
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