
Topic 18: Composite Hypotheses∗

November, 2011

Simple hypotheses limit us to a decision between one of two possible states of nature. This limitation does not
allow us, under the procedures of hypothesis testing to address the basic question:

Does the length, the reaction rate, the fraction displaying a particular behavior or having a particular
opinion, the temperature, the kinetic energy, the Michaelis constant, the speed of light, mutation rate, the
melting point, the probability that the dominant allele is expressed, the elasticity, the force, the mass, the
parameter value θ0 increase, decrease or change at all under under a different experimental condition?

This leads us to consider composite hypothesis. In this case, the parameter space Θ is divided into two disjoint
regions, Θ0 and Θ1. The hypothesis test is now written

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Again, H0 is called the null hypothesis and H1 the alternative hypothesis.
For the three alternatives to the question posed above,

• increase would lead to the choices Θ0 = {θ; θ ≤ θ0} and Θ1 = {θ; θ > θ0},

• decrease would lead to the choices Θ0 = {θ; θ ≥ θ0} and Θ1 = {θ; θ < θ0}, and

• change would lead to the choices Θ0 = {θ0} and Θ1 = {θ; θ 6= θ0}

for some choice of parameter value θ0. The effect that we are meant to show, here the nature of the change, is contained
in Θ1. The first two options given above are called one-sided tests. The third is called a two-sided test,

Rejection and failure to reject the null hypothesis, critical regions, C, and type I and type II errors have the same
meaning for a composite hypotheses as it does with a simple hypothesis. Singificance level and power will necessitate
an extention of the ideas for smple hypotheses.

1 Power
Power is now a function of the parameter value θ. If our test is to reject H0 whenever the data fall in a critical region
C, then the power function is defined as

π(θ) = Pθ{X ∈ C}.

that gives the probability of rejecting the null hypothesis for a given value of the parameter. Consequently, the ideal
power function has

π(θ) ≈ 0 for all θ ∈ Θ0 and π(θ) ≈ 1 for all θ ∈ Θ1

With this property for the power function, we would rarely reject the null hypothesis when it is true and rarely fail
to reject the null hypothesis when it is false. Such a power function shows that we reach the correct decision with
probability nearly 1.

∗ c© 2011 Joseph C. Watkins
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In reality, incorrect decisions are made. Thus, for θ ∈ Θ0,

π(θ) is the probability of making a type I error,

i. e., rejecting the null hypothesis when it is indeed true, For θ ∈ Θ1,

1− π(θ) is the probability of making a type II error,

i.e., failing to reject the null hypothesis when it is false.
The goal is to make the chance for error small. The traditional method is analogous to that employed in the

Neyman-Pearson lemma. Fix a (significance) level α, now defined to be the largest value of π(θ) in the region Θ0

defined by the null hypothesis. In other words, by focusing on the value of the parameter in Θ0 that is most likely to
result in an error, we insure that the probability of a type I error is no more that α irrespective of the value for θ ∈ Θ0.
Then, we look for a critical region that makes the power function as large as possible for values of the parameter
θ ∈ Θ1

Example 1. Let X1, X2, . . . , Xn be independent N(µ, σ2
0) random variables with σ2

0 known and µ unknown. For the
composite hypothesis for the one-sided test

H0 : µ ≤ µ0 versus H1 : µ > µ0.

We use the test statistic from the likelihood ratio test and reject H0 if X̄ is too large. Thus, the critical region

C = {x; x̄ ≥ k(µ0)}.

If µ is the true mean, then the power function

π(µ) = Pµ{X ∈ C} = Pµ{X̄ ≥ k(µ0)}.

As we shall see soon, the value of k(µ0) depends on the level of the test.
Note that π(µ) increases with µ. As the actual mean µ increases, then the probability that the sample mean X̄

exceeds a particular value k(µ0) also increases. To obtain level α for the hypothesis test, we use that fact that π(µ)
increases with µ to conclude that the maximum value of π on the set Θ0 = {µ;µ ≤ µ0} takes place for the value µ0,
i.e.,

α = π(µ0) = Pµ0{X̄ ≥ k(µ0)}.

We now use this to find the value k(µ0). When µ0 is the value of the mean, we standardize to give a standard normal
random variable

Z =
X̄ − µ0

σ0/
√
n
.

Choose zα so that P{Z ≥ zα} = α. In this case, Φ(zα) = 1−α where Φ is the distribution function for the standard
normal, thus

Pµ0{Z ≥ zα} = Pµ0{X̄ ≥ µ0 +
σ0√
n
zα}

and k(µ0) = µ0 + (σ0/
√
n)zα.

If µ is the true state of nature, then

Z =
X̄ − µ
σ0/
√
n

is a standard normal random variable. We use this fact to determine the power function for this test.

π(µ) = Pµ{X̄ ≥
σ0√
n
zα + µ0} = Pµ{X̄ − µ ≥

σ0√
n
zα − (µ− µ0)} (1)

= Pµ

{
X̄ − µ
σ0/
√
n
≥ zα −

µ− µ0

σ0/
√
n

}
= 1− Φ

(
zα −

µ− µ0

σ0/
√
n

)
(2)
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Figure 1: Power function for the one-sided test with alternative “less than”. µ0 = 10, σ0 = 3. Note, as argued in the text that π is a decreasing
function. (left) n = 16, α = 0.05 (black), 0.02 (red), and 0.01 (blue). Notice that lowering significance level α reduces power π(µ) for each value
of µ. (right) α = 0.05, n = 15 (black), 40 (red), and 100 (blue). Notice that increasing sample size n increases power π(µ) for each value of
µ ≤ µ0.

Exercise 2. If the alternative is less than, show that

π(µ) = Φ
(
−zα −

µ− µ0

σ0/
√
n

)
.

Returning to the example with a model species and its mimic. For the plot of the power function for µ0 = 10,
σ0 = 3, and n = 16 observations,

> zalpha<-qnorm(0.95)
> mu0<-10
> sigma0<-3
> mu<-(600:1100)/100
> n<-16
> z<--zalpha - (mu-mu0)/(sigma0/sqrt(n))
> pi<-pnorm(z)
> plot(mu,pi,type="l")

In Figure 1, we vary the values of the significance level α and the values of n, the number of observations in the
graph of the power function π

Example 3 (mark and recapture). We may use mark and recapture to see if a population has reached a dangerously
low level. The variables in mark and recapture are

• t be the number captured and tagged,

• k be the number in the second capture,

• r the the number in the second capture that are tagged, and let
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• N be the total population.

If N0 is the level that a wildlife biologist say is dangerously low, then the natural hypothesis is one-sided.

H0 : N ≥ N0 versus H1 : N < N0.

The data are the he number in the second capture that are tagged, r. The likelihood function for N is the hypergeo-
metric distribution.

L(N |r) =

(
t
r

)(
N−t
k−r
)(

N
k

)
and the maximum likelihood estimate is N̂ = [tk/r]. Thus, higher values for r lead us to lower estimates for N . Let
R be the (random) number in the second capture that are tagged, then, for an α level test, we look for the minimum
value rα so that

PN{R ≥ rα} ≤ α for all N ≥ N0. (3)

As N increases, then recaptures become less likely and the probability in (3) decreases. Thus, we should set the value
of rα according to the parameter value N0, the minimum value under the null hypothesis. Let’s determine rα for
several values of α using the example from the topic, Maximum Likelihood Estimation, and consider the case in which
the critical population is N0 = 2000.

> N0<-2000
> t<-200
> k<-400
> alpha<-c(0.05,0.02,0.01)
> ralpha<-qhyper(1-alpha,t,N0-t,k)
> data.frame(alpha,ralpha)

alpha ralpha
1 0.05 49
2 0.02 51
3 0.01 53

For example, we must capture al least 49 that were tagged in order to reject H0 at the α = 0.05 level. In this case
the estimate for N is N̂ = [kt/rα] = 1632. As anticipated, rα increases and the critical regions shrinks as the value
of α decreases.

Using the level rα determined using the value N0 for N , we see that the power function

π(N) = PN{R ≥ rα}.

R is a hypergeometric random variable with mass function

fR(r) = PN{R = r} =

(
t
r

)(
N−t
k−r
)(

N
k

) .

The plot for the case α = 0.05 is given using the R commands

> N<-c(1300:2100)
> pi<-1-phyper(49,t,N-t,k)
> plot(N,pi,type="l",ylim=c(0,1))

We can increase power by increasing the size of k, the number the value in the second capture. This increases the
value of rα. For α = 0.05, we have the table.
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Figure 2: Power function for Lincoln-Peterson mark and recapture test for population N0 = 2000 and t = 200 captured and tagged. (left)
k = 400 recaptured α = 0.05 (black), 0.02 (red), and 0.01 (blue). Notice that lower significance level α reduces power. (right) α = 0.05,
k = 400 (black), 600 (red), and 80000 (blue). Decreased significance level reduces power and increased recapture size increases power.

> N0<-2000
> ralpha<-qhyper(0.95,t,N0-t,k)
> data.frame(k,ralpha)

k ralpha
1 400 49
2 600 70
3 800 91

We show the impact on power π(N) of both significance level α and the number in the recapture k in Figure 2.

Exercise 4. Determine the type II error rate for N = 1600 with

• k = 400 and α = 0.05, 0.02, and 0.01, and

• α = 0.05 and k = 400, 600, and 800.

Example 5. For a two-sided test
H0 : µ = µ0 versus H1 : µ 6= µ0.

In this case, the parameter values for the null hypothesis Θ) consist of a single value, µ0. We reject H0 if |X̄ − µ0| is
too large. Again, with level α, we have the critical region

|Z| =
∣∣∣X̄ − µ0

σ/
√
n

∣∣∣ ≥ zα/2.
If µ is the actual mean, then

X̄ − µ
σ0/
√
n
.
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Figure 3: Power function for the two-sided test. µ0 = 10, σ0 = 3. (left) n = 16, α = 0.05 (black), 0.02 (red), and 0.01 (blue). Notice that lower
significance level α reduces power. (right) α = 0.05, n = 15 (black), 40 (red), and 100 (blue). As before, decreased significance level reduces
power and increased sample size n increases power.

We use this fact to determine the power function for this test

π(µ) = Pµ{X ∈ C} = 1− Pµ{X /∈ C} = 1− Pµ
{∣∣∣X̄ − µ0

σ0/
√
n

∣∣∣ < zα/2

}
= 1− Pµ

{
−zα/2 <

X̄ − µ0

σ0/
√
n
< zα/2

}
= 1− Pµ

{
−zα/2 −

µ− µ0

σ0/
√
n
<
X̄ − µ
σ0/
√
n
< zα/2 −

µ− µ0

σ0/
√
n

}
= 1− Φ

(
zα/2 −

µ− µ0

σ0/
√
n

)
+ Φ

(
−zα/2 −

µ− µ0

σ0/
√
n

)
If we do not know if the mimic is larger or smaller that the model, then we use a two-sided test. Below is the R

commands for the power function with α = 0.05 and n = 16 observations.

> zalpha = qnorm(.975)
> mu0<-10
> sigma0<-3
> mu<-(600:1400)/100
> n<-16
> pi<-1-pnorm(zalpha-(mu-mu0)/(sigma0/sqrt(n)))+pnorm(-zalpha-(mu-mu0)/(sigma0/sqrt(n)))
> plot(mu,pi,type="l")

We shall see in the the next topic how these tests follow from extensions of the likelihood ratio test for simple
hypotheses.

The next example is unlikely to occur in any genuine scientific situation. It is included because it allows us to
compute the power function explicitly from the distribution of the test statistic. We begin with an exercise.

Exercise 6. For X1, X2, . . . , Xn independent U(0, θ) random variables, θ ∈ Θ = (0,∞). The density

fX(x|θ) =
{

1
θ if 0 < x ≤ θ,
0 otherwise.
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Let X(n) denote the maximum of X1, X2, . . . , Xn, then X(n) has distribution function

FX(n)(x) = Pθ{X(n) ≤ x} =
(x
θ

)n
.

Example 7. ForX1, X2, . . . , Xn independent U(0, θ) random variables, take the null hypothesis that θ lands in some
normal range of values [θL, θR]. The alternative is that θ lies outside the normal range.

H0 : θL ≤ θ ≤ θR versus H1 : θ < θL or θ > θR.

If any of our observations Xi are greater than θR, then we are certain θ > θR and we should reject H0. On the
other hand, all of the observations could be below θL and the state of nature θ might still land in the normal range.

Consequently, we will try to base a test based on the statistic X(n) = max1≤i≤nXi and reject H0 if X(n) > θR
and too much smaller than θL, say θ̃. We shall soon see that the choice of θ̃ will depend on n the number of observations
and on α, the size of the test.

The power function
π(θ) = Pθ{X(n) ≤ θ̃}+ Pθ{X(n) ≥ θR}

We compute the power function in three cases. The second case has the values of θ under the null hypothesis. The
first and the third cases have the values for θ under the alternative hypothesis. An example of the power function is
shown in Figure 3.
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Figure 4: Power function for the test above with θL = 1, θR = 3, θ̃ = 0.9, and n = 10. The size of the test is π(1) = 0.3487.

Case 1. θ ≤ θ̃.
In this case all of the observations Xi must be less than θ which is in turn less than θ̃. Thus, X(n) is certainly less

than θ̃ and

Pθ{X(n) ≤ θ̃} = 1 and Pθ{X(n) ≥ θR} = 0

and therefore π(θ) = 1.

Case 2. θ̃ < θ ≤ θR.
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Pθ{X(n) ≤ θ̃} =

(
θ̃

θ

)n
and Pθ{X(n) ≥ θR} = 0

and therefore π(θ) = (θ̃/θ)n.

Case 3. θ > θR.
Repeat the argument in Case 2 to conclude that

Pθ{X(n) ≤ θ̃} =

(
θ̃

θ

)n
and that

Pθ{X(n) ≥ θR} = 1− Pθ{X(n) < θR} = 1−
(
θR
θ

)n
and therefore π(θ) = (θ̃/θ)n + 1− (θR/θ)n.

The size of the test is the maximum value of the power function under the null hypothesis. This is case 2. Here, the
power function

π(θ) =

(
θ̃

θ

)n
decreases as a function of θ. Thus, its maximum value takes place at θL and

α = π(θL) =

(
θ̃L
θ

)n

To achieve this level, we solve of θ̃ and take θ̃ = θL n
√
α. Note that θ̃ increases with α. Consequently, we must

reduce the critical region in order to reduce the significance level. Also, θ̃ increases with n and we can reduce the
critical region while maintaining significance if we increase the sample size.

2 The p-value
The report of reject the null hypothesis does not describe the strength of the evidence because it fails to give us the sense
of whether or not a small change in the values in the data could have resulted in a different decision. Consequently,
one common method is not to choose, in advance, a significance level α of the test and then report “reject” or “fail to
reject”, but rather to report the value of the test statistic and to give all the values for α that would lead to the rejection
of H0. The p-value is the probability of obtaining a result at least as extreme as the one that was actually observed,
assuming that the null hypothesis is true and measures the strength of evidence against H0. Consequently, a very low
p-value indicates strong evidence against the null hypothesis.

If the p-value is below a given significance level α, then we say that the result is statistically significant at the
level α.

For example, if the test is based on having a test statistic S(X) exceed a level k, i.e., we have decision

reject H0 if and only if S(X) ≥ k.

and if the value S(X) = k0 is observed, then the p-value equals to the lowest value of significance level that wold
result in rejection of the null hypothesis.

max{π(θ); θ ∈ Θ0} = max{Pθ{S(X) ≥ k0}; θ ∈ Θ0}.
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Figure 5: Under the null hypothesis, X̄ has a normal distribution mean µ0 = 10cm, standard deviation 3/
√

16 = 3/4cm. The p-value, 0.077, is
the area under the density curve to the left of the observed value of 8.931 for x̄, The critical value, 8.767, for an α = 0.05 level test is indicated by
the red line. Because the p-vlaue is greater than the significance level, we cannot reject H0.

For the one-sided hypothesis test to see if the mimic had invaded,

H0 : µ ≥ µ0 versus H1 : µ < µ0.

with µ0 = 10 cm, σ0 = 3 cm and n = 16 observations. Our data had sample mean x̄ = 8.93125 cm. The maximum
value of the power function π(µ) for µ in the subset of the parameter space determined by the null hypothesis occurs
for µ = µ0. Consequently, the p-value is

Pµ0{X̄ ≤ 8.93125}.

With the parameter value µ0 = 10 cm, X̄ has mean 10 cm and standard deviation 3/
√

16 = 3/4. We can compute
the p-value using R].

> pnorm(8.93125,10,3/4)
[1] 0.0770786

Thus, we cannot reject H0 at the α = 0.05 significance level. Indeed, we can reject H0 at any level below
the p-value.

Example 8. Returning to the example on the proportion of hives that survive the winter, the appropriate composite
hypothesis test to see if more that the usual normal of hives survive is

H0 : p ≤ 0.7 versus H1 : p > 0.7.

The R output shows a p-value of 3%.

> prop.test(88,112,0.7,alternative="greater")

1-sample proportions test with continuity correction
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data: 88 out of 112, null probability 0.7
X-squared = 3.5208, df = 1, p-value = 0.0303
alternative hypothesis: true p is greater than 0.7
95 percent confidence interval:
0.7107807 1.0000000

sample estimates:
p

0.7857143

Exercise 9. Is the hypothesis test above signfiicant at the 5% level? the 1% level?

3 Answers to Selected Exercises

2. In this case the critical regions is C = {x; x̄ ≤ k(µ0)} for some value k(µ0). To find this value, note that

Pµ0{Z ≤ −zα} = Pµ0{X̄ ≤ −
σ0√
n
zα + µ0}

and k(µ0) = −(σ0/
√
n)zα + µ0. The power function

π(µ) = Pµ{X̄ ≤ −
σ0√
n
zα + µ0} = Pµ{X̄ − µ ≤ −

σ0√
n
zα − (µ− µ0)}

= Pµ

{
X̄ − µ
σ0/
√
n
≤ −zα −

µ− µ0

σ0/
√
n

}
= Φ

(
−zα −

µ− µ0

σ0/
√
n

)
.

5. The type II error rate β is 1−π(1600) = P1600{R < rα}. This is the distribution function of a hypergeometric
random variable and thus these probabilities can be computed using the phyper command

• For varying significance, we have the R commands:

> t<-200;N<-1600
> k<-400
> alpha<-c(0.05,0.02,0.01)
> ralpha<-c(49,51,53)
> beta<-phyper(ralpha,t,N-t,k)
> data.frame(alpha,beta)

alpha beta
1 0.05 0.4695591
2 0.02 0.6071656
3 0.01 0.7316226

Notice that the type II error probability is high for α = 0.05 and increases as α decreases.

• For varying recapture size, we continue with the R commands:

> k<-c(400,600,800)
> ralpha<-c(49,70,91)
> beta<-phyper(ralpha,t,N-t,k)
> data.frame(k,beta)

k beta
1 400 0.46955913
2 600 0.24194905
3 800 0.09933596
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Notice that increasing recapture size has a significant impact on type II error probabilities.

6. The i-th observation satisfies

P{Xi ≤ θ̃} =
∫ θ̃

0

1
θ
dx =

θ̃

θ

Now, X(n) ≤ θ̃ occurs precisely when all of the n-independent observations Xi satisfy Xi ≤ θ̃. Because
these random variables are independent,

FX(n) = Pθ{X(n) ≤ x} = Pθ{X1 ≤ x,X1 ≤ x, . . . ,Xn ≤ x}

= Pθ{X1 ≤ x}P{X1 ≤ x}, · · ·P{Xn ≤ x} =
(x
θ

)(x
θ

)
· · ·
(x
θ

)
=
(x
θ

)n

9. Yes, the p-value is below 0.05. No, the p-value is above 0.01.
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