
One dimensional transport equations and the
d’Alembert solution of the wave equation

Consider the simplest PDE: a first order, one dimensional equation

ut + cux = 0 (1)

on the entire real line x ∈ (−∞,∞). This is sometimes called the transport
equation, because it is the conservation law with the flux−cu, where c is the
transport velocity. We can view (1) as the directional derivative of u in the
direction v = (1, c) where v is a vector in (t, x)-space. Thus (1) means that
the function u(x, t) is constant on each line parallel to v. These lines have
the equation x− ct = some constant, and therefore u must be a function of
x− ct alone. The most general solution of (1) is therefore

u(x, t) = f(x− ct). (2)

If we were supplied with an initial condition to (1), we immediately find
that f(x) = u(x, 0). The solution (2) merely translates the initial data at
speed c as time progresses.

Now consider the wave equation

utt − c2uxx = 0

on the entire real line x ∈ (−∞,∞). We can factor the linear operator to
give (

∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0.

Setting v = ut + cux, we get the two equations

vt − cvx = 0,

ut + cux = v.

(This is like solving the linear system ABx = b: we can introduce an in-
termediate quantity w = Bx and solve Aw = b, then go back and solve
w = Bx). The general solution to the first equation is just v = h(x+ ct) for
some function h. Now we must solve

ut + cux = h(x+ ct). (3)
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This is an inhomogeneous equation, and we can attempt to solve it by looking
for solutions of the form u = uhom+up where up is a particular solution and
uhom solves the homogeneous equation

ut + cux = 0. (4)

The general solution to (4) is uhom = g(x − ct). We guess a particular solu-
tion of the form up = f(x+ ct), and plugging it in gives f ′(s) = h(s)/2c. In
other words, the particular solution can also have the form f(x+ ct), so the
whole solution u = uhom + up has the general form

u = g(x− ct) + f(x+ ct). (5)

Now we would like to satisfy the initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x)

Inserting the general solution (5) gives

f(x) + g(x) = u0(x), (6)
f ′(x)− g′(x) = 1

cv0(x). (7)

Integrating the second of these gives

f(x)− g(x) =
1

c

∫ x

0
v0(x

′)dx′ +K (8)

where K is some constant of integration (the lower bound on the integral
was specified arbitrarily). We can now add and subtract (6) and (8) in order
to find f and g:

f(x) = 1
2

(
u0(x) +

1
c

∫ x
0 v0(x

′)dx′ +K
)
,

g(x) = 1
2

(
u0(x)− 1

c

∫ x
0 v0(x

′)dx′ −K
)

Therefore the complete solution to the initial value problem is (notice that
K drops out)

u = f(x+ ct)+ g(x− ct) =
1

2
(u0(x+ ct) + u0(x− ct))+

1

2c

∫ x+ct

x−ct
v0(x

′)dx′.

This is known as d’Alembert’s solution to the wave equation.
The above method can be generalized to any second order PDE which

can be factored and written as two transport equations. For example,

uxx + uxy − 2uyy = 0 (9)
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can be factored as (
∂

∂x
+ 2

∂

∂y

)(
∂

∂x
− ∂

∂y

)
u = 0.

which can be written as the system

vx + 2vy = 0,

ux − uy = v.

Following the same logic as above, we see that the most general solution is

u(x, y) = f(y − 2x) + g(y + x)

for arbitrary functions f, g.
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