
Dispersion relations, linearization and linearized
dynamics in PDE models

1 Dispersion relations

Suppose that u(x, t) is a function with domain {−∞ < x < ∞, t > 0},
and it satisfies a linear, constant coefficient partial differential equation. It
happens that these type of equations have special solutions of the form

u(x, t) = exp(ikx− iωt), (1)

or equivalently,
u(x, t) = exp(σt+ ikx). (2)

We typically look for solutions of the first kind (1) when wave-like behav-
ior which oscillates in time is expected, whereas (2) is used if we expect
growth or decay in time. Plugging either (1) or (2) into the equation yields
an algebraic relationship of the form ω = ω(k) or σ = σ(k), called the dis-
persion relation. It characterizes the dynamics of spatially oscillating modes
of the form exp(ikx).

For dispersion relations of the form ω(k), notice that the solution can be
written

u(x, t) = exp
(
ik[x− ω(k)

k
t]
)
, (3)

which we notice are waves traveling at speed ω(k)/k; this is known as the
phase velocity. Of course, a more general solution might be a superposition
of waves of the form (1), which means that there can be many different
phase velocities present.

For dispersion relations of the form σ(k), the sign of the real part of σ
indicates whether the solution will grow or decay in time. If the real part of
σ(k) is negative for all k values, then any superposition of solutions of the
form exp(σt+ ikx) will also appear to decay. On the other hand, if σ(k) > 0
for some values of k, then over time some components of a superposition
will grow exponentially.

Here are a couple standard examples. For the wave equation utt =
c2uxx, we plug in a wave-like solution (1) to get −ω2 exp(ikx − iωt) =
−c2k2 exp(ikx−iωt), or ω(k) = ±ck. The phase velocity is ω/k = ±c, which
happens to be a constant for all k. We might have expected this since the
general solution of the wave equation has components which propagate at
exactly these two velocities.
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For the diffusion equation ut = Duxx, we use (2) to get σ(k) = −Dk2.
Since this is negative for all k, we might expect that solutions which are
superpositions of (2) also decay. This is consistent with the fundamental
solution representation for the diffusion equation.

2 Steady state solutions

Suppose we have a (possibly nonlinear) PDE of the form

ut = R(u, ux, uxx, . . .) (4)

A steady state (or equilibrium) solution u0 is one for which (u0)t ≡ 0, so that
it solves

R(u0, (u0)x, ...) = 0. (5)

In addition, (4) and (5) might also satisfy boundary conditions. The steady
state solution therefore solves a differential equation, although there are
fewer independent variables than (4).

Often, the solution to (5) is just a constant u = u0 in space as well as
time. For example, for the diffusion equation with Dirichlet-type boundary
conditions

ut = uxx, u(0, t) = 2 = u(1, t), (6)

it is easy to see that u(x, t) = 2 is a solution which does not depend on time
or the space variable. In general, however, equilibria may depend on x; for
example, for the diffusion equation with mixed boundary conditions

ut = uxx, u(0, t) = 0, ux(1, t) = 1, (7)

the equilibrium solution solves a two-point boundary value problem

(u0)xx = 0, u0(0) = 0, (u0)x(1) = 1, (8)

whose solution is easily obtained as u0 = x.

3 Linearization and stability

It is frequently useful to approximate a nonlinear equation with a linear
one, since we know a lot more about linear equations. If u0(x) is a steady
state of an equation of the form (4), then we can look for solutions of the
form

u(x, t) = u0(x) + εw(x, t) (9)
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where ε presumed to be a small parameter. Plugging into (4) and keeping
only the terms of order ε always gives us a linear, time dependent equation
for w. This equation is called the linearization of (4) about u0.

As an example, consider the “Fisher” (or KPP) equation with no-flux
conditions at infinity

ut = uxx + u(1− u), lim
x→±∞

ux = 0. (10)

An equilibrium solution u = u0(x) satisfies

(u0)xx + u0(1− u0) = 0, lim
x→±∞

ux = 0. (11)

It is easy to pick off two constant (in space and time) solutions u0(x) = u0,
which solve u0(1− u0) = 0 so that u0 = 0 or u0 = 1.

Now plugging (9) into (10) for u0 = 0, one gets

εwt = εwxx + εw − ε2w.

Keeping only terms of order ε, we get the linearized Fisher equation

wt = wxx + w. (12)

This is a diffusion equation with a linear source term. It should be noted
that u0+ εw only makes sense as an approximation to the original equation
(11) if w is not too big. Nevertheless, a linearized equation often gives a lot
of information about how the exact nonlinear equation behaves.

If we linearize about u0 = 1, we get a different result. Setting u = 1+εw,
we have

εwt = εwxx − εw − ε2w,

so that the linearization is now

wt = wxx − w. (13)

3.1 Stability

When we linearize about a constant-valued, steady state solution, we of-
ten end up with a constant coefficient linear equation. We can compute a
dispersion relation of the form (2), which tells us whether solutions to the
linearized equation grow or decay.

Consider the Fisher equation linearized about u = 0 in equation (12).
Substituting (2) into it, one gets σ = −k2 + 1. Since σ > 0 when |k| < 1, we
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might expect that an arbitrary initial condition for w has components that
both grow and decay exponentially. We would therefore say that u0 = 0 is
linearly unstable. On the other hand, the linearization about u = 1 (13) has
the dispersion relation σ = −k2 − 1, which is always negative. Thus any
initial condition of the form u(x, 0) = 1 + εw(x, 0) in the original equation
should evolve in time in a way that has w decay and u → 1 as t → ∞. We
call this situation linearly stable.

4 Behavior of superpositions of waves

The dispersion relation for waves ω = ω(k) says that each component of
wavenumber k travels at the phase velocity ω(k)/k. If the phase velocity
is different for each k, a superposition of many different waves will appear
to spread out or disperse. Surprisingly, if the superposition contains only
wavenumbers near a central wavenumber k0, the wave does not appear to
move at the phase velocity σ(k0)/k0, but at a different speed. This is an
effect of interference, because some waves move faster than others.

Consider an initial condition which is a superposition of many different
oscillations

u(x, 0) =

∫ ∞
−∞

A(k)eikx dk,

where we think of A(k) as the amount of wavenumber k. If u solves an
equation with a given dispersion relation ω = ω(k) then the complete solu-
tion can be written

u(x, t) =

∫ ∞
−∞

A(k)eikx−iω(k)t dk. (14)

In general, the integral oscillates considerably as k is varied, and so one
expects significant cancellation.

Suppose that A(k) is concentrated about some wavenumber k0; for ex-
ample, A(k) = exp(−(k − k0)2/ε) where ε is small. One might think that
A(k) could be replaced with a delta function δ(k − k0) as a good approxi-
mation, and then one recovers u ∼ exp(ik0x − iω(k0)t). This turns out to
be too simple, since the “sideband” wavenumbers near k0 play a role as t
becomes large. Instead, we Taylor expand ω(k) ≈ ω(k0) + ω′(k0)(k − k0),
and plug into (14), giving

u(x, t) ≈ eit[ω′(k0)k0−ω(k0)]
∫ ∞
−∞

A(k)eik(x−ω
′(k)t) dk.
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The first factor just oscillates in time, whereas the integral is a traveling
wave of the form f(x − ω′(k0)t). This means that the entire superposition
appears to travel at the group velocity ω′(k0), which is in general different
than the phase velocity ω(k0)/k0. Only in the case where the dispersion
relation is linear ω = ck do the phase and group velocities coincide.

5


