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1 Introduction
This is a document providing answers to Frequently Asked Questions (FAQ) regarding the proof
of the abc-conjecture given in [Joshi, 2021, 2022, 2023b,a, 2024c], [Mochizuki, 2021b].

Question 1. What do I need to know to understand the outlines of the claimed proof of the
abc-conjecture?

Ans.

(1.1) Read some classical Teichmüller Theory of genus one Riemann surfaces from any standard
text on the subject (e.g. [Imayoshi and Taniguchi, 1992]). [A good understanding of the
genus one case is essential.]

(1.2) Next read the proof of the Geometric Szpiro Conjecture given in [Zhang, 2001] (its
approach is simpler than the prior work of [Amorós, Bogomolov, Katzarkov, and Pantev,
2000]).

(1.3) Understanding Teichmüller Theory aspects of the above cited papers is very important. My
commentary on this appears in [Joshi, 2023a, Appendix] and it shows how the principal
constructs of the arithmetic case appear in the geometric case. Mochizuki’s commentary
on the geometric case and his own arithmetic approach is here [Mochizuki, 2016]–this is
a bit sophisticated, and it does not cover aspects covered in my commentary.

(1.4) Finally read [Kim, 2002] (or [Beauville, 2002]) which presents a different proof of the
Geometric Szpiro Conjecture.

Understanding the arithmetic case minimally requires a good understanding of classical Te-
ichmüller Theory, [Zhang, 2001] and [Kim, 2002].

Question 2. Why should I be familiar with the geometric case?

Ans. Over the past hundred years, the development of proofs in Diophantine geometry has often
proceeded as follows: understand and prove the geometric case, and then imitate or transfer
ideas of that proof to the arithmetic case. A classic example of this is the proof of Mordell’s
Conjecture. My commentary on the geometric case (cited above) demonstrates how closely the
proof in the geometric case parallels what Mochizuki and I do in the arithmetic case.
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Question 3. I know a lot of algebraic geometry and moduli of Riemann surfaces. Is that not
enough?

Ans. No. Teichmüller Theory deals with quasi-conformal mappings (e.g. C Cx+iy 7−→x+5iy
)

between Riemann surfaces and these are not holomorphic and therefore not algebraic. Te-
ichmüller Theory of Riemann surfaces extends Riemann’s moduli theory of Riemann surfaces
by allowing non-holomorphic mappings between Riemann surfaces.

Question 4. What is the relevance of Teichmüller Theory in the proof?

Ans. Mochizuki’s first key idea is to extend the familiar analogy between Riemann Surfaces and
Number Fields, and envisages a Teichmüller Theory for any fixed number field (my paper [Joshi,
2023a] independently demonstrates this idea and elevates it further to construct an Arithmetic
Teichmüller Space for each fixed number field). Mochizuki’s second key idea (very roughly
speaking) is to average over the Teichmüller Theory of a Number Field (in [Joshi, 2024c], [Joshi,
2024b] the averaging is over the Arithmetic Teichmüller Space).

Question 5. Is there any interesting example of averaging techniques used in Teichmüller
Theory of Riemann surfaces?

Ans. Yes. Averaging i.e. computing integrals over Teichmüller spaces is a standard technique.
The survey [Wright, 2019] has some very interesting recent examples including the higher genus
case.

Question 6. I know the analogy between Number Fields and Riemann surfaces very well. So
how can I understand the extended Teichmüller analogy you are proposing?

Ans. Number Field is a global object. So before understanding the global arithmetic situation
(documented in [Joshi, 2023a]), I recommend understanding the p-adic fields case first (i.e. the
case of finite extensions of Qp).

Question 7. Are you suggesting that there is a Teichmüller Theory for p-adic fields?

Ans. Yes.

Question 8. I have studied p-adic fields and p-adic analysis from [Koblitz, 1984] very well, but
I have never heard of this. So what is it?

Ans. In some sense, the p-adic field case began a long time ago ([Schmidt, 1933], [Kaplansky,
1942]). Let me give a quick overview using the point of view of my papers. Let Cp be the
completion of some algebraic closure Q̄p of Qp. By [Kedlaya and Temkin, 2018], there exists an
algebraically closed, complete valued field K containing an isometric embedding of Qp, such
that K ≃ Cp as abstract algebraically closed fields (so they have the same cardinality) and Cp

have the same value group i.e.
∣∣C∗

p

∣∣ = |K∗|, and both have the same residue field F̄p, but K
and Cp are not topologically isomorphic and hence not isomorphic as (complete) valued fields.
This means K,Cp each provides (a) an algebraic closure Q̄p, (b) a completion of this algebraic
closure Q̄p, and (c) a valid version of p-adic analysis (as in [Koblitz, 1984]). But, there is no
way to compare the algebraic closures or their completions as fields embedded in K and Cp or
the p-adic analysis K and Cp provide.
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Thus, p-adic arithmetic in K looks quite different relative to that in Cp. So one may think of
K as providing a deformation of arithmetic of Qp, Q̄p relative to that in Cp.

My view of the p-adic field case was heavily influenced by [Schmidt, 1933], [Kaplansky,
1942]. To relate to the view of [Schmidt, 1933], the fields K and Cp are Q-isomorphic, but have
inequivalent (rank one) valuations each of which induce a valuation equivalent to the standard
p-adic valuation on the prime subfield Q.

The fields K,Cp are both algebraically closed perfectoid fields containing Qp isometrically,
so it is natural to bring in [Scholze, 2012], [Fargues and Fontaine, 2018]. The view of [Joshi,
2023a] is that Fargues-Fontaine curves constructed in [Fargues and Fontaine, 2018] are the
Teichmüller space for finite extensions of Qp.

(In the p-adic context, I should also mention [Matignon and Reversat, 1984], [Poonen,
1993]).

Question 9. I understand Cp, but I don’t understand K. Can’t one work at the level of finite
extensions of Qp?

Ans. No. If M1,M2 are finite extensions of Qp, then any field isomorphism M1 ≃ M2 is an
isomorphism of complete discretely valued fields. So the situation is very rigid at the level of
finite extensions of Qp.

Question 10. But what does this have to do with elliptic curves?

Ans. Let E/Qp be an elliptic curve and K,Cp be as discussed above. In [Joshi, 2021], I show
that the Berkovich analytic spaces Ean

K and Ean
Cp

are not Qp-isomorphic (Qp is the smallest
complete valued field isometrically embedded in both K and Cp). Since Berkovich analytic
spaces are built using (p-adic) analytic functions, one can think of Ean

K , Ean
Cp

as analytic spaces
arising from the elliptic curve E/Qp but with completely distinct holomorphic structures. This
deformation or change of holomorphic structures is achieved by changing p-adic arithmetic in
Cp with p-adic arithmetic in K. That is why I have asserted that one is dealing with Arithmetic
Teichmüller Theory. [Mochizuki coined the phrase “arithmetic holomorphic structure.”]

Question 11. But there is no mention of any field like K (or even Cp) in [Mochizuki, 2021b].
So why is your claim related to Mochizuki’s claim?

Ans. Mochizuki’s theory is founded on his Key Principle of Inter-Universality [Mochizuki,
2021b, § I3, Page 25-26] (see Question 31). This principle requires one to work with arbitrary
geometric base-points for tempered fundamental groups. This is how fields like K,Cp enter
Mochizuki’s work.

Question 12. I see that such large fields exist. But can you be more specific about how this
Teichmüller theory of arithmetic affects an elliptic curve?

Ans. Before clarifying this let me explain how classical Teichmüller Theory impacts elliptic
curves from an algebro-geometric perspective. In classical Teichmüller Theory, periods of a
fixed Riemann surface get scaled arbitrarily (the isomorphism class of the Riemann surface
remains fixed). In genus one, an elliptic curve Eτ with period lattice [1, τ ] is isomorphic, via
the Möbius transformation τ 7−→ − 1

τ
, to the elliptic curve E− 1

τ
with periods lattice [1,− 1

τ
].

If the original period τ satisfies |τ | > 1, then τ ′ = − 1
τ

satisfies |τ ′| < 1. This sort of relative
scaling is a typical hallmark of Teichmüller Theory of Riemann surfaces. In genus one, classical
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Teichmüller space can be identified with the complex upper half-plane, and the elliptic curves
Eτ and E− 1

τ
represent distinct points of the Teichmüller space, but they represent the same point

in the moduli space (identified with the complex j-line).
Mochizuki asserted, that there is an arithmetic version of this relative Teichmüller type

scaling of the Tate parameters i.e. the p-adic periods of a semi-stable elliptic curve. But,
using Mochizuki’s group-theoretic methods and tools, it is genuinely difficult to prove that this
relative scaling exists in the p-adic case and is non-trivial. From my point of view this relative
scaling exists simply because the valuations of all the large fields K, which enter the theory via
geometric base-points (for tempered fundamental groups), cannot be simultaneously normalized.
So the Tate parameters i.e. p-adic periods do occur at distinct valuation scales relative to each
other.

Question 13. Can you be a bit more specific about the p-adic period aspect, because I do not
understand this point.

Ans. Let E/Qp be a semi-stable elliptic curve. Then the untilts (K,K♭ ≃ C♭
p) are parameterized

by the closed classical points of a suitable Fargues-Fontaine curve and each untilt (K,K♭ ≃ C♭
p)

provides a Tate parameter q(K,K♭ ≃ C♭
p) and the rule

(K,K♭ ≃ C♭
p) 7−→ q(K,K♭ ≃ C♭

p)

is a highly non-trivial and non-constant function on the Fargues-Fontaine curve. This is the
function which one would like to average or integrate over the Fargues-Fontaine curve (or
some chosen subset of it). The idea is, roughly speaking, to use this average to bound the
Tate parameter q(Cp,C♭

p = C♭
p) at the canonical point (Cp,C♭

p = C♭
p) of the Fargues-Fontaine

curve. This is the picture at one prime, but one really wants to do this over all primes and use
the product formula as a global glue. Two remarks will be useful: first, integrals of similar
functions occur in classical Teichmüller Theory ([Wright, 2019]). Second, in Grothendieck’s
function-sheaf dictionary, this rule should be seen as giving us a sheaf on the Fargues-Fontaine
curve.

Question 14. You assert in Question 13 that product formula for number fields provides global
gluing in the arithmetic case. But what plays the role of the product formula in geometric proof
of [Zhang, 2001], [Amorós et al., 2000]?

Ans. The context for the geometric proofs in [Zhang, 2001] (and [Amorós et al., 2000]) is a
non-isotrivial elliptic fibration f : E → B with stable fibers and with B a connected algebraic
curve of genus g ≥ 0 over complex numbers. Let S ⊂ B be the set of points of B over which
the fibers of f are not smooth. Let |S| = n be the cardinality of S. Then let π1 = π1(B − S)
be the topological fundamental group of B − S, and let a1, . . . , ag, b1, . . . , bg, c1, . . . cn be the
generators of π1 with the fundamental relation (in π1)

g∏
i=1

[ai, bi]
n∏

i=1

ci = 1.

Then in the geometric case of [Zhang, 2001] (and [Amorós et al., 2000]), this (product) relation
plays the role of the product formula for number fields.

Question 15. I don’t know anything about tempered fundamental groups? Can one work with
étale fundamental groups?
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Ans. Tempered fundamental groups [André, 2003b], [André, 2003a] are pro-discrete groups and
capture infinite discrete coverings such as that of Tate elliptic curves, while étale fundamental
groups work with finite étale coverings. The tempered fundamental group requires one to work
with Berkovich spaces. The datum of geometric base-points, for the tempered fundamental
group, consists of fields which are algebraically closed and complete (rank-one) valued fields
(and contain Qp-isometrically). Tempered fundamental groups carry finer information and
determine étale fundamental groups but not conversely. So one is necessarily working with a
more refined object.

Question 16. I don’t understand how working with geometric base-points changes anything!

Ans. The tempered or étale fundamental group is unaffected by the choice of the geometric
base-point. But working with all geometric base-points is tantamount to working with an
extended object. Let me explain this for étale fundamental groups. Say X/C is a complex
quasi-projective variety. A geometric base-point for the étale fundamental group of X is a
morphism of schemes Spec(F ) → X for some algebraically closed field F ⊇ C. For example,
F = C((T )) is one such field. So working with all morphisms ∗ : Spec(C((T ))) → X is
tantamount to working with X(C((T ))). By the Newton-Pusieaux Theorem,

X(C((T ))) =
⋃
n≥1

X(C((T 1/n))).

Thus, this set contains X(C((T ))) which is the algebraic loop-space of X , and it strictly contains
X(C) (in general).

Similarly, working with geometric base-points for tempered fundamental groups is like
working with arithmetic loop spaces (this view is fleshed out in [Joshi, 2023a, § 9]). For
relationship between working with all geometric base-points and with X♢ of [Scholze, 2017,
Section 15], see [Joshi, 2022, Remark 4.3], and with greater detail in [Joshi, 2021, Proposition
4.3.1].

Question 17. What is the valuation scaling in the above example?

Ans. In the above example, the valuation scaling alluded to earlier is this: if |T |C((T )) = c for
some real number 0 < c < 1, then

|T |C((T 1/n)) = cn.

Question 18. In the p-adic context, what is the valuation scaling analogous to Question 16,
Question 17 and how does it relate to Mochizuki’s assertions in [Mochizuki, 2021d, Theorem
3.11, Remark 3.11.1]?

Ans. In the context and notation of Question 8, if

|p|Cp
=

1

p

(this is the standard normalization), then

|p|K =
1

pλ
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for some λ ∈ R. This is precisely the sort of relationship Mochizuki asserts in [Mochizuki,
2021d, Theorem 3.11 and Remark 3.11.1]. The non-trivial aspect here is that the valued field
(K, |−|K) is not isomorphic to (Cp, |−|νCp

) for any ν ∈ R as the fields K are not topologically
isomorphic. So this scaling of valuations given above arises from the fact that arithmetic
holomorphic structures are distinct, and this scaling is quite non-trivial in general (as [Mochizuki,
2021d, Theorem 3.11] requires). Mochizuki sometimes refers to this sort of valuation scaling
property as “Teichmüller dilatations.” On the other hand replacing (Cp, |−|Cp

) by (Cp, |−|λCp
) is

a trivial scaling of valuation and that is not what one wants to do at all. In classical Teichmüller
Theory, the existence of Teichmüller dilatations is encapsulated in the Beltrami differential or
the Beltrami coefficient [Imayoshi and Taniguchi, 1992]. [One word of caution: the global
Frobenius morphism (discussed in my answer to Question 24) also leads to valuation scaling and
this aspect plays a central role in both Mochizuki’s and my approach to the establishment of the
key inequalities of [Mochizuki, 2021d], [Mochizuki, 2021e] and [Joshi, 2024c], [Joshi, 2024b].]

Question 19. Mochizuki’s approach is supposed to be anabelian, so how does your approach
reconcile with that?

Ans. Let me begin with the simple case of Spec(Qp). The two fields K,Cp discussed ear-
lier, provide two choices of geometric base-points ∗K : Spec(K) → Spec(Qp) (resp. ∗Cp :
Spec(Cp) → Spec(Qp)) (induced by the inlcusions Qp ↪→ K and Qp ↪→ Cp) for computing the
étale (resp. tempered) fundamental group of Spec(Qp) (resp. Spec(Qp)

an). In this example,
the étale and the tempered fundamental groups coincide. The (étale or tempered) fundamental
group computed using the algebraic closure of Qp in K (resp. Cp) is Gal(Q̄p/Qp)K (resp.
Gal(Q̄p/Qp)Cp). Now from elementary Galois theory one has a topological isomorphism

πet
1 (Spec(Qp), ∗ : Spec(K) → Spec(Qp)) = Gal(Q̄p/Qp)K

πet
1 (Spec(Qp), ∗ : Spec(Cp) → Spec(Qp)) = Gal(Q̄p/Qp)Cp

≃

between the fundamental groups computed using the respective geometric base-points. But there
is no isomorphism of the pairs

(Gal(Q̄p/Qp)K , K) and (Gal(Q̄p/Qp)Cp ,Cp).

The latter is what Mochizuki’s Key Principle of Inter-Universality requires one to work with.
In [Joshi, 2021] I prove that fundamental groups remain fixed (i.e. are isomorphic) under such
arithmetic base changes, but the Berkovich analytic spaces are not isomorphic.

Question 20. So are you suggesting that working the pairs (Gal(Q̄p/Qp)K , K) as above is
adequate for this theory?

Ans. No, not at all. One should work with all untilts (K,K♭ ≃ F ) of all algebraically closed
perfectoid fields F of characteristic p. In practice, it is enough to take F = C♭

p. There are two
reasons for this (1) the tilting data K♭ ≃ C♭

p provides a fixed value group (namely that of C♭
p)

in which one can compare valuations of elements of K as the untilt (K,K♭ ≃ C♭
p) varies. For

similar valuation comparisons, Mochizuki works with the pair consisting of an “étale picture”
and a “Frobenius picture.” [This is detailed in [Joshi, 2024c].] (2) Working with the collection
of untilts means one has a Frobenius morphism (as in [Fargues and Fontaine, 2018]). [In [Joshi,
2024c] I provide a ‘Rosetta Stone’ for translating between my theory and Mochizuki’s theory.]
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Question 21. But isn’t all what you have said local for one prime number p?

Ans. True. To go from one prime number to all prime numbers one uses adelic methods.

Question 22. But aren’t adelic methods still local?

Ans. Yes and no. Adelic constructions are typically built using local objects and then one uses
some global glue to glue all the local pieces together. For example, the product formula for
a number field is one such global glue which glues all the local pieces together. This is the
strategy employed by Mochizuki and myself in our papers. Apart from the product formula
which we both use (for the same reason), there are two more global glues which we both use:
(1) the global action of the multiplicative group of a number field in my work and Mochizuki’s
work (this action transforms arithmetic holomorphic structures keeping certain global volumes
i.e. measures fixed), and (2) the action of a global Frobenius (called the log-Link in Mochizuki’s
work).

Question 23. Why have you asserted that Mochizuki’s paper is incomplete?

Ans. My assertion of incompleteness is based on the genuine difficulty one encounters in
using Mochizuki’s toolkit in proving his assertions. The central difficulty is to show that there
exist distinct arithmetic holomorphic structures (the analogous classical assertion is that the
(isomorphic) elliptic curves Eτ and E− 1

τ
represent distinct points of the classical Teichmüller

space in genus one). [This is discussed in Question 12.] The second difficulty is to demonstrate
the existence and non-triviality of various symmetries (Galois action, Θ-Links, log-Links/global
Frobenius) asserted by Mochizuki. I prove these properties from an intrinsic geometric point of
view in my papers.

Question 24. How can a Number Field have a global Frobenius morphism? I don’t understand
what role does the global Frobenius morphism play in the proof?

Ans. First let me be clear: the global Frobenius morphism is a continuous mapping on the
Arithmetic Teichmüller SpaceYL of topologically distinct avatars of arithmetic of L constructed
in [Joshi, 2023a]. This mapping is a precise version of the Log-Link considered in [Mochizuki,
2021b, Page 32]. This global Frobenius morphism changes the arithmetic avatar of the number
field at all primes p. To explain this global Frobenius morphism, let L be a number field. The
global Frobenius arises from the (genuine) Frobenius morphism of a Fargues-Fontaine curve
YC♭

p,Lp
at all primes p|p and all prime numbers p (one must also include archimedean primes).

[So my construction of the global Frobenius morphism is quite geometric.]
The global Frobenius morphism also appears in the geometric case of [Zhang, 2001]–this

is detailed in [Joshi, 2023a, Appendix]. Now to the role of the global Frobenius morphism in
the arithmetic case. At this point it is essential to know the vector bundle theoretic proof of
geometric Szpiro Inequality given in [Kim, 2002]. The inequalities proved there are very similar
to the bundle theoretic inequalities proved using the genuine Frobenius morphism for vector
bundles proved in [Joshi and Pauly, 2015]. This global Frobenius morphism φL : YL → YL

does a number of things in the arithmetic case:

(1) it alters valuations at all finite primes of L by a pth-power for all prime numbers p
simultaneously (see [Joshi, 2024c] for details);

(2) it allows us to speak of a number field L twisted by global Frobenius L(1) (just as one
does in characteristic p > 0 and especially in [Joshi and Pauly, 2015]),
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(3) and compare arithmetic quantities on L with those on L(1). Mochizuki employs his
log-Link to achieve this.

(4) This use of global Frobenius/log-Link is very similar to the comparison of a vector bundle
on a curve and its Frobenius twisted version in [Joshi and Pauly, 2015].

Question 25. Are you asserting that there is a global Frobenius morphism in the geometric case
proved in [Zhang, 2001] (and [Amorós et al., 2000])?

Ans. Yes. There is a global Frobenius morphism in these geometric proofs, and it plays a
central role in the proof of the geometric Szpiro inequality given in both [Zhang, 2001] and
[Amorós et al., 2000]. [This explicit identification of the global Frobenius morphism and other
relevant structures in their proofs was not made by these authors, but is detailed in [Joshi, 2023a,
Appendix].] That is why I have said that these geometric proofs must be thoroughly understood
to understand what Mochizuki and I assert.

Question 26. Doesn’t the main theorem of [Mochizuki, 2015, Theorem 1.9] contradict [Mochizuki,
2021b] because that theorem asserts that a smooth, hyperbolic p-adic curve over a number field
is determined uniquely (up to isomorphism) by its tempered fundamental group?

Ans. No. [Mochizuki, 2015, Theorem 1.9] does not determine the geometric base-point infor-
mation, namely the algebraically closed, complete valued field at all, while Mochizuki’s Key
Principle of Inter-Universality [Mochizuki, 2021b, § I3, Pages 25–26] (see Question 31) requires
one to remember the geometric base-point information. So the said theorem sheds no light on
the crucial ingredient of [Mochizuki, 2021b]. [The geometric analogy is this: the fundamental
group of Riemann surface does not determine its holomorphic structure. Likewise, [Mochizuki,
2015, Theorem 1.9] does not determine the arithmetic holomorphic structure.]

Question 27. Can one prove Szpiro’s conjecture for one elliptic curve by these methods?

Ans. Szpiro’s Conjecture is about all elliptic curves over a fixed number field, just as the
abc-conjecture is about all (primitive) (a, b, c) triples. Strictly speaking, there is no statement for
a single elliptic curve or for a single abc-triple.

Question 28. Can one prove Szpiro’s Conjecture directly by these methods?

Ans. That has yet to be demonstrated. Mochizuki uses the reduction to Vojta’s Inequality for
compactly bounded subsets (of (P1 − {0, 1,∞})(Q̄)) which he had established in [Mochizuki,
2010]. So that is the case Mochizuki establishes in his fourth paper (and I follow his proof in
my fourth paper with some additional clarification and supply necessary missing details). It was
shown in [van Frankenhuysen, 2002] that the abc-conjecture is equivalent to Vojta’s Inequality
and it was previously established by Paul Vojta that the relevant case of his inequality implies
the Szpiro Conjecture.

Question 29. But didn’t Mochizuki assert in April 2024 that you must be wrong?

Ans. Mochizuki’s report on my work makes it clear that he had not read my global approach
because no mention of [Joshi, 2023a] occurs in his report (he does not separate his global
approach into a separate paper as I do); and secondly, as I have said in the current version (Feb
2025) of [Joshi, 2024b], in the first version (March 2024), I had missed the usage of the global
Frobenius at a critical juncture. [This omission has been fixed in the current versions of my
relevant papers on the arxiv.]
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Question 30. The recent article [Boyd, 2025] discusses ∈-loops and (mathematical) universes
in the context of [Mochizuki, 2021b]. How do they figure in your theory?

Ans. First and foremost: there is no reference to any ∈-loops in [Mochizuki, 2021a], [Mochizuki,
2021c] and therefore these do not occur in any proofs given therein.

(1) In [Mochizuki, 2021d, Remark 3.11.1, Page 581–585], which appears after the proof
of Theorem 3.11, Mochizuki reminds us that identifying all the arithmetic holomorphic
structures leads to a contradiction. This is the first tacit and only reference to ∈-loops in
the context of the proof of [Mochizuki, 2021b, Theorem 3.11, Page 573]. To understand
this, it is useful to understand the geometric case using the notation of Question 12. If one
works in the category of complex manifolds, then asserting that Eτ and E− 1

τ
are distinct

Riemann surfaces leads to a contradiction (as these are biholomorphic). However, the
genus one Teichmüller space can be identified with complex upper half-plane and in this
space Eτ , E− 1

τ
correspond to two distinct points τ,− 1

τ
. Hence, one can assert that they

are distinct (in the genus one Teichmüller space) without encountering a contradiction.
This is the picture Mochizuki wants to emulate in the arithmetic case.

However, Mochizuki does not construct Arithmetic Teichmüller Spaces (but I do)
nor does he provide any way of distinguishing between arithmetic holomorphic structures,
so Mochizuki reminds us in [Mochizuki, 2021d, Remark 3.11.1(i), Page 581–585] that
the proofs of [Mochizuki, 2021d, Theorem 3.11 and Corollary 3.12] requires one to
work with distinct arithmetic holomorphic structures (by assigning arbitrary labels †
and ‡ if necessary). The gist of the said remark is that working with distinct arithmetic
holomorphic structures is absolutely necessary, as one wants to average over a collection
of such structures, to avoid logical contradictions or ∈-loops. Asserting that there is only
one arithmetic holomorphic structure is just as incorrect as asserting that there is only
one holomorphic structure on any oriented, compact surface of genus g ≥ 1, and just
as incorrect as asserting that all quasi-conformal mappings between Riemann surfaces
are conformal mappings. I had considerable difficulty with Mochizuki’s assertion, but I
discovered that Mochizuki’s claim of distinct arithmetic holomorphic structures (i.e. of
distinct versions of arithmetic) can be made quite robust using [Scholze, 2012], [Fargues
and Fontaine, 2018] without necessitating any meta-mathematical invocations. This is
detailed in [Joshi, 2021], [Joshi, 2023a]. My approach provides a canonical way to
disambiguate Mochizuki’s claims about arithmetic holomorphic structures and avoids any
discussion of ∈-loops or any meta-mathematical considerations.

(2) Finally, after the proof of the abc-conjecture is completed, there is a meta-mathematical
discussion involving universes and ∈-loops in [Mochizuki, 2021e, § 3, Pages 701–721].

There is no other occurrence of universes or ∈-loops in [Mochizuki, 2021b, Pages 40-700]. So
it is safe to say that ∈-loops, or any other meta-mathematical theorems, are not directly used in
the actual proofs of the assertions in [Mochizuki, 2021b].
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Question 31. But your answer above does not discuss universes which I asked about in my
previous question? So what about that aspect?

Ans. True. Let me discuss this now. Here is what Mochizuki says ([Mochizuki, 2021b, Page
26]):

It is this fundamental aspect of the theory of the present series of papers – i.e.,
of relating the distinct set-theoretic universes associated to the distinct fiber func-
tors/basepoints on either side of such a non-ring/scheme- theoretic filter
– that we refer to as inter-universal.

(this is Mochizuki’s Key Principle of Inter-universality which forms the core strategy for his
work).

So Mochizuki’s view is that each geometric base-point be treated as belonging to a distinct
universe. I think this is an interesting idea, but Mochizuki does not actually use universes in
the main body of the proof [Mochizuki, 2021b, Pages 40–700] (also see Question 39). To use
the above principle, geometric base-points would need to be tracked, but he actually does not
track geometric base-points, and then, on several occasions (e.g. [Mochizuki, 2021b, Page 580,
and Pages 445, 446, 451, and Remark 1.4.2 Page 453]) he reminds us that (a) there are distinct
arithmetic holomorphic structures involved and (b) that we should also remember that various
operations of his theory reference the ring structures provided by geometric base-points.

Note however, the tacit idea for many people, is that geometric base-points should refer to the
field Q̄p (or Cp), and as I observed early on in my work, working with Cp is certainly inadequate
according to the above quote (and the theory of tempered fundamental groups [André, 2003b]).

My approach, on the other hand, and my definition [Joshi, 2021, Definition 4.1.1] of
arithmetic holomorphic structure does track geometric base-points explicitly (the relationship
between this definition and X♢ of [Scholze, 2017] is in [Joshi, 2021, § 4.3]). My central
observation is that my definition of arithmetic holomorphic structures raises the theory to
the level of classical Teichmüller Theory, and is completely in line with Mochizuki’s ideas
and in fact, it is a quantitatively precise version of his ideas. Moreover, the key point of the
proof requires working with distinct arithmetic holomorphic structures (i.e. distinct universes
according to Mochizuki’s own words and his assertions in [Boyd, 2025]). Apart from the
fact that I do not agree with the assertion that all the needed meta-mathematics is carefully
worked out in [Mochizuki, 2021b], my point is that one can in fact avoid this meta-mathematical
conversation by carefully establishing the existence of distinct arithmetic holomorphic structures
whose absence the meta-mathematics is invoked to placate.

Question 32. Can you spell out what Mochizuki’s Key Principle of Inter-Universality means in
terms of Classical Teichmüller Theory?

Ans. The key distinction between Teichmüller Space in genus g and moduli space in genus g is
the use of quasi-conformal mappings in the former and the use of holomorphic mappings in the
latter. Now suppose we did not know about quasi-conformal mappings, but wanted to create
some way of distinguishing isomorphic Riemann surfaces (e.g. Eτ and E− 1

τ
) while remaining in

the holomorphic category. Mochizuki suggests this can be achieved by using distinct universes
labeled by distinct base-points for fundamental groups. The problem which Mochizuki faced in
his work in the arithmetic case was this: how to think of non-scheme theoretic mappings (resp.
quasi-conformal mappings in the geometric case) while operating entirely in terms of schemes
(resp. holomorphic mappings). Mochizuki suggests the use of universes in this context.
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My approach, on the other hand, abandons working with schemes and works with Berkovich
rigid analytic spaces and arrives at a more intrinsic p-adic notion, paralleling the classical
theory, possessing the key property (“Teichmüller dilatations”) of quasi-conformal mappings,
and keeping Mochizuki’s idea of geometric base-points as labels intact.

Question 33. Can you explain this better, say, in the context of Question 16, Question 17?

Ans. Certainly. First note that, for each n ≥ 1, one has an isomorphism of discretely valued
fields σn : C((T )) → C((T 1/n)) via the C-algebra isomorphism given by T 7−→ T

1
n . Note that

on one hand C((T )) ⊂ C((T )) and C((T 1/n)) ⊂ C((T )), but on the other hand, C((T )) and
C((T 1/n)) are not isomorphic as subfields of C((T )).

Now suppose E /C((T )) is an elliptic curve with semistable reduction modulo T (for e.g.
E : y2 = x(x − 1)(x − T ))). Now let En be the pull-back elliptic curve E /C((T )) via σn to
an elliptic curve over C((T 1/n)). Thus, one has isomorphic elliptic curves over isomorphic
fields: E /C((T )) σn≃ En/C((T 1/n)). But one may also view E and En as curves over C((T ))
and observe that they are not isomorphic over C((T )) (seen by computing their j-invariants). In
Mochizuki’s parlance, one has distinct universes labeled by C((T )) and C((T 1/n)) respectively,
and one has constructed a universe labeled by C((T )) in which the isomorphic elliptic curves E
and En are not isomorphic. [Using the language of universes here is, of course, quite unnecessary
once one has added the required precision to make such assertions.]

Question 34. I agree that this is correct, but how is this related to the question of bounds and
inequalities?

Ans. I continue in the context and the notation of my answer to Question 33. Suppose Ψ is
a set of non-isotrivial elliptic curves over C((T )). The problem one has is how to compute
an upper bound on a suitably defined volume of Ψ. By applying the above procedure to each
E ∈ Ψ and each n ≥ 1, one obtains a subset Ψn of elliptic curves over C((T 1/n)), and a subset
Ψ′ =

⋃
n≥1Ψn of elliptic curves over C((T )), and obviously Ψ′ ⊃ Ψ1 = Ψ. Now suppose that,

by some other method, one has obtained an upper bound for the volume of Ψ′, then one has
(indirectly) solved the problem of bounding the volume of Ψ. The problem of estimating the
volume of Ψ directly is difficult, but, estimating the volume of Ψ′ may be easier. That is the sort
of strategy Mochizuki uses in his paper.

Question 35. In your answer to Question 31 you mentioned the connection with X♢ constructed
in [Scholze, 2017, Section 15]. Can you say what the relationship is and what it means?

Ans. Let X/Qp be a geometrically connected, smooth hyperbolic curve (e.g. the affine curve
y2 = x(x − 1)(x − p)). A point of the local Arithmetic Teichmüller Space [Joshi, 2021,
Definition 4.1.1] of X/Qp consists of the following data:

Holy(X) = (

an untilt of C♭
p︷ ︸︸ ︷(

Qp ↪→ Ky, K
♭
y ≃ C♭

p

)
,

geometric base-point︷ ︸︸ ︷
∗Ky : M (Ky) → Xan

Qp
).

I call this datum a holomorphoid of X/Qp (so this is at one prime p, but there is a global
version in [Joshi, 2023a] and [Joshi, 2024c]). In this datum, one thinks of the untilt datum
(Qp ↪→ Ky, K

♭
y ≃ C♭

p) given by Holy(X) as arising from a closed classical point of the Fargues-
Fontaine curve y ∈ YC♭

p,Qp
, with residue field Ky; M (Ky) is the Berkovich spectrum of the

Banach field Ky, and ∗Ky : M (Ky) → Xan
Qp

is a morphism of Berkovich spaces.

11



As is pointed out in [Joshi, 2022, Remark 2.3], [Joshi, 2021, Proposition 4.3.1], Holy(X)
also arises (via Huber’s functor to Berkovich spaces) from some

x = ((Qp ↪→ Ky, K
♭
y ≃ C♭

p), ∗Ky : Spa(Ky) → Xad
Qp
) ∈ X♢(C♭

p),

where X♢ is the diamond of X/Qp constructed in [Scholze, 2017]. Note that a Holy(X)
explicitly keeps a track of a geometric base-point for Xan

Qp
and the tempered fundamental group

gives a functor from the category of Holy(X) to the category of pro-discrete groups given by

Holy(X) 7−→ Πy = πtemp
1 (Xan

Qp
, ∗Ky : M (Ky) → Xan

Qp
).

So Holy(X) is a very natural object which exists for intrinsic reason and there is nothing
artificial about it and whose existence, and its relationship with Mochizuki’s Theory (which
works with the group Πy) or with X♢ of [Scholze, 2017, Section 15], is mathematically robust
and cannot be (mathematically) denied. In the archimedean case i.e. p = ∞, one may think of a
point of the classical Teichmuller space as a holomorphoid of a Riemann surface. The global
arithmetic versions of holomorphoids appear in [Joshi, 2023a], [Joshi, 2024c]. In my work, I
show that a quantitatively precise version of Mochizuki’s Theory is obtained by working with
holomorphoids (local and global) of elliptic curves (my work is much more general). The proof
of the abc-conjecture which Mochizuki and I are asserting rests on comparing and averaging over
arithmetic holomorphic structures on elliptic curves i.e. on holomorphoids of elliptic curves.

Question 36. Now how do Question 33 and Question 34 play out in the arithmetic case?

Ans. This is spelled out in great detail in my papers [Joshi, 2021], [Joshi, 2023a] using the
language of arithmeticoids and arithmetic holomorphic structures and leads to the construction
of the analog of Ψ′ in the arithmetic context. Here is a very rough idea. Suppose Θ =
{qE = {qv}v∈VL

: E/L} is the set of Tate parameters of some chosen subset elliptic curves over
L. [In [Joshi, 2024a] and [Mochizuki, 2021e], this a compactly bounded subset of j-invariants.]
We want to estimate suitably defined size of Θ. This is difficult. Mochizuki’s idea (in my
formulation) is to carefully chose a subset S ⊂ YL of arithmeticoids of L. Consider E;y which
is E as an elliptic curve with respect to the arithmeticoid y ∈ S, more precisely, E;y = Holy(E)
is a (global) holomorphoid of E with y ∈ S, and enlarge Θ ⊂ Θ′ by taking

Θ′ =
{
qE;y = {qE;y,v}v∈VL

: E;y where y ∈ S
}

and estimate the size of Θ′ instead. Mochizuki’s observation is that if the subset S is chosen
carefully to be stable under various symmetries of YL, then estimating the volume of Θ′ in a
suitable adelic space is (delicate but) actually doable. Strictly speaking, S is not a subset of YL,
but of a larger space. Details can be found in [Joshi, 2024c].

Question 37. But if the versions of arithmetic y ∈ S are supposed to be different how can the
Tate parameters qE;y arising from different versions of arithmetic given by y be compared?

Ans. This is an important point and is best understood by first understanding the situation
at one prime p. There are two approaches to this. One using Galois cohomology (this was
pioneered by Mochizuki) and a second approach, which I discovered, using the rings Ainf,p =
W (OC♭

p
) ⊂ Bp considered in [Fargues and Fontaine, 2018]. Both the approaches are essentially

equivalent (via the relationship between Ainf,p, Bp and Galois cohomology). My approach is
conceptually cleaner, while Mochizuki’s is better suited for computations. This is detailed
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in [Joshi, 2023b], [Joshi, 2024c], but let me illustrate the key ideas. I will use the notation
considered in Question 35). Say X/Qp is an elliptic curve with semi-stable reduction at p. Let
Holy1(X) and Holy2(X) be two holomorphoids of this curve and for i = 1, 2, let qi ∈ K∗

yi
be the

Tate parameters of X computed in the fields Ky1 and Ky2 respectively. Let Ainf,p = W (OC♭
p
),

from [Fargues and Fontaine, 2018], one knows that y1, y2 correspond to principle prime ideals
pyi ⊂ Ainf,p and one has a surjective homomorphism Ainf,p → Ainf,p/pyi ≃ OKyi

∋ qi. By
[Fargues and Fontaine, 2018, Chapter 2], one has Teichmuller lifts xi ∈ Ainf,p of qi. The lifts
are not canonical, but one has a certain natural collection of lifts, and one considers such lifts.
This is detailed in [Joshi, 2023b]. Mochizuki’s approach via Galois cohomology rests on the
facts that y1, y2 give isomorphic Galois cohomologies:

q1 ∈ H1(Gal(Q̄p)y1 ,Qp(1)y1) ≃ H1(Gal(Q̄p)y2 ,Qp(1)y2),

and the Tate parameters give rise to Galois cohomology classes in these groups. There is no
canonical isomorphism between these groups, and in general, q1 is not carried into q2 under
such isomorphisms. Hence, one must consider all Qp-vector space isomorphisms between
these groups arising from isomorphisms of the pairs (Gal(Q̄p)y1 ↷ Qp(1)y1) ≃ (Gal(Q̄p)y2 ↷
Qp(1)y2) and collate images of Tate parameters q1 by fixing one y2 (usually chosen in some
natural way). The general global setup is somewhat complicated and adelic with the product
formula and a global action of the number field playing a key role in both, Mochizuki’s papers
and my papers. This is detailed in [Joshi, 2024c].

Question 38. The article [Boyd, 2025] also mentions the log-Theta lattice in [Mochizuki,
2021b]?

Ans. This is best understood using the geometric case first. I gave its construction in the
geometric case in [Joshi, 2023a, Appendix]. The set S considered in the previous answer uses
Mochizuki’s Theta-Link which underlies his log-Theta lattice.

Question 39. But according to [Boyd, 2025] and [Mochizuki, 2021b, Page 701], Mochizuki
refers to models of set theory in the context of his proof. Is this true?

Ans. The short answer is that Mochizuki’s Key Principle of Inter-Universality referred to in
Question 31, does lead to the existence of distinct models of set theories as Mochizuki asserts.
Mochizuki does not provide a proof of this, but this can be proved using the properties of
the classifying topos of the tempered fundamental groups (namely, this topos is an atomic,
Boolean, Grothendieck topos). However, let me again emphasize that such models are not used
in [Mochizuki, 2021b, Pages 40–700] i.e. in the main body of the proof of the abc-conjecture,
and the focus on universes and models of set theories in [Boyd, 2025] is misleading.

Question 40. But neither [Boyd, 2025] nor Mochizuki refer to your work. Why is that?

Ans. This is not a question for me. But the lack of citation to my work is indeed quite troubling.

Question 41. But what about [Scholze and Stix, 2018] and [Scholze, 2021]?

Ans. This question is answered in [Joshi, 2025] (and [Joshi, June, 2024]).
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Question 42. What can one do with this theory?

Ans. The theory is still nascent, and I am not prescient enough to predict all its consequences
just as no one could have foreseen the rich mathematical tapestry that classical Teichmüller
Theory has come to be (see [Papadopoulos, 2007]) by just looking at Teichmüller’s paper in the
1940s.

In 2018, during my sabbatical visit to RIMS (Kyoto) hosted by Mochizuki, I told Mochizuki
that his methods make the higher genus case of Szpiro’s conjecture ([von Kānel, 2013]) tractable.
The higher genus geometric case is established by vector bundle theoretic methods in [Kim,
2002], [Beauville, 2002] and Teichmüller theoretic methods in [Bogomolov, Katzarkov, and
Pantev, 2002].

In [Joshi, 2019], I have provided an algebraization of Mochizuki’s monoidal point of view
and established its relationship with the monoidal aspect of the theory of perfectoid rings.
This monoidal aspect is also related to the approach (via monoid rings) in [Deninger, 2025]
(which uses the ring of rational Witt vectors, while [Joshi, 2019] uses the ring of Witt vectors).
Recently, on reading [Sédillot, 2024], I became aware of the work [Chen and Moriwaki, 2020]
on complete adelic curves. Here is how this relates to my work. Each arithmeticoid i.e. a point
y ∈ YL of [Joshi, 2023a] naturally provides a complete adelic curve in the sense of [Chen and
Moriwaki, 2020, Example 3.2.2]. So that YL is also a Teichmüller space for complete adelic
curves arising from a number field. On the other hand, from [Chambert-Loir, 2025, Example
1.1.3] one sees that each arithmeticoid y ∈ YL also provides a global valued field in the sense
of [Yaacov, Destic, Hrushovski, and Szachniewicz, 2024] and hence one may think of YL as
a Teichmüller space for global valued fields arising from the number field L. Two important
features of my work are (1) the existence of global Frobenius morphism on this Arithmetic
Teichmüller Space YL, and (2) the construction of the product-formula-as-a-period morphism
YL → P(

⊕
v∈ML

Rv) where ML is the set of places of L and Rv = R for each v ∈ ML, and
this morphism associates to each y ∈ YL the hyperplane Hy ⊂ P(

⊕
v∈ML

Rv) given by the
product formula for y, established in [Joshi, 2023a, Theorem 5.10.1(7)]. The product formula is
also central to the global considerations in [Chen and Moriwaki, 2020], [Yaacov et al., 2024].
So I expect that other applications of Arithmetic Teichmüller Spaces to Diophantine geometry
to emerge eventually.

Appendix
Here are some additional pointers regarding the arithmetic case discussed in Questions 11–14. It
will be useful to first fix a prime number p and understand the simplest case of X = Spec(Qp).
If one takes two copies X1 = Spec(Qp) and X2 = Spec(Qp), there is no way of distinguishing
them in the language of schemes as X1 ≃ X2 as Qp schemes. Let Cp be the completion of some
fixed algebraic closure Q̄p of Qp; let C♭

p be its tilt [Scholze, 2012]. The path which I found
in my work to resolve this is as follows: let YC♭

p,Qp
be the Fargues-Fontaine curve constructed

in [Fargues and Fontaine, 2018] using input datum (C♭
p,Qp). Closed classical points of this

curve parameterize untilts of C♭
p i.e. pairs (Qp ↪→ K,K♭ ≃ C♭

p) where K is an algebraically
closed perfectoid field, Qp ↪→ K is an isometric embedding, and K♭ ≃ C♭

p is a given isometry
between K♭ and C♭

p. One should think of the untilt datum (Qp ↪→ K,K♭ ≃ C♭
p) as the p-adic

analog of an arithmetic holomorphic structure or a p-adic analog of a Riemann surface equipped
with a quasi-conformal mapping (precise definitions are given in [Joshi, 2021]). Given a pair
of distinct points y1, y2 ∈ YC♭

p,Qp
, by forgetting the additional untilt data, one obtains schemes

14



X1 = Spec(Qp) and X2 = Spec(Qp). Therefore, in the language of untilts, one may solve the
problem of distinguishing X1, X2 by working instead with y1, y2, just as one does in Classical
Teichmüller Theory.

How does this relate to Mochizuki’s Key Principle of Inter-Universality quoted in the answer
to Question 31? Here is how: each y1 = (Qp ↪→ K,K♭ ≃ C♭

p) provides the algebraically closed,
perfectoid field K needed for computing one fiber functor for the tempered fundamental groups
(and Galois groups) which Mochizuki refers to in his key principle. Notably, in my view, YC♭

p,Qp

is the analog of the classical Teichmüller space of X = Spec(Qp).
In [Joshi, 2021], [Joshi, 2022], [Joshi, 2023a], I show that this approach extends to quasi-

projective varieties over p-adic fields and number fields, provides a satisfactory resolution of the
key issues, keeping with Mochizuki’s Key Principle. Notably in [Joshi, 2023a], for each number
field L (assumed to have no real embeddings for simplicity–this is also assumed by Mochizuki),
I construct an Arithmetic Teichmüller Space YL, whose points y ∈ YL may be thought of
as y = (number field L plus a Teichmüller datum for L), and in which one can assert y1 ̸= y2

(for y1,y2 ∈ YL) even though both correspond to fixed number field L. In the parlance of
[Mochizuki, 2021b, Remark 3.11.1, Page 580], y1 and y2 represent two distinct arithmetic
holomorphic structures. The existence of YL (together with its list of properties, such as the
global Frobenius morphism φ : YL → YL which is a precise version of Mochizuki’s log-Link)
is the minimal requirement for formulating Mochizuki’s assertions (e.g. [Mochizuki, 2021b,
Theorem 3.11, Page 573]) without self contradictions. The assertions of [Scholze and Stix,
2018] arose from the fact that [Mochizuki, 2021b] does not provide adequate mathematical
language for asserting the existence of distinct arithmetic holomorphic structures i.e. of asserting
y1 ̸= y2, and I agree with them on this; however they asserted, incorrectly, that it was impossible
to find distinct arithmetic holomorphic structures, and I demonstrate the existence of arithmetic
holomorphic structures in my papers.

References
J. Amorós, F. Bogomolov, L. Katzarkov, and T. Pantev. Symplectic Lefschetz fibrations

with arbitrary fundamental groups. J. Differential Geom., 54(3):489–545, 2000. URL
http://projecteuclid.org/euclid.jdg/1214339791. With an appendix by
Ivan Smith.
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