Math 129 Section 005H Lecture 30: Taylor series (§10.2)11 1 This document is licensed under a Creative Commons Attribution 3.0 United States License

Last time: Taylor polynomials

(Monday, November 1, 2021)

Given a function f, its Taylor polynomial of order n centered at x=0 is the polynomial

Pn(x)=C0+C1x++Cnxn

such that

Pn(0) = f(0)
Pn′′(0) = f′′(0)
Pn(n)(0) = f(n)(0)

We found

Cn=f(n)(0)n!

so

Pn(x)=f(0)+f(0)x+f′′(0)2!x2+f′′′(0)3!x3++f(n)(0)n!xn.

Similarly, the Taylor polynomial of order n centered at x=a is

Pn(x)=f(a)+f(a)(x-a)+f′′(a)2!(x-a)2+f′′′(a)3!(x-a)3++f(n)(a)n!(x-a)n.

Warm-up.

What is the nth Taylor polynomial of ex about x=0?