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These are Lecture Notes to the MATH 496T / MATH 577 course entitled Advanced
Linear Algebra for Data Science taught at the University of Arizona in the Spring 2020
semester. The course is designed to be an overview of advanced theoretical and compu-
tational Linear Algebra which covers many of the topics that are useful to Data Science
and Applied Mathematics but are typically not covered in a first or even second course
in Linear Algebra at the undergraduate level. The course also has a heavy applications
component where many current Data Science and Machine Learning methods are dis-
cussed including graph clustering algorithms, compressed sensing, and dimensionality
reduction. The main textbook used for the course is Linear Algebra and Learning From
Data by Gilbert Strang [15], though we will point out other scholarly articles and texts
used throughout the later portion of the notes.

These notes were done as a collaboration between the students of the course and are
edited and curated by the instructor (Keaton Hamm). If you find these notes and they
are useful to you, then I will be quite pleased; additionally, if you find any errors, typos,
etc. feel free to let me know and I will change them in due time (hamm@math.arizona.
edu).
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0.1. Notation. We will use R and C to denote the Real and Complex fields, respectively.
For ease of exposition, these notes will primarily be concerned with real-valued matri-
ces, but the essential results hold for either case without change. We will use Rn to be
the n–dimensional vector space over the reals, and will call elements thereof vectors or
points interchangeably. We will also consider these elements to be column vectors, so
that

Rn :=


x1

...
xn

 : xi ∈R

 .

The set of m ×n matrices with real entries will be denoted as

Rm×n :=




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 : ai j ∈R

 .

Note that other common notation is Mm,n(R).
Given a matrix A ∈ Rm×n , we will use the Matlab-friendly notation Ai : to denote its

i th row and A: j to denote its j th column, so

Ai : =
[
ai 1 . . . ai n

]
, A: j =

 a1 j
...

am j

 .
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1. LECTURE 1: LINEAR ALGEBRA REVIEW

Goal: The purpose of this lecture is to give a fly-by review of the basic facts about
Linear Algebra that are needed for this course. We will not review absolutely everything
at the front end so that we can get to some fun stuff sooner, but this lecture recalls a lot
of the very basic facts that will be needed in the first few lectures.

1.1. Basics of Vectors. Rn is a vector space, which is a collection of vectors along with
a notion of vector addition and scalar multiplication. Addition of two vectors is done
coordinatewise: x1

...
xn

+

y1
...

yn

=

x1 + y1
...

xn + yn

 ,

and scalar multiplication is applied to all coordinates, i.e., if α ∈R and x ∈Rn , then

αx =

αx1
...

αxn

 .

For the full definition of an abstract vector space, see Appendix A.

Definition 1.1. Given a collection of vectors {x1, . . . , xk } ⊂ Rn , a linear combination of
these vectors is any vector of the form

α1x1 + . . .αk xk =
k∑

i=1
αi xi , α1, . . . ,αk ∈R.

Note any such linear combination must be in Rn by the vector space properties.

Definition 1.2. Given a collection of vectors {xi : i = 1, . . . ,k}, its linear span is the set of
all possible linear combinations:

span{xi : i = 1, . . . ,k} :=
{

k∑
i=1

αi xi :αi ∈R
}

.

Definition 1.3. A collection of vectors {x1, . . . , xk } ⊂ Rn is a spanning set for Rn provided
every x ∈ Rn can be written as a linear combination of x1, . . . , xk , i.e., for every x ∈ Rn ,
there exists α1, . . . ,αk such that

x =
k∑

i=1
αi xi .

Note this is equivalent to
span{xi : i = 1, . . . ,k} =Rn .

Definition 1.4. A collection of vectors {x1, . . . , xk } ⊂Rn is linearly independent provided

k∑
i=1

αi xi = 0 if and only if α1 = ·· · =αk = 0.

A collection of vectors is linearly dependent if it is not linearly independent (thus there
exists α1, . . . ,αk , at least one of which is not zero such that

∑k
i=1αi xi = 0).

Definition 1.5. A collection of vectors {x1, . . . , xk } ⊂ Rn is a basis for Rn provided it is
linearly independent and a spanning set.

Theorem 1.6. Suppose that X = {x1, . . . , xk } ⊂Rn .
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(1) If X is a spanning set, then k ≥ n.
(2) If X is linearly independent, then k ≤ n
(3) If X is a basis, then k = n.
(4) X is a basis forRn if and only if for every x ∈Rn , there exists a unique set of scalars

α1, . . . ,αn such that x =∑n
i=1αi xi .

Note that Theorem 1.6(3) tells us how to define the dimension of a space.

Definition 1.7. The dimension of a vector space is the size of a basis for it. The dimension
of a vector space V is denoted dim(V ).

Theorem 1.6 and the above definition tell us the important fact that

dim(Rn) = n.

The space of n–dimensional real vectors,Rn , has a dot product (also termed an inner
product) which we will write in a variety of ways:

x · y = 〈
x, y

〉= n∑
i=1

xi yi = yT x.

For the general definition of an inner product on a vector space, see Appendix A.

Definition 1.8. Two vectors x, y ∈Rn are called orthogonal if
〈

x, y
〉= 0.

A collection of vectors {x1, . . . , xk } ⊂ Rn is called orthogonal provided
〈

xi , x j
〉 = 0 for

all i 6= j .
A collection of orthogonal vectors is called orthonormal provided they satisfy the ad-

ditional condition that |x| = 1, where |x| :=
√

x2
1 +·· ·+x2

n is its Euclidean length.

These definitions bring us to some important facts about collections of orthogonal
vectors.

Theorem 1.9. Suppose that X = {x1, . . . , xk } ⊂Rn is orthogonal. Then the following state-
ments hold:

(1) X is linearly independent
(2) k ≤ n
(3) If k = n, then X is a basis for Rn .

The proof of Theorem 1.9 will be left as a homework exercise for the first lecture.
Note that the inner product contains additional geometric information; namely, the

inner product between two unit vectors indicates how close they are to being parallel
or orthogonal. If two unit vectors are parallel, then their inner product is 1, if they are
anti-parallel (in the opposite direction) then their inner product is -1, and if they are
orthogonal then their inner product is 0. Thus the closer

〈
x, y

〉
is to ±1, the closer x and

y are to being parallel, and the closer to 0 the closer they are to being orthogonal.

1.2. Subspaces. One of the most important notions we will discuss is that of subspaces
of a vector space.

Definition 1.10. A subset S ⊂ Rn is a subspace of Rn if it is a vector space over R (see
Appendix A for the full definition of a vector space).

A glance at Appendix A shows that one would need to verify 8 conditions of S to
check that it is a subspace of Rn . However, we may reduce the amount of conditions to
3 by the following theorem.
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Theorem 1.11. A subset S ⊂Rn is a subspace ofRn if and only if the following conditions
hold:

(1) S 6= ;
(2) x + y ∈S for all x, y ∈S

(3) αx ∈S for all α ∈R and x ∈S .

That is, S is nonempty, closed under vector addition and closed under scalar multiplica-
tion.

How should we typically think of subspaces? Well, the following is a very important
step:

Proposition 1.12. Let {x1, . . . , xk } ⊂Rn . Then span(x1, . . . , xk ) is a subspace of Rn .

The proof is left as an exercise that should be done by the judicious reader.
Now, since subspaces are vector spaces themselves, they must have a dimension. So

what can we say about the dimension of the span of a collection of vectors?

Theorem 1.13. If X = {x1, . . . , xk } ⊂Rn is linearly independent, then dim(span(X )) = k.

It is important to note that a necessary condition for X to be linearly independent in
the preceding theorem is that k ≤ n, and it is an important fact to note that if S ⊂ V ⊂Rn

and S is a subspace of V which is a subspace of Rn , then

dim(S ) ≤ dim(V ) ≤ dim(Rn) = n.

1.3. Basics of Matrices. We may denote real-valued matrices A ∈ Rm×n in a variety of
ways, for example via its scalar entries A = [ai , j ]m

i=1
n
j=1 or by its columns A = [A:1 . . . A:n].

Note that many data sets can be naturally represented as a matrix, and thus are typ-
ically thought of as an array of numbers, but we will see that it is of great utility to con-
sider the linear algebraic structure of such data matrices rather than simply considering
them as a collection of scalars.

First, let’s discuss matrix–vector multiplication. Given a matrix A ∈Rm×n and a vector
x ∈Rn , the product Ax is a vector in Rm whose i –th coordinate is given by

(Ax)i =
n∑

j=1
ai j x j = 〈Ai :, x〉 .

That is, the i –th entry of Ax is the inner product of the i –th row of A with x.
However, we can also write Ax as a linear combination of its columns!!

Ax =
n∑

j=1
x j A: j .

Recall here that A: j ∈Rm is the j –th column of A.
So we can either evaluate Ax via inner products or linear combinations of columns

of A. One should note that both methods of computation require mn multiplications,
so neither is necessarily better from that viewpoint.

Now for matrix–matrix multiplication. We may do this in two ways that both have
useful information embedded in them. First of all, we recall that for the matrix–matrix
product AB to be well defined, B must have exactly as many rows as A has columns. So
if A ∈ Rm×n and B ∈ Rn×p , then AB ∈ Rm×p . If B has more or less than n rows, then the
product is not defined.
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Matrix Multiplication via Inner Products: The first way we can write the product is
as inner products similar to what we did for matrix–vector products:

(AB)i j =
〈

Ai :,B: j
〉= p∑

k=1
Ai k Bk j .

Matrix Multiplication via Outer Products: Alternatively, we may express the matrix–
matrix product by what are called outer products of two vectors, namely

(1) AB =
p∑

k=1
A:k Bk:.

Note here that A:k is a column vector with dimension (m×1) and Bk: is a row vector with
dimension (1× p), hence their product has dimension (m × p) as we expected. To see
that this is equivalent to the first expression, note that if we want the (i , j )–th entry of
AB from the outer product form we need to evaluate

∑p
k=1 Ai k Bk j which is (AB)i j .

Equation (1) gives us an interesting first glimpse at the fundamental notion of a ma-
trix being represented as the sum of rank one matrices, which are the building blocks of
matrix spaces in general. To wit, let us now discuss the notion of the rank of a matrix.

Definition 1.14. Let A ∈Rm×n .

(1) The column space of A is Col(A) := span(A:1, . . . , A:n) which is a subspace of Rm .
(2) The row space of A is Row(A) := span(A1:, . . . , Am:) which is a subspace of Rn .

A fundamental fact of Linear Algebra is the following.

Theorem 1.15. For every A ∈Rm×n ,

dim(Col(A)) = dim(Row(A)).

This leads to a well-defined notion of the rank of a matrix.

Definition 1.16. Given A ∈Rm×n , the rank of A is given by

rank(A) := dim(Col(A))

or equivalently (on account of Theorem 1.15) by rank(A) = dim(Row(A)).

One observation is immediate since the dimensions of the row and column space
cannot be more than m or n, respectively:

rank(A) ≤ min{m,n}.

We also have the useful facts that

Col(A) = Row(AT ), and Row(A) = Col(AT ).
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2. LECTURE 2: THE FOUR FUNDAMENTAL SUBSPACES

Authors’ Note: The title of this section is shamelessly copied from Gilbert Strang’s
text [15] used in the course; we don’t try to fix what isn’t broken.

Goal: The purpose of this lecture is to illustrate the fundamental subspaces related
to a matrix viewed as a linear operator, and to parlay this into a discussion of matrix
factorizations.

2.1. The Four Subspaces. Here, we will discuss the fundamental subspaces that are de-
termined by a matrix A ∈ Rm×n . Note that such a matrix defines a linear operator from
Rn →Rm . The first subspace we will consider is the nullspace of A.

Definition 2.1. Given A ∈Rm×n , its nullspace is

N (A) := {x ∈Rn : Ax = 0}.

Some basic properties of nullspaces are as follows:

Proposition 2.2. Suppose A ∈Rm×n has rank r . Then the following hold:

(1) N (A) is a subspace of Rn

(2) dim(N (A)) = n − r
(3) N (AT A) =N (A)
(4) N (A) is orthogonal to Row(A).

Proof. (1): By Theorem 1.11, we need only show that N (A) is nonempty, and closed
under addition and scalar multiplication. First, it is nonempty because 0 ∈ N (A) (of
course A0 = 0. Now suppose x, y ∈N (A), then by distributivity of matrix–vector multi-
plication, we have

A(x + y) = Ax + Ay = 0+0 = 0,

which implies x + y ∈N (A). Now let x ∈N (A) and α ∈R, then

A(αx) =αAx =α0 = 0,

whence αx ∈ N (A). Putting these observations together, we have that N (A) is a sub-
space of Rn .

(2): The proof of this is a bit more involved, and will be relegated to the Appendix. We
will also give a more general version of this shortly.

The proof of (3) and (4) are left as a homework exercise. �

Example 2.3. Let

A =
[

1 2 3
1 2 −1

]
.

Let’s compute N (A).

We need to find all x ∈R3 such that Ax = 0. So letting x = [
x1 x2 x3

]T
, we have

Ax =
[

1 2 3
1 2 1

]x1

x2

x3

=
[

x1 +2x2 +3x3

x1 +2x2 −x3

]
=

[
0
0

]
.

Note that this gives us a set of two equations to solve, and we cah subtract the second
from the first to get

4x3 = 0,
7



implying that we must have x3 = 0. Now, it follows that x1 =−2x2. So any vector of the
form −2α

α

0


is in N (A). For simplicity, we write

N (A) = span

−2
1
0

 .

It will be a homework exercise to repeat a similar example to this and find N (AT ),
which is sometimes called the left nullspace of A.

Now how are all of these subspaces related exactly? It terms out that they naturally
decompose the spaces Rm and Rn . To see why, we need a bit more background first.

2.2. Aside: Orthogonal Subspaces.

Definition 2.4. Let S be a subspace of Rn . The orthogonal complement of S is

S ⊥ := {
x ∈Rn :

〈
x, y

〉= 0, for all y ∈S
}

.

Here are some important properties of orthogonal complements.

Theorem 2.5. Let S be a subspace of Rn . Then the following properties hold:

(1) 0 ∈S ⊥
(2) S ⊥ is a subspace of Rn

(3)
(
S ⊥)⊥ =S

(4) Any x ∈Rn can be written uniquely as x = y + z for some y ∈S and z ∈S ⊥

Moreover, if A ∈Rm×n , then

(1) N (A)⊥ = Row(A)
(2) N (AT )⊥ = Col(A)

Note that if V and W are two subspaces for which property (4) holds, then we write
that V

⊕
W = Rn . Note also that Theorem 2.5(4) is sometimes called the Orthogonal

Decomposition Theorem.
Additionally, our considerations here give the essential ingredients to the Fundamen-

tal Theorem of Linear Algebra, which is also called the Rank–Nullity Theorem:

Theorem 2.6 (Fundamental Theorem of Linear Algebra). Let A ∈Rm×n . Then

dim(N (A))+ rank(A) = n

and
dim(N (AT ))+ rank(A) = m.

2.3. Back to the Four Subspaces. The "moreover" part of Theorem 2.5 now allows us to
draw the most important picture we will have to keep in mind: Figure 1.
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FIGURE 1. Illustration of the Four Fundamental Subspaces of a given
rank r matrix A ∈ Rm×n . Idea copied from Gilbert Strang’s textbook
[15]; figure produced by Amy Hamm Design.

A matrix A ∈ Rm×n maps Rn → Rm as we discussed before. The Orthogonal De-
composition Theorem along with other parts of Theorem 2.5 shows that we may write
Rn =N (A)

⊕
Row(A) and Rm =N (AT )

⊕
Col(A) as shown in the figure.

Figure 1 demonstrates the Rank-Nullity Theorem; indeed, on the left-hand side we
see that dim(N (A)⊥)+dim(N (A)) = rank(A), while on the right-hand side, we have that
dim(N (AT )⊥)+dim(N (AT )) = rank(A).

We list several other important properties of ranks in the following theorem.

Theorem 2.7. Assume that A and B are matrices such that the following operations make
sense (their size may vary from line to line). Then the following properties hold:

(1) rank(AB) ≤ min{rank(A), rank(B)}
(2) rank(A+B) ≤ rank(A)+ rank(B)
(3) rank(AT A) = rank(A AT ) = rank(A)rank(AT )
(4) If A ∈Rm×r ,B ∈Rr×n and rank(A) = rank(B) = r, then rank(AB) = r
(5) Sylvester’s Inequality: If A ∈Rm×r ,B ∈Rr×n , then

rank(A)+ rank(B) ≤ rank(AB)+ r.

Note that Sylvester’s Inequality places no restriction on rank(A) or rank(B); these val-
ues do not have to be equal, and the matrices do not have to be full rank.

The proof that (5) implies (4) in Theorem 2.7 is left as a homework exercise.
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3. LECTURE 3: MATRIX DECOMPOSITIONS

3.1. Matrix Factorizations. In general, we say that a matrix A ∈ Rm×n is factored (al-
ternatively, decomposed) via two matrices B ∈ Rm×r and C ∈ Rr×n if A = BC . There
are many useful ways to factorize a matrix, each of which have benefits and drawbacks
either theoretically or computationally. Many of the methods detailed below may be
familiar to the reader from previous courses in Linear Algebra. This section gives a rel-
atively broad introduction to matrix factorizations, whereas subsequent lectures will
focus on more pertinent examples to Data Science such as the Singular Value Decom-
position.

3.1.1. Diagonalization. Diagonalization decomposes a matrix A ∈ Rn×n into the prod-
uct of matrices SΛS−1, where S,Λ ∈Rn×n . In this expression, S is the matrix of the eigen-
vectors of A and Λ is the diagonal matrix of its eigenvalues (more on these ideas in Sec-
tion 4).

The value of this decomposition is twofold. Once this diagonalization is known, the
eigenvectors and eigenvalues can easily be read off as the columns of S and the diagonal
values of Λ. Secondly, diagonalization can be used to avoid taking the products AT A
or An directly, as these are expensive computations. To see how, note that A2 can be
written using the diagonalization A = SΛS−1 as

A2 = A A = SΛS−1SΛS−1SΛS−1 = SΛ2S−1.

This generalizes to
An = SΛnS−1.

This is almost always a less computationally expensive way to compute An than the
direct approach.

3.1.2. The LU Decomposition. LU stands for Lower Upper, and this type of decomposi-
tion factors A ∈ Rn×n into the product of n ×n matrices L and U which are lower tri-
angular ( having all zeros above the diagonal) and upper triangular (having all zeros
below the diagonal), respectively.

When is this useful? Consider the common problem of solving a system of linear
equations, represented in matrix–vector multiplication form as

Ax = b

where A ∈ Rn×n and b ∈ Rn are known, and x ∈ Rn is unknown. A standard approach to
solve this system is to use Gaussian elimination. However, Gaussian elimination can be
computationally expensive, requiring many elementary row operations. Instead, this
problem can be solved via LU decompositions by considering the following coupled
system of equations:

Ly = b

Ux = y

That is, we first solve Ly = b for y , and then solve Ux = y for x. These calculations
may be done quickly due to the triangular forms of L and U . In fact, each value yi in the
vector y can be calculated by forward and backward substitution:

yi =
bi −∑i−1

k=1`i ,k yk

`i ,i
.

The entries of x may be computed similarly.
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Many other useful decompositions exist, including QR decompositions, CUR de-
compositions, and Singular Value Decompositions. We will talk about these in later
sections.

3.2. Orthogonal Matrices. Any matrix A ∈ Rn×n with rank n is a basis for Rn . Is every
basis equally useful? Certainly they all span the space; however, consider two orthog-
onal vectors in R2 versus two linearly independent vectors with a small angle between
them. While any vector in R2 can be constructed from either basis, the basis consisting
of orthogonal vectors will require smaller coefficients to construct most vectors. This
difference can quickly grow large when constructing many vectors or vectors at many
angles. Thus, we’d prefer to have orthogonal column vectors in our spanning matrix.

We thus aim to factor a matrix A into the product QX, where Q is an orthogonal ma-
trix. We consider what it means for a matrix to be orthogonal. Recall that x, y ∈ Rn are
orthogonal if and only if

〈
x, y

〉= 0.

Definition 3.1. A collection of vectors {x1, . . . , xm} ⊂Rn is:

(1) orthogonal if
〈

xi , x j
〉= 0 for all i 6= j.

(2) orthonormal if, in addition, |xi | =
p〈xi , xi 〉 = 1.

Note that if {x1, . . . , xm} ⊂Rn is orthogonal, then it can easily be transformed in to an

orthonormal set:
{

x1
|x1| , . . . , xm

|xm |
}
⊂Rn .

Definition 3.2. A square matrix Q ∈ Rnxn is orthogonal if QT Q = QQT = I . (i.e. Q−1 =
QT ).

Note that for an orthogonal matrix, {Q:i }n
i=1 is an orthonormal base for Rn and so is

{Qi :}n
i=1.

Proposition 3.3. Suppose Q ∈ Rm×n has orthogonal columns. Then |Qx| = |x|, for every
x ∈Rn .

Proof. We have
|Qx|2 = 〈Qx,Qx〉 = 〈

x,QT Qx
〉= 〈x, x〉 = |x|2.

An alternative proof without use of inner product notation:

|Qx|2 = (Qx)T Qx = xT QT Qx = xT x = x · x = |x|2.

�

We will make significant use of the notion of one sided orthogonality. If Q ∈ Rm×n

with m > n, then Q can have orthonormal columns (QT Q = I ), but not orthonormal
rows (since the number of rows is larger than the number of columns, Q must have
linearly dependent rows). On the other hand, if Q ∈ Rm×n with m < n, then Q can
have orthonormal rows (QQT = I ), but not orthonormal columns (since the number of
columns is larger than the number of rows, Q must have linearly dependent columns).

Theorem 3.4. Every subspace of Rn has an orthonormal basis.

Proof. There exists a basis X := {x1, . . . , xk } of the subspace. The Gram-Schmidt proce-
dure will yield an orthonormal system X̂ := {x̂1, . . . , x̂k } such that span(X̂ ) = span(X ). To
define X̂ , we first define Y as follows:

y1 := x1, y2 := x2 −
〈

x2, y1
〉

|y1|2
y1, . . . yk := xk −

k−1∑
j=1

〈
xk , y j

〉
|y j |2

y j .
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Note that the fractional terms represent the orthogonal projections of y j onto xk .
Now we claim that span(Y ) = span(X ), which we will show by induction on the index

t . By definition, span(y1) = span(x1). Now suppose that span(y1, . . . , yt ) = span(x1, . . . , xt )
for some 1 < t < k. Note that yt+1 = xt+1 −∑t

j=1α j y j for some scalars {α j }t
j=1. The

summation term is in span(y1, . . . , yt ) which is span(x1, . . . , xt ) by the induction hypoth-
esis. Thus we have that yt+1 = xt+1 −∑t

j=1β j x j for some scalars {β j }t
j=1, whence yt+1 ∈

span(x1, . . . , xt+1). On the other hand, xt+1 = yt+1 −∑t
j=1α j y j ∈ span(y1, . . . , yt+1), so

span(x1, . . . , xt+1) = span(y1, . . . , yt+1), which is the desired conclusion.
Next we claim that Y is an orthogonal set, which we again show by induction. Note

that 〈
y1, y2

〉=〈
x1, x2 −

〈x2, x1〉
|x1|2

x1

〉
= 〈x1, x2〉−

〈x2, x1〉
|x1|2

〈x1, x1〉
= 〈x1, x2〉−〈x1, x2〉

by symmetry of the inner product and the fact that 〈x1, x1〉 = |x1|2. By induction, sup-
pose that

〈
yi , y j

〉= 0 for all 1 ≤ i < j ≤ t for some t . Then consider any i < t +1, and we
have 〈

yi , yt+1
〉=〈

yi , xt+1 −
t∑

j=1

〈
xt+1, y j

〉
|y j |2

y j

〉

= 〈
y j , xt+1

〉− t∑
j=1

〈
xt+1, y j

〉
|y j |2

〈
yi , y j

〉
= 〈

y j , xt+1
〉− 〈

xt+1, yi
〉

|yi |2
〈

yi , yi
〉

= 0.

The first equality is by definition; the second is by linearity of the inner product; the
third is by the induction hypothesis, and the last follows the same reasoning as the t = 2
step.

Thus Y is an orthogonal basis for the subspace, so defining x̂ j := y j

|y j | yields an or-

thonormal basis. �

3.3. Orthogonal Projections. Suppose QT Q = I , and let P =QQT . Then

P 2 =QQT QQT =QIQT =QQT = P.

Such a matrix is called a projection.

Definition 3.5. If P 2 = P = P T , then P is called an orthogonal projection (sometimes
called an orthogonal projector) onto Col(P ).

Proposition 3.6. If P is an orthogonal projection, then for every x ∈Rn , P x is the unique
solution to

min
y∈Col(P )

|x − y |.

Definition 3.7. Subspaces S1,S2 ⊂ Rn are orthogonal if
〈

x, y
〉 = 0 for all x ∈ S1 and

y ∈S2.
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Note that S2 does not have to equal S ⊥
1 for orthogonality to hold (for example, two

lines on the x y–plane in R3 are orthogonal subspaces, but are not orthogonal comple-
ments.

13



4. LECTURE 4: THE SPECTRAL DECOMPOSITION

The goal of this section is to prove the Spectral Theorem, stated as follows.

Theorem 4.1 (Spectral Theorem). Let A ∈Rn×n be symmetric (AT = A). Then there exists
an orthonormal basis of eigenvectors of A, {v1, . . . , vn}, such that

A =VΛV −1 =VΛV T ,

where V = [
v1 · · · vn

]
andΛ is diagonal and contains the eigenvectors of A.

Let’s begin with a reminder of the following fundamental concept of Linear Algebra.

Definition 4.2. Let A ∈ Rn×n . A scalar–vector pair (λ, v) ∈ R×Rn with v 6= 0 is an eigen-
value/eigenvector pair of A if

Av =λv.

Geometrically, eigenvectors are ones for which when they are multiplied by A, the
product does not change direction (except for possibly a backward directional change),
but rather the eigenvector is stretched in its same direction by some scalar factor. First,
let’s see how we can compute eigenvalue/eigenvector pairs for a given matrix. To start,
we need the definition and properties of determinants.

Definition 4.3. Given a 2×2 matrix A =
[

a b
c d

]
, its determinant is

det(A) := ad −bc.

For a general A ∈Rn×n , its determinant is defined iteratively as

det(A) =
n∑

k=1
(−1)k a1k det(Mk )

where the minor, Mk , is the (n −1)× (n −1) matrix formed by deleting the first row and
k–th column of A.

Note that det(A) is always a scalar, and has the following important properties.

Theorem 4.4. Let A,B ∈Rn×n . Then the following hold:

(1) det(I ) = 1
(2) det(AT ) = det(A)
(3) det(AB) = det(A)det(B)
(4) det(A−1) = 1

det(A) provided A is invertible
(5) det(αA) =αn det(A) for any α ∈R
(6) If A has eigenvalues λ1, . . . ,λn , then det(A) =∏n

i=1λi

(7) det(A) 6= 0 if and only if A is invertible.

Now eigenvalue/eigenvector pairs are distinctly related to determinants in the fol-
lowing way.

Proposition 4.5. Let A ∈Rn×n . Then (λ, v) ∈R×Rn with v 6= 0 is an eigenvalue/eigenvec-
tor pair of A if and only if

det(A−λI ) = 0.

Proof. For the forward direction, suppose that Av = λv . Then (A −λI )v = 0, which
means that v ∈N (A−λI ). Since v 6= 0, A−λI has nontrivial nullspace, and hence is not
invertible; so by Theorem 4.4(7), det(A−λI ) = 0.

14



To see the converse, if det(A −λI ) = 0, then A is not invertible, and hence has non-
trivial nullspace. Thus there exists a nonzero v such that (A −λI )v = 0, which implies
that Av =λv . �

Something important to note is that even if a matrix is real-valued, its eigenvalues
can be complex. Indeed, if

A :=
[

0 1
−1 0

]
then the solution to det(A −λI ) = λ2 + 1 = 0 is λ = ±i where i is the imaginary unit.
Nonetheless, an important class of matrices do in fact have real eigenvalues as the fol-
lowing proposition shows.

Proposition 4.6. Let A ∈ Rn×n be symmetric (i.e., AT = A). Then all eigenvalues of A are
real.

Proof. Suppose (λ, v) is an eigenvalue/eigenvector pair of A. By conjugate-linearity in
the second argument for inner products, we have

(2) λ〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 = 〈
v, AT v

〉= 〈v, Av〉 = 〈v,λv〉 =λ〈v, v〉 .

Since v 6= 0, 〈v, v〉 6= 0, thus (2) implies that λ=λ, hence λ must be real. �

Next we will note that distinct eigenvalues yield orthogonal eigenvectors.

Proposition 4.7. Suppose A ∈ Rn×n is symmetric, and (λ1, v1) and (λ2, v2) are eigenval-
ue/eigenvector pairs of A ∈Rn×n . If λ1 6=λ2, then v1 is orthogonal to v2.

Proof. Note that (since λ1,λ2 ∈R)

λ1 〈v1, v2〉 = 〈λ1v1, v2〉 = 〈Av1, v2〉 = 〈v1, Av2〉 = 〈v1,λ2v2〉 =λ2 〈v1, v2〉 .

This implies that (λ1 −λ2)〈v1, v2〉 = 0, but λ1 −λ2 6= 0 by assumption, so v1 and v2 must
be orthogonal. �

This leads to the following observation:

Proposition 4.8 (Easy case of the Spectral Theorem). Suppose that A ∈ Rn×n is sym-
metric and has n distinct, nonzero eigenvalues, λ1, . . . ,λn . Then A has n orthonormal
eigenvectors, and we may write

A = SΛS−1 = SΛST =
n∑

i=1
λi S:i ST

:i

where the columns of S are the eigenvectors of A andΛ= diag(λ1, . . . ,λn).

Note that this result proves the Spectral Theorem in the case that A has distinct eigen-
values, so the only case we have left to consider is that when A has repeated eigenvalues.
We will illustrate a couple of ways one can finish the proof of the general case.

4.1. First Proof. Our first argument for proving the Spectral Theorem is a more con-
structive one which boils down to repeatedly doing Gram–Schmidt on blocks of the ini-
tial matrix.

Suppose that (λ1, v1) is any eigenvalue/eigenvector pair of A and note that without
loss of generality we may assume that v1 is a unit vector (if not divide by its norm). We
know that there is an orthonormal basis for Rn containing v1, say {v1, w2, . . . , wn}. Let

15



Q1 be the matrix with these basis vectors as columns. Then by orthonormality of its
columns, we have

Q1 AQT
1 =

[
λ1 0
0 B1

]
for some symmetric matrix B1 ∈R(n−1)×(n−1).

Before proceeding we need the following crucial observation

Lemma 4.9. Let A ∈Rn×n . If Q ∈Rn×n is an orthogonal matrix, then Q AQT has the same
eigenvalues as A.

Proof. Let (λ, v) be an eigenvalue/eigenvector pair of Q AQT . Then Q AQT v = λv, and
by multiplying by QT on the left, we see that

AQT v =λQT v,

which means that (λ,QT v) is an eigenvalue/eigenvector pair of A. Since both A and
Q AQT have the same rank and this argument works for all eigenpairs, the claim is proven.

�

Now we may apply the conclusion of Lemma 4.9 to note that Q1 AQT
1 has the same

eigenvalues as A, hence the eigenvalues of B1 are λ2, . . . ,λn . Now we iterate the same
argument as above to find an orthogonal Q̃ for which

Q̃B1Q̃T =
[
λ2 0
0 B2

]
,

and we set

Q2 :=
[

1 0
0 Q̃

]
.

Now we have that

Q2Q1 AQT
1 QT

2 =
λ1 0 0

0 λ2 0
0 0 B2

 .

Iterating this procedure, we find Q1, . . . ,Qn which diagonalize A intoΛ= diag(λ1, . . . ,λn)
as desired, and we take S :=Qn . . .Q1 to get the desired decomposition.

4.2. Second Proof. Our second argument is nonconstructive, but follows from some-
what more basic Linear Algebra facts. We begin with the following observation.

Lemma 4.10. Let A ∈Rn×n be symmetric, and let S be any subspace of Rn . If Ax ∈S for
every x ∈S , then Ay ∈S ⊥ for every y ∈S ⊥.

Proof. By assumption,
〈

Ax, y
〉 = 0, but by symmetry,

〈
Ax, y

〉 = 〈
x, Ay

〉
, so Ay ∈ S ⊥

since x is an arbitrary element of S . �

Lemma 4.11. If A ∈ Rn×n is symmetric and S is a nonzero subspace of Rn such that
Ax ∈S for every x ∈S , then S contains an eigenvector of A.

Proof. First of all, we know that S contains an orthonormal basis by Theorem 3.4; call
it {u1, . . . ,uk }. Since Au j ∈S for all j , there are scalars {ri j }k

i , j=1 such that

Au j =
k∑

i=1
ri j ui .

Indeed ri j =
〈

Au j ,ui
〉

. Let R be the k×k matrix with entries Ri j = ri j . Then note that R
is symmetric because r j i =

〈
Aui ,u j

〉= 〈
ui , Au j

〉= 〈
Au j ,ui

〉= ri j .
16



Now suppose that (λ, v) is an eigenvalue/eigenvector pair of R. Then define w :=∑k
j=1 v j u j where v j is the j –th component of the vector v , and u j is still one of the basis

vectors for S . Then we have

Aw =
k∑

j=1
v j Au j

=
k∑

j=1
v j

k∑
i=1

ri j ui

=
k∑

i=1

(
k∑

j=1
ri j v j

)
ui

=
k∑

i=1
(Rv)i ui

=
k∑

i=1
λvi ui

=λw.

Hence (λ, w) is an eigenvalue/eigenvector pair of A. �

Now we are ready to complete the proof of the Spectral Theorem.

Proof of the Spectral Theorem. Let (λ1, v1) be an eigenvalue/eigenvector pair of A, and
set S1 := span(v1). Note that A(αv1) =λαv1 ∈S1, so by Lemma 4.10, Ay ∈S ⊥

1 for every
y ∈ S ⊥

1 . If S ⊥
1 6= {0}, then Lemma 4.11 implies that there exists an eigenvector v2 ∈

S ⊥
1 (which is necessarily orthogonal to v1). Now if n > 2, then set S2 := span(v1, v2),

and note that Ax ∈ S2 for every x ∈ S 2 by a similar argument to the first case. Again
apply Lemmas 4.10 and 4.11 to get an orthogonal eigenvector v3 ∈S ⊥

2 . Continue in this
manner to choose v1, . . . , vn and the proof is complete. �

Now let us note that the Spectral Theorem gives us a representation of a matrix in
terms of the sum of rank 1 matrices.

Corollary 4.12. Let A ∈ Rn×n be symmetric, and let {vi }n
i=1 be an orthonormal basis of

eigenvectors of A with corresponding eigenvalues {λi }n
i=1. Then

A =
n∑

i=1
λi vi vT

i .

Proof. First note that

VΛ= [
v1 · · · vn

]

λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn



= [
λv1 · · · λn vn

]
.
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Since V −1 =V T , we have

VΛV −1 = [
λv1 · · · λn vn

]v1
T

...
vn

T

=
n∑

i=1
λi vi vi

T

as required. �
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5. LECTURES 5 & 6: THE SINGULAR VALUE DECOMPOSITION

The goal of these lectures is to prove the Singular Value Decomposition (SVD), which
is the analogue of the Spectral Theorem we saw last time for arbitrary matrices (i.e., they
can be rectangular, and no assumption is made on their rank or other structure such as
symmetry). Here is the full statement of the theorem we want to prove.

Theorem 5.1 (Singular Value Decomposition). Let A ∈ Rm×n . There exist orthogonal
matrices U ∈ Rm×m and V ∈ Rn×n and a matrix Σ ∈ Rm×n with nonnegative entries only
along its main diagonal such that

A =UΣV T =
ρ∑

i=1
σiU:i V T

:i ,

where ρ = min{m,n}. Moreover, we may take ρ = rank(A).

To begin, we need one more ingredient about eigenvalues of symmetric matrices.

Definition 5.2. A symmetric matrix A ∈Rn×n is positive definite provided 〈Ax, x〉 > 0 for
all x ∈Rn . If instead 〈Ax, x〉 ≥ 0 for all x ∈Rn , the matrix is called positive semi-definite.
For short, we will call symmetric, positive definite (respectively, symmetric positive semi-
definite) matrices SPD (respectively, SPSD) for short.

Proposition 5.3. Any matrix of the form A AT or AT A is SPSD.

Proof. Simply note that
〈

AT Ax, x
〉 = 〈Ax, Ax〉 = |Ax|2 ≥ 0 (this could be 0 if A has non-

trivial nullspace). For A AT , simply note this is of the form B T B where B = AT and the
same argument works. �

Proposition 5.4. If A ∈Rn×n is SPSD, then its eigenvalues are real and nonnegative.

Proof. That the eigenvalues are real follows from Proposition 4.6. To see positivity, sup-
pose that (λ, v) is an eigenvalue/eigenvector pair of A. Then λ〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 ,
whence because v 6= 0,

λ= 〈Av, v〉
〈v, v〉 ≥ 0

where the inequality follows from the fact that A is positive semi-definite. �

5.1. Proof of the SVD. To begin, consider the AT A ∈Rnxn , which is SPSD by Proposition
5.3, and hence has real, nonnegative eigenvalues (by Proposition 5.4, say λ1, ...,λk , with
corresponding orthonormal eigenvectors v1, ..., vk .

Now we note that AT A and A AT have the same eigenvalues. More precisely, the
following holds.

Lemma 5.5. Let A ∈Rm×n be arbitrary. If (λ, v) is an eigenvalue/eigenvector pair of AT A,
then (λ, Av) is an eigenvalue/eigenvector pair of A AT .

Proof. By assumption, AT Av = λv , whereupon multiplication by A yields (A AT )Av =
λ(Av). Since 0 cannot be an eigenvector, we must confirm that v is not in the null space
of A, but thisfollows from the fact that N (A) =N (AT A). �

Now, since we have the eigenpairs of AT A in hand, Lemma 5.5 suggests that we set

(3) ui := Avi√
λi

, i = 1, . . . ,k.

Lemma 5.5 implies that u1, ...,uk are still eigenvectors of A AT with associated eigenval-
ues λ1, ...,λk . Now we claim that {ui }k

i=1 is an orthonormal set.
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Lemma 5.6. Let {ui }k
i=1 be defined as in (3). Then {ui }k

i=1 is an orthonormal set.

Proof. Let i and j be fixed. By definition,〈
ui ,u j

〉=〈
1√
λi

Avi ,
1√
λ j

Av j

〉
= 1√

λiλ j

〈
Avi , Av j

〉= 1√
λiλ j

〈
vi , AT Av j

〉
.

Since (λ j , v j ) is an eigenvalue/eigenvector pair for AT A,

〈
ui ,u j

〉= 1√
λiλ j

〈
vi ,λ j v j

〉=
√
λ j√
λi

〈
vi , v j

〉={
0, i 6= j

1, i = j .

The final calculation follows from the fact that {vi }k
i=1 is orthonormal, and the fact that

{ui }k
i=1 is orthonormal follows directly from the above calculation. �

Now letting σi =
√
λi for i = 1, . . . ,k, define

Uk :=
 | |

u1 · · · uk

| |

 , Vk :=
 | |

v1 · · · vk

| |

 , Σk :=


σ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 σk

 .

Lemma 5.7. With the above definitions, we have U T
k AVk =Σk .

Proof. Note that by the inner product definition of matrix multiplication,

U T
k AVk =


〈Av1,u1〉 〈Av2,u1〉 · · · 〈Avk ,u1〉
〈Av1,u2〉 〈Av2,u2〉 · · · 〈Avk ,u2〉

...
...

. . .
...

〈Av1,uk〉 〈Av2,uk〉 · · · 〈Avk ,uk〉

 .

Now by definition of ui and σi , we have〈
Avi ,u j

〉=〈
Avi ,

Av j

σ j

〉
= 1

σ j

〈
Avi , Av j

〉= 1

σ j

〈
vi , AT Av j

〉= λ2
i

σ j

〈
vi , v j

〉
Thus by orthonormality of {vi }, we have

(4)
〈

Avi ,u j
〉={

0, i 6= j

σi , i = j .

The desired conclusion follows from (4). �

Proof of the SVD. Our proof of the SVD is almost complete. First, we complete {u1, . . . ,uk }
to an orthonormal basis ofRm×m , denoted {u1, . . . ,um}, and likewise complete {v1, . . . , vk }
to an orthonormal basis of Rn×n , say {v1, . . . , vn}. We also make Σ an m ×n matrix by
adding zeros to make up the rest of the entries.

Our final claim is that U T AV =Σ. To see this, first note that vk+1, . . . , vn ∈N (A). This
implies that if i > k, then the i , j –th entry of U T AV is

〈
Avi ,u j

〉 = 0. For 1 ≤ i ≤ k and
1 ≤ j ≤ k, we have already seen that

〈
Avi ,u j

〉
is either 0 or σi by (4). We only need to

check that for 1 ≤ i ≤ k and j > k that
〈

Avi ,u j
〉 = 0 to verify the claim. In this case, we

go back to the definition of u j and use the same argument as in Lemma 5.7 to see that〈
Avi ,u j

〉= 〈
σi ui ,u j

〉= 0.
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The conclusion follows that U T AV =Σ.
The following calculation, which follows by orthogonality of the matrices U and V ,

finishes the proof:
UΣV T =UU T AV V T = A.

�

5.2. Understanding the SVD. By the same calculation as in the proof of Corollary 4.12,
we find that if A =UΣV T , then

(5) A =
rank(A)∑

i=1
σi ui vT

i .

As a matter of terminology, we call the columns of U the left singular vectors of A,
the columns of V the right singular vectors of A, andσ1, . . . ,σrank(A) the singular values
of A. Additionally, we assume the convention that the singular values are in descending
order so that σ1 ≥σ2 ≥ ·· · ≥σrank(A) ≥ 0.

Now let’s take a step back and consider what the SVD is really telling us. Let us con-
sider the geometry of a linear transformation (matrix) A :R2 →R2 as shown in Figure 2.

FIGURE 2. Geometric representation of the SVD. Figure
from https://blogs.sas.com/content/iml/2017/08/28/
singular-value-decomposition-svd-sas.html

Figure 2 illustrates the fact that V T maps the generic orthonormal basis {v1, v2} onto
the canonical basis {e1,e2}. Then Σ stretches e1 and e2, and U is another rotation onto a
new orthonormal basis. Hence the SVD for square matrices can be seen as the sequence:
rotate, stretch, rotate again. In higher dimensions, rotation means multiplication by
orthogonal matrices with determinant 1.

Another thing to note about what the SVD is doing algebraically is that it finds two
orthogonal bases in which the transformation A mapping the basis {v1, v2} to {u1,u2} is
diagonal. In particular, we have that Avi =σi ui .
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6. LECTURE 7: THE ECKHART–YOUNG–MIRSKY THEOREM

The goal of this lecture is to show the conclusion of the Eckhart–Young–Mirsky The-
orem, which says that in a certain sense that will be made precise in what follows, the
matrix Ak := UkΣkV T

k is the "best" rank k approximation of A. For the moment, we
must content ourselves with a discussion of norms to better clarify this statement.

Definition 6.1. A function ‖·‖ :Rn →R is a norm if

(1) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0
(2) ‖αx‖ = |α|‖x‖ for all α ∈R and x ∈Rn

(3) ‖x + y‖ ≤ ‖x‖+‖y‖ for all x, y ∈Rn .

The inequality in Definition 6.1(3) is called the Triangle Inequality.

Definition 6.2. The vector `p norms on Rn are defined by

‖x‖p :=
(

n∑
i=1

|xi |p
) 1

p

, 1 ≤ p <∞,

and
‖x‖∞ := max

1≤i≤n
|xi |.

The case p = 2 is typically called the Euclidean norm on Rn .

Example 6.3. Let x = [−2 1 −1
]T

. Then

‖x‖2 =
p

4+1+1 =p
6, ‖x‖1 = 2+1+1 = 4, ‖x‖∞ = max{2,1,1} = 2.

For illustration, let’s consider what the unit balls in each of these norms look like (at
least in R2).

Definition 6.4. For given 1 ≤ p ≤∞ and n ∈N, the unit ball in Rn in the `p norm is the
set

B n
p := {x ∈Rn : ‖x‖p ≤ 1}.

Figure 3 illustrates the shape of the unit balls inR2 for the `1, `2, and `∞ norms. Note
that for 1 < q < 2 < r <∞, we have that

B n
1 ⊂ B n

q ⊂ B n
2 ⊂ B n

r ⊂ B n
∞.

This fact comes with the relationship that for any x ∈Rn ,

‖x‖∞ ≤ ‖x‖r ≤ ‖x‖2 ≤ ‖x‖q ≤ ‖x‖1.

6.1. Induced Matrix Norms. Given a norm, ‖·‖a which is well-defined on both Rm and
Rn , the corresponding induced matrix norm is the function ‖·‖a :Rm×n →R given by

‖A‖a := max
x∈Rn \{0}

‖Ax‖a

‖x‖a
.

Noticing that the term above is maxx∈Rn \{0}

∥∥∥A
(

x
‖x‖a

)∥∥∥
a

, we have that

‖A‖a = max
x∈Rn ,‖x‖a=1

‖Ax‖a .

One important thing to note is that not all matrix norms are induced by a vector
norm. For example, the Frobenius norm defined by

‖A‖F :=
(

m∑
i=1

n∑
j=1

|Ai j |2
)
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FIGURE 3. Unit Ball in `p -norms for p = 1,2,∞
Figure from https://upload.wikimedia.org/wikipedia/commons/thumb/4/4d/

Vector_norms.svg/140px-Vector_norms.svg.png

is not an induced matrix norm.
One of the most important norms we will consider is the Spectral Norm defined by

‖A‖2 := max
‖x‖2=1

‖Ax‖2.

It is of interest to note that while they are not defined in this way, we may relate both
the Frobenius and Spectral norms with the singular values of A in the following way.

Theorem 6.5. For A ∈Rm×n , the following hold:

(1) ‖A‖2 =σ1(A)

(2) ‖A‖F =
(

rank(A)∑
i=1

σi (A)2

) 1
2

.

Theorem 6.5 suggest the definition of more general norms defined by the `p norms
of the vectors of singular values of A:

Definition 6.6. For any 1 ≤ p ≤∞, the Schatten p–norm is given by

‖A‖Sp := ‖(σ1(A), . . . ,σrank(A)(A))‖p =
(

r ank(A)∑
i=1

(σi )p

) 1
p

.

Proposition 6.7. Schatten p–norms are,

(1) Submultiplicative: ‖AB‖Sp ≤ ‖A‖Sp ‖B‖Sp

(2) Unitarily Invariant: ‖Q AW ‖Sp = ‖A‖Sp for all orthogonal Q and W .

Proof. Unitary invariance follows by the fact that singular values don’t change after mul-
tiplication by orthogonal matrices. In particular, ‖A‖Sp = ‖Σ‖Sp = ‖{σi (A)}‖p . We will
not give the proof of submultiplicativity here. �
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Corollary 6.8. If {ui }r
i=1, {vi }r

i=1 are orthonormal systems, then∥∥∥∥∥ r∑
i=1

σi ui vT
i

∥∥∥∥∥
Sp

= ‖(σ1, ...,σr )‖p =
(

r∑
i=1

|σi |p
) 1

p

.

6.2. The Eckhart–Young–Mirsky Theorem. We now have enough definitions at our dis-
posal to state the main theorem of this lecture, which is the following.

Theorem 6.9 (Eckhart-Young-Mirsky). For every A ∈Rmxn with A =UΣV T , Ak =UkΣkV T
k

is a solution to
min

B∈Rm×n

rank(B)≤k

‖A−B‖Sp

for all 1 ≤ p ≤∞.

Note that this theorem implies that for any B such that rank(B) ≤ k we have that
‖A−UkΣkV T

k ‖Sp ≤ ‖A−B‖Sp .

Proof for Spectral Norm (S∞). Without loss of generality assume n ≤ m (otherwise the
following analysis holds for AT ). First, note that

‖A− Ak‖2 =
∥∥∥∥∥ n∑

i=1
σi ui vT

i −
k∑

i=1
σi ui vT

i

∥∥∥∥∥
2

=
∥∥∥∥∥ n∑

i=k+1
σi ui vT

i

∥∥∥∥∥
2

=σk+1,

where the last line follows from Corollary 6.8. Now let B ∈Rm×n with rank(B) ≤ k. Then
dim(N (B)) = n − rank(B) by the Rank–Nullity Theorem. So we see dim(N (B)) ≥ n −k
as rank(B) ≤ k. Since dim(Col(Vk+1)) = k +1,

dim(N (B))+dim(Col(Vk+1)) ≥ n −k +k +1 = n +1.

This implies the existence of an x ∈N (B)∩Col(Vk+1) with |x| = 1. Suppose x =
k+1∑
i=1

ci vi

(as x ∈ Col(Vk+1)), then we may write,

‖A−B‖2
2 = max

‖y‖2=1
‖(A−B)y‖2

2 ≥ ‖(A−B)x‖2
2 = ‖Ax‖2

2

where the last equality follows from the fact that x ∈N (B). Now we have

‖Ax‖2
2 =

∥∥∥∥∥A
k+1∑
i=1

ci vi

∥∥∥∥∥
2

2

=
∥∥∥∥∥k+1∑

i=1
ci Avi

∥∥∥∥∥
2

2

=
∥∥∥∥∥k+1∑

i=1
ciσi ui

∥∥∥∥∥
2

2

=
k+1∑
i=1

c2
i σ

2
i

≥σ2
k+1

k+1∑
i=1

c2
i
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=σ2
k+1‖x‖2

2

=σ2
k+1.

The second to the last line above follows from the orthonormality of {ui }. Putting these
observations together, we have that for any B with rank at most k,

‖A−B‖2 ≥σk+1 = ‖A− Ak‖2.

�
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7. LECTURE 8: PCA (PRINCIPAL COMPONENT ANALYSIS)

This lecture begins our section on applications of the SVD to data analysis. We begin
with one of the most fundamental methods around: Principal Component Analysis, or
PCA. Let us start by giving an example

Example 7.1. Suppose a matrix A ∈ Rm×n contains n samples of patients from whom
many medical observations are collected resulting in a vector of m features for each
patient. For example,

A =

Patient 1 Patient 2 Patient 3 · · · Patient n


∗ ∗ ∗ ·· · ∗ Feature 1
∗ ∗ ∗ ·· · ∗ Feature 2
...

...
... · · · ...

...
∗ ∗ ∗ ·· · ∗ Feature m

If m and n are very large, it may be difficult or impractical to analyze the data as a whole.
However, a medical researcher wants to be able to make decisions about patients based
on the data. For example, perhaps the researcher wants to know which of the features
they have collected about the patients most influence whether or not they have a par-
ticular disease, or perhaps the researcher wants to use the data to detect different popu-
lations within the set of patients to find some meaningful pattern. PCA attempts to find
the directions of largest variance within the data set.

PCA begins by considering what is called the covariance matrix of the data {A:i }n
i=1

which will be defined momentarily. To do this, we first center the rows of A as follows:

Âi j := Ai j −ui , where ui :=
n∑

j=1
Ai j .

Note that the rows of Â are unit vectors at this point. The second step of PCA is to
compute the covariance matrix S of the newly centered data as follows:

Si j := 1

n −1
(Â ÂT )i j = 1

n −1

〈
Âi :, Â j :

〉= 1

n −1

n∑
k=1

(Ai k −ui )(A j k −u j ) =: Covar(Ai :, A j :).

Note here that if i = j , then

Si i = 1

n −1

n∑
k=1

(Ai k −µi )2 = Var(Ai :)

using the classical definition of variance. We call the entries Si j the covariance between
rows Ai : and A j :. The covariance matrix reflects how correlated two features are. Figure
4 gives an example of perfectly correlated features and uncorrelated features.

The third step in PCA is to take the SVD of the covariance matrix, i.e., S = UΣU T

(note that it has this form since it is symmetric). By the Eckhart–Young–Mirsky Theo-
rem, UkΣkU T

k is the best rank k approximation of S. The columns of U are called the

Principal Coordinates, or Principal Components of the centered data Â.
For completeness, we write the full PCA algorithm below in Algorithm 1.

7.1. Uses of PCA. Having seen the algorithm, let us now discuss how we may use PCA to
analyze data. We will start with a toy example of regression, but it is not linear regression
that we may be used to.
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FIGURE 4. An illustration of perfectly correlated features (left) and un-
correlated features (right).

Algorithm 1: Principal Component Analysis (PCA)

Input : Matrix A ∈Rm×n of n observations with m features
Output: Principal components {σ1u1, . . . ,σk uk }
for i=1 to n do

µi = 1
n

∑n
j=1 Ai j

Âi : = Ai : −µi

end
S = 1

n−1 Â ÂT

Compute the SVD of S as S =UΣU T

return σ1u1, . . . ,σk uk

Task 1: Orthogonal Regression. Suppose that A ∈ R2×n corresponds to n point in R2,
and we want to find the line that best passes through them. We could solve a least
squares problem (which we will discuss several lectures from now) or we could use PCA.
In this case, S ∈R2×2, and U consists of 2 columns u1 and u2. In this case, the line in the
direction of u1 is the orthogonal regression line that minimizes

n∑
i=1

dist(Ai :,mx +b)2

over all values of m and b. Here the distance function represents the distance from the
point Ai : to the nearest point on the line y = mx+b (recall that this is the point at which
a line passing through Ai : meets the line y = mx +b at a right angle). Note that this is
different from linear regression, which minimizes the sum of square distances from the
y–coordinates of the data points to the line.
Task 2: Capturing Variance in Data. The first principal component of centered data
captures the direction in which the largest variance is exhibited. Then the second prin-
cipal component explains the next direction orthogonal to the first that contains the
largest remaining fraction of the variance, and so on. For an illustration of this fact, see
Figure 5.
Task 3: Dimensionality Reduction. Oftentimes, data that we collect is high-dimensional,
i.e., m is very large. For example, an iPhone 11 takes 12 megapixel images. Therefore, if
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FIGURE 5. Illustration of Gaussian data with differing directions of
variance. The red lines are first (up and to the left) and second (up
and to the right) principal components from PCA.

a black and white image is taken, each pixel may be assigned a value between 0 (black)
and 255 (white). It follows that a single image can be viewed as a vector in Rm with
m = 12,000,000. If we have a large collection of images of this size, then we would have
a very high-dimensional data set. High-dimensional data can be difficult to handle for
many reasons: it could be difficult to store in memory, it could be very costly to compute
the SVD of a large data matrix, it could be difficult to ascertain which of the enormous
amount of features is important.

Consequently, we often preprocess data by trying to reduce its dimensionality. The
general goal of any dimensionality reduction method is to find a "good" embedding
φ : Rm → Rk with k ¿ m. What is meant by the word good is ambiguous and often
dependent on context. Given such a map, we forego A and choose to work with

{φ(A:i )}n
i=1 ⊂Rk ,

which is a lower-dimensional data set.
Why might this be beneficial? Some reasons include storage savings, computational

savings, and to identify important dimensions or features within the data. But one ex-
cellent reason that we might consider dimensionality reduction in general is the case
when k = 2 or 3. After all, we can only visualize things in 2 or 3 dimensions, so if we can
find a good map which puts our data into R2 or R3, then we can actually see it!

How can we reduce the dimension via PCA? Well, note that U T
k : Rm → Rk , so U T

k Â ∈
Rk×n . Thus the principal components provide an embedding of Â into Rk .

7.2. Why do we Center the Data? One natural question one might ask about the PCA
algorithm is: why do we need to center the data? The short answer is that if we don’t
then it could lead to strange behavior in which we are not learning what we hope we
are. To see this, note that principal components always pass through the origin. But
what if our data did not? Then what are we seeing?
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FIGURE 6. PCA with centered data (left) and uncentered data (right).
The red lines are the first principal components. Note that in the un-
centered case, this no longer represents the direction of largest vari-
ance.

29



8. LECTURE 9: DATA CLUSTERING ALGORITHMS

8.1. Visualization. So you want to learn something about your data? First, you must
visualize it. Why? Consider Figure 7 below.

FIGURE 7. Anscombe’s quartet. Each data set shown above has the ex-
act same mean in each coordinate direction, variance in each coordi-
nate direction, and linear regression line. (Image source – Wikipedia:
https://en.wikipedia.org/wiki/Anscombe%27s_quartet.)

Figure 7 shows four data sets with exactly the same summary statistics, but which
exhibit extroardinarily different behaviors, and is due to Anscombe [2]. For a catchier,
more modern exhibition of this principle, we refer to the "Datasaurus Dozen" of Mate-
jka, and Fitzmaurice [13] shown in Figure 8.

The point of these figures is a cautionary tale: while statistics are useful in describ-
ing data, they are not sufficient, and visualizing our data is of paramount importance.
This creates an immediate problem for us given that most data is high-dimensional,
and we are limited to viewing things in at most 3 dimensions. Thus, to visualize high-
dimensional data sets, one option is to reduce it to a smaller dimension. We mentioned
this briefly in Section 7, and will have an ongoing discussion about dimensionality re-
duction throughout the rest of the course as we develop more tools.

8.2. Clustering Data. Another way to understand our data is to try to find patterns, or
communities, within it. For instance, we might want to break plant genomic data into
many categories for classification, or split coding languages into a taxonomy based on
certain features.

In general, let us consider how to partition our given data X = {xi }n
i=1 ⊂ Rm into k

disjoint partitions {Ai }k
i=1 such that

A1 t A2 t·· ·t Ak = X
30
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FIGURE 8. The "Datasaurus Dozen" of 13 (including the di-
nosaur) scatter plots of datasets with the same statistics from [13];
source: https://www.autodeskresearch.com/publications/
samestats.

(here t means disjoint union). While there are feasibly many ways to do this, one way
is to try to minimize the sum of the square of distances within each cluster given by:

(6) f (A1, . . . , Ak ) :=
k∑

j=1

∑
xi∈A j

∣∣∣∣∣xi − 1

|A j |
∑

x`∈A j

x`

∣∣∣∣∣
2

.

Note that the term |A j |−1 ∑
x`∈A j

x` in (6) is simply the centroid (center of mass) of the
points in A j , and inside the second sum, we are computing the Euclidean distance from
all points in A j to the center of this cluster.

It is also important to note that f is a function from the set of all possible disjoint
partitions of X into k pieces (with no restriction on size) into R. The domain here is
discrete, and hence the implicit minimization problem we want to solve ((7) below) is
extremely challenging (in fact, it is NP–hard in almost all circumstances).

(7) min
A1t···tAk=X

f (A1, . . . , Ak ).

The function f is called the k–means objective function, and it should be noted that we
also have a statistical interpretation of f as follows:

f (A1, . . . , Ak ) =
k∑

j=1
|A j |Var(A j ).

So minimizing the k–means objective function boils down to minimizing the sum of
the product of the size of A j and the variance (in the usual statistical sense) of the data
points within A j . We leave it as an exercise to the reader to verify this reformulation of
f .
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8.3. k–means and Lloyd’s Algorithm. What we have not discussed yet is how we can
approximate the solution to (7). There are various ways to do this, but the classical
one we posit here is called Lloyd’s Algorithm after Stuart P. Lloyd [12]. As an interesting
historical note, Lloyd published his algorithm internally at Bell Labs in 1957, but it did
not appear in the rest of the literature until Forgy rediscovered it in 1965 a whole 8 years
later [9]. Lloyd was not credited with invention of the algorithm until much later when
his paper was released to the public and published by IEEE in 1982.

The idea of Lloyd’s Algorithm is based on simple geometry: if we are given a par-
tition of the data A1, . . . , Ak , we can compute Voronoi regions based on the centroids
of the data appearing within each partition. That is, if Ai ⊂ X and µi is its center
(µi = |Ai |−1 ∑

x j ∈Ai
x j ), then its associated Voronoi region is the set

(8) Vi := {
x ∈Rm : |x −µi | ≤ |x −µ j |, j 6= i

}
.

Note that {Vi }k
i=1 partition the whole ambient space, namely

⋃k
i=1 Vi =Rm . This par-

tition is not disjoint, as the regions can intersect on hyperplanes of dimension m−1. For
illustration, Figure 9 shows a set of data which has already been clustered, and illustrates
the associated Voronoi regions.

FIGURE 9. Example of Voronoi regions (boundaries shown by straight
lines) providing geometric clustering for the case k = 3 with data inR2.

Clearly Figure 9 achieved the correct clustering for this simple data set that matches
how any human would partition the data. The reader should consider that for this par-
titioning, the function f (A1, A2, A3) should indeed be small. Figure 10 shows a simple
data set which has been partitioned two different ways. It should be evident that the
objective function f should have a much smaller value for the left partitioning than it
would for the right.

The question then is: how can we find these Voronoi regions? Here is the simplest
version of Lloyd’s Algorithm which tries to achieve this.
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FIGURE 10. Data set with the "correct" partitioning corresponding to
green and red color. Good division via Voronoi regions (left) leading to
small k–means objective function and poor division (right) leading to
a larger objective function.

Algorithm 2: Lloyd’s k–means Approximation Algorithm

Input : Data X = {xi }n
i=1 ⊂Rm , number of clusters k ∈N, tolerance TOL, and

maximum number of iterations Nmax

Output: Partition A1, . . . , Ak such that A1 t·· ·t Ak = X
Initialize centers µ1, . . . ,µk

Compute Voronoi regions V1, . . . ,Vk according to centers {µi } (Equation (8))
Ai = X ∩Vi , i = 1, . . . ,k
while iter < Nmax do

µ′
i = 1

|Ai |
∑

x`∈Ai
x`

Update Voronoi regions V1, . . . ,Vk according to centers {µ′
i }

Ai = X ∩Vi

if |µ′−µ| < TOL then
break

else
µi =µ′

i
iter = iter+1

end
end
return A1, . . . , Ak

8.4. A Note on Initialization. The Initialization step for Lloyd’s Algorithm deserves some
discussion here. One way to do this is to simply randomly select the centers from the
uniform distribution on the smallest cube in Rn that contains the data X . However,
it has been known by practitioners for quite some time that this is typically a poor
choice of initialization in almost all circumstances, and it’s easy to see why given that
this method fails to take into account any feature of the data.

Another common method is the so-called k–means++ initialization [3] (which is
Matlab’s standard choice). This method begins by choosing µ1 uniformly at random
from X (i.e., chooses xi ∈ X with probability 1

n ). Next, µ2 is chosen from X \ {xi }, where
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µ2 = x j ∈ X \ {xi } with probability proportional to |x j −µ1|2. We iteratively randomly
choose µ3, . . . ,µk in a similar fashion where at each stage we compute the distance of a
remaining unchosen data point to the nearest center and create a probability distribu-
tion from this. This initialization typically gives better behavior than uniform random
initialization due to the fact that we are taking into account some structural features of
the data when selecting initial centers.

How important is initialization, you ask? Well, a good initialization can lead not only
to good clustering, but also to fewer iterations in the algorithm, whereas a poor initial-
ization can lead to poor clustering performance or a large number of iterations before
convergence. Figure 11 gives an example of this fact.

FIGURE 11. Data with three clusters and different center initializa-
tions (top). Final output of Lloyd’s Algorithm (Algorithm 2) given these
initial centers (bottom). The first initialization gives a mostly accurate
final clustering (bottom left) whereas the second yields poor cluster-
ing by putting two distinct clusters together (bottom right). Dataset
generated with code from Alex Powell.
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9. GRAPHS FROM DATA

Let’s pause for a moment and consider a basic fact about the k–means algorithm and
objective function that was discussed in the previous section. By choosing that objective
function to minimize, we made an implicit assumption about the clusters appearing
within our data:

the notion of "similarity" within the data is pairwise distance.

The k–means objective function (6) attempts to minimize the within-cluster distances,
but we must ask the question: is this always the correct notion of similarity? Consider
the following example in Figure 12.

FIGURE 12. A data set consisting of points from a disk and an annulus.

Human beings will easily be able to tell you that there are two distinguishable clusters
in the data set illustrated in Figure 12: the disk, and the surrounding annulus. However,
if we try to run Lloyd’s Algorithm on this data with k = 2, we will obtain something like
the right-hand side. So what happened? Again, our notion of similarity within the data
was pairwise distance, but that is not the correct notion of similarity for this data. In-
deed, a point on the top of the annulus is much farther from a point on the bottom of
the annulus than it is from a point in the center of the disk. Another way to put this is
that this data is not linearly separable in two dimensions, meaning we cannot draw a
line between the two clusters.

The point here is: in a clustering task, choosing the right notion of similarity is data-
dependent, and typically not simple to do beforehand. We will turn our discussion to
Spectral Clustering, which is a method that 1) can separate the disk and annulus clusters
easily, and 2) takes into account the structure of the data in a more general way than
k–means does. But to get to the algorithm, we need to make a detour through Graph
Theory, and discuss how to make graphs from data sets.

9.1. Graphs. Much of the material here and on Spectral Clustering here is taken from
the excellent tutorial [17].

Definition 9.1. A graph G = (V ,E) is a collection of vertices V = {v1, . . . , vn}, some of
which are connected by an edge in the set E ⊂V ×V .

A graph is weighted if there is a nonnegative weight function w : E → R which is not
identically 1.

A graph is unweighted if all edges are assigned weight 1.
A graph is undirected if edges have no direction, i.e., w(vi , v j ) = w(v j , vi ).
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For our purposes, we will exclusively consider undirected graphs which may or may
not be weighted depending on the situation.

9.2. Graphs From Data. Suppose we are given data X = {xi }n
i=1 ⊂Rm . How can we make

a graph based upon this data? First, we simply take V = {x1, . . . , xn}, or in other words,
each data point is a vertex in the graph. Now we must determine a way to assign edges
between vertices. There are several standard ways to do this.
Euclidean Graph. The Euclidean (or geometric) graph over the vertices is the one in
which we connect all points to every other point, and assign weights via

wi j := w(xi , x j ) = |xi −x j |.
This results in a fully connected graph with small weights for nearby vertices and large
weights for distant ones.
ε–neighborhood graph. Given a parameter ε> 0, we put a ball of radius ε around each
vertex, and connect the vertex to every other vertex that lies in this ball. Thus the weight
function is

wε
i j :=

{
1, |xi −x j | ≤ ε
0, otherwise.

k–nearest neighbor (k-NN) graph. Given a fixed k ∈ N, for i = 1, . . . ,n, we define Ki to
be the set of k nearest neighbors of the point xi (i.e., the k points in X which are closest
in distance to xi ). Then we set

wkNN
i j :=

{
1, x j ∈ Ki or xi ∈ K j

0,otherwise.

Mutual k–NN. Note that if you are one of my two nearest neighbors, it doesn’t follow
that I am one of your two nearest neighbors (this is why we had the "or" statement in the
weight definition for k–NN above). But, we can form a more restrictive graph by making
edges between points only when they are both k–nearest neighbors of each other. To
wit, we have

wMkNN
i j :=

{
1, x j ∈ Ki and xi ∈ K j

0, otherwise.

Gaussian weighted graph. Given a parameter σ > 0, the Gaussian weighted graph as-
signs weights as

wσ
i j := e−

|xi −x j |2
σ2 .

Thus, a Gaussian weighted graph has strong connections for very close vertices, and
rapidly weaker connections as vertices become farther apart. Each of these graphs is
used heavily in many applications (possibly with some modifications such as weighting
edges in neighbor graphs). We will discuss their use in clustering in the next lecture.

9.3. Attributes of Graphs.

Definition 9.2. Given a weighted graph G = (V ,E , w), the degree of a vertex vi ∈ V , is
defined to be

di :=
n∑

j=1
wi j .

The degree matrix is the matrix D := diag(d1, . . . ,dn). The weight matrix or adjacency
matrix is given by Wi j = w(vi , v j ), where w is the weight function assigning edge weights.
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In the above definition, the degree of a vertex is the sum of the weights of edges which
connect to the vertex. So for an unweighted graph, this just counts the number of edges
incident to the given vertex.

Note that in an undirected graph, the matrix W is symmetric.

Definition 9.3. Given a weighted graph G = (V ,E , w), the unnormalized graph Lapla-
cian is the matrix L = D −W .

Example 9.4. Consider a graph with a vertex in the middle, labeled v1, that is connected
to 4 vertices surrounding it (so the corners of a square connected to the center points of
the square). The corner vertices will be labeled v2, . . . , v5, and are only connected to v1.
If we assume all weights are 1, then we have that D = diag(4,1,1,1,1), and

W =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

 .

Hence the unnormalized graph Laplacian in this case is

L = D −W =


4 −1 −1 −1 −1
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1

 .

Something important to not here: L is symmetric and diagonally dominant, hence it
is positive semi-definite. Let us make some additional important notes on the proper-
ties of the graph Laplacian.

Theorem 9.5. Given a weighted graph G = (V ,E , w) with L being its unnormalized graph
Laplacian, the following hold.

(1) For all x ∈Rn , 〈Lx, x〉 = 1
2

∑n
i , j=1 wi j (xi −x j )2,

(2) L is symmetric, positive semi-definite,

(3) The smallest eigenvalue of L is 0 with corresponding eigenvector1 := [
1 · · · 1

]T
,

(4) L has non-negative, real eigenvalues 0 =λn ≤ ·· · ≤λ1.

Proof. (1): Note that 〈Lx, x〉 = 〈(D −W )x, x〉 = 〈Dx, x〉− 〈W x, x〉, and that since D is di-

agonal, we have that Dx = [
d1x1 . . . dn xn

]T
. Thus

〈Lx, x〉 =
n∑

i=1
di x2

i −
n∑

i , j=1
xi x j wi j

= 1

2

(
n∑

i=1
di x2

i −2
n∑

i , j=1
xi x j wi j +

n∑
j=1

d j x2
j

)

= 1

2

(∑
i , j

= 1n wi j x2
i −2

n∑
i , j=1

xi x j wi j +
n∑

i , j=1
w j i x2

j

)
where the last line followd from the fact that di = ∑n

j=1 wi j . Now combining terms, we
have

〈Lx, x〉 = 1

2

n∑
i , j=1

wi j (xi −x j )2
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which is the desired conclusion.
(2): Note that LT = DT −W T = D −W , and hence is symmetric, while combining the

fact that wi j ≥ 0 with (1) implies that 〈Lx, x〉 ≥ 0 for all x ∈ Rn< and so L is symmetric
positive semi-definite.

(4) follows directly from (2), and to show (3), notice that

(D −W )

1
...
1

=

d1 −∑n
i=1 w1i
...

dn −∑n
i=1 wni

= 0

by definition of di . �

There are multiple options for defining graph Laplacians that come from different
starting points. We will define two here, but focus on one of them due to its utility for
clustering.

Definition 9.6. Given a weighted graph G = (V ,E , w), the symmetric normalized graph
Laplacian is defined by

Lsym := I −D− 1
2 W D− 1

2 = D− 1
2 LD− 1

2 .

The random walk graph Laplacian is defined by

Lrw := I −D−1W = D−1L.

The salient properties of these versions are as follows.

Theorem 9.7. Given a weighted graph G = (V ,E , w), the following hold.

(1) For all x ∈Rn ,
〈

Lsymx, x
〉= 1

2

∑n
i , j=1 wi j ( xip

di
− x jp

d j
)2,

(2) (λ,u) is an eigenvalue/eigenvector pair of Lrw if and only if (λ,D
1
2 u) is an eigen-

value/eigenvector pair of Lsym,

(3) (0,1) is an eigenvalue/eigenvector pair of Lrw, and (0,D
1
21) is an eigenvalue/eigen-

vector pair of Lsym,
(4) Lsym and Lrw are symmetric, positive semi-definite and have non-negative, real

eigenvalues 0 =λn ≤ ·· · ≤λ1.

The proof follows much the same lines as that of Theorem 9.5, and so we leave it as
an exercise to the motivated reader.
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10. GRAPH CUTS AND SPECTRAL CLUSTERING

Let us first state a proto-algorithm which encompasses the essential variants of Spec-
tral Clustering.

Algorithm 3: Spectral Clustering

Input : Data X = {xi }n
i=1 ⊂Rm , number of clusters k ∈N

Output: Partition A1, . . . , Ak such that A1 t·· ·t Ak = X
Form a graph G = (V ,E , w) from X (see Section 9.2)
Let L̃ be any graph Laplacian of G
Compute eigenvectors of L̃ corresponding to the smallest k eigenvalues (call

these un , . . . ,un−k+1)
Let A1, . . . , Ak be the output of Lloyd’s Algorithm (Algorithm 2) on the matrix

U = [
un · · · un−k+1

]T

return A1, . . . , Ak

We will discuss briefly later the effect of what graph and associated graph Laplacian
one chooses has on the clustering outcomes, but for now, we note that this algorithm at
present seems unmotivated, which can be overcome by a brief interlude on graph cut
problems. For now, let us note that Algorithm 3 can separate the disk and annulus we
showed previously.

FIGURE 13. Disk and Annulus data set (left) with the columns of U ∈
R2×n as in Algorithm 3 (middle) where an ε–neighborhood graph was
used along with the symmetric normalized graph Laplacian, and the
clustering output color-coded (right). We see that Spectral Clustering
with these parameters obtained 100% accuracy in this particular run.

10.1. Graph Cuts. Graph Cut problems are not necessarily related to clustering prob-
lems a priori, but Spectral Clustering turns out to be the marriage of the two ideas. In
general, given a graph G = (V ,E), the graph cut problem is to find the "best" partition
of a graph into 2 or more disjoint pieces. Here, the notion of a good partition is up for
grabs, but we will give several candidates.

Definition 10.1. Given a (possibly weighted) graph G = (V ,E , w), and a nonempty subset
of the vertices A ⊂V , the Cut quantity of A is defined to be

Cut(A, AC ) := ∑
vi∈A,v j ∈AC

w(vi , v j ).
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The cut quantity is a measure of the weight of edges crossing the boundary of the
partition, so the smaller the cut quantity, the lower total weight is being cut by the parti-
tion boundary, which hopefully means that we are not cutting through very dense parts
of the graph. With this in mind, we can formulate the following problem.

Problem 1 (MinCut Problem). Given a (possibly weighted) graph G = (V ,E , w), solve

argmin
A⊂V

Cut(A, AC ).

There is one main issue with the MinCut Problem as it is stated here, and that is that
for many graphs, the optimal solution to this problem takes A = {v} and isolates a single
vertex. The reason for this is that we made no prescription in our definition of the Cut
quantity for how large a subset A of the vertices must be. In an effort to counteract this
bad behavior, we can define a couple of different cut quantities as follows.

Definition 10.2. Given a (possibly weighted) graph G = (V ,E , w), and a nonempty subset
of the vertices A ⊂V , the RatioCut quantity of A is defined to be

RatioCut(A, AC ) = Cut(A, AC )

|A| + Cut(A, AC )

|AC | ,

where |A| is the cardinality of A even if G is weighted.

Problem 2 (RatioCut Problem). Given a (possibly weighted) graph G = (V ,E , w), solve

argmin
A⊂V

RatioCut(A, AC ).

The RatioCut Problem tries to achieve a balanced partition of the graph, where bal-
ance here means that we want the weight of crossings to be small, but also we prioritize
partitions where |A| and |AC | are roughly similar. We note that for unweighted graphs,
this is completely natural, but |A| completely fails to take into account the weights of
the edges, whereas Cut(A, AC ) does. So for weighted graphs it is natural to consider the
following quantity.

Definition 10.3. Given a (possibly weighted) graph G = (V ,E , w), and a nonempty subset
of the vertices A ⊂V , the Normalized Cut (NCut) quantity of A is defined to be

NCut(A, AC ) = Cut(A, AC )

Vol(A)
+ Cut(A, AC )

Vol(AC )
,

where Vol(A) :=∑
i∈A di .

Problem 3 (Normalized Cut (NCut) Problem). Given a (possibly weighted) graph G =
(V ,E , w), solve

argmin
A⊂V

NCut(A, AC ).

The NCut problem again seeks balanced clusters, but this time balance means we
want the volumes of A and its complement to be similar, where the volume of a set
of vertices is the total weight of edges incident to it (recall the degree of a vertex in a
weighted graph is the sum of weights of edges attached to it). Note that even for un-
weighted graphs, the volume is not the same as the cardinality, and so these quantities
are different in general.
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10.2. Spectral Clustering as a Relaxation of Graph Cuts. Now let’s see one case in which
we can recover the Spectral Clustering algorithm as a relaxation of a graph cut problem.
Specifically, we will focus on how Unnormalized Spectral Clustering (i.e., using L, the
unnormalized graph Laplacian) is a convex relaxation of the RatioCut Problem. For ex-
position, we will consider the case of k = 2 clusters.

Recall that RatioCut seeks to solve the following:

(9) min
A⊂V

RatioCut(A, AC ) = min
A⊂V

Cut(A, AC )

|A| + Cut(A, AC )

|AC | .

In an effort to rewrite this in terms of the graph Laplacian, suppose we have a set
A ⊂V , and let x ∈Rn have entries

(10) xi =



√
|AC |
|A| , i ∈ A

−
√

|A|
|AC | , i ∈ AC .

By Theorem 9.5(1), we have

〈Lx, x〉 = 1

2

n∑
i , j=1

wi j (xi −x j )2

= 1

2

∑
i∈A, j∈AC

wi j

(√
|AC |
|A| +

√
|A|
|AC |

)2

+ 1

2

∑
i∈AC , j∈A

wi j

(
−

√
|A|
|AC | −

√
|AC |
|A|

)2

.

Note that we do not have any contribution from terms in which i , j ∈ A or i , j ∈ AC since
in these cases xi = x j = 0. Now pulling out constants, we have

〈Lx, x〉 = 1

2

(√
|AC |
|A| +

√
|A|
|AC |

)2 ∑
i∈A, j∈AC

wi j + 1

2

(√
|A|
|AC | +

√
|AC |
|A|

)2 ∑
i∈AC , j∈A

wi j .

But notice that both summations are Cut(A, AC ) as this quantity is symmetric in its def-
inition. Thus this term can be factored, and noting that the squared terms are also iden-
tical, a bit of algebra reveals

〈Lx, x〉 = 2
1

2

(
|AC |
|A| + |A|

|AC
+2

√
|AC ||A|
|A||AC |

)
Cut(A, AC )

=
( |AC |
|A| + |A|

|AC | +2

)
Cut(A, AC )

=
( |AC |
|A| + |A|

|AC | +
|A|
|A| +

|AC |
|AC |

)
Cut(A, AC )

=
( |AC |+ |A|

|A| + |A|+ |AC |
|AC |

)
Cut(A, AC )

=
(

n

|A| +
n

|AC |
)

Cut(A, AC )

= n

(
Cut(A, AC )

|A| + Cut(A, AC )

|AC |
)

= nRatioCut(A, AC ).
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The third line is simply rewriting 1 in various forms to add to the existing terms, whereas
the third to last line follows from the fact that V = A∪ AC , hence n = |V | = |A|+|AC |; the
final equality is by definition.

Let us also note that for x of the form (10), we have

〈x,1〉 =
n∑

i=1
xi =

∑
i∈A

√
|AC |
|A| − ∑

i∈AC

√
|A|
|AC | = |A|

√
|AC |
|A| − |AC |

√
|A|
|AC | = 0,

so x is orthogonal to the all ones vector 1.
Additionally, we have

|x|2 =
n∑

i=1
x2

i = |A| |A
C |

|A| + |AC | |A||AC | = |AC |+ |A| = n.

Combining all these observations together, we have that (9) is equivalent to

(11) min
A⊂V

〈Lx, x〉
〈x, x〉 , subject to x has the form (10), 〈x,1〉 = 0, |x| =p

n.

The problem with trying to solve (11) directly is that it is minimizing over a discrete
set of all possible partitions of V into two disjoint subsets, and this turns out to be NP–
hard to solve exactly. A common trick to try to get a solution here is to form what is
called the convex relaxation of the problem (11). The relaxation in this case is

(12) min
x∈Rn

〈Lx, x〉
〈x, x〉 , subject to 〈x,1〉 = 0, |x| =p

n.

This is a Rayleigh quotient, which we have seen in a previous homework assignment,
and we know the solution is x = un−1, the (n −1)–st eigenvector of L corresponding to
the eigenvalue λn−1 (this is because (0,1) is the smallest eigenvalue/eigenvector pair of
L by Theorem 9.5. This justifies the use of

[
un un−1

]
in Algorithm 3.

So in conclusion, the SVD of the unnormalized graph Laplacian solves (12), and
in this sense, Unnormalized Spectral Clustering is a convex relaxation of the RatioCut
Problem.

One natural question that arises is: given a solution to the relaxed problem (12), how
do we infer a partition A? One simple way to do this is to take

i ∈
{

A, xi ≥ 0

AC , xi < 0.

For k > 2, a similar argument will show that the eigenvectors un−1,un−2, . . . ,un−k+1

give the solution to the Relaxed optimization problem (note that a slightly different ver-
sion of Rayleigh quotients needs to be used in this case; see [17] for a thorough deriva-
tion).

Also note that if we use Lsym instead of L, then this is sometimes called Normalized
Spectral Clustering, and the equivalent formulation of (12) shows that this is a relaxation
of the NCut problem.

10.3. How do the solutions compare? A strong word of caution is in order here: solu-
tions to (11) and (9) need not be the same, nor even similar.

Figure 14 illustrates this phenomenon on so-called "Cockroach Graphs."
It requires a proof that the solutions are as stated in Figure 14; for the precise refer-

ences see [17]. This example shows that in some cases, the value of the objective func-
tion RatioCut(A, AC ) for the relaxed solution can be as far apart as possible from that of
the real solution, as the values differ by a factor of 1

2 k =O(n) in the example.
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FIGURE 14. (Left) The solution to (11) with RatioCut(A, AC ) = 2
2k +

2
2k = 2

k . (Right) The solution to (12) with RatioCut(A, AC ) = k
2k + k

2k = 1.

10.4. Algorithmic Aspects. Here, we give a very brief discussion of some of the algorith-
mic choices that need to be made in running Spectral Clustering. For a more thorough
discussion, see [17, Section 8]. There are three main issues that one must consider:

(1) How do we estimate k (the number of clusters)?
(2) Which graph should we form for the data?
(3) Which graph Laplacian should be used?
(4) How do we compute the small eigenvalues and eigenvectors of the graph Lapla-

cian?

We will discuss these questions in the order posed here.

10.4.1. Estimating k. First, let us return to our discussion k–means, and note that there
we may use something known as the elbow method to estimate k as follows.
Step 1: Run Lloyd’s Algorithm for a range of k values (from 1 to some predetermined
maximum).
Step 2: Plot the objective function (6) against k and find the "elbow".

This is imprecise in general, but Figure 15 illustrates what one is hoping for in this
method.

FIGURE 15. k–means objective function vs. k. Note that one hopes for
a significant bend (i.e., sharp change in slope) such as is seen at k = 3
here.

Of course this example is not always true to reality, and there are many instances
where one would have a steady decrease in the objective function, and there would be
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no discernible bend, or elbow. In that case, the clustering task is, in some sense, not
well-posed.

Now for Spectral Clustering, there is another feasible way to estimate the number of
clusters. Suppose that we have chosen to use either the ε–neighborhood of k–NN graph
for the data. Then if we did well, we may have k distinct connected components in our
graph corresponding to k distinct clusters. In that case, we may use the following result
to discern what k is from the graph Laplacian.

Theorem 10.4. Let G be an undirected, weighted graph. If its graph Laplacian, L, has an
eigenvalue of 0 with multiplicity k, then G has k connected components.

Proof. See [17, Proposition 2]. �

Theorem 10.4 tells us that we need only find the multiplicity of the 0 eigenvalue of L
(note that Lrw and Lsym work as well) and this will tell us the number of clusters.

10.4.2. Which graph should be used? This is somewhat dependent upon the data un-
fortunately, but k–NN graphs tend to give the most faithful information about the data.
On the other hand, in many applications, practitioners tend toward using the Gaussian-
weighted fully connected graph. In any case, there is no formulaic or theoretical way to
choose the best graph to use for a given data set, unfortunately.

10.4.3. So what about the graph Laplacian? The real question here is: which graph
Laplacian leads to meaningful eigenvalues? Again, there is no unanimous consent here,
but Bertozzi and Flenner [6] make a convincing argument that the symmetric normal-
ized graph Laplacian, Lsym ought to be used. They show that on an image of two cows in
a field, the second, third, and fourth eigenvectors of Lsym capture information about the
background, and the background and foreground cows, respectively, while the eigen-
vectors of L are apparently meaningless.

10.4.4. Computing eigenvalues and eigenvectors. For now, we will shelve the discussion
of how to numerically compute the eigenvalues and eigenvectors required in Spectral
Clustering until later in favor of jumping to an application of the things we have dis-
cussed here.
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11. APPLICATION: SUBSPACE CLUSTERING

We mentioned before that the implicit assumption in the k–means objective func-
tion was that two data points are "similar" if and only if they are close together in the
Euclidean sense. However, sometimes data exhibits an altogether different structure
which fundamentally alters the notion of similarity in the clustering task. The Subspace
Clustering Problem is exactly such a situation. First, let’s discuss the model for our data
which will be motivated by a particular application shortly.

Definition 11.1 (Union of Subspaces). A data matrix X ⊂ Rn comes from a union of
subspaces model provided the columns of X lie in U :=⋃L

i=1 Si where each Si is a linear
subspace of Rn .

Figure 16 illustrates the model under consideration.

FIGURE 16. An example of the union of subspaces model. Here there
are 3 subspaces of dimensions 1, 1, and 2.

Problem 4. The Subspace Clustering Problem is: given data X ∈Rm×n whose columns
come from a union of subspaces U , find

(1) the number of subspaces, L,
(2) the dimensions of each subspace
(3) a basis for each subspace,
(4) a clustering of the data.

Here, clustering means we want to find an assignment function Π : X → {1, . . . ,L} which
satisfiesΠ(xi ) =Π(x j ) = k if and only if xi and x j are in the subspace Sk .

It should be noted that finding the clustering of subspace data will determine the
rest of the information in the Subspace Clustering Problem; indeed, a basis for each
subspace can be obtained by running the Gram–Schmidt Algorithm on the data within
each cluster.

11.1. Applications of Subspace Clustering. Before describing solution methods for the
Subspace Clustering Problem, let us give some sample applications in which the data
satisfies the union of subspaces model, and the desired task is to cluster the data ac-
cording to subspaces.
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11.1.1. Motion Segmentation. Motion segmentation is a task in the area of Computer
Vision. Suppose we have a camera which is filming a scene; each frame of the video
sequence is a still image of a fixed size based on the resolution of the camera. Suppose
we have a mechanism of feature selection, in which we select feature points on mov-
ing objects in the first frame of the video, and track their positions over the rest of the
frames.

More concretely, the camera will have a 3-dimensional coordinate system at each
frame, whose axes we will denote by i f , j f ,k f ( f for the particular frame index). An
object we are tracking will also have an object coordinate system, whose axes we will
simply denote by x f , y f , z f . Suppose also that t f is the vector originating at the camera
origin and terminating at the object origin. Now, given a point p f on the object that is
represented in object coordinates, we may represent it in camera coordinates via

pC
f = R f p f + t f

where

(13) R f =

i T
f

j T
f

kT
f

 ,

and t f is the translation vector from one coordinate system to the other as described
above. The matrix R f describes the rotation, while t f describes the translation requires
to map the object coordinate axes onto the camera ones.

Now, we will utilize a trick that is abundantly common in computer vision, which
comes from some ideas in projective geometry, which is to write all of our points in
homogeneous coordinates. The point in homogeneous object coordinates is

(14) s f :=
[

p f

1

]
=


x
y
z
1

 .

One use of homogeneous coordinates is that any points on a given line through the ori-
gin have the same homogeneous coordinates, but another pertinent use for us is that
these coordinates allow us to write rotation plus translation as a single matrix multipli-
cation. Indeed, in homogeneous camera coordinates, our point is

sC
f =

[
R f t f

0 1

][
p f

1

]
=


xC

f

yC
f

zC
f

1

 .

Now for a real camera, points along a line passing through the camera origin end up
in the same pixel of a still image – this is what leads to perspective in the images. How-
ever, we will use a simplified camera model called the orthographic projection model,
in which we assume that points in the camera coordinate are projected orthogonally
onto the i f j f –plane of the camera (for ease of understanding and notation, let’s just call
this the xC yC –plane from here on out). This simplifies our representation a bit, and is
generally reasonable for objects filmed at a medium to far distance.
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With this camera model, only the xC , yC coordinates of a a point in homogeneous
camera coordinates end up being captured by the camera, and we obtain

(15)

[
xC

f

yC
f

]
=

[
1 0 0 0
0 1 0 0

][
R f t f

0 1

]
s f =

[
R̃ f t̃ f

]
s f .

Consider a video with a camera in fixed position, consisting of F frames, where in
each frame we collect the coordinates of N points {p f ,i }N ,F

i , f =1 in the xC yC –plane. This

creates a data matrix X ∈RF×N such that

(16) X =



xC
1,1 · · · xC

1,N
yC

1,1 · · · yC
1,N

xC
2,1 · · · xC

2,N
yC

2,1 · · · yC
2,N

...
...

...
xC

F,1 · · · xC
F,N

yC
F,1 · · · yC

F,N


=


R̃1 t̃1

R̃2 t̃2
...

...
R̃F t̃F

[
s1 ... sn

]=: MS,

Where M describes the motion of the system and S describes its shape.
Note that M ∈ R2F×4 and S ∈ R4×N , and X ∈ R2F×N . This implies that rank(X ) ≤ 4

since rank(X ) ≤ min{rank(M), rank(S)}. That is, the trajectory vectors in X lie on a 4–
dimensional subspace of the ambient space R2F .

Now, if X consists of trajectories of feature points on L objects, then rank(X ) ≤ 4L,
and trajectory vectors from each object lie on a subspace of dimension at most 4. Thus,
we can treat the data as a Subspace Clustering Problem, in which we separate the 4–
dimensional subspaces and thus identify which trajectories come from distinct objects.

11.1.2. Facial Recognition. Another application which reduces down to a Subspace Clus-
tering Problem comes from Basri and Jacobs [5]. They model what happens when im-
ages are taken of faces (or more generally smooth objects) under different lighting con-
ditions, and show using a spherical harmonic expansion, that the images of a given face
correspond to an approximately 9-dimensional subspace. Thus if we have many images
of different faces under varying illumination, treating them as a Subspace Clustering
Problem implies we intend to separate which images are of the same face and which are
not.

11.1.3. Cryo-Electron Microscopy. Cryo-Electron Microscopy (Cryo-EM) is a technique
which won the Nobel Prize in Chemistry in 2017, and is used to determine the 3-D struc-
ture of protein molecules. Cryo-EM is a method in which researchers flash-freeze many
of the same protein molecule in a substrate, and image them simultaneously via an elec-
tron microscope. The fundamental challenges are that the signal obtained is very noisy,
and the molecules are all in a random orientation that is unknown to the researchers
(though this allows for incredible advances in speed and cost of imaging). Embedded in
the reconstruction task is a Subspace Clustering problem (also naturally viewed as orbit
reconstruction [4]).

11.2. Clustering Matrix Methods. We will focus our attention on one particular method
for solving the Subspace Clustering Problem. Our goal is to find a matrix SX such that

(17)

{
SX (i , j ) 6= 0, xi and x j are in the same subspace

SX (i , j ) = 0, otherwise.
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A matrix which satisfies (17) will be called a clustering matrix for X . One of the first
approaches to find such a matrix was the Shape Interaction Matrix (SIM) due to Costeira
and Kanade [8].

Example 11.2 (Shape Interaction Matrix (SIM)). If X =UrΣr Vr , define

SIM(X ) = |Vr V T
r |dmax ,

where dmax = max dim(Si ).

There are some notable issues with this construction. First, one needs an estimate
of the number of clusters, k, before forming the shape interaction matrix; this could be
done by the elbow method applied to the k–means objective function for varying values
of r to form SIM. Second, the SIM is not always a clustering matrix for subspace data [1],
but this is easily remedied. Lastly, the SIM is not very robust to noise. To illustrate this
fact, consider the illustration in Figure 17.

FIGURE 17. (Left) very slightly noisy data from two lines in R2. (Right)
the corresponding SIM.

At first glance, the SIM in Figure 17 seems to do a fairly good job of separating the data
into two blocks on the diagonal (which makes sense since there are two subspaces), but
the blocks have multiple lines of deep blue cutting through them (which are zero or
almost zero entries), making it harder to distinguish them within the matrix. The data
was constructed in order from left to right tracing across one line and then the other,
so that points near the origin correspond to the center of the two blocks in the right
of Figure 17. There may naturally be ambiguity near the origin in subspace clustering,
but what is concerning are the deep blue lines at the edges of the block; the presence
of these means that the SIM will classify points on opposite ends of the same line as
different, which is highly undesirable.

It should be noted that SIM(X ) might only be a clustering matrix for sufficiently
"nice" subspace configurations. One of the standard assumptions in the literature is
that the intersection of the subspaces is {0} and dim(S1+·· ·+Sk ) = dim(S1)+·· ·+dim(Sk ) ≤
min{n,m} (such subspaces are called independent). Another common assumption is
that data within each subspace is generic: a collection of points Y = {y1, . . . , yn} in a sub-
space S of dimension d are generic provided any d points in Y are linearly independent.
If Y is drawn uniformly at random from S, then the points are essentially guaranteed to
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be generic (with probability 1 for those of you who go on to take an advanced probability
course).

Let us now present the main theorem concerning clustering matrix solutions to Sub-
space Clustering.

Theorem 11.3. Suppose X is drawn from a union of subspaces U which are indepen-
dent, and the data within each subspace is generic. Suppose that X = BY where the
columns of B form a basis for the column space of X , and moreover the columns of B
lie in U . Let dmax = max{dim(Si )} and Q = |Y T Y |. Then Qdmax is a clustering matrix for
A.

The proof of this theorem is not given here, but we will briefly indicate the inner
workings of it as it connects us back with the graph theory we touched upon earlier.
First, we need the definition of the diameter of a graph.

Definition 11.4. The diameter of a graph G is the maximal distance between any two
vertices in G. That is,

diam(G) := max{dG (u, v) : u, v ∈V },

where

dG (u, v) := min

{
n∑

k=1
wik ,ik+1 : u = i1, v = in , (ik , ik+1) ∈ E

}
Theorem 11.5. With the notation and assumptions of Theorem 11.3, suppose that X =
BY and Q = |Y T Y |. Up to permutation of the columns of Q,

Q =

A1 · · · 0
...

. . .
...

0 · · · Am


where each Ai is the adjacency matrix of a connected graph of diameter at most dim(Si ).

Lemma 11.6. If G has diameter d and A is its adjacency matrix, then Ad is the adjacency
matrix of a fully connected graph.

Combining Theorem 11.5 and Lemma 11.6 yields the conclusion of Theorem 11.3
This concludes our brief discussion of Subspace Clustering, but the interested reader

is invited to consult [16] for a broader survey of the problem and its solutions.
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12. NUMERICAL LINEAR ALGEBRA

The goal of this lecture is to describe a few different ways that QR decompositions
may be computed numerically, with the ultimate aim of later sketching a numerical ap-
proximation to the SVD. Recall that some of the problems we want to solve numerically
are,

Ax = b, Ax =λx, and Av =σu.

Before we begin, here are several principles to keep in mind when dealing with nu-
merical algorithms:

(1) Matrix-vector multiplication is fast (especially if the matrix is sparse)
(2) Matrix-matrix multiplication is costly (we never want to actually evaluate AT A

or An)
(3) Computing determinants is costly.

Suppose that A ∈Rn×n , and x ∈Rn . Then here are the complexities (number of mul-
tiplications) required to evaluate the following quantities. Note that these are complex-
ities of the naïve methods only, and in many cases can be substantially improved. We
leave these considerations to a Numerical Analysis course.

Computed Quantity Cost (number of multiplications in naïve method)
Ax n2

A AT , AT A, A2 n3

det (A) O(n!)

12.1. QR Decomposition: Method 1 (Gram–Schmidt). The first way we approach QR
decomposition is using the Gram-Schmidt process to orthogonalize the columns of
our matrix A. The orthonormal columns will become the columns of Q, and as we go
through the Gram–Schmidt procedure we will simultaneously produce R. Let A ∈Rm×n ,
and without loss of generality assume m ≥ n. Write A as A = [

a1 . . . an
]

where ai

is the i th column of A. Note that a1,. . . ,an span Col(A) by definition, and the Gram–
Schmidt procedure on these vectors will produce a an orthonormal basis for Col(A).
For the first step we have q1 = a1

|a1| , then for i > 1, we have

xi = ai −
i−1∑
j=1

〈
xi , q j

〉
|q j |

q j ,

qi = xi

|xi |
.

At the end of the procedure, we define Q := [
q1 · · · qn

]
, and

R :=


〈

a1, q1
〉 〈

a2, q1
〉 · · · 〈

an , q1
〉

0
〈

a2, q2
〉 · · · 〈

an , q2
〉

...
. . .

. . .
...

0 · · · 0
〈

an , qn
〉

 .

Using the properties of matrix multiplication, inner products, and orthogonality gives
us A = QR, where indeed Q is orthogonal and R is upper triangular. This method is
straightforward to implement, but there are some drawbacks to it. In particular, it is
numerically unstable and liable to produce a qi that is nowhere near being orthogonal
to some q j . This gives motivation for finding other ways of computing the QR decom-
position, which we will analyze subsequently.
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12.2. QR Decomposition: Method 2 (Column-Pivoted QR). There is a simple modifi-
cation to the Gram–Schmidt procedure for producing QR decompositions, which is to
add a column-pivoting step. This is common in many algorithms, including those for
computing LU decompositions discussed briefly at the beginning of the course.

Algorithm 4: Column-Pivoted (Modified) QR

Input : A ∈Rm×n

Output: Orthogonal matrix Q ∈Rm×m and upper triangular matrix R ∈Rm×n

such that A =QR
A(0) = A, Q(0) = R(0) = []
for i = 1 : n do

index = argmax`

∣∣∣A(i−1)
:`

∣∣∣
qi = A(i−1)

:index∣∣∣A(i−1)
:index

∣∣∣
Q(i ) = [

Q(i−1) qi
]

ri = qT
i A(i−1)

R(i ) =
[

R(i−1)

ri

]
A(i ) = A(i−1) −qi ri

end
return Q(n), R(n)

The Modified QR Algorithm above is typically somewhat more stable than the stan-
dard Gram–Schmidt implementation, but still can suffer from errors.

12.3. QR Decomposition: Method 3 (Householder Reflections). One of the more com-
mon actual implementations of QR in practice is the algorithm we describe here in
terms of so-called Householder Reflections.

Definition 12.1. Let v ∈Rn be a unit vector. Then H := I −2v vT is called a Householder
reflection with respect to v. (Some references call H a Householder reflector.)

Let us first note that if v and H are as in Definition 12.1, and if 〈w, v〉 = 0, then H w =
w. Indeed,

H w = w −2v vT w = w −2v 〈w, v〉 = w −0.

Now any x ∈ Rn can be written as x = 〈x, v〉v +w for some w which is orthogonal to
v . Hence, for any x, we have

H x = (I −2v vT )x

= (I −2v vT )(〈x, v〉v +w)

= 〈x, v〉v +w −2v vT w −2〈x, v〉v vT v

=−〈x, v〉v +w.

This gives us an indication of the geometric meaning of H x given x. Indeed, H x is
the reflection of x across the line orthogonal to v .
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To find a QR decomposition via Householder reflections, first choose H1 such that

H1a1 =


|a1|

0
...
0

= |a1|e1,

where e1 is the unit vector
[
1 0 · · · 0

]T
. Note that we can do this by setting

v1 = a1 + sgn(a11)|a1|e1, H1 = I −2
v1vT

1

|v1|2
,

where sgn is the signum function defined via

sgn(x) :=
{

1, x ≥ 0

0, x < 0.

We then set Q1 = H1, and notice that

Q1 A =


a11 ∗ ·· · ∗

0
...
0

A1

 .

Now we choose H2 such that
H2(A1):1 = |(A1):1|e1,

and set

Q2 =
[

1 0
0 H2

]
,

which yields

Q2Q1 A =


a11 ∗ ∗ ·· · ∗

0 a22 ∗ ·· · ∗
0
...
0

0
...
0

A2

 .

We proceed until we find Q1, . . . ,Qn such that Qn . . .Q1 A = R, and note that Q := (Qn . . .Q1)T

is orthogonal by construction.
This construction of QR decompositions via Householder reflections is typically more

numerically stable than either of the Gram–Schmidt variants discussed before. There is
another oft-utilized algorithm using Givens Rotations, but we will not discuss this vari-
ant here.
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13. THE GERŠGORIN CIRCLE THEOREM AND THE POWER METHOD

The goal for this lecture is to learn how to find leading eigenvalues and eigenvectors
using the Geršgorin Circle Theorem and the Power Method.

13.1. Geršgorin Circle Theorem. Our main theorem of this section is one that tells us
where in the complex plane the eigenvalues of a matrix may lie.

Theorem 13.1. (Geršgorin Circle Theorem) Let A ∈ Rn×n and Ri := {z ∈ C : |z − ai i | ≤∑n
j=1, j 6=i |ai j |}, i = 1, . . . ,n. Then the eigenvalues of A lie in

⋃n
i=1 Ri .

Let’s begin with an example of The Geršgorin Circle Theorem.

Example 13.2. Let A =

 4 1 1
0 2 1
−2 0 9

 .

Then the following sets describe discs where the eigenvalues of the matrix A lie:

R1 = {z ∈C : |z −4| ≤ 2}

R2 = {z ∈C : |z −2| ≤ 1}

R3 = {z ∈C : |z −9| ≤ 2}.

Note that if the discs are disjoint, then there is one eigenvalue in each disc.

13.2. Power Method. Suppose that A ∈ Rn×n has eigenvalues |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥
|λn | with linearly independent eigenvectors v1, . . . , vn . Note that the quantity |λ1|− |λ2|
is called the spectral gap. This is an extra assumption, as not all matrices have this.

The goal of the power method is to estimate the leading, largest eigenvalue λ1 and its
associated eigenvector v1. Before writing the formal algorithm, let us make some notes.
To begin, take an initial guess for the eigenvector of λ1 to be x(0) =α1v1 +·· ·+αn vn for
someαi 6= 0. In particular, for simplicity we can letαi = 1 for all i. Then x(0) = v1+·· ·+vn .

We will then compute

x(1) = Ax(0), x(2) = Ax(1) = A2x(0), . . . x(k) = Ax(k−1) = Ak x(0).

Since Avi =λi vi for all i , we have A2vi = A(Avi ) = A(λi vi ) =λi Avi =λ2
i vi . Similarly,

Ak vi =λk
i vi .

Now, for x(0) = v1 +·· ·+ vn , we have

x(k) = Ak x(0)

= Ak (v1 +·· ·+ vn)

=λk
1 v1 +·· ·+λk

n vn

=λk
1

(
v1 +

(
λ2

λ1

)k

v2 +·· ·+
(
λn

λ1

)k

vn

)
.

Note that, by assumption, λi
λ1

< 1 for i = 2, . . . ,n. Thus (| λi
λ1
|)k → 0 as k →∞. For simplic-

ity in what follows, we write x(k) =λk
1 (v1 +ε(k)).
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13.2.1. Aside: Linear Functionals. A linear functional on Rn is a map φ : Rn → R such
that for all α,β ∈ R and for all x, y ∈ Rn , φ(αx +βy) = αφ(x)+βφ(y). The following is a
simple example of a linear functional. Let φ(x) = x1. Then

φ

α
x1

...
xn

+β

y1
...

yn


=φ


αx1 +βy1

...
αxn +βy1


=αx1 +βy1 =αφ(x1)+βφ(y1).

A basic, but important fact about linear functionals for our purposes is that if ε(k) → 0
as k → ∞, then φ(ε(k)) → 0 as k → ∞ as well (i.e. linear functionals preserve conver-
gence).

Going back to the power method, let’s take another look at x(k). If φ is any linear
functional, then

φ(x(k)) =φ
(
λk

1 v1 +λk
1ε

(k)
)
=λk

1

(
φ(v1)+φ(ε(k))

)
.

We cannot directly take the limit as k →∞ in the above expression because it could be
that λk

1 →∞ (if |λ1| > 1) whileφ(ε(k)) → 0, and we would need to know something about
the rates of convergence to say anything about the limit of their product. To get around
this, we consider the quotient

rk = φ(x(k+1))

φ(x(k))
= λk+1

1

(
φ(v1)+φ(ε(k+1))

)
λk

1

(
φ(v1)+φ(ε(k))

) =λ1
(φ(v1)+φ(ε(k+1))

(φ(v1)+φ(ε(k))
.

There is no problem taking a limit now, and we can see that

lim
k→∞

rk =λ1.

Our goal was to find λ1, and the above analysis gives us an outline for how to do it.
Finally, it should be noted that the convergence rate of rk is |λ2

λ1
|k , meaning that rk ≤

λ1 +C |λ2
λ1
|k for sufficiently large k for some absolute constant C (this statement is often

written rk =λ1 +O(|λ1
λ2
|k )).

13.2.2. Algorithm. To better understand the power method, we consider the algorithm
in some detail. In the implementation, a linear functional φ is chosen for the algorithm
and used for all inputs.

The algorithm takes as inputs a matrix A ∈ Rn×m , an initial guess x(0) ∈ Rn , a maxi-
mum number of allowed iterations, Nmax, and an error tolerance, TOL. As before, a sim-
ple initialization is to choose x(0) to be the all-ones vector, 1. With this set of inputs, the
algorithm will continue executing until the change enacted in one iteration (measured
by the ratio of the linear functional applied to the old and new guess for x) is smaller
than the tolerance, or the maximum number of iterations is reached – whichever occurs
first.

The Power Method algorithm is described in pseudocode in Algorithm 5.
In the code above, for an iteration k, x = x(k) and y = x(k+1). Likewise, rold = rk and

rnew = rk+1. To make the algorithm a bit clearer, let us go through a simple example.
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Algorithm 5: The Power Method

Input : Matrix A ∈Rn×m with |λ1| > |λ2|, initial guess x(0) ∈Rn , max number of
iterations Nmax, error tolerance TOL

Output: Estimates of the first eigenvalue/eigenvector pair (λ1, v1)
k = 1

x = x(0)

‖x(0)‖∞
rold = 0
while k ≤ Nmax do

y = Ax

rnew = φ(y)

φ(x)

x = y

‖y‖∞
if |rnew − rold| < TOL then

return (rnew, x)
else

k = k +1
rold = rnew

end
end
return rnew, x

13.2.3. Power Method Example. Let A =
−4 14 0
−5 13 0
−1 0 2

, and choose φ(x) = x1 and x(0) =

1. In this case, the actual eigenvalues of A are λ1 = 6,λ2 = 3, and λ3 = 1, with the leading

eigenvector v1 =
 1

5
7−1
4

≈
 1

0.714
−0.25

.

We’ll walk through the first 3 iterations, using numbered subscripts/superscripts to
represent the current iteration. Decimal values are used for simpler visual comparison
to the approximate decimal values in v1.

Iteration 1: y1 = Ax(0) =
10

8
1

, r1 = 10
1 = 10, x(1) =

 1
0.8
0.1


Iteration 2: y2 = Ax(1) =

 7.2
5.4
−0.8

 r2 = 7.2
1 = 7.2 x(2) =

 1
0.75

−0.111


Iteration 3: y3 = Ax(2) =

 6.5
4.75
−0.25

 r3 = 6.5
1 = 6.5 x(3) =

 1
0.77

−0.188

 .

Even these three iterations are enough to see that the value of r is approaching λ1

and the vector x is approaching v1.
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The power method is widely used for several reasons: it is simple to implement;
there is no matrix-matrix multiplication (only one matrix-vector multiplication, a vec-
tor norm, and one vector-scalar multiplication per iteration); it is computationally non-
intensive. It is also spatially non-intensive, requiring only the storage of A, vectors x and
y , and the ratio r .

13.2.4. Other Eigenvalues. As written, the power method is a useful and computation-
ally efficient way to compute the first eigenvalue of A. However, what if we want to com-
pute other eigenvalues? To address this problem, we will first make some preliminary
observations:

(1) If A is invertible and has eigenvalues λ1 . . .λn , then A−1 has eigenvalues 1
λ1

. . . 1
λn

with the same eigenvectors.
(2) Suppose q ∈ C is not an eigenvalue of A. Then det(A − q I ) 6= 0, and A − q I has

eigenvalues λi −q for i = 1, . . . ,n.
(3) The eigenvalues of B = (A−q I )−1 are 1

λ1−q , . . . , 1
λn−q . Note that the largest eigen-

value of B is the eigenvalue of A which is closest to q .

No we may use these observations to conclude that if we can judiciously choose val-
ues of q , we may estimate other eigenvalues of A by running the power method on
B = (A − q I )−1, the result of which will be the λi closest to q. This observation is the
key to the Inverse Power Method.

13.2.5. Inverse Power Method. The Inverse Power Method is named because it is the
power method applied to the inverse of a matrix related to the initial A. Specifically, the
inverse power method runs Algorithm 5 on (A−q I )−1 for a given value of q to find 1

λi−q ,
then calculates and returns λi

At a first glance, there are two issues with this approach. One issue is that the inverse
power method requires that |λi | > |λi+1|. Another pressing issue is that we must be able
to estimate q . However, this problem is easily solved. Recall that the Geršgorin Cir-
cle Theorem allows a simple method for determining the range of values an eigenvalue
can take. We can choose any point in one of the discs (in particular, its center) as q to
estimate an eigenvalue which lies in that disc.

Another issue is one of computational cost. To run the power method on (A−q I )−1,
we must solve y (k) = (A − q I )−1x(k−1) for y (k). This ostensibly requires inverting A −
q I , which could be quite expensive for a large matrix A. Instead, we can use Gaussian
elimination to solve (A−q I )−1 y (k) = x(k−1) instead, reducing the computational cost.

With these two issues resolved, the inverse power method becomes a powerful ex-
tension of the power method to compute any or all eigenvalues of a large matrix.
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14. NUMERICALLY COMPUTING THE SVD

We end our brief tour of numerical Linear Algebra by sketching one method of ap-
proximating the SVD of a matrix. This section will contain a brief sketch of an SVD solver
due to Golub and Kahane. Our exposition was heavily influenced by [7].
Step 1: Bidiagonalize AT A implicitly via Algorithm 6.

Algorithm 6: Bidiagonalization algorithm

Input : Matrix A ∈Rm×n

Output: Orthogonal matrices U ∈Rm×m , V ∈Rn×n , and B ∈Rm×n which is upper
bidiagonal (i.e., B only has nonzero entries on its diagonal and the
diagonal starting with b12) such that A =U BV T .

Initialize B = A, U = Im×m , V = In×n

for i=1 to n do

Find a Householder reflector Hk such that Hk



0
...
0

bk−1,k
...

bmk


=



0
...
0

bk−1,k

±
√∑m

i=k b2
i k

...
0


B = Hk B
U =U Hk

if k ≤ n −2 then
find householder reflector Pk+1 such that[

0 · · · 0 bkk · · · bkn
]

Pk+1 =
[

0 · · · 0 bkk ±
√∑n

j=k+1 b2
k j 0 · · · 0

]
B = BPk+1

V = Pk+1V
end

end
return U ,B ,V

Step 2: Get rid of small off-diagonal entries of B (i.e. those which are numerically equal
to the near by diagonal entry of whose diagonal entry is already 0)
Step 3: Solve several 2×2 SVDs explicitly.

Then repeat steps 2 and 3 until B is diagonal and U BV T = A.
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15. LEAST SQUARES AND PSEUDOINVERSES

The goal of this lecture is to examine the Least Squares problem, and its solution
in terms of various factorizations we have discussed, such as the QR decomposition
and the SVD. We will derive a closed-form expression for the least squares solution to a
general overdetermined system of equations, which will lead us to a formal definition
of the Moore–Penrose pseudoinvers of a matrix.

Recall that if A ∈ Rm×n with m ≥ n, then Ax = b either has 0 or 1 solution. Least
Squares attempts to answer the question: if there are no solutions, what is a good ap-
proximate solution to Ax = b?

That is, we want to solve the following optimization problem: given A ∈ Rm×n and
b ∈Rm , find

(18) x̂ = argmin
x∈Rn

|Ax −b|2 .

We can take the argument in (17) as a function f :Rn →R, and note that

f (x) := |Ax −b|2 =
m∑

i=1

(
n∑

j=1
ai j x j −bi

)2

.

From Calculus, we know that a necessary condition for x̂ to be a minimizer of f is that
∂ f
∂xk

= 0 for k = 1,2, . . . ,n. This observation leads to the Normal Equations:

AT Ax̂ = AT b.

Indeed, the normal equations may be derived as follows.
First, for a given k, we compute the partial derivative of f with respect to xk . We will

suppress the beginning and ends of indices in summations for ease of reading, but all
sums over i are from 1 to m and all sums over j are from 1 to n. Back to your multivariate
calculus days, note that for a given k, we have

∂

∂xk

∑
i

(∑
j

ai j x j −bi

)2

=∑
i

∂

∂xk

(∑
j

ai j x j −bi

)2

= 2
∑

i

(∑
j

ai j x j −bi

)
ai k

= 2
∑

i

∑
j

ai j ai k x j −2
∑

i
ai k bi .

Setting this equal to 0, we may ignore the factor of 2.
Now, since we must have ∂

∂xk
|Ax −b|2 = 0 for all k, we find

∑
i

ai k

(∑
j

ai j x j −bi

)
=∑

i
ai k ((Ax)i −bi ) = (AT Ax)k − (AT b)k = 0.

Hence

AT Ax = AT b

as required.
We will now proceed to make a series of observations about the solutions to the Least

Squares problem. Our goal here is to understand the normal equations in terms of the
various matrix factorizations we have discussed thus far.
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15.1. Observation 1: If A has linearly independent columns, then AT A has full rank,
and thus is invertible. Consequently, AT Ax̂ = AT b implies that

(19) x̂ = (AT A)−1 AT b.

15.2. Observation 2: If A has linearly independent columns, and A = QR, then Q has
orthonormal columns by construction, and R is invertible. We did not discuss this fea-
ture of R previously, but the proof is that QT A = QT QR = R, so rank(R) ≤ rank(A) = n,
whereas on the other hand, n = rank(A) = rank(QR) ≤ rank(R), and thus rank(R) = n.

Let’s have another look at the normal equations in this case. Now the normal equa-
tions are

RT QT QRx̂ = RT QT b.

This yields RT Rx̂ = RT QT b by the fact that Q has orthonormal columns. Using the
observation that R is invertible, we have x̂ = R−1(RT )−1RT QT b, whence

(20) x̂ = R−1QT b.

15.3. Observation 3: If A has linearly independent columns and A = UΣV T , then Σ =[
Σn

0

]
, and the normal equations become

V ΣT U T UΣV T x̂ =V ΣT U T b.

Now we use orthogonality of U and the fact that ΣTΣ = Σ2
n to see that this becomes

V Σ2
nV T x̂ = V ΣT U T b, which becomes Σ2

nV T x̂ = ΣT U T b by multiplying on the left by
V T .

Next, since Σn = diag(σ1, . . . ,σn), none of whose diagonal entries are 0, we have that
Σn is invertible. Multiplying both sides by Σ−2

n := (Σ−1
n )2 yields

V T x̂ =Σ−2
n ΣT U T b =Σ−2

n

[
Σn 0

]
U T b = [

Σ−1
n 0

]
U T b.

Finally, multiplying both sides by V gives us

(21) x̂ =V
[
Σ−1

n 0
]

U T b.

15.4. The General Case. Finally, since the previous observations made critical use of
the assumption that A had full column rank, we now turn to the general case in which
we make no assumption on rank(A). Still, suppose that A =UΣV T , rank(A) = k, and let
us consider the form of the minimization problem (18) directly. The objective function
becomes

min
x

|Ax −b|2 = min
x

|UΣV T x −b|2

= min
x

|ΣV T x −U T b|2,

where the equality is due to the fact that |U T y | = |y | for any y on account of orthogonal-
ity of U .

Now since V T is a bijection from Rn → Rn , any w ∈ Rn can be realized as V T x for
some x. So we recast this problem as

min
x

|ΣV T x −U T b|2 = min
w

|Σw −U T b|2

= min
w

(Σw −U T b)T (Σw −U T b)

= min
w

(wTΣT −bT U )(Σw −U T b)

59



= min
w

wTΣTΣw −bT UΣw −wTΣT U T b +bT UU T b

= min
w

|Σw |2 −2
〈
Σw,U T b

〉+|U T b|2

= min
w

k∑
i=1

(σi wi )2 −2
k∑

i=1
σi wi (U T b)i +

n∑
i=1

(U T b)2
i

= min
w

n∑
i=1

(
σi wi − (U T b)i

)2
.

Since each term in the summation is nonnegative, the minimum value is easily seen
to be achieved by setting

wi = (U T b)i

σi
, i = 1, . . . ,k.

Now we are free to set wk+1, . . . , wn to whatever we like. To obtain the smallest norm w
which is a minimizer of the objective function above, we can simply take wk+1 = ·· · =
wn = 0. Now we have

w =
[
Σ−1

k 0
0 0

]
U T b =V T x̂,

whereby we simply defineΣ† to be the n×m matrix with entries 1
σ1

, . . . , 1
σk

along its main
diagonal, and we have

(22) x̂ =V Σ†U T b.

Now we may formally define the solution to this, which carries the name Moore–
Penrose pseudoinverse to honor the two authors who first discovered it.

Definition 15.1. If A = UΣV T , then its Moore–Penrose Pseudoinverse is A† := V Σ†U T ,
where Σ† ∈Rn×m has diagonal entries 1

σ1
, . . . , 1

σr ank(A)
.

With this definition, the Least Squares solution to AT Ax̂ = AT b is x̂ = A†b.
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16. THE MOORE–PENROSE PSEUDOINVERSE

For this lecture, we will further discuss the pseudoinverse we discovered by solving
the Least Squares problem last time. In particular, we are most interested in how it acts
on the four fundamental subspaces introduced early on in the course, and in proving
various properties of the pseudoinverse.

Theorem 16.1. Let A ∈ Rm×n . Then its Moore–Penrose pseudoinverse is the unique ma-
trix A† ∈Rn×m which satisfies

(1) A A† A = A
(2) A† A A† = A†

(3) (A A†)T = A A†

(4) (A† A)T = A† A.

16.1. Proof of Theorem 16.1. Before giving the proof of the theorem, we need to collect
some useful observations about some of the matrices involved. This also gives us good
practice with computations involving pseudoinverses.

Lemma 16.2. Let A ∈ Rm×n , and suppose that rank(A) = k and that A = UkΣkV T
k is its

truncated SVD. Then

(1) A A† =UkU T
k

(2) A† A =VkV T
k .

Proof. (1): For now, the easiest way to see this is by using block matrix multiplication.

A A† =UΣV T V Σ†U T

= [
Uk Um−k

][
Σk 0
0 0

]
V T V

[
Σ−1

k 0
0 0

][
U T

k
U T

m−k

]
= [

Uk Um−k
][
Σk 0
0 0

][
Σ−1

k 0
0 0

][
U T

k
U T

m−k

]
= [

Uk Um−k
][

Ik×k 0
0 0

][
U T

k
U T

m−k

]
= [

Uk 0
][

U T
k

U T
m−k

]
=UkU T

k .

The third line used the fact that V T V = I , and we note that Σk = diag(σ1, . . . ,σk ) is in-
vertible since rank(A) = k, so Σ† has the form we have written above. The rest is seen by
carrying out the block matrix multiplication.

(2): This follows exactly the same line of reasoning as part (1), just interchange the
roles of U and V . �

Now, using Lemma 16.2, we first show that the Moore–Penrose pseudoinverse indeed
satisfies the four conditions of Theorem 16.1. To see the first condition, note that

A A† A =UkU T
k UkΣkV T

k =UkΣkV T
k = A,

where the second equality stems from the fact that Uk has orthonormal columns which
implies U T

k Uk = I .
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Condition (2) follows similarly:

A† A A† =VkV T
k VkΣ

†
kU T

k =VkΣ
†
kU T

k = A†,

where we used the fact that Vk has orthonormal columns this time.
Conditions (3) and (4) follow directly from Lemma 16.2 because evidently UkU T

k and

VkV T
k are symmetric.

The only remaining issue is the proof of uniqueness. To wit, suppose that A†
1 and A†

2
both satisfy conditions (1)–(4) for some fixed, but arbitrary, A. First, note that

A A†
1 = (A A†

2 A)A†
1 = (A A†

2)T (A A†
1)T = (A†

2)T AT (A A†
1)T = (A†

2)T (A A†
1 A)T = (A†

2)T AT = A A†
2.

The first equality used condition (1), the second used (3), and the last equality again
used (3).

By a similar argument, we obtain A†
1 A = A†

2 A. We put these together to obtain

A†
1 = A†

1 A A†
1 = A†

1 A A†
2 = A†

2 A A†
2 = A†

2.

We have concluded that A†
1 = A†

2, and hence is the unique matrix satisfying the required
conditions, and the proof is complete. �

16.2. Properties of the Moore–Penrose Pseudoinverse.

Proposition 16.3. If A ∈Rn×n is invertible, then A† = A−1.

Proof. Note that A−1 satisfies all of the conditions of Theorem 16.1, hence by unique-
ness, A† = A−1. �

Proposition 16.4. For any A ∈Rm×n , (AT )† = (A†)T .

Proof. This may be proven by direct verification of the four necessary properties of the
Moore–Penrose pseudoinverse. �

Recall that for invertible matrices, we have (AB)−1 = B−1 A−1, which one can verify
by direct computation easily. However, in general, (AB)† 6= B † A†. Equality here occurs
only in special scenarios. To show this, we will appeal to a simple example.

Example 16.5. There exist A,B ∈Rn×n such that (AB)† 6= B † A†. Indeed, let

A =
[

1 1
0 0

]
, B =

[
1 2
3 2

]
.

Then

A† =
[ 1

2 0
1
2 0

]
, B † =

[− 1
2

1
2

3
4 − 1

4

]
,

and

B † A† =
[

0 0
1
4 0

]
,

whereas

(AB)† =
[

4 4
0 0

]†

=
[ 1

8 0
1
8 0

]
.

We see by inspection that the results are not the same.

We end with a caution: pseudoinverses are not stable under small perturbations; i.e.,
‖(A+E)† − A†‖2 can be arbitrarily large even for arbitrarily small E .
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Example 16.6. Let

A =
[

1 0
0 0

]
, E =

[
0 0
0 ε

]
,

for some small ε > 0. Recalling how to find pseudoinverses of diagonal matrices, we
have

A† =
[

1 0
0 0

]
, (A+E)† =

[
1 0
0 1

ε

]
.

Thus,

‖(A+E)† − A†‖2 =
∥∥∥∥[

0 0
0 1

ε

]∥∥∥∥
2
= 1

ε
.

Now for very small ε, 1
ε is extremely large, which proves our claim of instability. Note

that the same instability occurs for inverses of matrices as well.
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17. CUR DECOMPOSITIONS AND COLUMN SUBSET SELECTION

We mentioned during our prolonged discussion of matrix factorizations that not all
bases of the column space of a matrix are created equally, and in some circumstances
one factorization is preferred over another. In this section, we highlight factorizations
of the form A =C X where C is a column submatrix of A; that is, we represent A in terms
of actual columns of A. For a full, concise exposition of this task, I invite the reader to
consult [10]; much of the material here is taken from there, but given that I wrote it, I
trust the reader will forgive me.

17.1. Column Subset Selection.
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18. JOHNSON–LINDENSTRAUSS EMBEDDINGS
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19. INTRODUCTION TO SUPERVISED LEARNING

Now we will turn to a major new topic which will take us through much of (if not all
of) the rest of the semester.

19.1. The Problem Setup. The input in any supervised learning problem is a set of la-
beled data. To set some terminology, let Ω be our data space, and let Λ be our label
space.

For example, in simple binary classification tasks, we could have Ω = Rn and Λ =
{1,2}. More concretely, suppose Ω = Rn for large n, and the data we have collected are
black and white images of dogs or cats with n pixels; then our label set could be Λ =
{dog, cat} (which we could of course arbitrarily map to {1,2} for convenience of carrying
out everything with numbers).

We assume we are given a set XL = {(xL
i , yi )}N

i=1 ⊂Ω×Λ of labelled data. Additionally,

we have another set XU = {xU
i }m

i=1 ⊂Ω of unlabelled data.
Our goal is to find a good labelling for the unlabelled points XU . The issue is: what do

we mean by, and how do we measure how "good" a labelling is? To treat this issue really
well would take an entire course, and require a hefty dose of probability, which was
not formally a prerequisite for this course. Thus we will gloss over a lot of the details,
but will nonetheless give some intuition as we go along. For those of you interested in
further reading (though at a much higher level) we suggest the two sources that heavily
influenced our exposition here: [11, 14]

Let us call our labelling function

f :Ω→Λ.

We will discuss how to find such a labelling function later, but at present, suppose we
have one in hand. Then we will quantify how good or bad our labelling function via a
loss function

L :Ω×Λ×Λ→ [0,∞).

19.2. A detour into Probability. Okay, we put off our discussion of probability as long
as we could, but now we need to go there. For those of you without the background of
probability, simply read this section for whatever you can get out of it, and don’t worry
about the rest. We will not strictly use any of the material here for what comes later, but
it nonetheless is the reasoning for our future deliberations and so we include it here.

For simplicity, let us suppose that our labelled data points XL are drawn indepen-
dently from an (unknown) probability distribution P (x, y) on the product space Ω×Λ.
In particular, a point (xL

i , yi ) is generated by first drawing xL
i from PΩ (the marginal

probability on Ω) and yi is drawn from the conditional probability distribution on Λ,
P (·|xi ).

Given a loss function L, a labelling function f , and full knowledge to the probability
distribution P , we could assess the risk of choosing the labelling function f as

RL,P ( f ) :=
∫
Ω×Λ

L(x, y, f (x))dP (x, y) =
∫
Ω

∫
Λ

L(x, y, f (x))dP (y |x)dPΩ(x).

Note that since the loss function is nonnegative, this integral is also nonnegative, and
so this risk is estimating how large the loss function is over the whole probability space.
Our path is clear at this point: we would like to find the labelling function f ∗ : Ω→ Λ

which is a solution to the minimization problem:

R∗
L,P := inf

f :Ω→Λ
RL,P ( f ).
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Of course the problem with this is that we do not have full knowledge of P . What we
do have are discrete, independent samples of points in Ω×Λ. So from these, we can
compute the empirical risk of our labelling function via

RL,XL ( f ) := 1

N

N∑
i=1

L(xi , yi , f (xi )).

This is nothing but the average loss over the training data for a given labelling function.
One option at this point is to try to find

R∗
L,X = inf

f :Ω→Λ
RL,XL ( f )

and hope that the error
R∗

L,P −R∗
L,XL

is small.
One final bit of complication; the infimum above is taken over all possible labelling

functions f , which is an enormous class of functions, even for discrete Ω and Λ. Thus,
we often consider labelling functions which are part of some fixed class of functions, F .
In this case, we denote the minimizer to the empirical risk over this class of functions
via

R∗
L,XL ,F := inf

f ∈F
RL,XL ( f ).

19.3. Loss Function Examples. Now let us be concrete and give some examples of loss
functions and labelling functions.

19.3.1. 0–1 Loss. In a classification task in whichΛ= {−1,1} – i.e., we wish to distinguish
between two different classifications for input vectors, we can define a simple 0–1 loss
function via

L0−1(x, y, f (x)) :=
{

0, f (x) = y

1, f (x) 6= y.

In other words, there is no loss if the label is correct, but a constant loss of 1 if the label
is wrong.

The benefit of this loss function is that it is easy to implement and understand, but
the downside is that it makes optimization extremely difficult as it is a nonconvex func-
tion. We will not delve into this, but the basic idea that you should keep in mind for
now is that convex functions can be readily optimized over, whereas nonconvex func-
tions cannot (convex here is synonymous with "concave up" used in many Calculus
textbooks).

19.3.2. Hinge Loss. Many times it is useful to take a nonconvex function and attempt
to make it convex in some way. This changes the behavior of any optimization problem
significantly, but nonetheless is often a good workaround. (Note that we have seen this
idea before in our discussion of the fact that Spectral Clustering is a convex relaxation
of certain graph cut problems.) With that in mind, one way to convexify the 0–1 loss
function is as follows; the hinge loss is defined to be

Lhinge(x, y, f (x)) := max{0,1− y f (x)}.

Note that here, if f (x) = y , then the loss is 0, but if (y, f (x)) = (−1,1) or (1,−1), then
the hinge loss is 2 in both cases. It should be noted that often, we actually allow f :
Ω→R rather than f :Ω→Λ to allow us to more easily solve the optimization problems
necessary to compute (or estimate) the labelling function which minimizes empirical
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risk. In this case, we would allow f (x) to take values on R, and the loss function would
be between 0 and 2 in some cases (e.g., if y = 1 and f (x) = 0.5).

19.4. Labelling Function Examples. Throughout the rest of our tour through super-
vised learning, we will focus a lot on how to choose – or in Machine Learning parlance
learn – the labelling function f from the training data XL . Eventually we will cover k–
nearest neighbor classifiers, Support Vector Machines, and Neural Networks (among
possibly others). We will go into each of these in detail, but for now, we just give some
simple examples.

19.4.1. A useless, but valid labelling function. Given our training data XL = {(xi , yi }N
i=1,

nothing stops us from simply assigning the following labelling function:

f (x) =
{

yi , x = xi ∈XL

1, x ∉XL .

That is, we label all the training data correctly, and simply guess at any new point that is
not in the training data. In this case, we will have 100% accuracy on our training set, but
our labelling will not generalize at all to new data. We could easily allow f to be random
by choosing f (x) from the uniform distribution on Λ for x ∉ XL . This means that for
unlabelled points, we simply randomly guess at the label, and is obviously problematic.
This labelling function, among other flaws, does not utilize any knowledge we could
gain from the training data.

19.4.2. 1–Nearest Neighbor Classifier. In an attempt to be more sophisticated, let’s sup-
pose that for any new point x ∈Ω, we compute its nearest neighbor in the labelled data
XL . Namely, we define the nearest neighbor function N :Ω→XL via

N (x) := argmin
xi∈XL

|x −xi |.

Note that if x ∈ XL , then N (x) = x. Now we define our nearest neighbor labelling func-
tion as

f (x) := y(N (x)).

In summary, to label a new point x, we find its nearest neighbor, query its label, and
assign that label to x.

19.4.3. k–Nearest Neighbor Classifier. For a given integer k ∈ N, we can define the k–
Nearest Neighbor (k–NN) classifier to output labels by querying the labels of the k near-
est points in the training data XL to the point in question, allowing them to vote, and
assigning x the label which obtained the most votes. For k > 1, we must specify a way of
breaking ties. In particular, suppose we take k = 2, and for some point x, its two near-
est neighbors have labels −1 and 1; how should we label x? The simplest manner is to
flip a coin (or for k > 2 if there is more than a two-way tie, choose one of the tied labels
uniformly at random). We could be more sophisticated, but for now let’s assume this
simple method of tie-breaking.
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20. SUPPORT VECTOR MACHINES

We will now discuss the basics of what are called Support Vector Machines, or SVMs
for short. There are many ways to derive them, but I will give a geometric intuition for
SVMs here. For a great introduction and reference text, I would recommend [14].

20.1. Linear SVMs. Our starting point will be the Geometric Hahn–Banach Theorem,
whose statement here will seem fairly intuitive, but is of paramount importance to many
applications both in pure and applied mathematics. To start, we need to define the
notion of a convex set.

Definition 20.1. A set S ⊂Rn is convex if the line segment connecting every pair of points
in S lies in S. That is, for every x, y ∈ S, the point t x + (1− t )y is in S for every t ∈ [0,1].

Now we can state our seemingly simple theorem.

Theorem 20.2. [Geometric Hahn–Banach Theorem] Let S1 and S2 be two nonempty
closed, bounded (i.e., compact) convex sets in Rn . If S1 ∩ S2 = ;, then S1 and S2 can
be separated by a hyperplane. That is, there exists a nonzero v ∈ Rn and constant c such
that

〈s1, v〉 > c > 〈s2, v〉 , for all s1 ∈ S1, s2 ∈ S2.

A hyperplane is simply an (n−1)–dimensional subspace ofRn which is possibly trans-
lated elsewhere in the space. A natural question in Theorem 20.2 is: how can one find
the hyperplane, or equivalently, the vector v? Suppose we could find x1 ∈ S1 and x2 ∈ S2

which minimized |x − y | over all possible x ∈ S1 and y ∈ S2. Then we could simply draw
the line segment connecting x1 and x2, and put the hyperplane passing through the
midpoint of this line segment; that is, take x = x1+x2

2 , and a hyperplane is defined by the
point x and the normal vector being the vector connecting x to x1.

Unfortunately, finding the points x1 and x2 is typically not possible, especially in a
real data application when we have no idea what S1 or S2 really are. Typically, we will
instead only have access to a discrete set of labelled points XL = {(xi , yi )}N

i=1 where here
we will let

yi =
{

1, xi ∈ S1

−1, xi ∈ S2.

The choice of ±1 labels is arbitrary, and evidently we could have chosen 1 and 2 instead,
but it will make the rest of the analysis a bit easier. The natural question now is: if we
assume S1 and S2 are as in Theorem 20.2, then given XL , how can we find the separating
hyperplane?

To figure this out, let’s first see how we would label a new point given a separating
hyperplane and corresponding vector v and constant c as in Theorem 20.2. We can
rearrange the inequality there to get

(23) 〈x, v〉− c

{
> 0, x ∈ S1

< 0, x ∈ S2.

Thus our decision, or labelling, function would simply be

f (x) := sgn(〈x, v〉− c) =
{

1, x ∈ S1

−1, x ∈ S2.

So, if we had v and c in hand, then our task would be done and we would have a perfect
decision function.
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At this point we should point out a theme that has been present but maybe unstated
in the course thus far; probability and optimization are two of the most important tools
at one’s disposal in Data Science (on top of Linear Algebra of course, but you know that
very well by now). In principal, we would want to find cXL and vXL which satisfied

vXL = argmax
v∈Rn ,|v |=1

dist(v,XL) subject to (23),

where dist(v,XL) = minxi∈XL |v − xi |. In other words, we want to find the unit vector
which has the largest distance from the labelled data but still provides a separating hy-
perplane.

Note that we may multiply both vXL and cXL by a constant and the inequality (23)
will be unchanged. Consequently, we could multiply by a constant α large enough that
it guarantees that α〈x, v〉−αc ≥ 1 or ≤ 1 depending on if x ∈ S1 or S2. Notice that for
the training data we may rewrite this as yi (α〈x, v〉 −αc) ≥ 1 because yi is 1 if xi ∈ S1

and −1 if xi ∈ S2. Doing this allows us to replace the optimization function above by the
following:

(24) min
v∈Rn ,c∈R

|v |2 subject to yi (〈xi , v〉− c) ≥ 1, i = 1, . . . , N .

If v∗, c∗ is the solution to (24), then we set vXL := v∗
|v∗| and cXL = c∗

|v∗| , which gives us
a unit normal vector describing the hyperplane.

This whole subsection has been about Linear SVMs; named so because the separa-
tion returned is a hyperplane, which is a linear subspace of Rn doing the separation of
the data. However, it is evident that not all data can be linearly separated (consider our
target data set discussed to motivate Spectral Clustering).

20.2. The Kernel Trick. We will shortly get to a discussion of Kernel SVMs, but to get
there we will first discuss the so-called Kernel Trick. This has been used to great effect
in Machine Learning overall. Figure 18 illustrates the basic idea.

FIGURE 18. Target data set (left) which is clearly non-separable. A
mapping of the data into R3 (right) which is now linearly separable
by an SVM.

The Kernel Trick is in essence the idea that if we have data X ⊂ Rn which is not lin-
early separable, we may be able to find a feature map φ :Rn →RD for some D À n such
that φ(X ) is linearly separable in RD . So in stark contrast to dimensionality reduction,
the Kernel Trick seeks to use dimensionality inflation in such a way as to allow for better
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separation of data. Typically, the maps φ are highly nonlinear. As a note, the map φ

yielding the result seen in Figure 18 is

φ(x, y) :=
 x

y
x2 + y2

 .

So φ maps the points onto a positive cone in R3.
Some fancy higher level mathematics tells us actually that often, we don’t actually

need to explicitly compute the feature map φ. The reason for this is that kernels k :
Ω×Ω→ R which lead to positive semi-definite matrices {k(xi , x j )}N

i , j=1 induce feature

maps φ :Ω→ RD which satisfy k(x, y) = 〈
φ(x),φ(y)

〉
. That is, the kernel, which can be

thought of as a notion of similarity between data (think back to the Gaussian similarity
graph discussed surrounding Spectral Clustering), gives us inner product information
of some associated feature map φ.

One has a choice to make here: one can either try to explicitly engineer a feature
map φ and use this, or one can instead use a kernel which implicitly corresponds to
some feature map. The benefit of using φ directly is that you have control over how
to make it, but the drawback is that computing

〈
φ(xi ),φ(x j )

〉
for the labelled data to

estimate similarity can be hugely costly or completely impractical in many instances.
The benefit of using a kernel k is that it typically involves low computational cost, but
the drawback is that one has no specific control over the feature map φ. In fact, k is
often chosen in an ad hoc sort of way rather than in a principled way. Let us stress that
if one picks a kernel to use, one never actually forms or directly uses the feature map φ.

20.3. Kernel SVMs. The main idea of Kernel SVMs is that rather than use the training
points XL , we use the dimension inflated version φ(XL) ⊂ RD implicitly through a ker-
nel k; again, we never actually form or use φ in this case. Given a kernel k, the kernel
SVM attempts to learn weights {wi }N

i=1 to make a labelling function f : Rn → {−1,1} of
the form

f (x) = sgn

(
N∑

i=1
wi k(x, xi )+ c

)
.

The constant c here represents potential bias of the data – again appealing to the Hahn–
Banach example, this could be a shift that captures the middle of the line segment con-
necting the centroids of the convex sets, for example. Note that the Linear SVM case
can be obtained by setting k(x, y) := 〈

x, y
〉

. The question of how to learn the weights
is resolved by solving a minimization problem based on the training data subject to a
prescribed loss function.

Examples of common kernels are the Gaussian kernel, k(x, y) = e−
|x−y |2
σ2 , polynomial

kernels, k(x, y) = 〈
x, y

〉D , and inverse multiquadric kernels, k(x, y) = 1p
1+|x−y |2 . Note

that Python’s implementation of SVMs has ’rbf’ as an option, which implements the
Gaussian kernel for a given parameter that the user specifies.

Kernel SVMs generally find nonlinear, or curved decision boundaries, as opposed to
Linear SVMs which always find hyperplanes. Thus, they are more generally applicable,
as many data classes may not be linearly separable.
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21. NEURAL NETWORK CLASSIFIERS

At last we get to a discussion of Neural Networks! For our discussion, we will solely
focus on NN Classifiers, which are nothing more than another method of deriving a
labelling/classification function f given training data XL . So for us, NNs will fit squarely
within the supervised learning framework we have been discussing lately.

21.1. What is a Neuron? A neuron in a NN provides the basic unit of computation.
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APPENDIX A. FORMAL DEFINITIONS FROM THE LINEAR ALGEBRA REVIEW

Definition A.1. A set V is a vector space over the real numbers if there are two operations
(vector addition and scalar multiplication)

+ : V ×V →V , × :R×V →V

(although we write x + y for x, y ∈V and αx for α ∈ R and x ∈V ) such that the following
properties are satisfied:

(1) (Additive Associativity) (x + y)+ z = x + (y + z) for all x, y, z ∈V
(2) (Additive Commutativity) x + y = y +x for all x, y ∈V
(3) (Additive Identity) There exists an element 0 ∈V such that x +0 = x for all x ∈V
(4) (Additive Inverse) For all x ∈V , there exists −x ∈V such that x + (−x) = 0
(5) (Compatibility of Scalar Multiplication) α(βx) = (αβ)x for all α,β ∈R and x ∈V
(6) (Multiplicative Identity) 1x = x for all x ∈V
(7) (Additive Distributivity) α(x + y) =αx +αy for all α ∈R and x ∈V
(8) (Multiplicative Distributivity) (α+β)x =αx +βx for all α,β ∈R and x ∈V .

Definition A.2. A vector space V over R is an inner product space provided it has an
inner product, which is a two-variable function

〈·, ·〉 : V ×V →R

which satisfies the following properties:

(1) (Positive Definite) 〈x, x〉 > 0 for all x ∈V \ {0}
(2) (Symmetry)

〈
x, y

〉= 〈
y, x

〉
(3) (Linearity in the first argument)

〈
αx +βy, z

〉 = α〈x, z〉+β〈
y, x

〉
for all α,β ∈ R

and x, y, z ∈V .

Note that inner products for vector spaces over the complex fieldC are slightly differ-

ent as symmetry is replaced by conjugate symmetry (
〈

y, x
〉 = 〈

x, y
〉

) and thus they are
not linear in the second argument, but are conjugate linear.
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