

Homework 6 additional problem

klin@math.arizona.edu

February 22, 2020

1) For this problem, it is useful to know that two events A and B are *conditionally independent* given a third event C if

$$P(A \cap B | C) = P(A | C) \cdot P(B | C). \quad (1)$$

(a) Show that if $X_0, X_1, \dots, X_n, \dots$ is a Markov chain, then for every $m, n \geq 0$ and $x_i \in S$,

$$\begin{aligned} & P\left(\underbrace{X_0 = x_0, X_1 = x_1, \dots, X_{n-1} = x_{n-1}}_{\text{past}}, \underbrace{X_{n+1} = x_{n+1}, \dots, X_{n+m} = x_{n+m}}_{\text{future}} \mid \underbrace{X_n = x_n}_{\text{now}}\right) \\ &= P\left(\underbrace{X_0 = x_0, X_1 = x_1, \dots, X_{n-1} = x_{n-1}}_{\text{past}} \mid \underbrace{X_n = x_n}_{\text{now}}\right) \cdot P\left(\underbrace{X_{n+1} = x_{n+1}, \dots, X_{n+m} = x_{n+m}}_{\text{future}} \mid \underbrace{X_n = x_n}_{\text{now}}\right) \end{aligned}$$

In words: for a Markov chain, the future and the past are conditionally independent given the present.¹

(b) Suppose a chain X_n is irreducible. Show that for all $n \geq 0$ and states x, y, z with $y \neq x$, the events $(T_x > n)$ and $(X_{n+1} = z)$ are conditionally independent given $X_n = y$.

2) Let P be a stochastic matrix with the given eigenvalues.² Say whether the Markov chain described by P is (i) irreducible has a unique stationary distribution, and (ii) converges to equilibrium. Briefly justify.

(a) $\left\{ \pm 1, \frac{1}{2} \pm \frac{i\sqrt{3}}{2}, -\frac{1}{2} \pm \frac{i\sqrt{3}}{2} \right\}$
 (b) $\left\{ 1, 1, \pm \frac{1}{2} \right\}$
 (c) $\left\{ \pm 1, \pm \frac{1}{3} \right\}$
 (d) $\left\{ 1, -\frac{1}{2}, -\frac{1}{2} \right\}$

3) Let P be an $N \times N$ doubly stochastic matrix, and suppose the corresponding Markov chain (X_n) is irreducible. Show that (X_n) satisfies the detailed balance condition if and only if P is a symmetric matrix.

¹The converse is actually also true, but I'm not asking you to show that here.

²A repeated eigenvalue has the indicated multiplicity, i.e., “1,1” means 1 is a double root of the characteristic equation $\det(P - \lambda I) = 0$.