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Abstract 

Autonomous  motivated  spatial  navigation  in  animals  or  robots  require  the  association  between

spatial location and value. Hippocampal place cells are involved in goal-directed spatial navigation and

the consolidation of spatial memories. Recently, Gauthier and Tank (2018) identified a subpopulation of

hippocampal cells selectively activated in relation to rewarded goals. However, the relationship between

these cells’ spiking activity and goal-representation remains elusive. We analyzed data from experiments

in  which  rats  underwent  five  consecutive  tasks in  which rewards locations  and spatial  context  were

manipulated. We found CA1 populations with properties continuously ranging from place cells to reward

cells. Specifically, we found typical place cells insensitive to reward locations, reward cells that only fired

at correct rewarded feeders in each task regardless of context, and “hybrid cells” that responded to spatial

locations and change of reward locations. Reward cells responded mostly to the reward delivery rather

than to its expectation. In addition, we found a small group of neurons that transitioned between place

and reward cells properties within the 5-task session. We conclude that some pyramidal cells (if not all)

integrate  both  spatial  and reward  inputs  to  various  degrees.  These  results  provide  insights  into  the

integrative coding properties of CA1 pyramidal cells, focusing on their abilities to carry both spatial and

reward information in a mixed and plastic manner. This conjunctive coding property prompts a re-thinking

of current computational models of spatial navigation in which hippocampal spatial and subcortical value

representations are independent.



Introduction

Be they animals or robots, autonomous agents in ever-changing environments must make dynamic

decisions as to where to go next, given a set of goals and an understanding of their surroundings. The

ability for animals to explore space in order to reach goals, for example, rewards such as food or water, is

essential for survival. Much work has been done in the restricted cases where such an agent has a single

task (i.e., retrieve an injured individual). It was proposed early on that animals and robots alike might build

a map of their environment in which specific locations are given specific values (Lieblich and Arbib 1982;

Guazzelli and Arbib 1997). The neurophysiological nature of the pairing between space and value has,

however, remained elusive.

It  has  long  been  known  that  the  hippocampus  and  anatomically  related  brain  areas  provide  a

physiological basis for both memory consolidation and spatial navigation in mammals like rats and mice

(Olafsdottir et al. 2018). O’Keefe and colleagues first established that some CA1 cells exhibited spatially

dependent firing rate maps (O'Keefe and Dostrovsky 1971; Smith and Mizumori 2006; Moser et al. 2015).

These  hippocampal  pyramidal  cells  with  spatially  sensitive  receptive  fields  (or  “place  fields”)  were

responsive to specific locations in a given environment. Outside the hippocampus, several other areas

have  been found to  be  involved  in  spatial  navigation.  Head direction  cells  in  the  presubiculum and

entorhinal cortex encode the orientation of the head of the animal in the horizontal plane (Mizumori and

Williams 1993; Taube 1995). Grid cells in the medial entorhinal cortex and subicular complex have some

similarities with place cells but exhibit multiple place fields aligned on a triangular grid which covers at

least part of the environment  (Hafting et al. 2005; Boccara et al. 2010). Boundary cells, found in the

hippocampal formation, i.e., the subiculum, pre-subiculum, and entorhinal cortex, encode the existence of

a boundary at a specific angle and distance  (Lever et al. 2009; Barry et al. 2006; Solstad et al. 2008;

Boccara et al. 2010). Finally, object vector cells have recently been found in the medial entorhinal cortex,

and respond to specific directions and distances around spatially confined objects, regardless of their

locations (Hoydal et al. 2019). Current theories hold that together, these cells form a value-neutral map of

the environment.

Place cells often change their preferred firing location, or “remap,” as a result of significant changes

in  the environment  (Wilson  and McNaughton 1993;  Lenck-Santini  et  al.  2005;  Zhang and Manahan-

Vaughan 2015). Significant changes of spatial context are always accompanied by global and apparently

random remapping for almost all recorded place cells  (Wilson and McNaughton 1993; Schlesiger et al.

2018),  and  their  firing  rate  can  be  modulated  by  small  spatial  context  changes  such  as  adding  or

subtracting a fraction of  spatial  cues  (Colgin et al.  2008), or changing task demands  (Sanders et al.

2019). The mechanisms by which hippocampal information can be preserved and re-instantiated from

one environment to the next, across multiple environments is still theoretically unknown. One possibility is

that that some cells in hippocampus encode or are strongly influenced by important spatial features, such

as the location of rewards, but insensitive to environmental changes. These ‘importance’ cells would act



as invariant ‘anchors’ that would index global representations. An alternative is that hippocampal cells are

influenced by spatial  information and reward information simultaneously. So far, several properties of

rewards have been shown to affect population activities (Dupret et al. 2010; Poucet and Hok 2017; Singer

and  Frank  2009).  For  instance,  as  a  result  of  learning,  place  fields  tend  to  accumulate  around the

locations of rewards (Dupret et al. 2010). Place cells with place fields away from reward locations could

also display excess firing around reward sites (Poucet and Hok 2017). 

Interestingly,  it  has  been  shown  that  some  cells  may  exhibit  two  or  more  spatial  properties

simultaneously. These so-called conjunctive cells indicate cross-talk and integration between the different

components  of  the  spatial  navigation  system.  For  example,  posterior  parietal  cortical  neurons  with

conjunctive  egocentric  and  allocentric  properties  have  been  found  (Wilber  et  al.  2014).  In  medial

entorhinal  cortex, position x head direction cells conjunctive cells have been proposed to control  the

network dynamics of a periodic attractor map (Bush et al. 2015; Navratilova et al. 2012), and the place

field patterns of grid cells can be affected by both the environment and the velocity of animals (Sargolini

et al. 2006). Other studies have shown that hippocampal cells respond to flashes of light (Liu et al. 2018)

or the conjunction of place and object location (Deshmukh and Knierim 2013).  These single-cell multi-

coding  properties  suggest  that  there  might  be  neurons  in  the  spatial  navigation  system capable  of

carrying spatial and reward information in a conjunctive manner. Motivated by this hypothesis, we studied

the coding properties of CA1 hippocampal cells at or near carefully manipulated reward sites and spatial

contexts. 

The most direct evidence of the relationship between single hippocampal cell activity and reward is

given by the recent work of Gauthier and Tank, identifying a dedicated neuron population that explicitly

encode reward locations in a virtual environment (Gauthier and Tank 2018). This study found that a small

fraction (~4.4%) of pyramidal cells (with place fields in all environments) fired only around reward sites.

For cells in this population (called “reward cells”), their place fields shifted with changes of reward location

but did not remap during context change of the environment; while place fields of most place cells stayed

at  the  same  location  during  reward  location  changes  and  exhibited  global  remapping  after  context

changes. Furthermore, the study found that one-third of the reward cells predicted the reward.  Gauthier

and Tank observed a sharp coding properties boundary between place cells and reward cells: all cells

active in the two different environments maintained their identity, with no place cells becoming reward

cells or vice versa. However, this study used calcium imaging and may give more weight to high-firing

cells.  Also,  the  use  of  a  unidirectional  infinite  virtual  reality  one-dimensional  corridor  may  have

constrained reward coding properties to a restricted range of the overall possible coding space. Overall, it

is  possible  that  in  a more realistic  open-field  type environment  in  which animals  are free to  choose

movement direction, reward coding properties become richer and lower firing cells can show additional

properties within the place-reward spectrum.



Following Gauthier and Tank, we used a set of tasks in which remapping was produced by large

changes in spatial context, and in which animals were required to learn to obtain rewards from different

sets of  feeders in  different  behavioral  epochs.  By controlling the location of  reward delivery and the

remapping, we were able to find reward and place cells as in Gauthier and Tank. Furthermore, we also

found a large population exhibiting conjunctive coding properties that responded in a mixed manner to

reward and place. 



Methods

Animals

Four adult (6-7 months old) male Brown Norway rats were used in this study. All procedures were

approved  by  the  University  of  Arizona  IACUC and followed the  NIH Guidelines.  Animals  were  food

restricted to 85% of their ad libitum weights and were housed on a reversed 12/12h cycle. Animals were

used in the dark cycle.

Apparatus and task

Rats were trained in a circular maze with a radius of 1.5 m, using methods previously described

(Jones et al. 2012; Jones et al. 2015). The maze’s spatial context included experimenter-chosen odor,

floor texture, and 2-3 distal visual cues attached to curtains surrounding the maze. Eight feeders, each

with one blinking LED attached were placed in the maze equidistantly (Figure 1B). An overhead camera

tracked the rat position on the maze (20-25 Hz frame rate), and the feeders and lights were automatically

controlled by in-house software (LabView, National Instrument). 

Five tasks were carried out successively in each experimental  session,  termed Random1, Set1,

Set2, RecallSet1, and Random2 (Figure 1A). The rat rested on a towel-lined flower pot for 30 minutes in

the center of the maze before and after each task.  In Random1 and Random2, all LEDs blinked 15 times

each and in a pseudo-random order, cuing the rat to the corresponding feeder, with reward delivered

every time after the rat visited the correct blinking feeder. Set1 and Set2 epochs were subdivided into

learning and testing phases. In the Learning phase of Set1, the rat was cued to run to a selected subset

containing only three out of the eight feeders (e.g.,  1, 4, and 5).  After the rat correctly visited those

feeders 25 times each,  the rat  transitioned to the Testing phase.  In this phase,  the light  cues were

delayed by 15 seconds (a feeder to feeder travel typically lasted 3-5 seconds). The rats, therefore, were

able to visit and collect rewards from the three possible target feeders using memory alone (no cues). The

light blinked only if the rat timed out after 15 seconds. In this phase of the experiment, the behavior of the

rat could be of 2 types to obtain a reward. 1) If the rat was at an incorrect feeder, the rat could choose any

of the three correct feeders and had a 33% chance of obtaining the reward. 2) If the rat was at a correct

feeder, it had two choices, each with a 50% probability of obtaining the reward. The test phase ended

(i.e., the set was considered learned) when the rat visited 15 correct feeders in a row with no more than

two timeouts. A similar task was repeated in Set2, with three different feeders (e.g.,  3, 6, and 8). In

RecallSet1, the rat was cued to recall Set1 by a single blinking light, and continued as in the Testing

phase of Set1 (i.e. memory driven) without any cue.  

The context of the maze was manipulated to address the relationship between the coding of reward

and the coding of the environment. We carried out three types of sessions: 1) Six ‘same-context’ sessions

where Set1 and Set2 were learned in the same spatial context (i.e., no context change, Figure 1A). In

these sessions, the any remapping of cells’ place fields would therefore only be due to the change in



reward locations;  2) Four ‘different-context’  sessions,  where Set1 and Set2 were learned in  different

contexts, hence remapping might be due to either change of reward location or change of context; 3) Two

control sessions where Set1, Set2, and RecallSet1 epochs were replaced by epochs in which the rat

remained on the flower pot (Random1 and Random2 were conducted). In all sessions, RecallSet1 was

carried out in the same context in which Set1 had been learned.

Surgery

All rats were implanted with a hyper-drive supporting 14 tetrodes targeted at the dorsal distal CA1

area of the hippocampus (AP= -3.8 mm, ML= 2.1-2.6 mm, depth 2.0-2.6 mm, bundle diameter 1.0 mm),

using previously published surgical and histological methods (Valdes et al. 2015). Two of the electrodes

were used for referencing and were placed at or near the hippocampal fissure. Rats were implanted with

an  EMG electrode  in  the  neck  muscle  to  ascertain  periods  of  sleep  (not  used  in  this  study).  Rats

recovered for a week and were re-trained in the experimental paradigm to habituate them to the weight of

the implant.  

Data analyses

Sharp Wave Ripples (SWR) detection: While most SWRs occurred during non-REM sleep, SWRs

could also occur briefly during the task epochs (Figure 1D). Typically, such SWRs occur when the animal

stops walking, especially when it consumes rewards (Figure 1D, E). This type of awake reactivation may

unduly bias the computation of place fields. Therefore, we extracted SWRs from Local field potential

channels, so as to exclude SWR-mediated spiking when computing place fields (see below).

 To extract SWRs, we filtered the local field potentials voltage with a frequency between 100 and

240Hz (5th order Butterworth filter, MATLAB). A Hilbert transform was then computed and rectified. The

mean  μ and  variance  σ  of  these  traces  were  computed.  Any  epoch  with  an  amplitude  larger  than

μ+3.0σ  (with a probability ≤ 0.27% for a normal distribution), whose duration was between 80~200 ms,

was designated as an SWR. 

Place field  computation:  Spikes  from tetrodes  with  electrophysiology  recording  were  manually

sorted and clustered in the 3 first principal component computed on the basis of their shape (Spike 2,

CED and Figure 1C). Cells were assessed for their theta modulation and for the absence of spikes within

their refractory period (<2%) to evaluate the quality of spike sorting. 

For  each  cell,  the  place  field  was  computed  as  the  ratio  of  the  firing  rate  map  to  the  spatial

occupancy map. For the occupancy map, the entire space, including the maze, was divided into 53 by 40

bins (4  cm
2 per bin). To avoid singularity computations, we deleted the place map bins where animals

were there less than 0.08 seconds. In addition, the track data was filtered for speed > 15 cm/s and the

time spent in each bin was computed. For the firing rate map, all spikes occurring with SWRs during the



task were deleted, and the number of spikes per spatial bin was computed. Bins with one spike or no

spike were set to zero. 

Both  the  occupancy  map  and  rate  map  were  smoothed  by  a  10-bin  Hanning  window  before

calculating the place field map by division. The mean and variance of the place field map were computed.

Areas of  the map with intensity larger than 1 unit  of  standard deviation and larger than  2 cm
2 were

considered part of the place field, and an ellipsoid was fitted to these bins. 

Place/Reward measures/index: Two indexes based on place maps, termed “place score (P)” and

“reward score (R)”, were used to quantify the extent to which each place cell was responding to space or

reward location across the five tasks. A perfect place cell should have a consistent place field with a fixed

location in different tasks regardless of the reward location, as long as the spatial context stayed the

same. In contrast,  place field(s) for an ideal reward cell  should follow the rewarded feeders as they

change from random1 to Set1, to Set2, and so on.

When viewing the location of rat, x⃗, as a random variable of behavior, the place map of cell C in task

T , M
C ,T ( x⃗), is a firing probability function of x⃗. Therefore, we define the reward score of a cell to be the

averaged  cosine  similarity  (or  Pearson  correlation)  between  its  place  maps and  the  reward-location

functions. The Reward-location function in task  T ,  F
T ( x⃗ ), is the sum of Gaussian surfaces (σ=5 cm)

centered at the location of correct feeders. That is to say, taking the locations of feeders as x⃗ f  (f=1−8),

and the set of correct feeder for each task as S
1
=S

5
={1 ,2,3 , 4 ,5 ,6 ,7 ,8 } (Random1 and Random2),

S
2
=S

4
={1,5 ,6 } (Set1  and  RecallSet1),  S

3
={2 ,4 ,7 } (Set2),  then  for  task  T ( i=1−5) the  reward

location function is: 

F
T ( x⃗ )=∑

f ∈S i

G
xf ,σ

2 ( x⃗ ) .

Here, Gxf ,σ
2 represents the standard Gaussian distribution function in space. Hence for task T , the

Pearson  correlation  between  cell  C ’s  place  map  M
C ,T ( x⃗) and  F

T ( x⃗ ) should  be  the  inner  product

between them normalized by the product of norms:  

R
C ,T=

∫
x⃗

F
T ( x⃗ ) MC ,T ( x⃗ )d x⃗

‖FT‖‖M
C ,T‖

.

Finally, the reward score of cell C is the average: R̂
C=
1

5
∑
T=1

5

R
C ,T

.



Similarly, for a place score to measure the spatial-consistency of place maps of a cell, we computed

the Pearson correlations between them, i.e., for task epoch T
1
 and T

2
 (T

1
≠T

2
), 

P
C ,T

1
T
2=
∫
x⃗

M
C ,T

1 ( x⃗ ) MC ,T
2 ( x⃗ )d x⃗

‖MC ,T
1‖‖M C ,T

2‖
.

Likewise, the place score of cell  C is the average:  
P̂

C=
1

(52)
∑
T
1
T
2

P
C ,T

1
T
2 .

 Since in different-context

experiments, novel place fields for place cells were produced in Task Set2 due to remapping, which could

hurt  the  spatial-consistency  and  place  scores,  we  ruled  out  the  place  maps  from  Set2   when  we

calculated the Pearson correlation P
C ,T

1
T
2 (but we did not do this in the same-context experiments). That

is to say, for different-context experiments, T
1 ,2≠ 3.

The variation of reward scores is used to recognize the change in coding properties. For each cell C,

if the variation of R
C ,T for any two consecutive tasks, i.e., |RC ,T−R

C ,T+1| is larger than 0.52, we select it

as a “transition cell”.

Surrogate place/reward scores: We developed surrogate tests to further categorize place/reward

cells. In these tests, we simulated 2000 surrogate place/reward cells (1000 each). For both simulations,

we used parameters extracted from the data as follows: First, the number of place fields (PFs) for each

cell  was randomly generated from the distribution of  PF number in the data.  Then, for each PF, we

extracted the location from the distribution of PFs COM in each task. The distribution of drift distance was

extracted from the distances between PFs centers of cells in Random1/2. Likewise, the distributions of

size and orientation of PFs were also extracted from the data.

Null Model1: For the reward score, we assumed that all cells were place cells and checked if it could

explain the data, i.e.,  Are the firing maps for a cell  in  multiple tasks made up by firing around fixed

locations plus random drifts of the PFs? The firing maps for each cell in multiple tasks were made up by

place fields (PFs) in fixed locations with random drifts (measured in Random tasks). The number, size,

and orientation of PFs were simulated from the data distributions mentioned above.

Null Model 2: For the place score, we assumed that all cells were reward cells and checked if it could

explain the data, i.e., Are the firing maps for a cell in multiple tasks made up by firing around correct

feeders? In this case, the number, size, and orientation of PFs were all randomly generated as above,

from the data distributions. However, the location of the PFs were restricted to be around correct feeders

in each task, i.e., randomly generated from the distributions of PFs extracted from data, excluding the

possibility of a PF away from any correct feeder. 



Measures for coding propertied:  Following Gauthier and Tank (2018), we studied the extent to

which the activities of reward cells were indicative of the expectation of rewards or of its delivery. To

address these 2 cases, for the firing patterns of a cell  C, we computed their correlations with correct

feeder locations/the delivery of reward/the expectation of reward. These correlations were indicated by

the proportions of spikes taking place in corresponding time-windows.

In task T , assume a neuron C fired n
C ,T times. Assuming nSite

C ,T
 spikes out of the total n

C ,T  spikes

were found within 30 pixels (10 cm) from the correct feeders,  nDelv

C ,T
 spikes took place within td seconds

after the delivery of reward, and  nExpt

C ,T
 spikes took place within  te seconds before the rat reached the

feeder (see time-windows in Figure 4C). These time-windows related to expectation and reward delivery

were called “expectation-time-windows” and “delivery-time-windows”.  The time parameters,  td ,e (d  for

delivery and  e for expectation), were changeable for the length of the time-windows ranging from 1 3

seconds, based on the average time for a rat spent around a feeder (Figure 4B). We should note that

these three time-windows were not mutually exclusive.

Therefore, in task  T , the firing probability (FP) of cell  C around the correct feeder locations was

defined as  pSite

C ,T=nSite

C ,T /nC ,T
, indicating the correlation of the firing pattern with the locations of correct

feeders. FP is also the firing rate of the cell in a window of interest, divided by the overall firing rate of the

cell  in  the  given  task.  Similarly,  the  FPs  in  delivery-time-window and expectation-time-window were

defined as pDelv

C ,T =nDelv

C ,T /nC ,T
 andpExpt

C ,T =nExpt

C ,T /nC ,T
 respectively. 

Using the notations above, across different tasks, we computed the averaged FP around the location

of correct feeder for cell C as:

´pSite

C =
1

¿T ∑
T

pSite

C ,T
.

Similarly, we computed the average ´pDelv

C  for the correlation with reward-delivery and ´pExpt

C  for the

correlation with expectation.  

For each cell  C, its sensitivity to expectation was computed as the ratio between the number of

spikes in the expectation-time-windows and the number of all expectation-time-windows. For example, in

an experiment, a rat visited feeders 300 times across all tasks. Therefore, we had 300 expectation time-

windows. If spikes from cell C were found in 240 out of 300 expectation-time-windows, cell C ’s sensitivity

to reward-expectation (in Set1 only) was therefore 240/300=0.8. Cell  C ’s sensitivity to reward delivery

was  computed  in  the  same  way,  except  replacing  the  expectation-time-windows  by  delivery-time-

windows.





Results

Most results were presented in abstract form  (Xiao et al. 2019). The results presented below are

obtained after the animals reached asymptotic performance. In these conditions, animals learned Sets1/2

in 504 +-143 s and reached similar performance as in previous studies (Jones et al. 2012; Jones et al.

2015).  Place fields were defined on the basis of the trajectory of the rat on the maze, while the animal

was moving above a given speed threshold.  Spikes were extracted during these trajectory bouts.  In

general, most awake SWRs occurred when the animal stopped or slowed down, so spiking during SWRs

would  not  contribute  to  the  place  field  computations.  Here,  because  we  were  studying  the  reward

dependence of place fields, we sought to ensure that SWRs spikes did not contaminate our place field

computations. Figure 1D shows the location of the rat when SWRs were produced during tasks Random1

from one session of rat1. Figure 1E shows these locations for the entire set of sessions used in this study

(N=12 sessions. Six from Rat1, four from Rat2, one each from Rat3 and Rat4).  For different types of

tasks, there were 0.338±0.149 SWRs/s in Random1 and Random2, 0.372± 0.142 SWRs/s in Set1 and

Set2, and 0.321± 0.108 SWRs/s in RecallSet1. 

From 1217 cells sorted from the raw data (see Methods) of 12 experimental sessions, we selected

584 cells (48.0%) with well-defined place field(s) in different tasks. Here, 286 cells from same-context

sessions and 224 cells from different-context sessions had place field(s) in at least 4 out of 5 tasks, and

the  remaining  74  cells  from control  sessions  had  place  fields  in  both  Random1 and Random2.  For

different-context sessions, we also included cells with place field in Set2 only. The other 633 cells had no

place fields in at least two tasks and were excluded from our analyses. We noticed that place fields had

four different spatial characteristics (Figure.2A).  Like most classical place cells, some cells had 1 or 2

place fields with fixed locations regardless of the change of reward-delivery location (Figure 2A, Top,

green dots. N=136/584). Another group of cells called “reward cells” had fields tightly bound to the reward

location (Figure 2A, bottom row, N=70/584). The reward-coding property of these cells was obtained from

5 different-context sessions, where we obtained 25/224 reward cells. 12/25 cells (48%) fired around all

the correct feeders irrespective of the change of context because they fired at all the Set2 feeders, which

were  also  activated  in  Random1.  Notably,  we  also  found  a  large  number  of  cells  with  conjunctive

properties, referred to as “hybrid cells”, for which part of the place fields of the cell exhibited consistency,

yet the cell also had a high firing probability around correct feeders irrespective of their location (Figure

2A, rows 2 and 3, N=378/584). Some hybrid cells had more highly consistent place fields with lower firing

probability around correct feeders (253/378), whereas the other hybrid cells preferentially coded reward

locations (125/378). Furthermore, we observed a small fraction (18/584) of the cell population exhibited

sharp changes in their coding properties between different tasks (called “transition cells”), i.e., their firing

patterns could code some or all of the correct feeders in a task even though they had a fixed place field in

the previous tasks, or vice versa. We will discuss the transition phenomena later in this paper.       



These three types of cells (place cell, reward cell, and hybrid cell) were classified based on two

different indexes. To measure the extent to which a cell was correlated with absolute spatial location or

with reward location, we computed its place score  P̂
j and reward score  R̂

j (see Methods). Figure 2B

shows that cells fell on a skewed continuum, with place cells following the place score axis (high place

score P̂
j, low reward score R̂

j. Fig. 2B, blue) and reward cells following the reward score axis (low place

score P̂
j, high reward score R̂

j. Figure. 2B, red). Hybrid cells had lower mixed scores (Figure. 2B, black,

with reward scores of 0.25+-0.09, and place scores of 0.18+-0.03). Observed from Figure 2A, an ideal

place cell should have identical place fields in different tasks, whereas an ideal reward cell should have

place fields at some or all locations of correct feeders. The separation line between place cell and hybrid

cell, y=0.31,  were selected as the 98.4 percentile of place scores of randomly simulated ideal reward

cells. Hence cells with larger place scores have a high probability of being a place cell. The separation

line between the hybrid cell and reward cell,  x=0.42 was selected similarly. The classification was not

dichotomous since the entire cell population was distributed continuously. When comparing the data to

surrogate sets (see methods), we found that the probability distributions for both place (Fig 2C, left) and

reward (Fig 2C, right) scores had much longer tails than the surrogate scores in the high score areas

(above the thresholds, dash lines). These results suggested that, our data could not be explained by the

null models.

Although these two scores described the place and reward components of  each cell,  from their

definition, they are not entirely independent from each other. However, we found no cell that had both

high  place  and high  reward scores.  A  high reward  score meant  that  the  cell  only  had a  high firing

probability at correct feeders, but since Set1 and Set2 were designed to contain different feeders, this led

to low correlations between place maps of Set1 and Set2, as well as Set2 and RecallSet1. On the other

hand, a cell with both low place/reward scores was possible as long as its place maps were strongly

affected by the collection of feeders, and the place fields were not close to them. 

We  next  compared  the  physiological  properties  of  the  three  classes  of  cells.  Among  all  cells

analyzed, most cells showed a single clear place field (136/584 cells. Figure 3A). The majority of place

cells had at most 1 or 2 place fields, compatible with previous findings (Park et al. 2011).  Hybrid cells,

however, had several place subfields since they had stronger responses to the reward locations (black

bars in Figure 3A).  For the reward cells, the number of place subfields showed that the selectivity to

feeders was different from cell to cell. While some reward cells had as many as 5-8 subfields because

they responded to all feeders in the random tasks (21/70), others responded only to a smaller subset of

correct feeders (49/70). Overall, the number of place subfields was not significantly correlated with spatial

information  (see  definition  from  (Royer  et  al.  2010) since  the  coefficients  of  determination  r
2<0.01,

regardless of the type of the cells (Figure 3B).  We noted that, especially for reward cells (due to the

higher percentage of spikes around feeders, Figure 3C), some spikes around the correct feeders were not



successfully recognized as place fields because the place map values failed to exceed the 1x standard

deviation threshold. The distribution of place subfield area differed between categories (Figure 3D), with

the reward cells exhibiting smaller  place fields than other cells  since they only fired around feeders.

(Reward  cells:  4.07±3.45 cm
2.  Place  cells:  11.33±7.60 cm

2,  Hybrid  cells:  9.09±5.75 cm
2.)  This

indicated that  even though reward cells  remapped when reward contingencies changed, their  spatial

selectivity still allowed for a more precise encoding than place cells. Many reward cells also had averaged

firing rates in tasks as low as 0.1 Hz (0.12± 0.11 Hz, Figure 3E), i.e., they only fired about 120 times in a

20-minute task.  Hybrid  and place cells  had  larger  firing rates  which  resulted  in  wider  distributions  (

0.70±0.67 Hz).  

Despite their differences between place fields and firing rates, reward cells were found mixed with

other  cells  in  the recoding from the tetrodes (Figure 3F),  instead of  recorded together  from a small

number of tetrodes. The 1217 analyzed cells came from 65 tetrodes, from which we collected 70 reward

cells. In order to assess whether reward cells might be spatially clustered, we computed the proportion of

each cell type per tetrode. 60/65 tetrodes contained no more than 2 reward cells, and only 5/68 tetrodes

had 3 or 4 reward cells. When compared with other kinds of excitatory pyramidal cells, the distribution of

reward  cells  for  each  tetrode  yielded  a  weak  positive  correlation  with  the  number  of  all  cells  (

β
1
=0.03 , r2=0.04). These results suggest that, although reward cells were putative pyramidal cells, the

number of reward cells was not correlated with the number of pyramidal cells recorded. Reward cells

therefore may be a subset of place cells that receive strong or more specific reward-related inputs.

We further studied the coding properties of reward cells. For all Set1 and Set2 tasks, we checked if

the coding of reward cells had any preference for any of the three correct feeders. For each Set1 or Set2

task featuring reward cells, the number of spikes produced at each of the three feeders were counted, as

well as the number of visits to each of the three feeders. After each task, to assess the firing probability of

each cell  and the visit  probability to each feeder, the counts were normalized by the total number of

spikes produced by the cell and the total number of visits during the task respectively. Figure 4A shows

firing  probabilities  plotted  against  visits  probabilities  across  all  same-  and  different-context  sessions

(N=58 cells, N=10 sessions). Even though the number of our sample was relatively small, we saw that for

most reward cells the firing probabilities at a feeder were close to the visit probability to that same feeder

(Figure 4A, dots in the green circle).  On the other hand, there was a small number of reward cells that

strongly preferred specific feeders, and were unlikely to fire at other feeders (Figure 4A, both in blue

circles). 

We next proceeded to study the extent to which reward firing was due to the actual  delivery of

rewards or to the expectation of reward. Because of the probabilistic nature of the reward delivery (see

methods), rats could visit a correct feeder with or without actual reward delivery. For all rats, the averaged

time spent around a correct feeder without reward and a correct feeder with reward was different (Figure



4B):  Due to  reward  consumption  time,  rats  stayed  ~3s  (Figure  4B,  solid  line)  around a feeder  that

delivered a reward, while they left a feeder faster (~1s, Figure 4B, dashed line) if  the feeder did not

deliver the reward. These two distributions of staying time were statistically different (p<0.001, standard t-

test). 

Rat  trajectories  were analyzed around the reward sites,  whether  rewards were delivered or  not

during the memory-driven portions of the Set1 and Set2 learning tasks,  and during recall.  Figure 4C

shows an example of a time-window spent at correct feeders that were not rewarded, and a time-window

spent around a rewarded feeder. The red arrow indicates the time when the sugar water reward was

released. For  each visit  to a correct  feeder,  a time-window was chosen from the time of  the feeder

triggering, lasting td second (d  for delivery and e for expectation), to assess the response of the cells to

reward-delivery (Figure 4C). On the other hand, for the response to reward-expectation, we set another

spike counting time-window lasting  te second before the rat entered the feeder area (10 cm from the

feeder). Entrance to this area triggered the reward solenoid which produced an audible click immediately

followed by reward delivery. Therefore, in the reward-expectation window animals did not know whether

they would receive a reward or not. Based on the distributions of staying time around feeders, the length

of time-windows was set as td ,e=1 3s (Figure 4C) to count the spikes responding to delivery/expectation

of the reward, and then obtained the firing probabilities (FP) ´pSite

C ,  ´pDelv

C ,  ´pExpt

C , i.e., cell  C ’s FPs around

feeder  locations  (in  at-feeder  windows),  in  delivery-time-windows,  and  in  expectation-time-windows

(Figure 4C. See Method). Different choices of time-window length were made as td ,e=1 or 3s to test if

the results were sensitive to the length of time-windows. Specifically, larger time-windows could result in a

bigger overlap between delivery/expectation time-windows, since rats usually took 5 s to cross the maze,

going from one feeder to its diametrically opposite one. In addition, FP in delivery windows ´pDelv

C  did not

necessarily represent the correlation to “acquisition” of the reward, but rather a reasonable compromise,

since the rat consumed reward after the delivery.

An  decoding  approach,  using  instantaneous  firing  rate  in  moving  3  second  windows  yield

inconclusive results as to whether a reward cell. When compared to a place cell, could be indicative of

reward  expectation  or  reward  delivery  (reward  delivery:  53%  accuracy,  reward  expectation  29.5%

accuracy, details not shown). This observation suggest that instantaneous firing rate may not be sufficient

to assess reward delivery or reward expectation. We therefore analyzed these epochs more coarsely,

using firing probability within each task.  The correlations between FPs ( ´pSite

C ,  ´pDelv

C ,  ´pExpt

C )  revealed a

strong preference to the first hypothesis, i.e., the recorded cells, especially the reward cells, preferably

responded to the acquisition of rewards (Figure 5. Hybrid cells were omitted for clarity).  Generally, a

higher FP around correct feeders resulted in a higher probability for cell C to be a reward cell. Most of the



reward cells had a higher FP than other cells within the 1s time-window after delivery of reward (not

shown). Furthermore, FPs around correct feeders and FPs in 3s delivery-time-window formed a strongly

positive correlation (Figure 5B black line, β=0.57, ´pDelv

C  vs ´pSite

C ), showing that the spikes produced after

delivery of rewards made up most of the spikes in at-feeder windows, although the latter did not strictly

contain the former. Accordingly, hybrid cells also had higher FP around correct feeders than place cells,

but lower than the reward cells (not shown). In contrast, FPs around the correct feeders and FPs in

expectation-time-windows showed a negative correlation (Figure 5A black line,  ´pExpt

C  vs ´pSite

C ) where most

reward cells had a lower response to expectation than other cells. To assess the significance of these

regressions, we also computed FPs in random time-windows (regression lines shown as green dash lines

in Figure 5A, 5B). For example, in Figure 5A, for each cell, we calculated the FPs in as many randomly-

chosen 3s time-windows, as the number of expectation windows used for the analyses and found that

FPs in such windows were not significantly correlated with the FPs around feeders (the green dash line,

Figure 5A). Similar results were obtained for the post-delivery windows (Figure 5B). We also note that

most reward cells had very low sensitivity to the reward expectation because they only fired in a small

fraction of expectation-time-windows prior to entering the feeder areas (Figure 5C, 5D, see definitions in

Methods).  Finally,  A small  fraction of  reward cells  (10 out  of  70)  exhibited both high sensitivity  and

specificity to expectation (high FPs in expectation-time-windows) when taking t e=1 (not shown). Some

hybrid cells also exhibited a mixed coding property of delivery and expectation (not shown), though the

actual mechanism of reward-coding for pyramidal cells could be more complicated than a simple mixture. 

We next asked whether the place and reward coding properties of each cell were fixed or could

change dynamically. Figure 6A shows an example of a cell that initially had a place cell coding property in

Random1 and Set1, but then switched to firing near some of the correct feeders in Set2, RecallSet1, and

Random2. Note that the cell did not fire at the same correct feeder in these three tasks. This cell showed

a transition from place to reward coding (all tasks in the same context). Note that the firing rates during

sleep epochs (only included time during in-REM sleep) did not change significantly before and after the

transition (Figure 6B), which ruled out the possibility we had unstable recordings or errors in spike cutting.

The cells exhibiting transition in coding properties, or “transition cells”, were detected by the variation

of  reward  score  (see  Methods).  Encoding  a  fixed  location  resulted  in  a  low reward  score,  whereas

encoding reward resulted a high reward score. Hence, a transition should bring a significant variation to

the reward score of such a cell. By looking at the largest variation of reward scores for consecutive two

tasks, we found that 18/584 cells exhibited transitions of coding property between tasks, whose reward

scores underwent sharp change (variation of reward score>0.52, dashed green box in Figure 6C). These

transition cells were classified as hybrid cells at an earlier stage due to their medium averaged reward

and place scores, yet the sharp change in reward scores rather suggested a change of coding properties.



 We studied the coding properties of these 18 transition cells in different tasks and found that 11 cells

transferred from place cell  to reward cell,  whereas the other 7 cells transferred from reward to place

coding. Figure 6D shows the dynamic of the reward scores for the 21 cells mentioned above. Solid curves

show 11 cells for place-to-reward transitions (increase in reward scores), and dashed curves show 7 cells

for reward-to-place transitions. The red curve shows the cell in Figure 6A, and the black dots indicate

when the transition took place. Since we also found 222/584 stable place cells and 67/584 stable reward

cells (not shown), cell exhibiting transitions only made up a small fraction of the population recorded.  

To exclude the possibility that the transition phenomena were the results of a place cell spuriously

classified as a reward cell in some tasks (or vice versa), we built a null model in which we assumed that

there was no transition taking place during the sessions, and therefore, that the change of the place maps

of a place cell was due to random drift, whereas for a reward cell it was due to the change of reward

locations. We built the model from the parameters obtained from the data as above, except that the drift

of place fields were extracted from task to task (not only from Random1/2 as it was above). In addition,

we excluded the possibility that a surrogate cell had no place field in some task, since the transition cells

we observed had indeed place fields in every task.  We simulated 1000 surrogate place/reward cells

separately. We produce surrogate hybrid cells by linearly combining the place maps of the 1000 samples

of surrogate place and reward cells with weights from 0.1:0.9, 0.2:0.8, …, to 0.9:0.1 respectively (0:1 and

1:0 are place/reward cells themselves), which yielded 9000 samples of hybrid cells. 

We found that no place cells out of 1000 and 2 reward cells out of 1000 exhibited a change of reward

scores larger than 0.52 in two consecutive tasks. The reward score changes in these 2 cells was due to

variation change in the number of place fields around rewarded feeders. For hybrid cells, only one out of

9000 exhibited the same threshold crossing. In all, with a null model in which we assumed no transition

between reward and place cells, the probability to find a sharp change of reward score larger than 0.52

was  <0.2%  across  place/hybrid/reward  cells,  which  is  significantly  lower  than  the  finding  in  our

experiments (3% = 18/584), suggesting that this result was not due to chance



 

Discussion

One of the basic tenets of motivated spatial navigation in robots, animals, and humans is the notion

that choosing to navigate to a specific location is related to the immediate or delayed expectation of a

reward at that location. Many studies have focused on understanding the neural mechanisms of spatial

navigation  (Hinman et al. 2018) or the neural basis of reward processing  (Luo et al. 2011) separately.

Because in laboratory rats, reward and spatial navigation are intimately linked, it is reasonable to think

that their neural systems tightly interact to the extent that reward information may be integrated, at least in

part, in the spatial navigation code. Motivated by this hypothesis, we studied the coding properties of CA1

hippocampal cells at or near carefully manipulated reward sites. Compatible with others  (Dupret et al.

2010; Poucet and Hok 2017; Singer and Frank 2009), we demonstrated the existence of reward-location

coding cells in dorsal CA1, complementing previous studies using virtual reality on a 1D track (Gauthier

and Tank 2018). 

Anatomical and physiological considerations: Many studies have shown that hippocampal CA1

cells may encode more than absolute spatial information (Rueckemann and Buffalo 2017; Eichenbaum

2018; Zhang and Manahan-Vaughan 2015; Liu et al. 2018). Some cells fire relative to the locations of

neutral objects placed on the maze (Deshmukh and Knierim 2013) while others are strongly associated

with the location of rewards (Gauthier and Tank 2018; Poucet and Hok 2017; Rolls and Xiang 2005). CA1

firing may reflect the actual value of a location in complex probabilistic decision-making tasks (Lee et al.

2012) but not in simpler tasks (Duvelle et al. 2019). While CA1 is not generally known to receive direct

inputs from the reward systems, CA3, a synapse away, does (Berridge and Kringelbach 2015; Luo et al.

2011). It has been suggested that the influence of the reward system on the hippocampus and associated

circuitry could at least in part be attributed to inputs from the ventral striatum or ventral tegmental area

during sleep-induced reactivation (Lansink et al. 2009; Pennartz et al. 2004; Valdes et al. 2015) or during

behavior  (Mamad et al.  2017).  Notably, reactivation can also occur in the awake state during awake

SWRs, and often occurs near reward sites, as our results and that of others showed (Diba and Buzsaki

2007; Jadhav et al. 2012; Malvache et al. 2016; Olafsdottir et al. 2018). As such, awake reactivation is

likely to contaminate the strictly spatial component of hippocampal firing when place fields are computed

and artificially  introduce a reward dependency in the spatial  code. Action potentials  occurring during

SWRs should therefore be excluded when place fields are analyzed near reward locations.

Compatible with others, while our results suggest that there may be a subpopulation of CA1 cells

able to encode specifically for reward zones, our experiments did not allow for a determination of whether

these cells were found anatomically in different subregions of dorsal-distal CA1. Others have suggested

that there may be a CA1-sublayer specificity in the manner in which place fields aggregate around reward

sites, with deep layers (close to  stratum oriens) being more sensitive than superficial (close to  stratum

radiatum) layers (Danielson et al. 2016). More work needs to be done to ascertain these findings.



Complex  spatial  navigation  and  the  need  for  reward  coding:  There  has  been  conflicting

evidence as to whether place fields aggregate around or overrepresent reward areas. Notwithstanding the

issue of SWR contamination, it is also possible that the differences seen can be attributable to the nature

of the task. It is possible that when tasks are simple, with no cognitive demands or significant decision-

making components, such as running on a track for rewards  (Diba and Buzsaki 2007; Pennartz et al.

2004) or other simple tasks (Duvelle et al. 2019; Speakman and O'Keefe 1990) place fields do not bear

any specific relationships to reward location and uniformly cover the environment. If the task is slightly

more complex, involving working memory and simple decision making such as in a continuous alternating

T maze, some place fields may shift coherently towards the reward location (Lee et al. 2006), and if the

same task is made more challenging, some place field remap to reward zones  (Mamad et al. 2017).

These results  suggest  that  if  the task is  sufficiently  complex and requires a  combination of  working

memory  or  short-term  memory,  probabilistic  decision  making  among  multiple  locations,  or  multiple

possible routes to a goal, such as in our study (memorization of 2 sets of 3 feeders with probabilistic

reward  delivery,  separated  by  several  hours),  the  reward-place  system dynamically  adjusts  through

remapping, presumably to improve performance (Dupret et al. 2010; Gauthier and Tank 2018; Tryon et al.

2017; Mamad et al. 2017; Rolls and Xiang 2005). The finding of goal-related place field accumulation may

also be related to the stressful nature of the task, though that relationship has not been explicitly tested

(Hollup et al. 2001).

A dynamic place-reward conjunctive code: Our results  show that  a small  population of  cells

dynamically remap from spatial coding to reward coding or vice-et-versa. Different forms of remapping

have  been observed  in  response to  changes in  sensory cues or  changes in  the  nature of  the  task

(Latuske et al. 2017; Ainge et al. 2012; Markus et al. 1995). Interestingly, studies using a block design

across multiple  sessions showed that  a small  portion of  place cells  may remap toward a goal  area

(Kobayashi et al. 2003). This study did not vary goal location (Set1/2 as in our study), so it is not possible

to ascertain whether the cells became reward coders, or if they underwent classic remapping because of

learning-mediated  plasticity.  Also,  rewards  in  this  study  were  through  medial  forebrain  bundle  self-

stimulation, which may be significantly different from natural rewards. This dynamic shift between place

and reward coding indicates that field the field aggregation around reward/goal areas, as reviewed above,

is a dynamic rather than static feature of the hippocampal circuit in complex tasks.

Neuromodulation: Most computational theories and robotic implementations of motivated spatial

navigation rely on reinforcement learning (Chersi and Burgess 2015; Llofriu et al. 2015; Cazin et al. 2019;

Scholkopf  and  Mallot  1995;  Strosslin  et  al.  2005).  The  conundrum  is  that  reinforcement  learning

approaches rely on the usually anatomically and temporally diffuse actions of neuromodulators such as

dopamine. This diffuseness and low temporal resolution seem at odds with the selectivity and precision of

reward-directed spatial navigation. Recent work, however, has shown that VTA neurons could selectively



and precisely reactivate during sleep, indicating that specific VTA dopaminergic cells could in principle

carry reward information to specific hippocampal or cortical memories (Valdes et al. 2015). The finding of

reward cells within the hippocampus furthers this idea and suggests that, with training, the information

about reward might become integrated into the hippocampal neural code and continues to work in concert

with the VTA. This phenomenon may be akin to the dynamics between the hippocampus and cortex

during memory consolidation in general (Nadel et al. 2000; Hardt and Nadel 2018; Sekeres et al. 2018).

These reward cells may be the positive counterpart to the fear ‘engram cells’ found in the hippocampus

(Bittner et al. 2015).

Comparison with recent work: As others have demonstrated, the presence of reward-sensitive

cells was not due to artifactual  correlations with behavioral  or perceptual cues bound to the rewards

(Gauthier and Tank 2018). We furthered this finding and confirmed that the spikes of reward cells were

indeed induced by rewards,  rather  than  LED blinking  or  SWR-related bursts.  Although LED blinking

played an important role in Random tasks and in the learning phases of Set1/2 to provide cues, it was

delayed for 15 seconds in RecallSet1 and the test phases of Set1/2. In these cue-less conditions, reward

cells still responded to the delivery of reward within 3 seconds of reaching a correct feeder. Also, because

we  had  excluded  the  population  bursts  during  SWRs  before  computing  place  maps,  the  reward-

dependence of the cells was guaranteed to be independent of SWR-related activity.

Using the rate maps of  each cell,  we used a place score and reward score for  quantifying the

similarity  and correlations of  the place fields across several  tasks,  leading to the division of  the cell

population into place,  reward,  and hybrid categories.  Hybrid  cells  could have a dominance for place

coding  or  reward  coding.  Although  largely  compatible,  some  of  our  findings  of  the  reward-coding

properties of CA1 neurons stood in contrast with those from Gauthier & Tank (Gauthier and Tank 2018).

First, it was interesting to note that the hybrid-coding phenomenon was not reported by Gauthier &

Tank  (Gauthier  and Tank 2018).  They instead used a dichotomy of  place-coding and reward-coding

properties to explain their results. While we are unsure of the source of this discrepancy, this may have

been reasonable given that their place fields were one-dimensional on a linear track, and perhaps the

shift  and  the  mixing  of  place  fields  were  more  likely  to  have  been  overlooked.  Our  observations

furthermore  confirmed previous  results  that  hippocampal  place  fields  could  shift  towards  the  reward

location (Dupret et al. 2010), and that place cells might exhibit excess firing around the reward locations

(Poucet  and  Hok  2017).  Whether  the  finding  of  such  hybrid  cells  come  from our  more  distal  CA1

recording site remains to be tested. Second, in our experiments, although a small fraction of reward cells

responded to the expectation of reward, most cells responded after reward delivery. We obtained a higher

proportion of reward cells and hybrid-reward cells (195 out of 1217 recorded cells, 16.0% vs 4.4% resp.)

than found in this previous study. This difference may be due to the fact that a reward cell could fire only

one or two spikes after the delivery of reward, making it  difficult for its calcium signal to be detected

(Deneux et al. 2016). Third, we observed a few transitions between place cells and reward cells that put



into question the notion of “sharp boundary” asserted by Gauthier & Tank (Gauthier and Tank 2018). We

could not observe any preference of the transition’s direction from only 18 cells, despite that the transition

itself was a reliable phenomenon based on the loss or gain of firing fields. Place cells and reward cells

carried different spatial information in the pyramidal cell population. Hence the transitions could represent

the potential for pyramidal cells to change their coding roles in spatial navigation. 

The changes of  spatial  context  or task goals included in  our experiments could not  explain the

transitions since the coding properties did not transition back by the recovery of spatial context or task

contingencies (Random2 vs Random1, RecallSet1 vs Set1). This leads to the possibility that the transition

could be a result of the synaptic plasticity of hippocampal and hippocampal-related circuits (Neves et al.

2008). The finding of a seemingly continuous population of cell in the reward/place coding dimensions

raises  the  possibility  that  hippocampal  pyramidal  cells  in  dorsal  CA1 carry  both  spatial  and  reward

information in an integrative and plastic manner to various extents. Place or hybrid-place cells are simply

dominated  by  spatial  information,  while  reward  or  hybrid-reward  cells  are  dominated  by  reward

information. A transition is, therefore, a simple plastic change in input weights yielding a change in coding

properties. 

In  sum,  our  study suggests that  a  large fraction of  hippocampal  pyramidal  cells  may receive a

dynamic mixture of spatial and reward information that manifests itself in the spatial firing properties of the

neurons across  multiple  tasks.  Such a mixture  can be used  to  encode and  direct  motivated  spatial

behavior  appropriately.  Further  computational  and robotic  work  is  needed to  elucidate  the functional

advantages of this type of continuous and dynamic conjunctive coding.
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Figure 1: . A.Behavioral and electrophysiological methods Behavioral timeline. Set learning was
first carried out in context A with 3 feeders (Set1), after which Set2 learning was conducted in either
context A (same) or (different) context B with 3 different feeders. Recall of Set1, as well as random
sessions were always in context A. All rest epochs lasted 30 mins. . Picture of the maze. Each ratB
was connected to a hyper-drive for electrophysiological recordings with 14 tetrodes (inset). C.
Recorded spikes were sorted and clustered using Principal Component Analysis (PCA) based on
the shapes of their waveforms. In this graph the cyan cluster was a reward cell. SpatialD.
distribution of all SWRs (red dots) recorded during Random1 from one session of Rat1 plotted with
tracking data (blue). Awake-sharp-waves generally took place during immobility, near the feeders.
E. Spatial distributions for all SWRs from Rat1 only (left), and density plot of all SWRs from the entire
data sets (right, 4 rats, 12 experiments). Green dots in D and E are reward sites.
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Figure 2: A.Cell characterizations. Four representative cells of the 4 categories identified in this
study: place cells (top, spatially fixed), reward cells (bottom, follow reward sites), and hybrid cells
with place coding dominance (2nd row) or reward coding dominance (3rd row). The “place
component” of each place field are marked by a dashed pink circle. Rewarded feeders are denoted
by a green dot on the periphery of the circular maze. Maximum firing rates are indicated under each
graph. Group data showing the skewed nature of the reward/place scores for all cells recordedB.
from all experiments (N=584). Place cells (blue) had small reward scores and high place scores.
Reward cells (red) had the opposite properties . Hybrid cells (light blue to light yellow) showed
mixed coding property. The separation lines in were chosen above 98% percentiles of surrogateB
place scores of randomly simulated reward cells (black dash line, horizontal) and surrogate reward
scores randomly simulated place cells (black dash line, vertical). The four cells in panel A are
indicated by arrows. Comparison between the distributions of data and surrogate scores.C.

Figure 2

0 0.2 0.4 0.6 0.8 1

Reward Score

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
la

c
e
 S

c
o

re

Reward (N=70)

Place (N=136)
Hybrid (N=378)

0 0.2 0.4 0.6 0.8 1

Scores

0

0.1

0.2

Surrogate Place Scores

Place Scores

0 0.2 0.4 0.6 0.8 1

Scores

0

0.1

0.2
Surrogate Reward Scores

Reward Scores

F
ra

c
ti
o

n

C



Figure 3: A.Place-field properties for each cell type. Number of place subfields across different
tasks. Most place cells had no more than 2 subfields (blue), whereas some reward cells could
have 8 subfields (red, one for each feeder in random tasks). Information per spike for each cell.B.
Average values indicated by continuous line. Fraction of spikes at correct feeders for place,C.
hybrid, and reward cells. Reward cells had smaller place fields than other cell types. TheD. E.
averaged firing rates of reward cells were lower than those of the other classes. Tetrode-specificF.
numbers of reward cells as a function of the number of all cells recorded on that same tetrode.
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Figure 4 A.: Properties of the cell population at correct feeders. Firing probability of a cell at a
correct feeder versus the visiting probability to that same feeder. While firing probabilities of
most cells were proportional to visiting probabilities (around the 45 degree line, marked by
the green circle), some cells exhibited strong preference for specific feeders, hence were not
likely to encode the visit to other feeders (blue circles). Distributions of time rats spent at aB.
correct feeders. Average time is indicated by vertical lines (dashed and solid). IllustrationC.
of the time windows used for analyses: At-Feeder intervals (purple), expectation-time
intervals (green), and consumption time interval (yellow). The time of reward-delivery is
indicated by a red arrow.
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Figure 5: Firing probabilities in different time windows reveal the firing preference of reward
cells. Firing probabilities for place and reward cells in 3-second expectation windows. BlackA.
line indicates the linear regression across all cells (hybrid cells not plotted). Linear coefficient and
p-value indicated in inset. Green dashed line: linear regression for random 3s windows (data
points not plotted for clarity). Firing probabilities in Post-delivery 3s windows. Labels andB.
regressions as in A. Specificity (represented by the firing probabilities in correspondingC, D.
windows) versus sensitivity to expectation windows ( ) and delivery windows ( ) across allC D
place and reward cells. Insets: Mean sensitivity.

Figure 5

A

B

C

D

Firing Probabilities in At-Feeder Windows

Sensitivity to Expectation (3s)

Sensitivity to Reward (3s)

F
ir
in

g
 P

ro
b
a
b
ili

ti
e
s

in
E

x
p
e
c
ta

ti
o
n
 W

in
d
o
w

s
 (

3
s
)

F
ir
in

g
 P

ro
b
a
b
ili

ti
e
s

in
P

o
s
t-

d
e
liv

e
ry

 W
in

d
o
w

s
 (

3
s
)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.5 1 0 0.5 1

= -0.47

p = 6.5e-32

= 0.57

p = 1.9e-50

Place

Reward

Firing Probabilities in At-Feeder Windows

1

Place Reward
0

0.5

Place Reward
0

0.5

**

**



Figure 6: A.Transitions between place cell and reward cell. Example of transition from place cell
(Random1, Set1) to reward cell (Set2, RecallSet1, Random2), with unequally represented reward
sites. The number of spikes contributing to rate map computations is indicated below each graph.
B. Firing rates of the cell in A in different sleep epochs. No sharp changes of sleep firing rates
indicates that the decrease of spike numbers in the last 3 tasks was not the result of recording
stability loss or spike-sorting errors. Distribution of largest variations of reward scores betweenC.
consecutive tasks across all cells. A small fraction of cells exhibited sharp changes (Variation of
reward score>0.52, green dashed rectangle), which were labeled as transition cells (N=18). D.
Reward scores for the 18 transitions observed in C. Eleven cells transitioned from place to reward
coding (solid) and 7 transitioned from reward to place coding (dashed). Black dots indicate the task
after which the transition took place. The red line shows the cell in .A
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Supplemental Figure 1.1: A:Animal speed in each task in one experiment. Rewarded feeders. In each panel, time 0
indicates the time point when the reward was delivered. The top row show the instantaneous speed around the feeders
(1s smoothing window), the red thick lines represent the average. The bottom row shows the histogram of the
instantaneous speed throughout the corresponding tasks. same as A for cases when reward were not delivered.B:
The 15 cm/s threshold is indicated in all panels by a green dashed line.
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Supplemental Figure 1.2

Supplemental Figure 1.2: Extension of Figure 5. The subpanels A-D of Figure 5 correspond to D, E, J, K
in this figure. To assess the choice of the 3-second time window size in Figure 5, we add the firing
probability analysis (A, G) as well as sensitivity/specificity analysis (B, H) for 1-second windows. We
compare the normalized firing rates in the corresponding time windows by the firing rates in randomly
chosen time windows with the same window size (C, F, I, L), as in Figure 5. The subpanels in the first 2
columns reveal that delivery preference was insensitive to the choice of window size.Also, the normalized
firing rates of reward cells are larger than those of place cells, especially for the 1-second case (I).
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Supplemental Figure 2.1

A

B

Supplemental Figure 2.1 A. Density of place fields. . Scatter plots of the location of the center of
mass of place fields of all cells recorded in one experiment (upper row). The task epochs are
displayed separately for learning (e.g. Set1L) and testing (e.g. Set1T) phases. The lower row
shows the density of place field locations shown in A, where the red dots indicate the location of
correct feeders. Cosine similarities between density maps withing the same sets (left), betweenB.
different sets in the same context conditions (2nd bar), between different sets in different context
conditions (3rd bar) and between Set and Recall epochs of the same session (right-most bar). C.
(next page) The density of place field locations for the other nine same/different context sessions
is shown, one session per row. There is no data for the last two tasks in one of the sessions due to a
recording failure. Phases in Set2 for different-context sessions are marked by the black box.
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Supplemental Figure 2.1 (cont)
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A

Supplemental Figure 2.2 A: Re-plotting of the fields for the four cells presented in Figure 2Awith
separation of the learning and testing phases. Though not identical, the place maps for different
phases in the same tasks are very similar. We computed the baseline level of the place fields asB:
the average value of the place map outside the cell's activity near the reward. We also computed
the average value of the map near the correctly rewarded feeder. The ratios of these values are
plotted separately for place cells and reward cells (x-axes).
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Supplemental Figure 2.3. A:Cosine similarity of place maps. Averaged similarity for the same cells in the
same and different sets (left 2 bars), and across cells (right 2 bars). Cosine similarity between place mapsB:
for each session for place and reward cells separately. For all sessions, the cosine similarity between the
place maps of the same cells was high for both place and reward cells when computed between
learning/testing phases of the same sets (left-most bar pairs) . The cosine similarity of same cells in different
sets was lower for reward cells than for place cells due to the change of reward locations between sets. The
similarity between different reward cells in the same sets had higher similarity than place cells, since reward
cells fired around the same feeders.
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Supplemental Figure 2.4: Replotting Figure 2 with a new reward score that measures the
correlation with single feeders but not all correct feeders. Different colors indicate the categories of
cells we previously determined, and we found that under the new definition of reward score, the
reward cells become inseparable from hybrid or place cells. Unlike with the skewed distribution
found in Fig 2, no group of cells with high reward score and low place score can be found. The
average new reward scores for all three cell categories are included in inset.
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