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Chapter 2 

Noncommutative Grobner Bases, and 
Projective Resolutions 

Edward L. Green 

2.1 Overview 

These notes consist of five sections. The aim of these notes is to provide a 
summary of the theory of noncommutative Grabner bases and how to apply 
this theory in representation theory; most notably, in constructing projective 
resolutions. 

Section 2.2 introduces both linear Grabner bases and Grabner bases for 
algebras. Section 2.3 surveys some of the basis algorithms of Grabner basis 
theory. These include the Division Algorithm, and the Termination Theorem 
(Bergman's Diamond Lemma). Section 2.4 presents the noncommutative ver­
sion of Buchberger's algorithm, universal Grabner bases and considers the spe­
cial case of finite dimensional algebras. Section 2.5 applies the theory of Grabner 
bases to the study of modules. Projective presentations and resolutions are con­
sidered. A method of constructing projective resolutions for finite dimensional 
modules is given. Section 2.6 considers further theoretical applications. The 
study of Koszul algebras via Grabner bases is presented. 

2.2 Grobner Bases 

2.2.1 Linear Grobner Bases In this section we consider only vector spaces. The 
ideas introduced here underlie much of what follows. 

Throughout these notes, K will denote a field. Let V be a vector space. We 
fix a K-basis 13 = {bJiEI where I is an index set. One of the essential features 
of the theory of Grabner basis is the selection of a well-ordered basis. Recall that 
> is a well-order on 13 if > is a total order on 13 and every nonempty subset of 
13 has a minimal element. The standard axioms of set theory imply that every 
set can be well-ordered. 

Let> be a well-order on 13. We recall basic properties of >. 

Proposition 2.1. {1S] If 13 is a set then> is a well-order on 13 if and only if for 
each descending chain of elements of B, b1 ;:;. b2 ;:;. b3 ;:;. .. " there exists some 
N > 0, such that bN = bN +1 = bN +2 = .... 

29 
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We will keep the following convention for the remainder of these lectures. If 
I is an index set and Vi E V for i E I then LiEI Vi implies that all but a finite 
number of Vi = O. Thus, if I write LiEI Q:ibi with Q:i E K and bi E B, then all 
but a finite number of Q:i = O. 

One of the main uses of a well-order is to be able to have the notion of a 
largest basis element in a vector. If V = LiEI Q:ibi we say bi occurs in V if Q:i =I O. 
This leads to the following important definition. 

Definition 2.1. If B = {bdiEI is a basis of a vector space V and > is a well-order 
on B, then if V = LiEI Q:ibi is a nonzero element of V, we say bi is the tip of v 
if bi occurs in v and bi ~ bj for all bj occurring in v. 

We denote the tip of v by Tip(v). If X is a subset of V we let 

Tip(X) = {b E Bib = Tip(x) for some nonzero x EX}. 

We let 
NonTip(X) = B \ Tip(X). 

Thus, both Tip(X) and NonTip(X) are subsets of the fixed basis B. Both sets 
are dependent of the choice of well order on B. 

It is not easy to see what the tip set of a subspace is from a generating set. 
Consider the following example where K is the field of rational numbers. Let V = 
K7 and B be standard basis ordered by el > e2 > ... > e7. Let W be the sub­
space spanned by (1,2, -1,0,2,1,5), (-1, -2,0,0,1, -1, -3), (1,2, -1,0,5,1,6). 
Then the tip set of W is {el, e3, e5}' Hence NonTip(W) = {e2, e4, e6, e7}' 

We give a fundamental result which will be used often in what follows. 

Theorem 2.1. Let V be a vector space over the field K with basis B. Let> be a 
well-order on B. Suppose that W is a subspace of V. Then 

V = W E9 Span(NonTip(W)). 

Proof. First we show that W n Span(NonTip(W)) = (0). 
Let x E Span(NonTip(W)) \ {O}. If x E W then Tip(x) E Tip(W). But Tip(x) E 
NonTip(W) since x E Span(NonTip(W)) and we would obtain a contradiction. 

Now we show that W + Span(NonTip(W)) = V. This will use that> is a 
well-order on B. Let v E V be such that Tip( v) is minimal with respect to the 
property that v f/- W + Span(NonTip(W)). We wish to show this leads to a 
contradiction. Consider Tip(v) = b. Let Q: be the coefficient of bin v. Note that 

Tip(v - Q:. b) < Tip(v). 

If bE NonTip(W) then by the above remarks and the minimality condition 
on v, v - Q: . b = w + z with w E W and z E Span(NonTip(W)). But since 
bE NonTip(W), we see 

v = w + (z + Q:. b) E W + Span(NonTip(W)), 

a contradiction. 
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On the other hand, if b E Tip(W) let w E W such that Tip( w) = b. Let 0: 
be the coefficient of b in v and f3 be the coefficient of b in w. Then v - (0:/ (3)w 
has smaller tip than v. Again, by the minimality condition on v, 

v - (0:/ (3) . w = w' + z, 

where w' E W and Z E Span(NonTip(W)). Thus, we get a contradiction, since 
then 

v = (w' + (o:/f3)w) + z E W + Span(NonTip(W)). 

D 

We now give the definition of a linear Grabner basis. Let W be a subspace of 
V. We say a set of vectors 9 c W is a linear Grabner basis for W with respect 
to> if 

Span(Tip(9)) = Span(Tip(W)). 

The reader should prove that if 9 is linear Grabner basis of W in V then 
Span(9) = W. 

Considering the fundamental Theorem 2.1, we see that every nonzero vector 
v E V can be written UNIQUELY as Wv + N(v), where Wv E Wand N(v) E 

Span(NonTip(W) ). 

Definition 2.2. We call N(v) the normal form of v. 

Let the coefficient of the tip of a vector v be denoted CTip(v). There is a 
"best" linear Grabner basis which can be defined as follows. 

Definition 2.3. Let W be a subspace of V. We say a set 9 of vectors in W is a 
reduced linear Grabner basis for V (with respect to » if the following conditions 
hold: 

1. 9 is a linear Grobner basis of W. 

2. If 9 E 9 then CTip(g) = 1. 

3. If 9 and g' are distinct elements of 9 then Tip(g) -I- Tip(g'). 

4. If 9 E 9 then 9 - Tip(g) E Span(NonTip(W)). 

The next result shows the existence and uniqueness of reduced linear Grabner 
bases. 

Proposition 2.2. Let V be a vector space and> a well-order on a basis B of V. 
Let W be a subspace of V. Then there is a unique linear reduced Grabner basis 
ofV. 

Proof. Let T = Tip(W). Then define 9 = {t - N(t) It E T}. By Theorem 2.1, 
t - N(t) E W. Now, Tip(t - N(t)) = t since no basis element occuring in N(t) 
can be the tip of an element in W. Thus 9 is a linear Grabner basis of W. The 
rest of the properties of a reduced linear Grobner basis are easy to check. D 
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Note that by Proposition 2.3 below, a reduced linear Grabner basis is in fact a 
basis. The next result gives both an algorithm to find the reduced linear Grabner 
basis in the finite dimensional case and also, in conjunction with Proposition 
2.2, proves the uniqueness of the reduced row echelon form of a matrix. We omit 
the details of row reduction techniques except to remind the reader that there 
are three row operations: 

1. Multiply a row by a nonzero constant. 

2. Interchange two rows. 

3. Change a row by adding a multiple of another row to it. 

Given an m x n matrix M we view the m rows as vectors in Kn. The row 
space of M is the span of the row vectors. It is easy to see that performing row 
operations to a matrix does not change the row space. 

Since we are fixing a K-basis of our vector space V, if dimK V = n then 
we will identify V with Kn by using the ordering of B. Let {eI,' .. ,en} be the 
standard basis for K n and we assume that> is the order el > e2 > ... > en. 
Now if W is a subspace of V spanned by vectors WI, ... , wm then we view W 
as the row space of the matrix that has WI, ... ,Wm as the rows. 

An m x n matrix M is reduced row-echelon form if 

1. For some 1 ::; r ::; m the first r rows are nonzero and the last m - rare 
zero. 

2. There is an increasing sequence 1 ::; CI < C2 < ... < Cr ::; n such the first 
nonzero column in the ith row is Ci with entry 1. 

3. If i -# j then entry in the jth column of the ith is O. 

The proof of the following proposition is left as an exercise. 

Proposition 2.3. Let el, ... ,en be the standard basis of K n with well-order el > 
e2 > .,. > en. If M is an m x n matrix is reduced row echelon form with 
r nonzero rows, then the reduced linear Grabner basis for the row space M is 
given by the first r row vectors. 

Note that as a consequence of the above discussion, using Theorem 2.1 and 
the uniqueness of the reduced Grabner basis, we have an easy proof the unique­
ness of the reduced row echelon form of a matrix. 

2.2.2 Rings and Admissible Orders We now turn our attention to K-algebras. 
Let R be a K-algebra and let B be a K-basis. We assume that B is a semi group 
with O. That is, assume that under the multiplication of the ring, we have 

b, b' E B implies b· b' E B or b· b' = O. 

We call such a K-basis a multiplicative basis of R. 
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Examples: 

a): Let R = K[xI, ... ,Xn ], the commutative polynomial ring in n variables. 
Let B = {monomials}. 

b): Let R = K <Xl, ... , Xn > be the free associative algebra in n noncommut­
ing variables. Let B = {monomials}. 

c): Path algebras: Let f = (fo, fd be a finite directed graph. Here fo 
{VI, ... ,vn } will be the vertex set (which we give some arbitrary order) 
and fl = {al,"" am} is the arrow set (which we also give some arbitrary 
order). Technically, we need two functions from f I --t f ° corresponding to 
the origin vertex of the arrow and the terminus vertex of the arrow. We 
will denote these by o(a) and t(a) respectively. Furthermore, for vertices 
we set o(vd = Vi = t(Vi)' 

Let B denote the set of finite directed paths in f, including the vertices, 
which are viewed as paths of length O. Each path P has a length, l(p), 
which is the number of arrows in p. We will write paths as follows: 

where aij E f I, t( aij) = o( aij+J for 1 ::; j ::; r - 1. We let 0(P) = o( aiJ 
and t(p) = t(ai r ) and say that p is a (directed) path from o(ail) to t(aiJ. 
Of course in this case l (p) = r. 

We give B structure of a semigroup with 0 via concatenation. That is, if 
p = al ... aT E B and q = bl ... bs E B where ai, bj E fl then 

Note that under the above definition, Vi' Vj is 0 if i -=I j and is ViVi = Vi if i = j. 
The fact that B is a semigroup with a relatively easy structure (for com­

putational purposes) is one of the essential features of Grobner bases. As we 
will see, reducing computations to B is one of the underlying reasons that the 
techniques are so powerful. 

We are now in a position to introduce the path algebra which we will denote 
by Kf. As a K-vector space, Kf has K-basis B. Thus the elements of Kf are 
K-linear combinations of paths and look like 

T 

X = LQiPi 
i=l 

where Qi E K and Pi are paths in B. We call the Qi the coefficient of Pi and say 
that Pi occurs in X if Qi -=I O. Having described the additive structure of Kf we 
need to give the multiplicative structure. For this, we define the multiplication on 
B and then extend linearly to all of Kf. If p, q E B we define via the semigroup 
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multiplication in B. Thus, p. q is 0 if the terminus of p is different than the 
origin of q, otherwise p . q is the concatenated path pq. We let K act centrally 
in Kf by a· L: aiPi = L:(aai)Pi. The action of K commutes with all elements 
of Kf. In particular, Kf is the semigroup algebra for the the semigroup B. 

Theorem 2.2. Basic Properties Let K be a field and f a finite directed graph. 
Then 

1. Kf is a K -algebra with 1. 

2. 1 = L:vEfo V. 

3. {v : v E f o} is a full set of primitive orthogonal idempotents for Kf. 
(A primitive idempotent is an idempotent that cannot be written as a sum 
of two orthogonal nonzero idempotents and we say two idempotents are 
orthogonal if their product, in either order, is 0) 

4. Kf is a positively Z-graded ring with the elements of B homogeneous and 
if p E B has length l then p E (Kf)l. 

5. Kf is a tensor algebra. 

Now assume that R is a K-algebra with multiplicative basis B. We do not 
want an arbitrary well-order on B. We want one that works well with the mul­
tiplicative structure of B. For this, we introduce the following definition. 

We say a well-order > on B is admissible if it satisfies the following two 
conditions where p, q, r, s E B: 

1. if p < q then pr < qr if both pr # 0 and qr # O. 

2. if p < q then sp < sq if both sp # 0 and sq # o. 

3. if p = qr then p > q and p > r. 

Note that in case R is the commutative or noncommutative polynomial ring, 
the requirements that pr # 0, qr # 0, sp # 0, and sq # 0 all can be dropped. If 
R is a path algebra, then we can obtain 0 when multiplying basis elements. 

The above properties restrict the orderings under consideration to those that 
"work well" with the multiplicative structure of B. In the commutative theory of 
Grabner bases, admissible orders are usually called "term orders" or "monomial 
orders" . 

We now give some examples which show that there are "natural" admissible 
orders on B in the case of path algebras. For the following examples, assume we 
are given a finite directed graph r. 

Example 2.1. The (left) length-lexicographic order: . 
Order the vertices and arrows arbitrarily and set the vertices smaller than 

the arrows. Thus 
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If p and q are paths of length at least 1, set p < q if l(p) < l(q) or if 
p = b1 ... br and q = b~ ... b~ with bi , bj E B and for some 1 SiS r, bj = bj for 
j < i and bi < b~. 

The right length-lexicographic order is defined similarly. 

Example 2.2. The (left) weight-lexicographic order: 
Let W : fl ----t {l, 2, 3, ... } be a set map. Define W : B ----t {I, 2, 3, ... } to be 

the natural extension. That is, W ( v) = 0 if v is a vertex and if ai E f 1 define 
W(al ... ar) = 2:~=1 W(ai)' Next, order the vertices and set the vertices smaller 
than the arrows. Order the arrows in such a fashion that if W(a) < W(b) then 
a < b. 

Finally, define p < q if W(p) < W(q) or if W(p) = W(q) then use the left 
lexicographic order. Notice that the length-lexicographic order is a special case 
of the weight-lexicographic order. Mainly, give every arrow weight 1. 

This order is sometimes called the degree-lexicographic order also. 

It should be pointed out that the (left) lex order is NOT admissible in 
general. For example, if f has one vertex and two loops, a and b with b > a 
then we get 

b > ab > aab > aaab > . .. . 

Hence it is not a well-order. This is different from the commutative case. 
There are some other, less obvious admissible orders. 

Example 2.3. The (left) weight-reverse-lex order: 
Take W : fl ----t {I, 2, 3, ... } and> define on the arrows and vertices as in 

the weight-lex order. Note that arrows and paths of positive length have positive 
weights. 

Define p < q if W(p) < W(q) or if W(p) = W(q) then p > q in the right lex 
order. This is a well-order since there are only a finite number of paths of any 
weight. 

One final example: 

Example 2.4. The Total Lexicographic Order: 
Label the arrows arbitrarily, say al,' .. ,am' Arbitrarily order the vertices 

and let them be smaller than any path of positive length. If p and q are paths, 
then p < q if there is some i, 1 SiS m, such that the number of ai's occuring 
in p and q are the same for j < i and the number of ai's occurring in p is less 
than the number of ai's occurring in q. If p and q have the same number of each 
arrow then p < q in lexicographic ordering (for some choice of ordering on the 
arrows). 

2.2.3 Grobner Bases Let R be a K-algebra with multiplicative basis Band 
admissible order >. Let I be an ideal in R. 

Definition 2.4. We say that a set gel is a Grabner basis for I with respect to 
> if 

< Tip(9) >=< Tip(I) > . 
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That is, the two-sided ideal generated by the tips of g equals the two-sided ideal 
generated by the tips of I. Equivalently, g c I is a Grabner basis for I if for 
every b E Tip(I) there is some 9 E g such that Tip(g) divides bj i.e., there are 
basis elements p, q E B such that pTip(g)q = b. 

We end this section by recalling Theorem 2.1 in the setting of rings. Suppose 
that R is K -algebra with multiplicative basis B and admissible order >. Then 
if I is an ideal then 

R = I EB Span(NonTip(I)) 

as vector spaces. In particular, every nonzero element r of R can be written 
uniquely as r = ir + N(r) where ir E Rand N(r) E Span(NonTip(I)). N(r) is 
still called the normal form of r. In the next section, I will address the existence 
of a reduced Grabner basis and how to construct Grabner bases. 

2.3 Algorithms 

2.3.1 Monomial Ideals and Reduced Grobner Bases We begin with a proposi­
tion which shows that not all rings with a multiplicative basis admit an admis­
sible ordering on the basis. Recall, if B is a subset of R we say b1 divides b2 (in 
B) if bl, b2 E B and there are elements c, dEB such that b2 = cb1 d. 

Proposition 2.4. If a multiplicative basis B of a ring R admits an admissible 
order then every infinite sequence of elements of B, b1 , b2 , b3 , •.. , such that bi 

divides bi - 1 for i ~ 1 stabilizes; that is, for some N, bN = bN +1 = bN +2 = .... 

Proof. The proof follows from the properties of an admissible order. Namely, 
suppose> is an admissible order for B. Then, if bi divides bi - 1 , we get b1 ~ 

b2 ~ b3 ~ •••• Since> is a well-ordering of B, we get the desired result. 0 

Let R be a ring with multiplicative basis B. We will call the elements of B 
monomials. We sayan ideal I in R is a monomial ideal if it can be generated by 
elements of B. The next proposition is important in the definition of a reduced 
Grabner basis. 

Proposition 2.5. Let R be K -algebra with multiplicative basis B which admits 
an admissible order. If I is a monomial ideal then I has a unique minimal 
monomial generating set. That is, there is a unique set of generators of I, none 
can be omitted and still generate I. 

Proof. Consider the set A of all monomials in I. Let M = {p E A I if q E 
A divides p then q = pl. Note that by Proposition 2.4, M is not empty. We 
claim that M is the unique minimal generating set of I. To show that M gen­
erates I, let B be a set of monomials that generates I. If b E B, then for some 
mE M, m divides b. Hence, B c<M>. Thus I c<M>. 

If M' is another set of monomial set of generators of I, then every mE Mis 
divisible by some m' EM'. But then, by definition of M, m = m' and we have 
shown that M eM'. 0 
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Note that the minimal set of generators given in the above proposition is 
independent of any particular admissible order. The existence of an admissible 
order is necessary to show that M is nonempty. Furthermore, it is possible that 
the unique minimal monomial generating set is not finite. This differs from the 
commutative case in that Dickson's Lemma [15] proves that every monomial 
ideal in commutative polynomial ring is can be generated by a finite number of 
monomials. Good references for the commutative theory are [15, 9, 1]. 

Let I be an ideal in Rand > an admissible order on a multiplicative basis 
B. Then if 9 is a Grabner basis of I, then Tip(Q) must contain the minimal 
monomial generating set of < Tip(I) >. 

If I is an ideal in R, we let IMoN be the ideal generated by Tip(I) (given 
some admissible order». Then there is a unique minimal monomial generating 
set T of IMoN . 

Definition 2.5. The reduced Grabner basis for I with respect to > is 

9 = {t - N (t) I t E T}. 

The proof of the next result is left as an exercise. 

Proposition 2.6. Let > be an admissible order on a multiplicative basis B of a 
K -algebra R. Let I be an ideal in R. Let 9 be the reduced Grabner basis for I. 
Then the following holds. 

1. 9 is a Grabner basis for I. 

2. If g E 9 then CTip(g) = 1. 

3. If 9 E 9 then 9 - Tip(g) E Span(NonTip(I)). 

4· Tip ( Q) is the minimal monomial generating set for 1M 0 N . 

2.3.2 The Division Algorithm In this section, we present a "division algorithm" 
in the rings we are studying. Throughout this section, we fix a K-algebra R with 
multiplicative basis B and admissible order >. 

Given an 0 RD ERED set of elements X = {Xl, X2, ... , xn} of R and another 
element y E R we show how to "divide" y by the set. We emphasize that 
the order of the elements affects the outcome of the division algorithm. What 
should division mean in this context? We mean that we find nonnegative integers 
ml,"" mn and elements Ui,j, Vi,j, r E R for 1 :::; i :::; nand 1 :::; j :::; mi such 
that 

2. Tip(y) ;:::: Tip( Ui,jXiVi,j) for all i and j. 

3. For bE B occurring in r, Tip(xi) does not divide b for 1 :S i :S n. 
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Note that it follows that Tip(r) S Tip(y). We will call r a remainder by 
division by Xl, ... , xn . 

We now present the algorithm in pseudocode. Our presentation here takes 
the commutative division algorithm in [15] and changes it to make it noncom­
mutative. 

The Division Algorithm 

INPUT: Xl, ... , xn (ordered), y 
OUTPUT: ml, ... , m n , Ui,j, Vi,j, r 
INITIALIZE: ml:= 0, ... , mn := 0, r := 0, z := y, DIVOCCUR:= False 
WHILE (z =f:. 0 and DIVOCCUR == False) DO 

FOR (i = 1) TO n DO 
IF Tip(z) = uTip(xi)v for u, v E B THEN 

mi:= mi + 1 
ui,mi := [CTip(z)/CTip(xi)]u 
Vi,mi := v 

z := z - [CTip(z)/CTip(xi)]uxiv 
DIVOCCUR := True 

ELSE i:= i + 1 
IF DIVOCCUR == False THEN 

r := r + CTip(z)Tip(z) 
z := z - CTip(z)Tip(z) 
DONE 

DONE 
DONE 

We leave it to the reader to analyze the algorithm and show that it does 
what it is supposed to do. We give one small example. 

Example 2.5. Let R be the noncommutative polynomial ring in three noncom­
muting variables x, y, z over a field K. Let B be the set of monomials and> the 
length-lexicographic order with X> Y > z. Let's divide xy-x = h, xx-xz = h 
into zxxyx. Note that the tip of h is xy and tip of h is xx. 

Beginning the algorithm, we see that zxxyx = (zx)Tip(fdx. 
Thus UI,1 = zx, VI,1 = X and we replace zxxyx by zxxyx - zx(h)x = zxxx. 

Now Tip(fd does not divide zxxx. Continuing, Tip(h) does. There are two 
ways to divide zxxx by xx and for the algorithm to be precise we must choose 
one. Say we choose the "left most" division. Then zxxx = z(Tip(h))x and we 
let U2,1 = Z, V2,1 = x and replace zxxx by zxzx. Neither Tip(fI) nor Tip(h) 
divide zxzx so we let r = zxzx and zxzx is replaced by 0 and the algorithm 
stops. We have 

zxxyx = (zx)hx + zhx + zxzx. 

The remainder is zxzx. 
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Note that if we interchange the order of h and h (so we start with h first) 
we see the outcome of the division algorithm is 

zxxyx = z(h)Yx + zxzyx, 

which gives a different remainder, namely, zxzyX. 

Definition 2.6. If X = {XI, ... , xn} (as an ordered set) and y is divided by X, 
we will denote the remainder r by y ::::} x r. 

If one had an infinite set X = {Xl, X2, ... } with Tip( Xl) ::; Tip( X2) ::; 
Tip(x3) ::; ... and only a finite number of xi's with a given tip, we could perform 
division by X. That is, only a finite number of elements of X are needed for 
division and these can be determined prior to division. For, given y, there can 
only be a finite number of Xi'S such that Tip(xi) ::; Tip(y), say Xl, ... , xn . By the 
desired properties of division, Xn+l, Xn+2, ... would never occur since we want 
Tip(y) ~ Tip(ui,jXiVi,j). Thus, we may divide by an infinite set of elements of 
R provided that that the set has the desired properties described earlier in the 
paragraph. 

Now we show that when we have a Grobner basis, the order of the xi's does 
not affect the remainder! 

Proposition 2.7. If g be a Grabner basis for an ideal I in R. Let y E Rand 
assume that X = {gI, ... , gn} = {g E g I Tip(g) ::; Tip(y)}. If y ::::} x r then r is 
independent of the order of gl, ... ,gn in X. In fact, r = N (y). 

Proof. Consider y ::::}x r. Then, since Tip(r) ::; Tip{y), we see that for each 
g E g, Tip(g) does not divide any basis element occurring in r. Hence r E 

Span(NonTip(I)). Now y = Ei E j Ui,jgivi,j + r. But Theorem 2.1 implies 
that y = iy + N(y) with iy E I and N(y) E Span(NonTip(I)) unique. But 
Ei E j Ui,jgivi,j E I and r E Span(NonTip(I)). Hence r = N(y). 0 

Corollary 2.1. If g is a Grabner basis of an ideal I in R such that for each b E B 
there are only a finite number of elements g in g with Tip(g) ::; b then there is 
an algorithm to find the normal form of elements of R. 

In practice, Grobner bases are found with only a finite number of terms 
with a given tip and hence the division algorithm gives an algorithm to find 
normal forms. Moreover, this is usually a "fast algorithm". The difficulty is in 
constructing Grobner bases! 

Note that we also now have a method to find the reduced Grobner basis once 
we have found a Grobner basis with only a finite number of terms with a given 
tip. This is an algorithm if IMoN has a finite set of monomial generators. The 
method proceeds as follows: 

1. Given a Grobner basis g such that only a finite number terms of g have 
a given tip. 

2. Output will be the reduced Grabner basis. 
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3. Find the minimal monomial generating set T of JMON . 

4. For each t E T, using the division algorithm, calculate t =>g N(t). 

5. The reduced Grobner basis is {t - N(t) It E T}. 

2.3.3 Overlap Relations and the Termination Theorem In this section, we give 
the noncommutative version of the S-polynomial found in commutative theory 
[15, 9]. We call these overlap relations. Throughout this section, R will be a 
K-algebra with multiplicative basis B and admissible order> for B. 

Definition 2.7. Let f, 9 E R and suppose that there are elements b, c E B such 
that 

1. Tip(j)c = bTip(g). 

2. Tip(j) does not divide band Tip(g) does not divide c. 

Then the overlap relation of f and 9 by b, c is 

o(j,g, b, c) = (l/CTip(j))fc - (l/CTip(g))bg. 

Note that Tip(o(j,g, b, c)) < Tip(j)c = bTip(g). We give some examples to 
help clarify overlap relations. 

Example 2.6. Let R = Kr where r is the graph: 

a 
Vie -t eV2 

dj ! b 
c 

V4 e +-- eV3 

9 j ! e 

V6 e 
f 

+-- evs 

Use the length-lexicographic order with VI < ... < V6 < a < b < e < ... < g. 
Consider p = abcdabcd - abefgd and q = cdabcda - efgda. There are a number 
of overlap relations between p and q. We list them below. 

1. o(p, q, a, ab) = p. a - ab· q = (-abefgd)a + abefgda = O. 

2. o(p, q, abcda, abcdab) = p. abcda - abcdab· q 
= -abefgdabcda + abcdabefgda i- O. 

3. o(q,p, bcd, cd) = -efgdabcd + cdabefgd i- O. 

4. o(q,p, bcdabcd, cdabcd) = -efgdabcdabcd + cdabcdabefgd i- o. 
As the above example shows, we need to look at all overlaps, including self 

overlaps; that is, overlaps of the form o(j, f,p, q). In this example, we have self 
overlaps o(p, p, abed, abed) and o( q, q, cdab, bcad). In the commutative case, one 
only uses the least common multiple of the leading monomials. In the noncom­
mutative case, we must look at all overlaps. 
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Next we consider "tip reduction". Suppose that X = {Xl, ... , Xn} is a set of 
elements in R. Let I be the ideal generated by X. If Tip(xi) = uTip(xj)v for 
some u, v E B, then letting 

we that X' is a generating set of I also. Continuing in this fashion, we obtain 
a finite set of generators of I such that no tip of a generator divides the tip of 
another generator. This process is finite by the well-ordering assumption on >. 
Thus it is not unreasonable to assume that we have no tip divisions on a set of 
generators of an ideal. 

Definition 2.8. We say a set of elements X is tip reduced if for distinct elements 
X,Y E X, Tip(x) does not divide Tip(y). 

Before giving the termination Theorem, we need one more concept: unifor­
mity. 

Definition 2.9. We sayan element L:~=l (Xibi, with (Xi E K* and bi E B, is (left) 
uniform if for each c E B, either cbi = 0 for all i, 1 ::; i ::; n or cbi i- 0 for all i, 
1 ::; i ::; n. 

Note that in the case of a noncommutative polynomial ring with B = 
{monomials}, all elements are uniform. In the case of a path algebra, with 
B = {finite directed paths}, then an element L:~=l (XiPi is uniform if and only 
if there are vertices v, w such that for 1 ::; i ::; n, the origin vertex of Pi is v and 
the terminus vertex is w. Note that every element X E Kf is a sum of uniform 
elements. Since 1 = VI + ... + Vn , we have X = L:~j=l ViXVj and we see that 
ViXVj is uniform since all the paths that occur must have origin vertex Vi and 
terminus vertex Vj. It follows that every ideal in a path algebra can be generated 
by uniform elements. 

We also note that if fER is a uniform element and b E B then both bf 
and fb are either 0 or uniform elements. We also remark that elements of Bare 
uniform. 

We now give the termination Theorem which is a version of G. Bergman's 
Diamond Lemma [11, 16]. 

Theorem 2.3. Let R be a K -algebm with multiplicative basis B and admissible 
order <. Suppose the 9 is a set of uniform, tip reduced elements of R. Suppose 
for every overlap relation 

with gl, g2 E g. Then 9 is a Grobner basis for < 9 >. 

Proof. Assume that 9 has the property that all overlap relations have remainder 
o under division by g. Let X E I and we assume that tip(x) is not divisible by 
the tip of any element of g. We show this leads to a contradiction. Without loss 
of generality, we amy assume that x is uniform. In this way, all multiplications 
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are in effect nonzero. Since we are assuming that 9 is a generating set, we may 
write 

x = Lai,jPi,jgiqi,j (*) 
i,j 

where gi varies over 9 and Pi,j, qi,j E B. Consider all such ways of writing x. Let 
p* be the largest path occuring on the rhs of (*). Since we are assuming that 
tip(x) is not divisible by the tip of any element of g, by uniformity it follows 
that p* is larger than tip(x) in the < order. Thus, the p*'s terms cancel each 
other out. 

Considering all ways of writing x as in (*), choose one such that p* is as 
small as possible and has the fewest occurrences in the rhs of (*). 

Since p* does not occur on the Ihs, it must appear in two summand of the 
rhs. So there exist i,j,i',j' so that 

To simplify notation, write p = Pi,j,g = gi,q = qi,jP' = Pi',j"g' = g~ and 
q' = qi' ,j" We proceed by a case by case study of the possible scenarios. 

Case 1: length P < length p'. 

In this case either, length q ::::: length q' or not. 

Case 1.1: Length q < length q'. 

Then tip(g') contains tip(g) and hence tip(g) divides tip(g') contradicting 
the hypothesis. 

Case 1.2: length q ::::: length q'. We consider two possibilities. 

Case 1.2.1: length p' ::::: length ptip(g). 

Then there is no overlap of tip(g) and tip(g') in p*. By the choice of 
lengths, it follows that there is a path q" such that p* = ptip(g )q" g' q'. 
Now if 9 = L aiPi + atip(g) , and g' = L (3iP~ + (3tip(p') , then 

pgq pgq"(l/(3)g'q' - pgq"(l/(3)(g' - tip(g'))q' 

(a/(3)ptip(g)q"g'q' + L.(ad(3)PPiq"g'q' - L.((3d(3)pgq"(pD· 

Thus, in writing pgq this way, can combine its tip with the tip of p' g' q' and 
lower the number of occurrances of p* which contradicts the minimality 
assumption. 

Case 1.2.2: length p' < length ptip(g). 

Then there is an overlap of tip(g) and tip(g') is p*. Say tip(g)r = s·tip(g'). 
Thus p* = ptip(g)rq' = pstip(g')q'. Then 

pgq = cg(tip(g))po(g, g', r, s)q + (cg(tip(g))/c~(tip(g')))p'g'q'. 
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By assumption o(g,g',r,s) totally reduces over 9 so is a K-linear com­
bination of terms of the form pfJij for paths p, q E Band 9 E 9, all of 
whose tips are smaller that tip(g)r = s . tip(g'). So we may combine the 
occurrance of p* in pgq with its occurrance in p' gq'. This again contradicts 
the minimality assumption. 

Case 2: length p = length p'. 

Then tip(g) divides tip(g') or vice versa - which contradicts the assumption 
on 9. 

Case 3: length p > length p'. 

Same as Case 1. 
D 

Note also that if division by 9 of some overlap relation is NOT 0, then 9 is 
not a Grobner basis. This is easy to see since the remainder will have tip which 
is not divisible by the tip of any element of 9. Thus, when the hypothesis of 
Theorem 2.3 are met, we have an algorithm to determine if 9 is a Grobner basis 
(assuming 9 is finite). 

Example 2.7. Let R = Kr where r is the graph: 

a b 

+- +-

d c 

Let >1 be the length-lexicographic order with VI < V2 < V3 < d < e < b < a. 
Consider 9 = {edab - eb, be - da}. Both elements are uniform and tip reduced. 
Then 

o(be - da, edab - eb, dab, b) = -dadab + beb =}g -dadab + dab i= o. 

Hence 9 is not a Grobner basis with respect to >1. 

But if we change >1 to >2 which is the length-lexicographic order with VI < 
V2 < V3 < a < b < e < d then Tip(cdab-eb) = edab and Tip(be-da) = da. Thus 
the set is not tip reduced. If we tip reduce 9 we get 9' = {ebeb - eb, -da + be}. 
Then Tip(ebeb - eb) = ebeb and Tip( -da + be) = da. The only overlap relation 
is 

o( ebeb - eb, ebeb - eb, eb, eb) = O. 

Hence all overlap relations have remainder 0 and we conclude that under >2, 
9' is a Grobner basis. 
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2.4 Computational Aspects 

2.4.1 Construction of Grobner bases In this section we present the noncom­
mutative analog of Buchberger's algorithm [13] for constructing Grobner bases. 
Given uniform elements iI, ... , fn in R, let I =< iI,···, fn >. Hence, by con­
struction, I is generated by a set of uniform elements. The algorithm produces 
a (possibly infinite) sequence of uniform elements gl, g2, . .. where gi = fi for 
1 :=; i :=; n and, for i > n, gi E I such that 

It can be shown that {gl,g2,'" ,gm,gm+l,"'} is in fact a Grobner basis for I. 
We present the algorithm in pseudocode. 

INPUT: iI, .. ·, fn 
OUPUT: gl,g2,g3,'" 

FOR i = 1 TO n DO 
gi := fi 

DO 

9:= {gl,'" ,gn} 
Count:= n 

1i :=9 
FOR each pair of elements h, k E 1i AND each overlap relation of 
h,k 

DO 
IF o(h, k,p, q) ~H rAND ri-O DO 

Count := Count + 1 

gCount = r 
9 := 9 U {gCount} 

DONE 
DONE 

WHILE (1i i- Q) 

Modifying the proof of the termination Theorem of the previous section, it 
can be shown that if bE f3 is a minimal monomial generator of IMON then for 
some m, Tip(gm) = b. From this we get the next result. 

Proposition 2.8. If IMON has a finite set of monomial generators then the above 
algorithm terminates in a finite number of steps and yields a finite Grabner 
basis. 

Proof. If [MON has a finite set of mononial generators, then the unique min­
imal monomial generating set must be finite. Suppose T = {tl,"" t s } is the 
finite generating set of minimal monomials for [MON. Then, by the remarks 
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preceeding the proposition, T C {Tip(gl), ... , Tip(gN)} for sufficiently large 
N. But then Tip( {gl, ... , gN}) generates I MoN and hence is a Grabner basis of 
I. But then division by {gl, ... , gN} can only have remainder 0 since all overlap 
relations are elements of I. Thus the algorithm terminates in a finite number of 
steps outputting a Grabner basis. D 

For a discussion of improvements of the Buchberger algorithm in the com­
mutative case we refer to [9]. Most of the discussion there can be translated to 
the noncommutative case. 

2.4.2 Basic Computational Use of Grobner Bases We are interested in studying 
quotient rings R/ I. Elements of R/ I consist of equivalence classes of the form 
f + I where f rv 9 if and only if f - gEl. The K-algebra has addition and 
multiplication given by 

(f + 1) + (g + I) = ((f + g) + 1) 

(f + 1) . (g + I) = ((fg) + I) 

To study R/ I we need a way studying the equivalence classes f + I. Assuming 
we have R represented on a computer via the given multiplicative basis B, we 
would like to be able to find "good" representatives of equivalence classes. But 
given an admissible order> on B we have such representatives. 

Proposition 2.9. Let R be a K -algebra with multiplicative basis B and admissible 
order> on B. Let I be an ideal in K. 

1. f + I = 9 + I if and only N (f) = N (g). 

2. f + 1= N(f) + I. 

3. The map a : R/ I ----t R with a(f + 1) = N (f), is a vector space splitting 
to the canonical surjection 7r : R ----t R/ I. 

4. a is a K-linear isomorphism between R/I and Span(NonTip(I)). 

5. Identifying R/I with Span(NonTip(I)), then NonTip(I) is a K-basis of 
R/ I contained in B. 

Proof. The first two parts are immediate consequences of Theorem 2.1 which 
states that R = IEBSpan(NonTip(I)). The remaining parts are left as an exercise. 

D 

Thus, normal forms solves the problem of finding representatives of the 
equivalence classes. Furthermore, addition of two equivalence classes (f + I) + 
(g + I) is given simply by N(f) + N(g) = N(f + g) since Span(NonTip(I)) 
is a linear subspace of R. By Proposition 2.9, since N(f) E f + I we see that 
multiplication of classes is given by 

N(N(f) . N(g)), 
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that is, to find the representative of (J + I) . (g + I) simply multiply N(J)N(g) 
in R and then take the normal form of the result. 

As pointed out in the last section, once a Grabner basis has been found, the 
division algorithm provides an algorithm to find normal forms. In this way, one 
can use the computer to study quotient rings R/ I. 

2.4.3 Finite Dimensional Algebras Suppose that R/ I is finite dimensional. 
What further can be said in this case? 

Proposition 2.10. Let R be a finitely generated K -algebra with multiplicative ba­
sis B and admissible order >. Suppose that I is an ideal such that dimK(R/ I) = 
N. Then IMON has a finite set of monomial generators. 

Proof. Since R/ I is isomorphic to Span(NonTip(I)) as vector spaces, it follows 
that NonTip(I) is a finite set since it is a basis of Span(NonTip(I)). Next, since 
R is finitely generated as an algebra, B is finitely generated as a semigroup. 

Let X = {bl, ... , bk } generate B. We show 

{bc I b E X and c E NonTip(I)} n Tip(I) 

generates IMoN. Suppose that t is a element of the minimal monomial generat­
ing set of IMoN . Then t = bi1 bi2 ... bil with bij EX. By minimality, bi2 ... bil f/. 
Tip(I). Thus, bi2 ... bil E NonTip(I). Hence t = bi1 c with c E NonTip(I). This 
completes the proof. D 

The above result has the following immediate consequence. 

Corollary 2.2. Let R be a finitely generated K -algebra with multiplicative basis 
and admissible order>. Suppose that I is an ideal generated by uniform elements 
and R/ I is finite dimensional. Then I has a finite uniform Grabner basis with 
respect to > and can be computed in a finite number of steps by the above 
algorithm. 

Open Question: Given R and a multiplicative basis B. Find necessary and suf­
ficient conditions on an ideal I in R such that there is some admissible order> 
for which I has a finite Grabner basis. 

2.4.4 Universal Grabner Bases If R is a K-algebra with multiplicative basis B. 
Assume that R is finitely generated and hence so is B. Fix a set of generators 
of the semigroup B, b1,· .. , bn-

Definition 2.10. If b E B we define the length of b to be k if b is a product of k 
generators and cannot be written as a product of fewer than k generators. We 
denote the length of b by length(B). 

Thus length(bi ) = 1 for i = 1, ... ,n and if bE B, length(b) ~ 1. 
Let I be an ideal in R. 

Definition 2.11. We say a set of elements 9 in I is a universal Grabner basis for 
I if for every admissible order >, 9 is a Grabner basis with respect to >. 

In some cases, finite universal Grabner bases exist. 
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Example 2.8. Let R be the noncommutative polynomial ring in three noncom­
muting variables x, y, z over the rational numbers. Let B be the set of monomials. 
Let I be the ideal generated by xy - 2yx, zx, zy. This set is a universal Grabner 
basis since all overlap relations reduce to 0 whether the tip of xy - 2yx is xy or 
is yx. Hence the order doesn't affect that the set is a Grabner basis. Note that 
R/ I is not even noetherian. 

In general, it is not known which ideals have finite universal Grabner bases. 
One of the difficulties with this problem in the noncommutative case is that 
admissible orders are not classified. 

We will show that finite universal Grabner bases exist if R/ I is finite dimen­
sional. For this we introduce some terminology. If V is a vector space with basis 
B, then the support of a vector v, SUPPB(V), is defined to be 

SUPPB(V) = {b E Bib occurs in v}. 

If X is a subset of V, the support of X is 

Proposition 2.11. Let R be a finitely generated K -algebra with multiplicative 
basis B which admits an admissible order. Let I be an ideal such that R/ I is 
finite dimensional. Then there exists a finite universal Grabner basis for I. 

Proof. Let d = dimK(R/ I) and let 7f : Kf ---t Kf / I be the canonical surjection. 
Assume that B is generated by X = {b1 , .•. , bn }. We claim that every b E B 
with of length longer than D = (d + 2)n has a factor which is the tip of an 
element in I of smaller length. That is, if the length of b is greater than D, then 
there is some monomial q of smaller length such that b = sqt and such that q 
is the tip of some element in I. Suppose b is a monomial of length longer than 
D. Write b = bh bi2 ... biE with bij E X and E > D. Then some generator of B, 
say b*, must occur at least d + 2 times. Hence we have a factorization of b into 
monomials, b = PICI ... Cd+1P2, where each Ci is of the form b*bij ... b* and is of 
length at least 1 but of length less than the length of b. Since dimK(R/ I) = d, 
the set {7f(ct}, ... , 7f(Cd+1)} is linearly dependent over K. Therefore there is a 
nontrivial linear combination x = 'L:!: ail; E I. Thus, some Ci is a tip in the 
given ordering and we have proven the claim. 

Now let V be the vector subspace of R with basis n consisting of monomials 
of length bounded by D. Let Y be the subspace I n V of V. Since V is finite 
dimensional, the support of Y is a finite set, say sUPPn (Y) = {SI' ... , sm}. For 
each Si E sUPPn(X), choose an element fi E I such that supp(/i) = Si. We now 
show that g = {It, ... , fm} is a universal Grabner basis for I. 

Let> be an admissible order and let h E I. Suppose the remainder h* of 
division of h by g is not O. No monomial occuring in h* is divisible by any 
Tip(fi), i = 1, ... , m. Let h* have that property that the longest monomial in 
h* is minimal in the set of all h E I such that no monomial in h is divisible 
by any Tip(fi). Let C be the length of the longest monomial in h*. If C :::; D 
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then supp(h*) E sUPPn(Y) and hence there is some Ii E 9 such that SUpp(Ji) = 
supp(h*). But then Tip(li) = Tip(h*), a contradiction. If C > D, then by an 
earlier argument, if p E B has length greater than D and occurs in h*, then there 
is some 1 E 9 such that Tip(J) is a subpath of p. Thus, p can be reduced by an 
element in g. But this contradicts our assumption on h* and we are done. 0 

2.5 Modules, Presentations and Resolutions 

In this section I will address the problem of studying R/ I-modules. If R/ I is 
not finite dimensional and the module is not finite dimensional, then the only 
possibility of computationally handling this situation is using generators and 
relations; a setup ideally suited for the use of the theory of Grabner bases. 
Throughout this section we fix a K-algebra R, a multiplicative basis B, and an 
admissible order >. Also fix an ideal I in R and assume we have a Grabner basis 
9 of I with respect to >. 

2.5.1 Modules Suppose that M is a finitely presented right R/ I-module. This 
means that M is the cokernel of a map between finitely generated projective 
R/ I-modules. This is equivalent to assuming that M is the cokernel of a map 
between two finitely generated free R/ I-modules. 

Let II : Fl - Fo be an R/ I-homomorphism between finitely generated free 
right R/ I-modules. We choose bases for Fo and FI, say {el,"" en} for Fo and 
{d l , ... , dm } for Fl. Then II is given by an m x n matrix Ail = (ai,j) where 
ai,j E R/ I. Then 

n 

lI(di ) = Lejai,j. 
j 

Let M = Coker(lI) = Fo/Im(Jd and let 10 : Fo - M be the canonical map. 
Note that computationally, we can represent the matrix Ail by an m x n 

matrix with entries in Span(NonTip(I)). 
Before specializing, I present a way of viewing M as an ideal in a ring where 

we can use Grabner basis theory to study M. In the representation theory of 
finite dimensional algebras, this is called "one point extension" . 

Let S = (~ ffJI)' Note that multiplication is just matrix multiplication; 

namely, 

( k m). (k' m') = (kk' km' + mr' ) 
Or Or' Orr" 

which makes sense in that we view M as a K-R/I-bimodule (with elements of 
K commuting will elements of M). 

We now show how to view S as quotient of a K -algebra for which we can 
find a multiplicative basis and an admissible order related to that of R. 

Let Go = LI~=l R with basis ei, ... , e~. 
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Define S to be the K-algebra by S = ( ~ 1)' Set 7r : S ~ S by 

7r( (k Li=l e:ri)) = (k !O(Li=l e: N(ri ))) . 
OrO N(r) 

49 

Note that we have identified R/ J with Span(NonTip(I)). Let J* = Ker(7r). We 
now give a multiplicative basis for S. Let B* be the set 

We can define an order <* on B* by (b g) <* (g g) for each b. (g g) <* (~~, ) 

ifb<b' (00) <* (oe:b') for all b b' and alIi Finally (oe: b) <* (oejb') if 
• Ob 0 0 ' . '0 0 0 0 

i < j or if i = j, b < b'. 
We leave it to the reader to check that <* is an admissible order on B*. Next 

we give a set of generators for J*. Assume J is generated by {hi} iET in R. Then 
J* is generated by 

Note that we view the elements ai,j E Span(NonTip(I)) in this setting as el­
ements of R. Again the reader may check that (*) is a generating set for J*. 
Under reasonable circumstances, we can find a Grabner basis for J* with respect 
to > *. For example, if R is a path algebra, then S is also a path algebra and 
hence we can algorithmically find Grabner bases. 

Applying Theorem 2.1, we get S = J* EB Span(NonTip(I*)). Remember that 
S / J* = ({f R~I ). In particular, M can be identified with (g f'rJ ). It follows that 
the elements of NonTip(I*) ofthe form (g 8) form a K-basis of M. Noting that if 

x E J then (8 ~) E J* and hence (~ ebx) E J* we conclude that the c's occurring 

in the K-basis of M are all of the form 2::7=1 eici with Ci E Span(NonTip(I)). 
Finally, assuming that a Grabner basis of uniform elements of [* can be 

computed, we note that the normal form of an element of M, (g 0)' when 
multiplied by an element of R/ J, (g g), yields an element of the form (g ~ ) 
with c' = 2::7=1 eici with ci E Span(NonTip(I)). 

We identify R/J with Span(NonTip(I)) (as usual) and M with the set 
of elements c = 2::7=1 ei Ci E Go where Ci E Span(NonTip(I)) with (8 0) E 

Span(NonTip(I*)). Note that such c can in fact be viewed as in Fo and with 
this identification, we get a vector space splitting (J" : M ~ Fo of 10 : Fo ~ M 
by (J"(m) = N( (~g)) where 10(g) = m. 

Stepping back from the above details, what we have is the following, assum­
ing we can compute a Grabner basis of uniform elements of J* algorithmically: 

1. One can compute a K-basis of M inside Fo algorithmically; namely, the 
Grabner basis of J* with respect to > *. 

2. One can algorithmically compute the action of R/ [ on this basis; namely, 
the computation of the normal form of the product. 
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In practice, we can use a Grabner basis of I with respect to > in that the 
elements (g ~) are part of a Grabner basis of I*. Once the Grabner basis for 1* 
is computed, operations by elements of R/ I on M can be performed using the 
division algorithm. 

2.5.2 Projective Resolutions In this section, we use the results of the previous 
section and Grabner bases to construct projective resolutions of modules. We 
need to require more properties of R. 

Our goal is to show how to algorithmically construct a projective R/ I­
resolution of a right R/ I-module M. This construction will use both the con­
struction of Grabner bases, overlap relations and the division algorithm. 

In this section we assume 

1. R has a multiplicative basis B and an admissible order >. 

2. R is a finitely generated K-algebra and B is generated by X = {b1 , ... ,bn }. 

3. Every element of B is a unique product of elements of X; that is, if 
C1 ..• Cr = d1 ... ds with Ci, dj E B then r = sand Ci = di . 

4. I is an ideal with Grabner basis g. 

As in the previous section, given a finitely presented right R/ I-module M 
with presentation h : F1 ----t Fo, we form the ring S = ({f RIVJI ). Viewing S as a 
quotient of 

s - (K Fa) - 0 R 

by I* , we find a Grabner basis g* of I* with respect to >*. Recall that g* = 

{( g ~) I g E g} U {( ~ hJ ) hEY where 9 is a Grabner basis for I with respect 

to > and hi are of the form 2:7=1 eici with Ci E Span(NonTip(I)). We assume 
each 2:7=1 eici and each g E 9 are are uniform elements of R. Furthermore, 
assume Fo has basis e1, ... , en 

Note that if hi = 2: j ejci,j, we define F{ to be the free R/I-module with 
basis {d~ liE I}. Define 

f~ : F~ ----t Fo 

by fi(dD = 2:j ejCi,j. We see that f{ : F{ ----t Fo is also a free presentation of M. 
Let f{ be represented by the matrix (ai,j) as in the last section. We also 

let fo : Fo ----t M be the canonical surjection. Note that the modules (0 R/ I) 
and (K M) are projective S-modules. This follows from (0 R/I) '::::: (g n Sand 
(K M) '::::: (6 g) S. 

Let U be the right S-module (K 0) (with the action of S given by right 
matrix mUltiplication). We have a projective presentation of U given as follows. 

(0 fa) 
( 0 Fa) -----> (K M) ----t U ----t O. 
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Note that the image of (0 fa) is (0 M). We may continue the resolution using 
ff as follows: 

(0 fn (0 fa) 
( 0 F{) ----7 (0 Fa) ----7 (K M) ---+ U ---+ O. (**) 

We show how to algorithmically find F2 , a free R/ I-module and a map 
h : F2 ---+ F{ so that 

P. 12 F' f{ 1:1 fa M 0 
2 ---+ 1 ---+ r 0 ---+ ---+ 

is an exact sequence. Once this is done, we can continue the projective resolution 

by replacing F{ !.i Fo with F2 !.:. F{ and repeat the construction. This will be 
done by continuing the sequence (**) over S and finding the next map in the 
resolution 

( 0 F2 ) (~) (0 F{) . 

For this we first describe F2 • Let 0 be the set of all overlap relation of form 

0(0:, j3,p*, q*) where 0: is of the form (~~) and j3 is of the form (8 ~). 
Let 0(0:, j3,p*, q*) be an overlap relation in O. Let 0: = (83) and j3 = (g ~). 

It follows that from the structure of B* that p* = (~b) for some p E Band 
that q* = (g ~) for some q E B. Furthermore, we have 

o(o:,j3,p*,q*) = (l/Tip(o:))o:· q* - (I/Tip(j3))p*j3 = 

(~(l/TiP(h))hq 0 (l/TiP(g))pg). 

Since g* is a Grabner basis, the remainder of o(o:,j3,p*,q*) by division by 
g* is O. Hence 

0(0:, j3, p. , q*) = 

'" '" (0 hi) (0 0) '" '" (0 Ui,j) (0 0) (0 0 ) 
Di Dj 0 0 0 qi,j + DgECJ Dj 0 0 0 g 0 Vi,j 

where qi,j, Ui,j, Vi,j E B. 
We can now describe F2 and h : F2 ---+ F{. F2 is the free R/ I-module with 

basis ei, where i is indexed by the overlap set O. To describe h : F2 ---+ F{ 
we need only define h(ei) for i E O. If i = o(o:,j3,p*,q*), then, keeping the 
notation of the previous paragraph, 

h(ei) = Ldjqi,j. 
JEI 

The above description of the construction of projective resolutions is a vari­
ation on the results found in [17J which use results from [5J. The proof of the 
next result can be obtained by vary the proof found in [17J of Theorem 4.1 to 
our setup. 
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Theorem 2.4. Keeping the above notations, 

D 12 pI f~ D h M 0 £2 ----t 1 ----t £0 ----t ----t 

is an exact sequence. 

2.5.3 Finite Dimensional Algebras and Modules In this section, we show how 
to find projective presentations from "standard" representations of modules and 
vice versa. R will denote a finitely generated K-algebra with multiplicative basis 
B, and generators bl, ... , bn and admissible order >. Let I be an ideal such that 
R/ I is finite dimensional. Let M be a finite dimensional right R/ I-module. As 
usual, we identify R/ I with Span(NonTip(I)) and let Span(NonTip(I)) = B. 
Without loss of generality, we may assume that the generators b1 , . .. , bn of B 
are in 8. (If some bi ~ 8 then bi acts as 0 on M and the following can be 
modified accordingly.) 

Let {mjhE..J be a K-basis for M. Well-order the mj's arbitrarily. Let D = 
1.11. Viewing M as a D-dimensional vector space, each generator b can be rep­
resented by a D x D-matrix (c~) with entries in K, where 

D 

mi' b = LmjCL· 
j=1 

The D x D matrices (c~:j)' l = 1, ... , n might be called the "standard" way of 
representing M. 

First we show how to obtain the (cL) from an R/I-free presentation of 
M, h : PI ----t Po. Suppose Po has R/I-basis {el, ... ,er } and PI has R/I­
basis {d1 , ... , ds }. Then, viewing h as a K -linear map M is the cokernel of 
h. Note that the K-bases of Po and PI are just {eibl1 ::; i ::; rand bE 8} 
and {dib 11 ::; i ::; sand b E 8} respectively. Hence knowledge of h as an R/ I­
homomorphism easily yields viewing h as a K-linear map. Furthermore, for 
each generator bl we have a commutative diagram: 

where the vertical morphisms are right multiplication by bl. It follows that we 
get a map gb l : M ----t M representing multiplication by bl . gb l yields the matrix 

(ctj)' 
To go the other way, assume that we have a K-basis {mj}jE..J of M and the 

D x D K-matrices (c~:j) representing multiplication by the n generators bz, 1 ::; 
l ::; n. We show how to construct an R/ I-projective presentation h : PI ----t Po 
of M. First let Po be the free R/ I-module with basis {ej I j E .1} and Fl be 
the free R/I-module with basis {dx,j I x E 8,j E .1}. Define fo : Fo ----t M by 
fa(ej) = mj. Next, define h : Fl ----t Fa as follows. Given j E :J and x E X, 
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since x is a product of bl'S, using the matrices (c~,v), we may calculate mj . x = 

LiE.:! mio:i,j where o:i,j E K. We now define fI (dx,j) = ejx - LiE.:! eio:i,j. 

Proposition 2.12. Keeping the notations above, 

is exact. 

Proof. We have seen that fo(Fo) = M. Hence the sequence is exact at M. It 
is immediate that fofI(dx,j) = 0 for each x E B and j E .:1. Thus Im(fI) C 

Ker(fo). It remains to show that Ker(fo) C Im(fI)· 
Consider {z = LjE.:! ejwj E Ker(fo) I z ~ Im(ft}}. We wish to show this 

set is empty. Let z = LjE.:! ejwj be in this set. Suppose Wj = LXEB (3j,xx. 
Consider z' = z + fI(Lj,x dj,x{3j,x). Since z ~ Im(fI), z' ~ Im(fI). But, from 
the definition of fI, we see fI (Lj,x dj,x{3j,x) = ~E.:! ej"lj - z for some Ij E K. 
Thus z' = LjE.:! ej"lj. But f(z') = 0 and hence ~jE.:! mj"lj = o. It follows that 
Ij = 0 for all j E .:1. This is a contradiction and we have shown no such z can 
9~. 0 

2.6 Applications of Grobner Bases 

Throughout this section, we will tacitly assume that R = Kf, B is the set of 
paths, and > is an admissible order. Hence Grabner bases exist for ideals in R. 

2.6.1 Topics not covered in Detail 

1. Computation of HomR/I(M, N) for two right R/I-modules can easily be 
performed. More precisely, Grabner bases yield K-bases of right modules 
which behave "nicely" with respect to the ring structure of R/ I. That is, 
viewing R/ I as Span(NonTip(I)) with "rewrite formulas" given by the 
Grabner basis, the module bases constructed in the last lecture come with 
how the basis of R/ I acts on basis elements of the module because that is 
precisely the information contained in the Grabner basis of I* in (~ ~) 
of the last lecture. Using these bases, the computation of HomR/I(M, N) 
as a vector space is straightforward. 

2. The study of submodules and quotient modules can be easily handled 
using the bases of last lecture. 

3. Computation of M ®R/I N for a left R/I-module M and a right R/I­
module N can be performed. For this one must be able to find bases of 
both left and right modules (which Grabner bases can do). One method 
of attacking the computation M ® R/ I N is to find M ® K N using the 
K-bases provided by the Grabner bases of the last lecture and then put 
in the relations over R/ I and find quotient. 
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4. Using the above two parts, it should be apparent that one can computa­
tionally study module theory of noncommutative rings that are quotients 
of rings that have a theory of Grabner bases. This class includes algebras 
that are quotients of path algebras and therefore includes quotients of free 
algebras. 

5. One can study the growth of algebras. By Theorem 2.1, RjI can be iden­
tified with Span(NonTip(I)) and NonTip(I) is a K-basis of Rj I. If R is 
the free algebra and B is the set of monomials or if R is a path algebra 
and B is the set of paths then the growth of the number of nontips of a 
given degree or length measures the growth of the algebra. More precisely, 
if Hn = dimK(Span({x E NonTip(I) I length(x) = n}), then the Hilbert 
series of Rj I is 

00 

n=o 

Here z is a variable. Questions like the rationality of H(Rj I) are being 
studied [2, 3, 4, 30]. 

One of the important tools to study H(Rj I) and the numbers Hn is the 
Ufnarovski graph. Space doesn't permit me to say much about it, but it is 
a powerful tool to study the nontips of I. We refer to [32]. 

6. Noncommutative Grabner bases in free algebras have been applied to 
study HOO control problems in the work of Helton, Stankus and Varvik. 

7. As described in the last section, Grabner bases allows the construction of 
projective resolutions of a right module M. Then, applying HomR/I( -, N) 
to the resolution and taking cohomology of the resulting complex, one can 
obtain the ext-groups ExtR/1(M,N). For a left RjI-module N, applying 
- QSl R/ I N to the resolution and taking cohomology of the resulting com-
plex, one can obtain the tor-groups Tor~/I (M, N). Hence, one can study 
homological questions computationally. 

One important invariant of an algebra is the Poincare series of a module. 
If M is a right Rj I-module and S is a simple right Rj I-module (usually 
K), let Pn = dimK ExtR11(M, S). The Poincare series is 

00 

Ps(M) = L Pnzn. 
n=O 

Again, questions like rationality and connections with the Hilbert series 
are of interest. [4, 30] 

8. Michael Bardzell [8] has used the theory of Grabner basis to study the 
Hochschild cohomology of a monomial K -algebra. 
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2.6.2 Algebras and their associated Monomial Algebras One of the interesting 
connections one obtains from the theory of Grabner bases is the associated 
monomial algebra to an algebra. As we have done, let IMoN = Span(Tip(I)). 
Then IMo N is a monomial ideal. We say R/IMoN is the associated monomial 
algebra to R/ I. Note that R/IMoN is dependent on the choice of basis B of R 
and on the choice of admissible order >. 

If R/ I is a finite dimensional K-algebra, there is an important invariant of 
R/ I called the Cartan matrix. Let SI, ... ,Sn be a full set of nonisomorphic sim­
ple R/ I-modules and let PI, ... ,Pn be indecomposable projective R/ I-modules 
such that there are surjections Pi ----t Si. Then we define the Cartan matrix of 
R/ I to be the n x n matrix (Ci,j) where Ci,j is the number of times Si occurs 
as a composition factor of Pj . 

Since R is a path algebra, it is sometimes natural to assume that I is con­
tained in the ideal <fl >2 where fl is the set of arrows in f. In this case there 
are certain simple modules of R/ I we distinguish, called the vertex simple mod­
ules. A vertex simple module is a module of the form Si = ViR/ < f 1 > where 
Vi is a vertex. It is easy to see that if there are n vertices in f, S 1, ... ,Sn are 
right simple R/ I-modules which are I-dimensional over K. 

If M is a right R-module and 

is a projective resolution of M, then the projective dimension of M, pdR/1(M), 
is the smallest n such that Im(Jn) is a projective module. If no such n exists, 
we say that M has infinite projective dimension and write pdR/1(M) = 00. The 
global dimension of R/ I, gl. dim(M), is N if 

N = Sup{pdR/1(M) I M is an R/I-module} 

if such an N exists. Otherwise, gl. dim(M) = 00. 

We can state a result relating R/I and R/IMoN . 

Theorem 2.5. (23] Let R = Kf be a path algebra with K -basis B the finite 
directed path in f and with admissible order >. Let I be an ideal in Rand 
IMoN be the associated monomial ideal. Then 

1. H(R/I) = H(R/IMoN ). 

2. If R/ I is finite dimensional, then 

3. Assume that I C<fl >2. 

(a) The construction of a projective resolution given in (n] for each ver­
tex simple module Si is minimal for R/IMoN . 

(b) For each i = 1, ... , n, pdR/1(Si) ::; pdR/IMON (Si)' 
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(c) If R/ I is finite dimensional, then gl. dim(R/ I) ::; gl. dim(R/ IMON). 

(d) If R/ I is finite dimensional, then the Cartan matrices of R/ I and 
R/IMON are equal. 

(e) If S is a vertex simple module viewed as a module over both R/ I and 
R/IMON , and if -7 PI -7 Po -7 S -7 0 and -7 P{ -7 P6 -7 S -7 0 are 
minimal projective resolutions over R/ I and R/IMoN respectively, 
then dimK(Pn ) ::; dimK(P~) for all n 2: o. 

2.6.3 Koszul Algebras Let R = Kf and I be an ideal in R. We say that I is a 
quadmtic ideal if there is a set of generators {It, ... , f n} of I such that each It 
is a K-linear combination of paths in f of exactly length 2. In this case, we say 
that {It, ... , f n} is a set of quadmtic genemtors and that R/ I is a quadmtic 
algebm. 

The path algebra R has a natural positive Z-grading given by letting vertices 
be homogeneous of degree 0, and paths be homogeneous of degree equal to the 
length. We will view R as a graded ring in this way. Note that an element 
x = E::l O!iPi with O!i E K and Pi E B is homogeneous if each Pi occurring in 
x has the same length. We call this the length gmding of R. Let I be a gmded 
ideal in Rj that is, an ideal generated by homogeneous elements. Then R/ I is a 
Z-graded algebra by the induced grading. 

For the remainder of this section, we assume that I is graded ideal in Rand 
let R/ 1= SOtJJSl tJJS2tJJ· .. as a graded ring. We let Gr(S) denote the category of 
Z-gmded S-modules and degree 0 S-module maps. That is, the objects of Gr(S) 
are 

where each i, j, Mi is a right So-module and if Sj E Sj and mi E Mi then 
miSj E Mi+j such that, forgetting the graded structure, M is a right S-module. 
A degree ° map f : M -7 N between graded S-modules is an S-module map 
such that if mi E Mi then f(mi) E Ni . 

We say a graded S-module is genemted in degree n if M j = ° for j < nand 
for all i 2: 0, the multiplication maps Mn ®so Si -7 Mni are surjective. We say 
that an S-module X is gmdable if there is a graded S-module M, such that 
X is isomorphic to M when one forgets the grading on M and views M as an 
S-module. We have the following result whose proof is standard. 

Proposition 2.13. Let I be a gmded ideal in a path algebm Kf where Kf has 
the length gmding. Assume that I c < f 1 >. Let Kf / I = So tJJ SI tJJ SI tJJ . .. be 
the gmded quotient ring. Then 

1. So is isomorphic to Kf / < f 1 > and hence is semisimple. 

2. Each Si is finite dimensional over K. 

3. The vertex simple modules are gmdeable modules. 

4. 81 EB 82 EB··· is the gmded Jacobson mdical of s. 
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5. The category of finitely generated graded 8 -modules has projective covers. 

6. Graded 8 -modules have graded projective resolutions. 

7. A graded 8 -projective resolution of a graded 8 -module M forgets to a 8-
projective resolution of X where X is the 8 -module M when we forget the 
graded structure. 

We say R/ I is Koszul algebra if 80 , viewed as a graded 8-module generated 
in degree ° has a graded projective resolution 

... Pn ---t Pn - l ---t .•. ---t Pi ---t Po ---t M ---t ° 
such that for each n, Pn is generated in degree n. Koszul algebras are an im­
portant class of algebras that naturally occur in algebraic geometry, topology, 
and the theory of quantum groups [10, 12, 14, 29, 31, 33]. Proofs of many of the 
basic results about Koszul algebras can be found in [21, 22, 10]. My goal here 
is to demonstrate that Grabner bases can be used in studying such a class of 
Koszul algebras. 

It is well-known that if R/ I is a Koszul algebra then I must be a quadratic 
ideal [21, 10]. At this time, there is no classification known of which quadratic 
ideals I have the property that Kf / I is a Koszul algebra at this time, in terms 
of the generators of the quadratic ideals. We do have the following result though. 

Theorem 2.6. [20J Let I be a quadratic ideal in a path algebra Kf. Let> be an 
admissible order on the paths such that I has a quadratic Grabner basis. Then 
Kf / I is a K oszul algebra. 

The proof of the result, although too technical for these lectures, involves an 
investigation of the projective resolution of the vertex simple modules given by 
the construction discussed in the last lecture. Analysis of the construction shows 
that if the algebra is graded and the module is graded, then the constructed 
resolution is, in fact, a graded resolution of the module. It is also shown that if 
the generators of I are quadratic, then the construction of a graded projective 
resolution of a vertex simple module has the desired degree properties. 

The next result follows from the above theorem and also from [23]. 

Corollary 2.3. Let I be a monomial ideal generated by some paths of length 2. 
Then Kf / I is a K oszul algebra. 

Proof. If J is a monomial ideal in a path algebra, since overlap relations are in 
fact 0, we see by the Termination Theorem that any generating set of monomials 
for J is a Grabner basis under any admissible order. Since I can be generated 
by paths of length 2, it follows that I has a quadratic Grabner basis. 0 

We end with another application which is more fully described in [19]. Let 
R = K < Xl, ... , Xn > be the free associative algebra in n noncommuting vari­
ables. Let> be the degree-lexicographic order with Xl < X2 < ... < X n . For 
1 :::; i < j :::; n, let 
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where ri,j is a quadratic polynomial, each of whose terms is less than XiXj' Thus 
Tip(qi,j) = XjXi and Tip(qi,j -Tip(qi,j) = XiXi. Let I be the ideal generated by 
{qi,j }. 

Note that I is a quadratic ideal. Consider R/ I. We denote the image of Xi 
in R/ I by Xi. We say R/ I has a Poincare-Birkhoff- Witt basis or PBW basis if 
{xrlx~2 ... x~n} where ai are nonnegative integers, is a K-basis of R/I. 

The set {qi,jhO:;i,jO:;n can be viewed as rewriting rules in the sense that if a 
monomial in = XilXi2" ,Xis has the property that for some j, ij > ij+1 then in 
R/ I, XijXiHl = Cij,iHl XiH1 Xij - fi j ,iH ll 

Thus, by replacing XjXi as above if j > i and by the fact that> is a well­
order, we see that {xr1 X~2 ... x~n} generate R/ I as a K vector space. It is 
natural to ask if R/ I has a PBW basis. The next result answers the question. 

Proposition 2.14. Keeping the above notations, R/ I has a PBW basis if and 
only if {qi,j} is a Grabner basis of I. Thus, if R/I has a PBW basis, R/I is a 
Koszul algebra. 

Proof. Suppose that R/ I has a PBW basis. Then {xr1 X~2 ... x~n } is a K -basis 
for R/ I. To show that {qi,j} is a Grobner basis for I it suffices to show that 
overlap relations have remainder 0 when divided by {qi,j}' 

Consider division by {qi,j}. Any monomial m occuring in a remainder cannot 
have XjXi with j > i in it since if so, Tip( qi,j) would divide m. Thus, the remain­
der of division by {qi,j} of any overlap relation is in the span of {X~l ... x~n}. 
By the PBW basis assumption, no element of this span is in I other than O. 

If {qi,j} is a Grobner basis for I, then 

NonTip({qi,j}) = {m E BITip(qi,j) does not divide m}. 

But it immediate that NonTip( {qi,j) is {xr1 ... x~n I ai ;::: O}. But NonTip(I) is 
a K -basis of R/ I under the usual identification. Thus, R/ I has a PBW basis. 

The last result of the proposition is a consequence of Theorem 2.6. D 

Bibliography 
[1] W. Adams and P. Loustaunau: An Introduction to Grabner bases, Graduate 

St. in Math, AMS 3, 1994. 

[2] D. Anick: Noncommutative graded algebras and their Hilbert series, J. of 
Algebra 78, (1982), 120-140. 

[3] D. Anick: On monomial algebras of finite global dimension, Transactions 
AMS 291, (1985), 291-310. 

[4] D. Anick: Recent progress in Hilbert and Poincare series, LNM 1318, (1986) 
Springer-Verlag, 1-25. 



Edward L. Green 59 

[5] D. Anick and E.L. Green: On the homology of path algebras, Comm. in 
Algebra 15, (1985), 641-659. 

[6] M. Auslander, 1. Reiten, and S. Smal0: Representation Theory of Arlin 
Algebras, Cambridge Studies in Advanced Math. 36, (1995), Cambridge 
Univ. Press. 

[7] J. Backelin, R. Froberg: Koszul algebras, Veronese subrings and rings with 
linear resolutions, Rev. Roumaine Math. Pures Appl. 30, (1980),85-97. 

[8] M. Bardzell: The alternating syzygy behavior of monomial algebras, J. of 
Algebra 188, (1997), no. 1, 69-89. 

[9] T. Becker and V. Weispfenning: Grabner bases. A Computational Approach 
to Commutative Algebra, GTM 141, Springer-Verlag, 1993. 

[10] A. Beilinson, V. Ginsburg, & W. Soergel: Koszul Duality Patterns in Rep­
resentation Theory, J. Amer. Math.Soc. 9, (1996) 473-527. 

[11] G. Bergman: The diamond Lemma for ring theory, Adv. Math. 29, (1978) 
178-218. 

[12] A.1. Bondal: Helices, representations of quivers and Koszul algebras, Lon­
don Math. Soc. Lecture Note Ser. 148, (1990), 75-95. 

[13] Buchberger: An algorithm for finding a basis for the residue class ring of a 
zero-dimensional ideal, Ph.D. Thesis, University of Innsbruck, (1965). 

[14] E. Cline, B. Parshall, and L. Scott: Finite dimensional algebras and highest 
weight categories, J. Reine Angew. Math. 391, (1988), 85-99. 

[15] D. Cox, J. Little, and D. O'Shea: Ideals, Varieties, and Algorithms, UTM 
Series, Springer-Verlag (1992). 

[16] D.R. Farkas, C. Feustel, and E.L. Green: Synergy in the theories of Grabner 
bases and path algebras, Canad. J. of Mathematics 45, (1993), 727-739. 

[17] C. Feustel, E.L. Green, E. Kirkman, and J. Kuzmanovich: Constructing 
projective resolutions, Comm. in Alg. 21, (1993) 1869-1887. 

[18] E.L. Green: Representation theory of tensor algebras, J. Algebra 34, (1975), 
136-171. 

[19] E.L. Green: Poincare-Birkhoff- Witt bases and Grabner bases, preprint. 

[20] E.L. Green and R. Huang: Projective resolutions of straightening closed 
algebras generated by minors, Adv. in Math. 110, (1995),314-333. 

[21] E.L. Green, and R. Martinez Villa: Koszul and Yoneda algebras, Canadian 
Math. Soc. 18, (1994), 247-298. 



60 Bibliography 

[22] E.L. Green, and R. Martinez Villa: Koszul and Yoneda algebras II, in 
Yoneda algebras II, Canadian Math. Soc., Proceedings of ICRA, Ed. Re­
iten, Smalo, Solberg, 1998. 

[23] E.L. Green and D. Zacharia: The cohomology ring of a monomial algebra, 
Manuscripta Math. 85, (1994). 

[24] R. Hartshone: Residues and Duality, LNM 20, Springer-Verlag, (1966). 

[25] C. Lofwall: On the subalgebra generated by the one-dimensional elements 
in the Yoneda ext-algebra, LNM 1183, Springer-Verlag, (1986), 291-338. 

[26] R. Martinez Villa: Applications of Koszul algebras: the preprojective algebra, 
Canadian Math. Soc. 18, (1994), 487-504. 

[27] S. McLane: Homology, Springer-Verlag, 1963. 

[28] T. Mora: Grabner bases for non-commutative polynomial rings, Proc. 
AAECC3 L.N.C.S. 229, (1986). 

[29] S. Priddy: Koszul resolutions, Trans. AMS 152, (1970), 39-60. 

[30] J.E. Roos: Relations between the Poincare-Betti series of loop spaces and 
of local rings, LNM 740, Springer-Verlag, 285-322. 

[31] M. Rosso: Koszul resolutions and quantum groups, Nuclear Phys. B Proc. 
Suppl. 18h, (1990), 269-276. 

[32] V. Ufnarovskii: A growth criterion for graphs and algebras defined by words, 
Mat. Zemati 31, (1980) 465-472; Math. Notes 37, (1982) 238-241. 

[33] Y. Yoshino: Modules with linear resolutions over a polynomial ring in two 
variables, Nagoya Math. J. 113, (1989), 89-98. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <>
    /PTB <>


    /SKY <>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




