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Blackbird (Turdus merula)
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Mathematics: Relationship Between Taylor and Fourier Series

Imagine a periodic time-series (w/ period 2x) described by the following function:
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Fourier series

for t=[-rt,x]
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- Taylor series expands as a linear combination of polynomials

- Fourier series expands as a linear combination of sinusoids



Trigonometry review = Sinusoids (e.g. tones)

A sinusoid has 3 basic properties:

I.  Amplitude - height of wave

ii.  Frequency = 1/T [HZ]

iil.  Phase - tells you where the
peak is (needs a reference)
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Why Use Fourier Series?

0. Idea put forth by Joseph Fourier (early 19'th century); his thesis committee was not impressed
[though Fourier methods have revolutionized many fields of science and engineering]

1. Many phenomena in nature repeat themselves (e.g., heartbeat, songbird singing)

= Might make sense to ‘approximate them by periodic functions’

2. Taylor series can give a good local approximation (given you are within the radius
of convergence); Fourier series give good global approximations

3. Still works even if £(¢) is not periodic

4. Fourier series gives us a means to fransform from the time domain to frequency domain
and vice versa (e.g., via the FFT)

=> Can be easier to see things in one domain as opposed to another
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=> One of the ear’s primary functions is
to act as a Fourier ‘transformer’




Example: Square Wave

0 —1<t<0

1) = IR EE
=11 o<i<1

For periodic function f'with period b, Fourier series on ¢ =[-b/2, b/2] is:

f(t) =aog+ Z [ak cos (2%“) + by sin (2%kt>]

k=1

where

b/2 2 [/? [ 2mkt
ap = g/ f(t) cos (27T—kt> dt b, = —/ f(t)sin (L> dt
b J_y)2 b bJ_p)2 b

(these are called the Fourier coefficients)



Example: Square Wave (cont.)

= When the smoke clears....

1 2 2 2
f(t) = 9 + %Sin(ﬂt)—k S—ﬂ_Sin(37Tt)—|— 5—7Tsin(57rt)+...

include first two terms
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include first four terms
only (green)

=> Note that approximation gets better as the
number of higher order terms included
increases

include first three terms
only (black dashed)
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SUMMARY

- Taylor series expands as a linear combination of polynomials

- Fourier series expands as a linear combination of sinusoids

- Idea is that a function (or a time waveform) can effectively be
represented as a linear combination of basis functions, which can
be very useful in a number of different practical contexts
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The ear actually EMITS sound!

http://www6.miami.edu/UMH/CDA/UMH_Main/



BM Traveling Waves
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- Stimulus induces propagating wave along flexible membrane

- Tonotopic organization (i.e. a spectrum analyzer)
=> energy propagates to its characteristic frequency spot

- Membrane motion stimulates the sensory cells



