

Math 250B (Spring 2009) 03.03.09 C. Bergevin

Blackbird (Turdus merula)

Imagine a periodic time-series (w/ period 2π) described by the following function:

$$f(t) = f(0) + f'(0)t + f''(0)\frac{t^2}{2} + f^{(3)}(0)\frac{t^3}{6} + \dots = \sum_{n=0}^{\infty} f^{(n)}(0)\frac{t^n}{n!} \qquad \frac{\text{Taylor series}}{\text{about } t=0}$$

OR

$$\approx a_0 + a_1 \cos t + a_2 \cos 2t + a_3 \cos 3t + \cdots + b_1 \sin t + b_2 \sin 2t + b_3 \sin 3t + \cdots$$

Fourier series for t=[$-\pi,\pi$]

$$= a_0 + \sum_{n=1}^{\infty} a_k \cos nt + \sum_{n=1}^{\infty} b_k \sin nt$$

- Taylor series expands as a linear combination of polynomials

- Fourier series *expands* as a linear combination of sinusoids

<u>Trigonometry review</u> \Rightarrow Sinusoids (e.g. tones)

A sinusoid has 3 basic properties:

- i. Amplitude height of wave
- ii. Frequency = 1/T [Hz]
- iii. Phase tells you where the peak is (needs a reference)

Why Use Fourier Series?

0. Idea put forth by Joseph Fourier (early 19'th century); his thesis committee was not impressed [though Fourier methods have revolutionized many fields of science and engineering]

1. Many phenomena in nature repeat themselves (e.g., heartbeat, songbird singing)

 \Rightarrow Might make sense to 'approximate them by periodic functions'

2. Taylor series can give a good *local* approximation (given you are within the radius of convergence); Fourier series give good *global* approximations

3. Still works even if f(t) is not periodic

4. Fourier series gives us a means to *transform* from the time domain to frequency domain and vice versa (e.g., via the FFT)

 \Rightarrow Can be easier to see things in one domain as opposed to another

Time Domain

Spectral Domain

Example: Square Wave

$$f(t) = \begin{cases} 0 & -1 < t \le 0\\ 1 & 0 < t \le 1 \end{cases}$$

For periodic function *f* with period *b*, Fourier series on t = [-b/2, b/2] is:

$$f(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k \cos\left(\frac{2\pi kt}{b}\right) + b_k \sin\left(\frac{2\pi kt}{b}\right) \right]$$

where

$$a_{k} = \frac{2}{b} \int_{-b/2}^{b/2} f(t) \cos\left(\frac{2\pi kt}{b}\right) dt \qquad b_{k} = \frac{2}{b} \int_{-b/2}^{b/2} f(t) \sin\left(\frac{2\pi kt}{b}\right) dt$$

(these are called the *Fourier coefficients*)

Example: Square Wave (cont.)

 \Rightarrow When the smoke clears....

$$f(t) = \frac{1}{2} + \frac{2}{\pi}\sin(\pi t) + \frac{2}{3\pi}\sin(3\pi t) + \frac{2}{5\pi}\sin(5\pi t) + \cdots$$

include first three terms only (black dashed)

 \Rightarrow Note that approximation gets better as the number of higher order terms included increases

SUMMARY

- Taylor series *expands* as a linear combination of polynomials

- Fourier series *expands* as a linear combination of sinusoids

- Idea is that a function (or a time waveform) can effectively be represented as a linear combination of *basis functions*, which can be very useful in a number of different practical contexts

Fini

The ear actually EMITS sound!

BM Traveling Waves

- Stimulus induces propagating wave along flexible membrane
- Tonotopic organization (i.e. a spectrum analyzer)
 ⇒ energy *propagates* to its characteristic frequency spot
- Membrane motion stimulates the sensory cells