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Abstract

In a companion paper we presented a new algorithm for the numerical solution of
problems of acoustic scattering by surfaces in three-dimensional space. This algorithm,
which runs in O (N6/5 log N) to O(N*/31og N) operations (where N is the number of
surface discretization points) evaluates scattered fields through fast, high-order solution
of the corresponding boundary integral equation. (The latter complexity estimate applies
to smooth surfaces, for which our high order algorithm provides accurate solutions with
small values of N; the former, more favorable count is valid for highly complex surfaces
requiring significant amounts of subwavelength sampling.) In Part I we introduced the
main algorithmic components of our approach, and we demonstrated its performance with
a variety of numerical results; in particular, we showed that our algorithm can evaluate
accurately in a personal computer scattering from bodies of acoustical sizes of several
hundreds. In the present text we provide the theoretical foundations and error analyses
of our method. In particular, we establish its super-algebraic convergence as well as the
theoretical validity of certain two-face equivalent source representations which lie at the

basis of its acceleration scheme.



Introduction

In the previous article [1], henceforth referred to as Part I, we introduced a fast, high-order
algorithm for the solution of problems of acoustic scattering from smooth surfaces in three-
dimensional space. That algorithm computes scattered fields in O (N%/>log N) to O(N*/3log N)
operations. The latter estimate applies to smooth surfaces, for which our high order method
provide accurate solutions with small values of /V; the former, more favorable count is valid for
highly complex surfaces requiring significant amounts of subwavelength sampling. A variety of
numerical experiments indicate that this algorithm performs exceptionally well, and, in fact,
that it yields, in competitive running times, considerably higher accuracies than those rendered

by other methods.

Our methods resulted from a number of innovations, including use of partitions of unity,
analytical resolution of singularities, and an acceleration technique based on certain two-face
equivalent-source representations. While the validity and efficiency of these techniques were
demonstrated in Part I through a variety of numerical experiments and comparison with leading
solvers, the theoretical basis implicit in the design of our algorithm was not discussed before. In
the present paper we provide a rigorous theoretical framework, including a proof of the validity
of two-face representations, an error and stability analysis, and a proof of super-algebraic

convergence of the overall algorithm.

The main innovations in the present solver lie in its approaches to high-order integration
and acceleration. Based on analytical resolution of singularities and smooth partitions of unity,
our basic high-order integration technique gives rise to super-algebraic convergence; a proof of
this fact is given in Section 2 below. Our FF'T acceleration scheme, on the other hand, is closely
related to some of the most advanced FFT methods developed recently [8-11]. An important
common element between these methods and ours is a concept of equivalent (or auxiliary)
sources, located on a subset of a 3-D Cartesian grid. As mentioned in Part I, the main difference

between our acceleration method and previous ones lies on our use of a sparse distribution of



equivalent sources (the monopole+dipole “two-face” equivalent source approximations) which,
on one hand reduces significantly the computing times and memory requirements, and, on the

other hand, gives rise to high order approximations.

Although this paper may be read independently from Part I, certain familiarity with that
article should prove helpful in understanding the motivations for the present work. A number
of references to specific equations and sections in Part I occur throughout this text; references
to equation (4) and Section 3 in Part I, for example, will be denoted by (4') and Section 3!

respectively.

This paper is organized as follows: after a brief description of the algorithm (Section 1),
in Sections 2-4 we perform an error analysis of the method; our overall error estimate is
summarized in Section 5. In Section 6 we then present the theory underlying the two-face
approximation algorithm. As a by-product of our analysis we show that, importantly, the purely

monopole approximations used elsewhere cannot be used in sparse arrays; see Appendix A.

1 Mathematical formulation

We deal with integral equation solvers for the Helmholtz equation [13]
Atp(r) + k*(r) = 0, r cR*\ D,
whose solution 1 under boundary conditions

U(r)=-4'(r), reaD
describes the scattering of the incoming wave 1" by the obstacle D. Here k denotes the wave
number, (so that A\ = 27 /k is the wavelength), and r = |r|. The integral equation formulation
we use is given in terms of the acoustic single- and double-layer potentials

(S)(r) = / B(r, ') (') ds(r'), 1)

oD



and

Here ®(r,r') = e*I"=*'l /47 |r — 1’| is the Green function for the Helmholtz equation, and v( r')
is the external normal to the surface at point r’. Explicitly, the scattered field can be obtained

easily once the integral equation

So(r) + () () — i (S¢) (1) = ¥/(x), €D

for the unknown density ¢(r) has been solved, see [13]. As noted in Part I, appropriate choices

of the (positive) parameter v can be very advantageous in practice.

Our algorithm is based on three main techniques: (a) Smooth/periodic subdivision of in-
tegrands by means of partitions of unity (POU), (b) Regularization of singular integrands by
means of changes of variables and floating POUs, and (¢) Acceleration through use of a two-
face (sparse) equivalent source representations. Full details on our algorithmic implementations
are given in Part I; a brief outline is presented in what follows with references to the relevant

portions of the analysis contained in this paper.

Partitions of unity. In order to deal with topological characteristics of closed surfaces
which are given in terms of local parametrizations we utilize partitions of unity. In detail,
we use a covering of the surface 0D by a number K of overlapping two-dimensional patches
Pij =1,--- K, (called local charts in differential geometry). The patches P’ are then
smoothly mapped to coordinate sets #’ in two-dimensional space, where actual integrations
are performed. Further, we utilize a partition of unity subordinated to this covering of 0D,
i.e. we introduce a set of non-negative smooth functions {w’,j = 1,..., K}, such that (i) w’
is defined, smooth and non-negative in @D, and it vanishes outside P7, and (ii) ZJKZI w! =

throughout dD. This allows us to reduce the problem of integration of the density ¢(r) over

the surface to a calculation of integrals of smooth functions ¢/ compactly supported in the

4



planar sets H7. The error arising from use of such partitions of unity can be estimated through

the results of Section 2.

Adjacent integration. Substantial difficulties in the high-order evaluation of adjacent in-
teractions are caused by the singular nature of the integral kernels ®(r’,r) and 0®(r’,r)/0v(r)
at r' = r. While, certainly, the well-known strategy of “singularity subtraction” gives rise to
bounded integrands, integration of such bounded functions by means of classical high-order
methods does not exhibit high-order accuracy — since the subsequent derivatives of the in-
tegrand are themselves unbounded. Thus we developed specialized quadrature rules which
achieve high-order integration for this singular problem. The new singular high-order inte-
grator presented in Part [ is based on analytical resolution of singularities. The resolution is
achieved by integration in polar coordinates centered around each singular point. The Jacobian
of the corresponding change of variables has the effect of cancelling the singularity, so that high
order integration in the both radial and angular directions can be performed by means of the
trapezoidal rule. In order to maintain a reduced operation count a certain floating partition of
unity is used. This floating POU restricts the application of the singular integrator to a domain
which shrinks algebraically as the discretization is refined. It thus needs to be established that
the resulting quadratures of products of smooth functions and shrinking partitions of unity still
yield super-algebraic convergence as stated; this result follows, again, from the considerations

presented in Section 2.

Non-adjacent integration and acceleration. To evaluate non-adjacent interactions,
in turn, our algorithm exploits the convolution-like structure of the non-adjacent integration
problem. In detail, our method uses certain “two-face equivalent source representations” which
approximate fields radiated by portions of the surface by fields radiated by two planar distribu-
tions of singular sources. The discrete convolution of these equivalent sources can then be eval-
uated efficiently by means of the FFT and an O (N%log N) algorithm results (5/6 < ¢ < 4/3,

with the actual value of ¢ depending on the geometrical characteristics of the scattering surface,



see Part I). Three main theoretical issues need to be considered to substantiate this accelera-
tion strategy, namely, (i) The feasibility of approximations by two-face distributions, (ii) Their
accuracy, and (iii) The accuracy and stability of the solutions of Dirichlet problems used to
produce surface fields from two-face fields. These issues are considered in Sections 6, 3 and 4

respectively.

2 Error analysis for the underlying high-order integrator

A revision of our algorithm reveals that the only errors produced by our adjacent integrator arise
from certain cut-off integrations. These integrations are performed by means of the trapezoidal
rule over either a one- or a two-dimensional bounded region F C dD which may shrink as the
discretization is refined. The integrand in these cut-off integrations is a product fh of a smooth
function f (defined over a region independent of the discretization) times a smooth cut-off h
which is related to partitions of unity. The simplest instance of integration errors of this type
arises as a result of use of the global POUs; in this case the support of A is independent of
the discretization as well. The floating partitions of unity also gives rise to integration of such
products, this time with cut-offs A~ whose supports shrink as the discretization is refined. In
the latter case, the selection of parameters presented in Sections 4.4' and 5' tells us that the

number of discretization points contained within the support of h grows as a power
N9, (1/10 < ¢ <1/6), (2)
which, as shown below, suffices to guarantee super-algebraic convergence.

The general cut-off integration problem arising from our algorithm can be expressed in the

form

1= [ R@| f)C (oR (w)) du )
E
where f(u) and ((R) are infinitely differentiable functions in their domain of definition, J =

0,1,2,3, and, in those cases for which J > 0 we have r = 0 ¢ sup((). The dependence
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a = «(N) in the parameter « > 1 determines how fast the POU support shrinks (if at all) as
the discretization is refined. Further, since, as can be checked, the support of f(u){(aR(u)) is
contained within a fixed compact set for all @ > 1, this product can be extended (as zero) to
an infinitely differentiable function defined in all of u space. The integral above can therefore

be expressed in the form

I= /E o’ f(w)¢*(0R ())du, (4)

where (*(r) = |r|77/((r). The integrand in (4), which we will denote ¢g%(u), is an infinitely
smooth function of u for any a. Further, for all & > 1 all of the functions g®(u) are supported
in the same compact set. Therefore, they can be expanded in d-dimensional Fourier series in

a rectangular domain independent of o (which here, for simplicity, is assumed to be the cube

[0,1]%). We thus write

ga(u) — Z CﬁzeQM'Hu

oo<nj<oo
1<j<d

with
co = / g% (w)e~2mimt gy (5)
E

Our integration algorithms are based on trapezoidal rules which, on a Cartesian grid con-
taining m? points, integrate the first m? harmonics exactly. Hence, the integration accuracy
depends on the rate of decrease of higher order Fourier coefficients: the error of integration is
bounded by the sum

g my< > lcql (6)

max;{n;}>m

Integrating Eq. (4) by parts k = (ki,--- , kg) times and using the multi-index notations |k| =

k
k1+---+kn,nk:n'fl---ndd and

oIkl oIkl
ouk Py - Okayy’




one estimates C¢ as

(0% 8|k‘ (0%
|Cn| < Wg u

< 7(27r)\k|nk max

)| (7)

Further, it is easy to check that the derivatives of g*(u) satisfy

ol

wga(‘ﬂ < CkCY“(HJ (8)

for certain positive constants Cy independent of . From (6), (7), and (8) the integration error

can be estimated as

C’ﬁa'kH"

E%m) < S (9)

with constants Cj independent of . This estimate shows that the errors produced by our
quadrature rules decrease faster than O(a/*I*7 /m/kI=4) for any k. When the size of the domain
of singular integration is kept unchanged (i.e. « is fixed), we have m ~ +/N and the integration

error £ decreases as
O(N—(kl=d)/2y

for any k. In case the integration domain shrinks as required for the acceleration scheme of
Section 4.4' in such a way that equation (2) holds, we have a ~ N'/279 and the error decreases

as
O (Nalkl+I01/2-0)+d/2)) (10)

for any k. Since k is arbitrary, the error decreases super-algebraically in both cases. However,
since the constants C" increase with k, the error for finite values of m is smaller for the

unaccelerated algorithm.

Table 1 presents a convergence study for evaluation of scattering by a sphere of radius equal
to 2.7 wavelengths (a test proposed in [2]). The table shows the maximum and the root-mean-
square errors; notice that doubling the discretization density reduces the error by the factor
of 2 to 3 hundreds or more, which confirms our theoretical conclusions about the high-order

nature of the algorithm.



Patches Unknowns | Discretization | Max Error | RMS
density

6 x 17 x 17 1350 3 per 1A 0.1 2.9 x 1072

6 x 33 x 33 5766 6 per 1\ 9.0x107* | 1.8 x 107*

6 X 65 X 65 23790 12 per 1A 3.6 x107% | 1.4 x 1076

6 x 129 x 129 | 93726 24 per 1A 1.6 x 1078 | 5.6 x 107°

Table 1: Scattering by a sphere of radius equal to 2.7 wavelengths. Non-accelerated computa-

tions

3 Field representations: wave expansions and equivalent

sources

Our acceleration scheme relies on two types of field expansions, namely, the spherical wave
expansions, and the plane wave expansions. An analysis of the errors resulting from truncations
of such expansions is presented in the next two sections. These results are then used in Sections 4

and 6 to estimate the errors arising from the two main stages of the acceleration algorithm.

3.1 Truncation of spherical wave expansions

Our analysis of the equivalent source algorithm requires an understanding of the convergence
properties of the outer spherical wave series

—zkz Z Db (K e Y™ (x/ [x]) (11)

n=0 m=—n

for fields u radiated by sources located within a given cubic cell. In particular the convergence
estimate obtained here is employed in Section 6.2 to determine the optimal number of equivalent

sources to be used in the two-face approximations of Sections 4.1' and 6.1. The corresponding



estimate for the inner expansion (27), in turn, is exploited in Section 3.2 to study the conver-
gence properties of certain plane wave expansions we utilize. The analyses of the truncation
errors for the inner and outer expansions are entirely analogous; only the outer expansion (11)

is discussed in what follows.
To study the convergence rates of the series (11) we define &,, as the mazimum error arising
as a result of substituting the full series (11) by its n;-truncation

_mz Z Db (K e Y™ (x/ [x]) (12)

n=0 m=—n

for a field u generated by sources lying at points r’ within a certain source domain, and for
all r in a given evaluation domain. We assume that the source domain lies in the interior of
the sphere |r'| = a and that the evaluation domain is contained in the exterior of the sphere
|r| = b. In our case the source domain is either the given cubic cell ¢; (of side H and, thus, a =
H+/3/2), or the domains IT¢ (whose diameter D can be varied, and is related to the size of the
cubic cell H through a parameter z > 1 by means of the formula D = pH+/3/2; in this case
a=H \/m /2); see Section 4!. The evaluation domain, on the other hand, is the exterior
of the union of ¢; and the 26 nearest neighboring cells, and therefore b = 3H/2. In what follows
we find a bound on &,, as a function of the truncation parameter n;, side H of the cell ¢;, and

ratio Q) = b/a.

In view of the inequality [13]

n

D

m=—n

2n+1
47

gn(k [ )Y (e /[ RGD (k ()Y, (x/ [x])] <

(k[ (k |r|>\ (13)

we see that the error &,, can be bounded as follows:

o0

|E |< max
ng| >
Ir'|<a, |r|>b
n

=n¢+1

2n+1
47

(k[ (k |r|>\ | (14)
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The asymptotic behavior of the Bessel functions j,(z),y,(z) of large order n is given by

n

]n(z) ~ m7 (15)
yn(z) ~ _%’ (16)

where (2n + 1) =1-3-5-...- (2n + 1). Clearly, since h,(zl)(z) = jn(2) + iy, (2), the following

identity holds for the product jn(z’)hg)(z) for any real values of z and 2':

(RO (2)| = 52()32(2) + 52()w2(2). (17)

Using (15), (16), the second term in the right hand side of this identity can be estimated as

follows

e~ s (2 (15)

2n+ 1)z \ 2
To find a bound on the product j,(2')j,(z) in (17), on the other hand, we will use the estimate

(15), the inequality |j,(2)| < 1, and the Stirling’s formula

2 2 n+1
(2n+1)!!~\/§< nT ) .

e

This leads to the estimate

i~ 5 (5r5) 19

Setting z = k|r|, 2’ = k|r’| and using (14) the error &,, can be estimated by
1/2
K N |e2/ 3kHe \™ 4 Q\>"
< = G _~ (= 9
|gt|_47r Z [2 <4Q(n+1)) Jr(?)le-I)2<?>> (20)

n=n¢+1

for a certain constant K 2 1. In particular, under the assumption that all sources lie inside of

a cubic cell ¢;, in which case @ = v/3, the above estimate reduces to

1/2

2n
|g|<£ i e’ (V3kHe +L 1\ (21)
" 4 W= 12\ 4n+4 (3kH)? \\/3 .
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Here we note that /3kHe/(4n + 4) > 1 for small values of n, so that estimate (21) can be

useful only for values of n; > ny = %ekﬂ' . On the other hand, if one chooses n; to be equal to
\/gno i.e.

ny = %ekH ~ 2kH, (22)

the following simple bound results for the approximation error &,, (under non-restrictive con-

dition kH > 2/3):

1 00 o2 4 1/2 1 n P
< = E B — — ) <3 = i

In practical terms, estimate (23) tells us that truncations with n; ~ 30 result in an accuracy of
the order of single precision — as long as (22) is satisfied. Moreover, for larger bodies — if n,
is kept proportional to kH in accordance with Eq. (22) — the accuracy improves exponentially

as the size kH of the cubic cell grows.

3.2 High-order convergence of plane wave series

The FFT algorithm of Section 4" produces a certain quantity 1("**¢)(r) for all r in the union
of the faces of the cells ¢;. This quantity equals, to within exponentially small errors, the field
generated at point r by all the portions of the scattering surface non-adjacent to the cell ¢;
containing the point r. Once ¥(™®%)(r) is known for r on the faces of a cell ¢;, this function
can be evaluated at points inside ¢; as the solution of a Dirichlet problem. As we will show in
Section 4, the (unique) solution of such (continuous) Dirichlet problem is stable with respect
to perturbations in boundary conditions, since the size of the cells has been chosen so that

internal resonances do not occur.

In practice, in order to solve such Dirichlet problems our algorithm utilizes a discretized

12



plane wave expansion

wave
n

w(na,true)(r) ~ Z Cj exp ?;kllj ‘T, (24)

Jj=1

where u; are unit vectors defining directions of wave propagation, and ¢ = ((i, (s, ...Guuare ) is
a vector of expansion coefficients. A number of other representations, including an inner-field
spherical wave expansion, could also be used in the solution of our Dirichlet problems; the
expansion (24) seems advantageous in that it does not require evaluation of special functions.
As we show in what follows, since 1)(#%€)(r) does not contain contributions from sources
adjacent to r, high-order accurate approximations of this type can be obtained as the number
of wavevectors u; is increased, with an order of accuracy which depends on the choice of a

certain high-order quadrature rule on a unit sphere.

(The unit vectors u; in the representation (24) can be chosen rather arbitrarily: it is only
necessary for the vectors u; to sample the surface of the unit sphere with a sufficient degree
of uniformity. To preserve symmetries and hence, to produce substantial savings in computing

times our algorithm takes advantage of a specific set
UnP) ={u;:j=1...,n""} (25)

of unit vectors u;. Our presentation in this section is independent of the particular choice of
the set U(n™*¢); the relative merits of various such choices, with particular emphasis on the

one utilized by our algorithm, are discussed in Appendix B.)

To obtain high-order accurate approximations of the form (24) we begin by noting [13] that,
for points r inside a cubic cell ¢;, the field 1)("® ) (r) radiated by the sources located outside

of the cube S; can be represented by an inner spherical wave expansion of the form

OO () = ik N by ga(k £V (0 [2)); (26)

n=0 m=—n

13



considerations analogous to those of Section 3.1 show that, for such values of r, truncation of the
expansion (26) to order n; (equation (22)) introduces an error of order of £(n;) (equation (23)).

In other words, defining

@Z)mmc kZ Z bn,mJn (K [e))Y,"(x/ |x]). (27)

n=0 m=—n

we have
w na,true) wtrunc (6 (nt)) . (28)

The field 9! (r) is defined in all of R®, and thus, it can be represented as a single layer
potential over a sphere S centered at the origin and of arbitrarily large radius R. An explicit

single layer representation can be obtained easily: in view of the addition theorem [13]

O(jr — Ril) =ik ) > WD (RR)Y,"(2)ju(k []) Yo (x/]x]), (29)

n=0 m=—n

and defining

nt n

P(&) =D Y bum¥y"(@)/hP(KR), (30)

n=0 m=—n

we obtain the representation

wee) = [ (= Rl pla)ds(a) 1)

For convenience we also introduce the truncated Green’s function

q)trunc I‘ I‘ — Zkz Z ]n k|r| k|1"|) (I'/|I'|) ( I/|r |)7

n=0 m=—n

so that

O = O 4§y (ny). (32)
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In view of equations (29), (13), (18), and (19), further, we have

160(ny)| < C'max [% (%)nt+ (2 + e ( kelr )} (33)

regc 2\/§(nt + 1) 27’Lt + 2

for some positive constant C' (which depends on k) and for all |r| < R.

To continue we introduce a high-order integration rule with quadrature nodes U(n "“%*¢)
(see equation (25)), and with corresponding weights {w; : j = 1,...,n"*} — so that, for a

function f(u) defined on the unit sphere we have

wave
n

fu)ds(u) =Y w;f(uy) +(f,n"") (34)

1 -
S J

with v(f, n"*¢) — 0 to high order as n”*¢ — co. Here we assume that for the given family of
sets U(n™*¢) a corresponding high-order integration rule exists; as mentioned above, various

high order rules of this type are discussed in Appendix B. It follows from (34) that

wave
n

/ rn(r Ru)p(u)ds(u) = Z w; P (r,Ru;)p(uy) + (P o, n"*) (35)
St

j=1

In view of the definition of ®“"¢(r r’), further, the minimum number of quadrature points
required to reach the regime of high-order convergence (for which ~(f, n**¢) exhibits a fast
decrease) is O (n?). Indeed, the integrand in (35) is a linear combination of products of the
type Y,"Y? with n,r < mn;. These products, can be represented as a linear combination of

spherical harmonics of order 2n; or less, each one of which, in turn, require sampling rates of

O (nf).

In view of the error estimate (32)-(33) we have

wave

Yrne(r) = Z w; ®(r, Ru;)e(u) +y(f, n"*), (36)
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or, in other words, the single layer potential (31) is approximated to high-order and (uniformly
in R) by its discrete approximation (34). The previous argument establishes that the regime

of high-order convergence of the expansion (36) starts at or before n“®¢ = O(n?).
A representation of the form (24) can now be obtained from the discretized version of the
integral (35) by taking the limit as R — oo. Indeed, we have

) : ; — ,
. E;,Rug) _ iy ORI (fuﬂ)
k=oo BD(ER) R |p — Ruy| Y (kR)

Now, noting that

exp(ik |r — Ru;|)  exp (ikR) , 1
|r — Ru,| o= R exp (iku; 1) + O R?

and in view of the asymptotic expansion of the spherical Hankel function we obtain

(I)(I',Ru]) ,(n+1)

B Ty =1 e ),
so that, taking limg , in equation (35) we obtain the desired plane-wave expansion (24) with

accuracy determined by the choice of the underlying high-order quadrature rule.

As mentioned earlier, to avoid use of special functions, our actual algorithm does not utilize
explicit spherical harmonics expansions to produce appropriate values of the intensities (;.
Instead it obtains intensities with the correct approximating properties by minimizing the
difference between the given field ¢)("»#%¢)(r) and the approximating expression (24) everywhere
on the boundary of ¢;. In detail, the intensities (; are selected so as to minimize, in the mean
square sense, the differences of the values ¢)("»#%)(r) and (24) at all nodes of a sufficiently fine
collocation mesh on the boundary of ¢;. In practice we have found that it is sufficient to use
the positions of the equivalent sources as the collocation mesh (where the field )™ (r) is
known); best results are obtained when the overall setup is such that n®“" slightly exceeds
n®®¢ (by 10 to 20%). The solution of this (overdetermined) least square problem is obtained

by means of the QR algorithm, see Section 4.3'.
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4 Dirichlet problems

To complete our error analysis we now estimate the error arising from the algorithm described
in Section 4.3', which produces surface values of a field from values on the faces of cubic cells
c;. This evaluation results as the solution of the system (30') which yields the coefficients (; of
the truncated series (24). From the discussion in the previous sections it follows that the errors
in the values of the non-adjacent field )"*?(r) on the boundary of the working cubic cell as
calculated by our algorithm are bounded by ¢ = 3~™/2. Expansion (24) thus effectively solve
the Dirichlet problem in the cubic cell with boundary conditions ¢"*¢I(r). The error uy(r) in
the boundary conditions translates into an error in the surface approximations; it is the latter

error which we wish to estimate in this section.

The error in the surface values thus obtained is a solution of the Dirichlet problem

Au(r) + k*u(r) = 0, reg,
u(r) = wug(r), ré€ e,
uo(r)| < e,
where the domain ¢ is a cubic cell of side H. Introducing a function w(r) = u(r) + v(r), where

v(r) is a harmonic function equal to ug(r) on the boundary of ¢, one can re-cast the above

problem in the form

Aw(r) + Kw(r) = —k(r), rce,
w(r) = 0, ré€
lo(r)] < e

Let us introduce the orthogonal system of eigenfunctions &, of the Dirichlet Laplacian on the
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cubic cell:

—Aéa(r) = )‘ign(r)v I‘G[O,HP,
&n = sin(nymay/H)sin(ngmas/H) sin(nsmas/H),

N = (r/H)*(n?+n3+n2), ni,ng,ng €N
and expand w(r),v(r) in the series of ,(r) :

w(r) =Y anka(r), 0(r) =) Fabalr). (37)

Since the Ly norm of each of &,(r) is equal to (H/2)*?, and since |v(r)| < &, using the Plancherel

identity one easily obtains the following estimate on the coefficients (3,

8
> Ba=gm v, <se (38)

The coefficients «,, in (37), in turn, are given by

k‘2
Qn = ﬁn7n7 Tn = \2 (39)

n k%’
and the absolute value of the solution w(r) can now be estimated. Indeed, for any r € ¢ the

Cauchy-Schwartz inequality together with Eq. (38) and (39) gives us

(z9) (z9)

1/2
, 1
= &V8(kH/T) (211: (n? +nZ+n2— (kH/ﬂ)2)2> .

|w(r)]

IN

> YuBaba(r)

Thus, the total error |u(r)| is bounded as follows
u(r)] < lo(r)] + [w(r)] < Be (40)
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where the constant B is given by the convergent series

1/2
Py (Z CETET= (kH/m?)?) ' )

In order to minimize the error we adjust the size H of a unit cell so that the denominator
in (41) is bounded away from zero for all n; as it is easy to check, H can always be chosen in

such a way that this denominator is larger than 1/4 for all values of n.

5 Overall error estimate

The overall error estimate for our integration algorithm results as a composite of the error
bounds in equation (10), Section 3.2 and equation (40). It follows directly from these estimates
that the overall error produced by the algorithm tends to zero either super-algebraically or to
high algebraic order — in accordance with the convergence properties of the quadrature rule

utilized in the constructions of Section 3.2.

6 Theory of two-face approximations

According to Section 4.1', our acceleration method first subdivides the volume occupied by
the scatterer into a number of cubic cells ¢;. Subsequently, for each ¢;, the algorithm selects
the intensities of certain equivalent sources located at all the points in the sets IT¢ (parallel to
the plane x, = 0, £ = 1,2, 3) shown in Figure 1. The intensities of the equivalent sources are
chosen in such a way that the fields generated by the true and equivalent sources are identical,
within a given tolerance, at all points outside ¢; and its nearest neighbors or, in the notation

of Section 4.1', outside the set S;.
Our use of (three sets of) equivalent source planes — as opposed to the full volumetric
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representations used in [8,9] — leads to sparse 3-D FFT’s and therefore, to significant compu-
tational savings; see Section 4'. Our goal in the present section is to demonstrate the theoretical
validity of the associated two-face equivalent source representations: we show in Section 6.1

that an arbitrary radiating solution

P = (r) (42)
of equation (1) defined in the complement R? \ ¢; of the cell ¢; can be approximated (with
arbitrary accuracy and for all r outside §;) by a sum of a single and a double layer potentials
supported on any pair of parallel faces of the cell ¢;. The monopole and dipole sources utilized
in our algorithm are the discrete counterparts of the continuous single and double layers dis-

tributions obtained in Section 6.1. The accuracy of the discrete representations, finally, is the

subject of Section 6.2.

L] I~
h
| ~] \
/ \ [
\ v IT;
\ /
% &
N L

Figure 1: Locations of the equivalent sources (black circles); gray squares indicate faces of a

cell ¢;

6.1 Two-face approximations: Continuous distributions

To justify our use of combined single and double layer distributions we begin by showing that a
two-face distribution of either type alone — single or double layer — cannot yield the arbitrarily
close approximations we seek for the fields 1%, at least for the “acoustically large” cells ¢; used

by our algorithm.
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(As mentioned above, our algorithm is based on use of a sparse set of equivalent sources.
Specifically, the optimal parameters obtained in Section 5' require the side of the cell ¢; to
contain an increasing number of wavelengths as the wavelength decreases (with exception of
the case B = 4/5 which leads to a complexity of @%° operations and a constant acoustical size
of the cell for varying \). In particular, such optimal choices require use of cells ¢; of many
wavelengths in side for sufficiently small wavelengths, or, in other words, “acoustically large”

cells ¢;.)

To show that two-face approximations of monopole or dipole type alone do not suffice to

represent arbitrary fields outside ¢; we construct a counterexample: the field
/e (43)

generated by a point source at the origin cannot be approximated by a single layer potential
with density supported on the two planes Py = {x; = £6/2} for any § > A/2. Due to the
symmetries of the problem it can be assumed, without loss of generality, that the required

density distributions ¢ in the respective planes P, are identical functions which depend on

the quantity p = /23 + 22 only:

" =9 =o(p). (44)

To continue we evaluate the far field coefficient u(X) arising from the single layer distribu-
tion (44); the corresponding far field is given to first order in 1/|r| by u(%X)e™**/|r|. To evaluate
u we note that the far field coefficient uy(X) arising from a planar distribution on a plane Py
passing through the origin is given by

1 _khy
- ik% dy.
o /Poe o(lyl)dy

It follows that the far field coefficient u corresponding to the field radiated by the planes P

U ()A()

— which equals the sum of the far fields arising from P, and P_ — is given by

A : ko
u(X) = (e“’“‘scos(a)/2 + e*’k‘sms(a)/?) up(X) = 2ug(X) cos <7 cos(a)) ,
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where « is the angle between X and the xj-axis. Clearly, if k6 > 7 (or, equivalently, if the
distance between P, and P_ is greater than a half of wavelength \) then there exists at least
one solution o = a* to the equation kd cos & = 7. In other words, the far field coefficient vanishes
for all directions X for which the angle between X and the x;-axis is equal to a*. The far-field
coefficient created by a unit point source located at the origin, in contrast, equals one. We
have thus shown that, as claimed, the field generated by two planar distributions of monopoles
located farther than half a wavelength apart cannot generally be used to approximate the field
of sources located between the planes; a similar argument shows that planar distributions of

dipoles alone do not suffice either. In other words, we have the following proposition:

Proposition 1 If the side of a cubic cell ¢; is larger than \/2, then the field created outside
the cell by sources contained in c; generally cannot be approximated by either a single layer
potential or by a double layer potential with density supported on any two planes containing

parallel faces of ¢;.

A generalization of this proposition with interesting consequences concerning volumetric

equivalent source approximations is given in the Appendix.

We now turn, then to the existence of representations using combinations of monopoles and
dipoles. In detail, in what follows we show that the field induced by sources contained inside a
cell ¢; can be approximated, outside the concentric sphere of diameter 3H and with arbitrary
accuracy, by the field generated by a combination of double- and single layer potentials whose
densities are supported within two parallel faces of ¢;. In order to prove this statement we
will first construct an arbitrarily accurate approximation to a single term of a spherical wave

expansion.

Theorem 2 Givene > 0,b > a > 0, and a spherical wave function W (r) = Y, (r/ |r|)h£})(/f |r])

(m,n € Z,n > 0,|m| < n), there is a combination of a single- and a double-layer potential
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Figure 2: The geometry of Theorem 2

with densities supported on the disk D = {(x,y,2)] y =0, x?+ 2* <a?} which differs from

W (r) in less than € for all v > b.

Proof. Let us consider the function

and introduce vectors ry(d),r1(0), and ro(d) defined by

rgp = (07 0; 0)7
r = (07 _57 0)7
r, = (07 57 0)7

see Figure 6.1.  The function H(r,r,(d)) coincides with W/ (r), whereas H(r,r,(d)) and
H(r,r,(9)) are obtained by shifting function W (r) along y-axis by amounts — and ¢ respec-
tively. In view of the uniform continuity of W,* away from the origin, there is a positive number

0o such that, for 6 < dy and for any r > b the combination

v

Hs(r) = H(r,r,(6)) + H(r,ry(0)) — H(r,r0(9)). (45)
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differs from W*(r) in less than /2

W™(r) — Hs(r)| < ¢/2. (46)

We now consider the closed ball B, of radius a centered at the origin together with its
left and right halves By and By, as well as the boundary S, of B, and its open left and right
halves S; and S;. Calling D the closed disk of radius a centered at the origin and contained
in the plane y = 0, we have 0B, = S, = S1U S, UdD, 0B, = S; U D, and 0By = Sy U D.
Also, we define v and v; (i = 1,2) to be exterior normals to the domains B, and B; (i = 1, 2)

respectively; note the relations

v(r) = v(r), forre S, (47)
vo(r) = wv(r), forre Sy,
v(r) = —wy(r), forre D.

The functions H(r,r;), i = 0, 1,2 are solutions to the Helmholtz equation which satisfy the
radiation condition and whose only singularity lies at r = r;. It follows that, in view of Green’s
identity, these functions can be represented as the following sums of a double- and a single-layer
potentials

Heeno) = [ (#605,0)

OB;

0®(r,r')  OH(r',r;(9))
v, (x') v, (')

<I>(r,r')> ds(r'), i=1,2, (48)

and

Hirn(0) = [ (H(r',ro(a))ag)lfz;/) - aHéI;/I’(EP)(é))@(r,r')) ds(r).  (49)

0B,

The representations (48), (49) are valid, in particular, outside of sphere Sy; see Figure 2.
Substituting the identities (48), (49) into Equation (45) and using Equations (47) to combine

the integrals over the surfaces S, S5, and D we obtain

Hs(r) = I (r,0) + Iy (r,0) + I3(r,0) + I4(r,9),
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where

he8) = [ (5 0) - B 0) o ds

0P(r,r')

Iy(x0) = vy (1)

(H(x',1,(6)) — H{',1,(0))) ds(r'), and

@\

I4 (I‘,(S) — / a(H(I',, P (66)31(_1.,1){(1.,, r (5))) (I)(I', I'I)dS(I'I).

Since the functions H (r, r;(d)) and their gradients are uniformly continuous for |r — r;(§)| > a/2
and since ®(r,r') and V®(r,r’) are bounded when |r —r'| > a/2, the integrals I;(r,0) and

I5(r,d) vanish in the limit 6 — 0. Therefore for a certain §; > 0 we have
|Il(r,5) + Ig(r,5)| < 6/2, Vo < 61. (50)

Choosing d; equal to min(dy,d;) and combining inequalities (46) and (50), we see that for any

non-zero § < dy and |r| > b
Wit (r) — (I3(r,0) + I4(r,0))] < e. (51)

The quantities I3(r,d) and I4(r,0) are a double and a single layer potential, respectively, with

a densities supported in the disk D. Thus, Equation (51) shows that the function W *(r) is
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approximated in less than € by a combination of a single- and a double-layer potential with

densities supported within the disk D, as claimed. m

We now establish a single-plane approximation result from which the two face approximation

theorem follows directly.

Theorem 3 Let there be given a pair of concentric spheres S, and S, with radit a < b and real
numbers ¢ > 0, ¢ > 0 with ¢ < a. Then, an arbitrary acoustic field u,(r) generated by sources
contained within S, can be approxrimated, in less than € and for all r outside Sy, by a sum of
a single- and a double-layer potential with densities supported on a disk D = {(z,y,2)| vy =

0, z%+2%<c?}.

Proof. According to Theorem 2.14 in [13] the field u,(r) can be represented outside S; by
a spherical wave expansion of the form

U (r) = Z Z an W (r).

n=0 m=—n

This expansion converges absolutely and uniformly on compact subsets of R? \ S;, and, thus,
the truncated spherical wave expansion

oD arwi(e). (52)

n=0 m=—n

approximates u,(r) with accuracy £/2 if the truncation parameter n, is large enough. According
to Theorem 2, on the other hand, each one of the spherical waves W*(r) can be approximated
with arbitrary accuracy by a single- and double-layer potentials supported on the disk D, and

the Theorem follows. m

The two-face approximation result now follows easily. Indeed, let us consider a square cell
¢; of side H and a field u,,(r) radiated by an arbitrary distribution of sources contained within

¢;. Define the spheres S; and S, of radius v3H /2 centered at the middle points of two opposing
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faces D; and D, of the cell ¢;; see Figure 3 and compare Figure 1. Further, call S, the sphere

of radius b = 3H/2 concentric with ¢;. We note that all the sources contained in the left half

Figure 3: Geometry of Theorem 4

of the cell ¢; are also contained inside the sphere S;. Thus, according to Theorem 3, the field
u(r) induced by these sources outside S, can be approximated, with prescribed accuracy, by
a combination of a double- and a single-layer potential with densities supported on a disk D,
contained within the left face of the cell ¢;. Similarly, the field induced outside S, by sources
contained in the right half of cell ¢; can be approximated with arbitrary accuracy by a sum
of a double- and a single-layer potential with density supported over the right face of the cell.
Hence, the field u,,(r) outside S, can be approximated, with prescribed accuracy, by a sum of
single- and double-layer potentials with densities supported on two opposing faces of ¢;. We

have thus proven the following theorem:

Theorem 4 The field u,(r) induced by an arbitrary distribution of sources contained within a
cubic cell ¢; can be approximated, outside S, and with a prescribed accuracy, by the sum of a
single- and a double-layer potential with densities distributed over any pair of parallel faces of

C;.
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6.2 Two-face approximations: Discrete distributions

The results of the previous section show that, for each cubic cell ¢;, the field 1) generated
outside S; by the true surface sources contained within ¢; can be approximated, with prescribed
accuracy, by a combined single- and double-layer field with continuous densities supported on
any two parallel faces of ¢;. In practice the single- and double-layer integrals must be discretized

leading to a discrete representation of the form

1 prequiv
2 /
Ciye m){ dga(I)(I',I')
Pl(r) = E (.fi(J) @(r,rf,j) + §§,j) T Z ) ) (53)
]:1 E r,:riJ

As described in Part I, our algorithm utilizes a discrete representation ( 53) with
ez, (54)

with n, chosen so that equation (52) provides an approximation of 1)““/(r) within a prescribed
tolerance for all r outside S;). The corresponding intensities 61(31)12 and {ffij)e are determined in
such a way that the vector formed by the differences (1)%¢(r) — ¢)“"'"“¢(r)) (as r varies over a
number n! ~ 201" of collocation points on AS;) is minimized in the mean square norm.
Thus, since the number of collocation points is twice that of the intensities to be found, the

intensities are obtained as the least-square solution of an overdetermined linear system.

To demonstrate the advantages arising from use of an overdetermined system we present
in Table 2 the errors arising in a model approximation problem for both the determined and
overdetermined collocation strategies. In our model problem we seek to approximate the field
radiated by a unit source located inside a cubic cell ¢; — two faces of which are depicted in
gray in Figure 1. The test source lies at the middle point of an edge of that cell, half way
between the two planes containing equivalent sources. (Our experiments show that this is the
most challenging location for a test source). The values of the original and the approximating

fields are then compared on the faces of a concentric cube of side 3H, where H is the side
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kH | p | n®wee | Grid on 8S; | n®!" | Error Estimate (20) | Actual Error
6 x 10 x 10 | 600 2.2:1073
8 | 1.20| 592 6 x 14 x 14 | 1176 8.1-1077 1.0-107°
6 x 18 x 18 | 1944 1.6-107
6 x 16 x 16 | 1536 1.0-107¢
12 | 1.30 | 1536 | 6 x 20 x 20 | 2400 1.2-1078 4.6-10~8
6 x 30 x 30 | 5400 7.2.1071°
6 x 22 x 22 | 2904 3.6-1078
16 | 1.34 | 2896 | 6 x 28 x 28 | 4704 2.1.10710 5.6-1071°
6 x 36 x 36 | 7776 3.2:107 11

Table 2: Accuracy obtained for various values of n*°“¢ and n®". The spacing of the equivalent-
source grid is equal to 1/k. u determines the diameter D of the circular domains supporting IT¢
through the equation D = v/2uH; £(n,) represents the theoretical error bound for the truncated

source

spherical wave expansion with n? =n

of the cell ¢;. The approximation errors for different cell sizes are shown in Table 2. In this
table the columns labelled n***¢ and n list the number of equivalent sources per cell and
the number of collocation points used. Three different cell sizes kH are considered, together
with three values of the quotient p of the diameter D of II¢ (Figure 1) and the length /2H
of the diagonals of the faces of ¢;. (The values of the quotients p were selected so that nso%e
approximately equals the smallest number of collocation points used in each of the three series

of experiments.) The column “Error Estimate” displays the estimate (20) for various values of

kH, p and n*°"¢. (Note that, in the present case we have @ = 3/4/1 + 2u2.)

Table 2 illustrates three main points, namely, (i) The high accuracy of the approximation
for relatively small cells as well as the increased accuracy that results as the size of the cell

is increased while maintaining a constant discretization density (in this case 27 points per
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wavelength); (ii) The substantial accuracy increases which, as claimed, result from use of finer
collocation meshes and overdetermined systems of equations; and, finally, (iii) The tightness
of the upper bound (20). Consideration of the results in Table 2 lead us to our algorithmic
prescription of Part I, which calls for use of a number of approximately 2n**"™¢ collocation

points.
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A Appendix

As part of the study presented in Section 6 on feasibility of two-face approximations we showed
in Theorem 2 that, for cells with size larger than \/2, the field radiated by sources contained
within a cell cannot be approximated by either a single layer potential or by a double layer
potential with density supported on any two planes containing parallel faces of the cell. Here
we present a generalization of that proposition which shows that classical equivalent source
approximations [8,9] must necessarily use a fine distribution of equivalent sources and, thus,
that they require FF'T’s which are substantially larger than those utilized by the algorithm of
Part I.

To do this we note that Theorem 2 can easily be generalized to apply to single layer distri-
butions supported on a collection of equally-spaced planes. Indeed, for a distribution supported
on a even number L of equally spaced planes placed symmetrically with respect to the origin,
considerations similar to the ones presented in Section 6 show that if the distance between the
planes is larger than A/2, then the approximation of a general field is, again, not possible. The
conclusion also follows for the case L odd: if a certain field cannot be approximated by means
of an L + 1-plane distribution, it cannot be approximated by an L-plane array either. We have

thus proven:

Proposition 5 The field radiated outside a cell ¢; by sources contained in ¢; generally cannot
be approximated with prescribed accuracy by a sum of single layer potentials with densities
supported on any number of parallel equispaced planes, unless the distance between consecutive

planes is smaller than \/2.
In particular, we have

Proposition 6 The field radiated outside a cell ¢; by sources contained in ¢; generally cannot

be approrimated with prescribed accuracy by the field generated by singular monopole sources
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located at the nodes of a three-dimensional Cartesian grid within a cubic cell ¢;, unless the

spacing of the Cartesian grid is smaller than \/2.

The above Proposition shows that FFT acceleration schemes like those in [8, 9], which use
monopole equivalent sources only, must utilize at least two equivalent sources per wavelength.
(Actual grid spacings used in [8] range from A/10 to A/6.) Thus, such algorithms cannot rely

on grids as sparse as those we use; see Section 5'.)

B Appendix

This Appendix concerns some aspects of the proof of high-order convergence of the plane wave
expansions (24). Specifically, that proof utilizes a high-order integration rule to obtain the
desired expansion from a certain integral representation. Two points of importance arise when

considering the integration rule and the actual algorithmic implementations:

1. In our proof, the expansion directions U(n"*¢) = {u; : j = 1,...,n"**} coincide with

the nodes of the integration rule.

2. The actual algorithmic implementations of Part I take advantage of a specific set of

directions U (n™*¢) to obtain substantial reductions in computing times and memory use.

Here we thus present a high-order quadrature rule on the sphere with a set of quadrature
points equal to U(n™*¢), that is, to the set of directions that actually occurs in the algorithmic

implementation described in Part I.

To define the set U(n"*¢) containing the plane wave directions used in Part I we consider
a set R equal to the union of six Cartesian grids, one on each face of ¢;, each one of which

is concentric with the face and of size k“9"¢ x k"¢ (k“%¢ eyen); note that 6 (k¥%¢)* = pwove,
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Then, the set U(n"*¢) utilized in the algorithm is given by

U = {r/|r| : r € R}, (55)

By means of changes of variables a given integral on the sphere

I= . f(u)ds(u)

can be re-expressed as a sum of six integrals over the faces ]—"ij, j=1,...,6, of the cell ¢;

I= Z ﬁ f(u)J(u)ds(u), (56)

where J is the corresponding Jacobian. Thus, applying composite Newton-Cotes quadrature
rules of a given order p one may evaluate each one of these integrals from values of the integrand

at the nodes U(n"*¢), and thus, a p-th order rule for quadrature on the sphere results.

Taken in combination with the considerations of Section 3.2 this establishes the existence
of sequences of plane wave series with arbitrarily high order of convergence. We note that
the quadrature rules we have constructed are of arbitrarily high order, but, in fact not super-

algebraically convergent.

Quadrature rules on the sphere which exhibit super-algebraic convergence do exist. As
an example we mention the spectrally convergent quadrature rule obtained as a product of a
Gaussian-Legendre rule on the polar direction with a trapezoidal rule in the azimuthal direction.
Our emphasis on producing a convergence proof for the set of directions U (n"*¢) relates to
efficiency considerations which require the use of this specific direction set in our plane wave
expansions; see Appendix A of Part I. As mentioned in Section 3.2, the method actually used by
our algorithm for the determination of the plane wave coefficients (; does not involve integration
rules of any kind. In fact, the actual performance of our plane wave algorithm, as described
in Part I, appears to exceed the theoretical predictions resulting from use of Newton-Cotes

formulae.
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