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Abstract. The problem of the function reconstruction on its line integrals with known
weight function is considered. The approach studied consists of treating the attenuated
projections by the Radon transform inversion formula and considering the result of the
inversion as a distorted image. A helpful formula describing the distertion is obtained.
The norm of the distortion operator is estimated and several iterative restoration algorithms
based on the integral transfers are investigated. The results of the numerical inversion
of the attenuated Radon transform are presented to demonstrate the features of the
algorithms,

1. Imtroduction

Many kinds of computerized tomography are connected with the reconstruction of an
unknown function from its line integrals. The mathematics of this problem may
frequently be described in terms of the integral Radon transform. In such cases various
reconstruction algorithms have been designed on the basis of either the known Radon
transform inversion formula or some other approaches [1]. The situation is quite
different in emission tomography where the measured projections due to an attenuation
are line integrals with known weight function depending on the angular variable. If the
radiation attenuation in the medium is negligible then the weight function is close to
unity and the technique of Radon transform inversion is applicable. In the opposite case
the problem of function reconstruction on its line integrals with known weight function
requires a specific consideration.

Extensive results have been obtained for solving the inversion problem for the so-
called exponential Radon transform with uniform attenuation [2,3]. However, the
constant attenuation approximation is frequently not applicable. In more general cases
algorithms based on the iterative correction of the attentuation effects [4-6] are applied
to solve this problem. A theory of these algorithms is rather heuristical and needs in
further analysis.

In this paper we investigate a two-stage approach for the numerical inversion both
of attenuated and generalized Radon transforms. In the first stage attenuated projections
arc treated by the Radon transform inversion formula. In the second stage the result
of the inversion is considered as a distorted image and the problem of the original
image restoration is solved. Such an approach is typical for iterative algorithms with
attenuation correction [4,6, 7).
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To analyse the problem in detail we obtain a helpful formula describing the dis-
tortion, Then we investigate an equation connecting the original and distorted images
and estimate the norm of the distortion operator. This allows us to derive the known
Chang’s algorithm [4] and some other algorithms as a Neumann series for the above
equation and to evaluate the convergence domain of the algorithms. We perform the
numerical inversion of the attenuated Radon transform to demonstrate the features of
the developed methods.

2. Formulation of the problem

Measured projections /( p, w) are related to the medium emission coefficient €(x) by the
generalized Radon transform [8]:

1) = |

Xrw=

e(x)W(x,w)dx = Rye(x) (D)

where R, is the genecralized Radon transform operator, xeR?, weS', peR'. If
W(x,w) =1 then (1) is reduced to the usual Radon transform, the opertor of which is
denoted simply by R.

In many emission tomography problems a weight function W (x, w) is related to the
medium atlenuation coefficient u(x) by the following dependence:

W(x,w)=exp ( Lm p(x + twh) dt) #))

where w' e8!, @' = (coso,sing), w=(—sing,cosp). The transform (1) with the
weight function (2) is called an attenuated Radon transform. In the case of the constant
attenuation coefficient (u(x) = y4,) and a convex support of an attenuation, the exact
inversion formula exists for this transform {2, 3]. However, the constant attenuation
approximation is often not applicable. Moreover, the dependence W (x,w) on the
integral [ p(x + t@w")dr is not exponential in some problems. This appears, for
example, when the intensity of the infrared radiation of molecular gases is measured
within a wide frequency range [9]. That is why we consider the problem in the more
general form (1) without the concretization of the weight function form.

We consider a result of the Radon inversion of the attenuated projections €,(x) as
a distorted image:

€p(x) = R™I(p,9) = R™'Rye(x) = e(x) — De(x) 3)

where €(x) is original image, the distortion operator D is defined by

De(x)= R™'(R— Ry)e(x) = R™! (J. e(x}(1 — Wix,w)) dx) (@)

X-m=p

and the Radon transform inversion operator is defined by

+m )
R_]I(P, (J:J) = J‘ dmj I(p5 a))ﬁ(p)eh'p("f'ﬂ’) dp
st — o
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where [8]

Y +% -
o) = Hp.ox ™ dp.
—a
The Fourier transformation of the filter function #( p} is equal to:

ale) = (Hlpl-

In the next section we obtain an expression for the distortion De(x) under the assump-
tion that €(x) is a finite function with the support {, e(x)e L*(Q} and 0 < W(x, @) < |
on & x [0, 2n].

3. An expression for the distortion

The weight function (1 — W(x,)) in the distortion definition (4) may be expanded as
a Fourier series in the angular variable ¢ as follows:

I — W(x, w(p) = W) + ,i. [Wx)e® + Wy (x)e**] 5)
where
1 2 .
W (x) = ﬂj (1= Wi alp)e ™ dp  kel.

Note that | W;(x)| < 1 for any k and x; W_,(x) = W(x) for Vk e Z and W;(x) is a bounded
real function: 0 < W,(x) < 1. Therefore, the distortion may be present in the form:

De(x) = R’ (R(e(x)wa(x)) 5 e R[e(x)Wk(x)])
_ Wy e(x) + Dy elx)

where
Dye(x) = R ( > [ei*WR(e(x)Wk(x))]). ©)

Owing to the linearity of the transforms R and R~ every addend of thé sum (6) may be
present as a convolution:

R (% R(e(x)Wi(x))) = [Wi(x)e(x)] * + di(x)

where d,(x) = R™'[¢"*? Ra(x)], o(x) is 20 Dirac delta-function and * » denotes 2b con-
volution. Because of Ra{x) = o(p) [8] the expression for the 4, (x) may be simplified. In
the polar coordinates {r, d) it is written as:

d(r.0) = R™'[e"“a(p)]

=J~2nc J‘ L,?_l Zmprsi.ﬂ(g—(ﬂ)dpdqo
[ —0 2
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— eik6 J._::J Iizj_l J;Jzn e—2niprsin @+ixy dq’ dp

. 2 ikp +o |p|
= 2ne > J.(2mpr)dp

-

ikd

|k|9;2- k even, k =0
= (7
0 k odd.
Thus, the distortion is related to the original image by
De(x) = Wy (x)e(x) + Dy e(x)
(8)

Die(x) = 3 {e(x)Wa ()] * dy (x)

keZ\{0}

where the d, (x) are described by (7). Note that the Fourier transformation of o (r, 8)
is equal to:

Fy(dy (r, ) = e+l

where F, is the p Fourier transform operator, and « is the angular variable in Fourier
space. Therefore (8) may be expressed as an operator series of products and Fourier
transforms: T

Die(x) = Fy' ) eI E, [e(x) Wy (x)] &)
keZ\ {0}

where F; ! is the inverse 20 Fourier transform operator.

4. A norm of the distortion operator

Because a Fourier transform does not change the L,-norm of the function, the following
estimate may be obtained for the L,-norm of the distortion in accordance with (8) and

(9):

A

keZ keZ

I DeC < ) ey (x)] < el 3 max | Wy (x| (10)
where the function L,-norm is defined by:

1FI? = Lf’(x) dx.

If the series in (10) converges then the distortion operator is limited in L,(Q2):

ID|l = sup || De(x)]| <M=Y m‘_?x|W2k(x)|_ (11

le(x)] keZ

The sufficient condition for the convergence of (10) is the existence of the limited in
L,(€2) weight function second derivative on ¢.
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Lemma I. If 34 > 0, such that

2r al 2
.[ (W(l - W(x,w(fp))) do 4> ¥xeld
o

then the series Ziezmawsy converges and the following estimate is valid:

M < maxg| Wy(x)| + A,
Proof. It foliows from the lemma condition that, Vxe @,

2= 62 2
Y K w)P =J (5—2(1 - W(x,w((P))) do < A2
keZ\[0} [ P
Therefore, ¥x e} and Yk e Z\{0}| W (x)| < A/k* and

. max |Wy(9)] < max | W) + ¥

A
= = max |W,(x)| + L Ar’.
keZ keZ\[0} 2% Q o '

The proof is completed.
Equation (3) may be considered as an integral Fredholm equation of the second kind.

If M < 1, then ||e;(x)] < 1 and this equation has the unique solution which may be
presented as a Neumann series:

) = ¥ De(x) (12

Therefore, in this case the inverse generalized Radon transform operator Ry exists and
it may be defined as a resolvent of the kernel D:

Ry =% D
i=0

The L,-norm of the inverse operator is also limited in this case:

IR Il <

1-M

This allows us to derive several iterative algorithms available for the numerical
restoration of the original image and, in this way, for the numerical inversion of the
generalized Radon transform.

5. Restoration algorithms

We assume in this section that M = | — ¢, where ¢ is some positive constant less than
unity.

The numerical calculation of the series (12) on the basis of iteration using of direct
and inverse Radon transforms is a simple restoration algorithm, i.e.

4+0(x) = Pey(x) + PR™V(R — Ry)eP(x) (13}

where P is an operator that stands for multiplying on a characteristic function of €. An
arbitrary function limited in Z,(Q) may be chosen to be an initial approximation €(x);
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the convergence rate in the sense of L,(f) is the same or faster than that for the geometric
progression with the index M. The calculation of the inverse Radon transform in
(13) as well as the calculation of €5(x) may be fulfilied either by using a filtered back-
projection algorithm or by direct Fourier reconstruction [1, §].

A more efficient restoration algorithm may be obtained as a Neumann series for
equation (3) transformed using (3):

Dex) _ _ep(x)
T=W(x) 1 —W(x)

€(x) —

The next approximation €“*"(x) is calculated as:

Pep(x) PD,e®(x)

e N (x) = T—wod T 1= W) (14)

where the numerical realization of the operator D, is carried out by
D,e®(x) = R7(R — Ry)e® (x) — Wy (x)e®(x).

Actually, this algorithm coincides with Chang’s corrected method [4) generalized in the
case of arbitrary weight function and attenuation coefficient. The convergence rate of the
algorithm is defined by the L,-norm of the corresponding operator: '

D, M, 8
1 — Mo ( )

sm=

1 — Wi(x)
where

(Dl <M = Z max | W, (x)|
keZ\0}

M, = max| Wy (x)).
{

Let us show that m < M, i.c. the obtained estimate of the convergence rate for the
algorithm (14) is better than that for (13).

Lemma 2. T M =1—¢,where 0 < ¢ < 1, then m < M.

Proof. Note that M, + M, = M. Then
l—My— M, —c=0.

We obtain, by multiplying of both parts of the equation by M, and by adding M,
My — Ml — MMy + M, —cM, =M,.

Dividing by (1 — M,) gives:

and therefore

m=M-—

] - MO '
The proof is completed.
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If M is equal to unity, then m is equal to unity too. This means that the obtained
estimate for the convergence range of the algorithm (14) is same as that for (13).

If we truncate the series (9) then algorithms analogous to both {13) or (14) may be
designed on the basis of the 2 FrT. Namely, the operator D may be presented as a sum

De(x) = Dre(x) + Dge(x)

where
Dre(x) = Wy(x)e(x) + Di7e(x)
Dyrelx) = F; z e+ B [e(x) Wi (%))

ke[-N N0}

Dpe(x)=Fi' § eI E () o (x) (1)

keT\[—N.N]

and iterations (13) and (14) are fulfilled by using the operators Dy and D, respectively:
e**(x) = Pe,(x) + PDre®(x) (16)

Pep(x) PDlrf(k)(x)

= TTme T T mm

(17)

Both algorithms (16) and (17) converge to the approximate image €,(x)

€4(x) = €(x) — €p(x).

The error €(x) may be estimated in L,({2) by:

Lole@l T max | Wl

1
eI € —— | D e(x)| <
e Gl < 77 I Dxll 1€(0 < 7= o

Since W, (x)e(x) = Wi, (x)e(x), fulfilling the 20 Fourier transform N + 1 times allows
us to calculate D,€(x} according to (15). This may be carried out using the 2p FrT.
Hence, a fast restoration may be performed with (16) or (17) if the weight function
dependence on the angular variable is described by the Fourier series with a few
harmonics.

6. Application to the attenuated Radon fransform: numerical results

The above theory and algorithms may be applied to the numerical inversion of the
attenuated Radon transform. For example, if an attenuation coefficient u(x) is double
differentiable and vanishes to zero with the first and second derivatives on the bound
of the support Q, then the exponential weight function (2) satisfies the conditions of
lemma 1. In the case when the attenuation coefficient and its derivatives have first-kind
discontinuities on the support bound, the problem may be solved in some cases by expand-
ing the suppert and by redefining the attenuation coefficient to eliminate discontinuities.
An appropriate correction of the projections is required in this case.

The simulation of the numerical inversion of the attenuated Radon transform (with
exponential weight function) have been performed to demonstrate the features of the
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Figure 1. (a) original image €(x); (b) attenuation coefficient u(x); (¢) distorted image €, (x);
(d) third iterate of the algorithm (17).
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Figure 2. Error values versus the iterate number & for (a) L,-norm and (b} C-norm for:
algorithm (13) (O); algorithm (14) (C); algorithm (17) (m).

above algorithms. The emission coefficient €(x) (original image) and the attenuation
coeflicient u(x) were defined on the unit circle by

(x, - 0.1)2 + x%
2 x 0.3%°

e(x) = exp l:—

_ (x, + 047 + x3 (=04 + x5
”(x)_4°"p[_ Ixoas | TAe 2x 015

where x = (x|, x,). These functions are shown in figures l(a} and 1{b) respectively.
Eleven equidistant projections have been calculated in the angular variable range of
[0,27]. We evaluated the reconstruction quality on the values of the error in L,-
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and C-norms, i.e.

A I (€ (x) — e(x))* dx 2
2 Jq €(x)* dx

B maxz|€®{x) — e(x)|
c=

maxg |e(x)|

An algorithm based on the direct application of the Radon inversion formula with spline
regularization was applied to calculate the inverse Radon transform R~'. The distorted

image €, (x) is shown in figure 1(¢) (compare with figure 1{a)). Values of the error Aj,and
A for €,(x) are equal to 49% and 79% correspondingly.

Parameters M and m were evaluated approximately on the four first harmonics:

Mz~ Y m§x|ﬁf2k(x)| ~ 1.36

ke[—3,3]
1
1 — M, ke[— 3,300}

mz mﬁale;,k(x)| ~ 1.83

In spite of parameters M and m being outside the domain of proved convergence,
the examined algorithms have converged rather quickly. Algorithms (14) and (17) have
reached convergence on the third iterate. Algorithm (13) has required seven iterates.
An approximate image obtained after three iterates using the algorithm (17) is presented
in figure 1{d). Algorithms (13) and (14) have vielded approximations practically coincident
with the original image. On figures 2(a) and 2(b) the error value dependences on the
iterate number & are shown for the algorithms (13), (14) and (17),

7. Conclusions

We have investigated the restorative approach to the problem of function reconstruction
on its line integrals with known weight function. This approach consists of treating
the attenuated projections by the Radon transform inversion formula and considering
the result of the inversion as a distorted image. It has been found the distortion may
be present as an operator serics of products and Fourier transforms. This allowed us
both to estimate the distortion operator norm and the derive several simple iterative
has shown the advantages of this mcthod in terms of accuracy and cfficiency. Its
modification (17) may be applied for the fast testoration if either the weight function
has a few harmonics in series (5) or computation is performed using a specialized Fr1
processor.

It seems that estimate (11) could be improved because the above algorithms have
converged under numerical simulations for m and M values essentially greater than
unity.
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