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Abstract
An explicit series solution is proposed for the inversion of the spherical mean
Radon transform. Such an inversion is required in problems of thermo- and
photo-acoustic tomography. Closed-form inversion formulae are currently
known only for the case when the centres of the integration spheres lie on
a sphere surrounding the support of the unknown function, or on certain
unbounded surfaces. Our approach results in an explicit series solution for any
closed measuring surface surrounding a region for which the eigenfunctions of
the Dirichlet Laplacian are explicitly known—such as, for example, cube, finite
cylinder, half-sphere etc. In addition, we present a fast reconstruction algorithm
applicable in the case when the detectors (the centres of the integration spheres)
lie on a surface of a cube. This algorithm reconstructs 3D images thousands
times faster than backprojection-type methods.

1. Introduction

The problem of image reconstruction in thermo-acoustic and photo-acoustic tomography is
equivalent to recovering a function from a certain set of its spherical means [11, 13, 14, 18, 19].
The process starts with the object of interest being excited by a short electromagnetic pulse.
This causes thermal expansion of the tissue, and generates an acoustic wave whose intensity is
recorded by a set of detectors located outside the object. The intensity of the thermal expansion
depends on the local properties of the tissue, and is of interest to a doctor, since abnormally
high values of this function are indicative of a tumour. Under certain simplifying assumptions,
the measurements can be related to the integrals of the expansion intensity over the spheres
with the centres at the detectors’ locations. The reconstruction of the local properties from
these integrals is equivalent to the inversion of the spherical mean Radon transform.

Some of the recent results on the injectivity of this transform as well as the corresponding
range conditions can be found in [1–4, 8, 9]. In the present paper we concentrate on
inversion formulae and algorithms for the solution of the reconstruction problem. Generally,
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in such applications as photo- and thermo-acoustic tomography, the designer of the measuring
system has a certain freedom of choice when selecting the detectors’ positions (the centres
of the integration spheres). Most of the known explicit solutions pertain to the spherical
acquisition geometry, in other words to the configuration in which the detectors are located
on a sphere surrounding the object. Such are the recently found series solutions [16–18] and
backprojection-type formulae [8, 10, 12, 19]. Explicit reconstruction formulae are also known
for such acquisition geometries as an infinite plane [7, 15, 19] and an infinite cylinder [19].

The spherical geometry is preferable to unbounded measuring surfaces since the latter
have to be truncated in practice, which leads to errors in the reconstruction. However,
there are compelling reasons to consider other non-spherical bounded measuring surfaces as
well. For example, as shown in section 3, if the detectors are located on a surface of a cube
surrounding the object of investigation, it is possible to design a fast algorithm that reconstructs
the unknown 3D function in a matter of seconds—as opposed to the several hours required
for algorithms based on straightforward discretization of one of the 3D backprojection-type
inversion formulae [8, 12, 19].

We thus present a series solution for the inversion of spherical mean Radon transform in the
case when the centres of the integration spheres lie on a closed surface surrounding a bounded
connected region in R

n, n � 2. Our procedure requires knowledge of the eigenfunctions of
the Dirichlet Laplacian defined on the region enclosed by the measuring surface. For many
regions of practical interest such eigenfunctions are known explicitly. Among such regions in
3D are, for example, a cube, a ball, an ellipsoid, a cylinder, a spherical shell. In addition, these
eigenfunctions can be easily found for certain subsets of these bodies obtained by dissecting
them along a plane of symmetry—for example for a half-ball, half-cylinder, certain triangular
prisms and tetrahedra. Yet another example of regions with explicitly known eigenfunctions
is given by the crystallographic domains (see [5, 6] for details). A generalization of this
approach to a general connected region is possible if one computes the eigenfunctions of the
Dirichlet Laplacian numerically. In this case, however, the reconstruction algorithm is likely
to be rather expensive from the computational point of view.

The proof of the range theorem in [1] involves implicitly a reconstruction procedure also
based on eigenfunction expansions. Unlike the present method, that procedure would involve
division of analytic functions that have a countable number of zeros. While the range theorem
guarantees cancellation of these zeros when the data are in the range of the direct transform,
a stable numerical implementation of such division would be complicated if not impossible.
(A similar problem arises with the series solution of [16] that involves division of certain
computed quantities by Bessel functions.) The technique we present below does not require
such divisions.

Section 2 contains a general description of the present method. The efficiency of numerical
realization of this technique depends, in particular, on the availability of fast algorithms for the
summation of the arising eigenfunction expansions. In the simplest case of a cubic measuring
surface (or a surface of a rectangular parallelepiped) such an algorithm is the 3D fast sine
Fourier transform. This allows us to design a very efficient reconstruction algorithm for
this particular measuring configuration, as discussed in section 3. Finally, in section 4 we
investigate an interesting property that seems to be exclusive to the series solutions presented
in this paper. Namely, this technique will produce a theoretically exact image within the region
enclosed by the measuring surface even if there are sources outside that region. This property
can prove to be useful for reducing the sensitivity of the measuring system to external noise.
Such a noise cancellation will occur, however, only if all the measurements are performed
simultaneously by a fixed set of detectors; a synthesized measuring surface will not exhibit
this phenomenon.
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2. Series solution

Suppose that the C1
0 function f (x), x ∈R

n, n � 2 is compactly supported within the bounded
connected open region � with boundary ∂�. Our goal is to reconstruct f (x) from its
projections g(z, r) defined as the integrals of f (x) over the spheres of radius r centred
at z:

g(z, r) =
∫

S
n−1

f (z + r t̂)rn−1 ds(t̂),

where S
n−1 is the unit sphere in R

n, t̂ is a unit vector, and ds is the normalized measure in
R

n. Projections are assumed to be known for all z ∈ ∂�, 0 � r � diam(�) (integrals for
r > diam(�) automatically equal zero, since the corresponding integration spheres do not
intersect the support of the function).

Suppose λ2
m, um(x) are the eigenvalues and normalized eigenfunctions of the Dirichlet

Laplacian −� on � with zero boundary conditions, i.e.

�um(x) + λ2
mum(x) = 0, x ∈ �, � ⊆ R

n,

um(x) = 0, x ∈ ∂�,

‖um‖2
2 ≡

∫
�

|um(x)|2 dx = 1.

(1)

We notice that um(x) is the solution of the Dirichlet problem for the Helmholtz equation
with zero boundary conditions and the wave number λm, and thus it admits the Helmholtz
representation

um(x) =
∫

∂�

�λm
(|x − z|) ∂

∂n
um(z) ds(z) x ∈ �, (2)

where �λm
(|x − z|) is a free-space rotationally invariant Green’s function of the Helmholtz

equation (1).
Our approach is based on the fact that eigenfunctions {um(x)}∞0 form an orthonormal

basis in L2(�). Therefore f (x) can be represented by the series

f (x) =
∞∑

m=0

αmum(x) (3)

with

αm =
∫

�

um(x)f (x) dx. (4)

Since f (x) is C1
0 , series (3) converges pointwise. The reconstruction formula will result if we

substitute representation (2) into (4) and interchange the order of integrations

αm =
∫

�

um(x)f (x) dx

=
∫

�

(∫
∂�

�λm
(|x − z|) ∂

∂n
um(z) ds(z)

)
f (x) dx

=
∫

∂�

(∫
�

�λm
(|x − z|)f (x) dx

)
∂

∂n
um(z) ds(z) (5)

=
∫

∂�

I (z, λm)
∂

∂n
um(z) ds(z), (6)
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where

I (z, λm) =
∫

�

�λm
(|x − z|)f (x) dx.

The change of the integration order is justified by the continuity of eigenfunctions um(x).
Function I (z, λm) is easily computed from the projections

I (z, λm) =
∫

�

�λm
(|x − z|)f (x) dx =

∫
R

+
g(z, r)�λm

(r) dr,

and with Fourier coefficients αm now known, f (x) is reconstructed by summing series (3).
If desired, this solution can be rewritten in the form of a backprojection-type formula:

f (x) =
∞∑

m=0

αmum(x) =
∫

∂�

( ∞∑
m=0

αm�λm
(|x − z|) ∂

∂n
um(z)

)
ds(z)

=
∫

∂�

h(z, |x − z|) ds(z), (7)

where

h(z, t) =
∞∑

m=0

αm�λm
(t)

∂

∂n
um(z), (8)

and coefficients am are computed using equation (6). In the above formula, equation (7) is
clearly a backprojection operator, and (8) is a filtration. However, the latter operator is now
represented by a series rather than by a closed form expression. Moreover, this operator is not
local in z, unlike the filtration operator of the known closed-form explicit inversion formulae
[8, 10, 12, 19].

Finally, we notice that if function f (x) is not smooth but rather belongs to L2(�), our
reconstruction formulae are still valid if equation (3) is understood in the L2 sense.

3. A fast algorithm for the cubic measurement surface in 3D

A cube is the simplest of the regions whose eigenfunctions of the Dirichlet Laplacian are
known explicitly; they are products of sine functions. In the present section we exploit
the simple structure of these eigenfunctions to develop a fast reconstruction algorithm
applicable in the case when the detectors are located on a surface of a cube (a generalization to
the case of a rectangular parallelepiped is straightforward). Such a measuring surface can be
either sampled by regular detectors or synthesized from measurements made by interferometric
line detectors as discussed in the introduction.

Let the sought function f (x) be supported within the cube � = [0, R]×[0, R]×[0, R]. We
will index the normalized eigenfunctions um(x) and eigenvalues λm of the Dirichlet Laplacian
on this region using vector m = (m1,m2,m3),m1,m2,m3 ∈ N:

um(x) = 8

R3
sin

πm1x1

R
sin

πm2x2

R
sin

πm3x3

R
,

λm = π2|m|2/R2.

Cube � has six faces δ�i, i = 1, . . . , 6:

δ�1 = {x|x1 = R, 0 < x2 < R, 0 < x3 < R,},
δ�2 = {x|x1 = 0, 0 < x2 < R, 0 < x3 < R,},
δ�3 = {x|x2 = R, 0 < x1 < R, 0 < x3 < R,},
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δ�4 = {x|x2 = 0, 0 < x1 < R, 0 < x3 < R,},
δ�5 = {x|x3 = R, 0 < x1 < R, 0 < x2 < R,},
δ�6 = {x|x3 = 0, 0 < x1 < R, 0 < x2 < R,}.

The values of the normal derivatives ∂
∂num(x) of the eigenfunctions on the boundary are equal

to certain products of sine functions:

∂

∂n
um(x) =




(−1)m1
8πm1

R4
sin

πm2x2

R
sin

πm3x3

R
, x ∈ δ�1

−8πm1

R4
sin

πm2x2

R
sin

πm3x3

R
, x ∈ δ�2

(−1)m2
8πm2

R4
sin

πm1x1

R
sin

πm3x3

R
, x ∈ δ�3

−8πm2

R4
sin

πm1x1

R
sin

πm3x3

R
, x ∈ δ�4

(−1)m3
8πm3

R4
sin

πm1x1

R
sin

πm2x2

R
, x ∈ δ�5

−8πm3

R4
sin

πm1x1

R
sin

πm2x2

R
. x ∈ δ�6.

(9)

As in section 2, in order to reconstruct f (x) we recover Fourier coefficients αm:

αm =
∫

∂�

I (z, λm)
∂

∂n
um(z) ds(z)

=
6∑

j=1

∫
∂�j

I (z, λm)
∂

∂n
um(z) ds(z), (10)

where

I (z, λ) =
∫ √

3R

0
g(z, r)�λ(r) dr. (11)

If we choose Green’s function �λ(t) in the form

�λ(t) = cos λt

4πt
,

equation (11) can be rewritten in the form of the cosine Fourier transform as follows:

I (z, λ) = 1

4π

∫ √
3R

0

[
g(z, r)

r

]
cos λr dr. (12)

As before, when coefficients αm have been found function f (x) is obtained by summing the
Fourier series

f (x) =
∑

m∈N
3

αmum(x). (13)

The above formulae are just a particular case of the inversion technique presented in the
previous section. They yield theoretically exact reconstruction if the effects of discretization
are neglected. However, in the practical computation only a limited range of frequencies
0 � λ � λNyquist can be recovered from finitely sampled (in r) projections g(z, r) using
equation (12). Therefore series (13) has to be truncated. The Gibbs phenomenon resulting
from such a truncation can be reduced by application of a filter η(λm), so that instead of the
previous equation the following formula will be used to reconstruct an approximation to f (x):

f (x) ≈
∑

m∈N
3,|λm|�λNyquist

αmη(λm)um(x). (14)
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The whole reconstruction procedure can be accelerated by utilizing the fast cosine Fourier
transform to compute (12), the 3D fast sine Fourier transform to sum series (13), and the 2D
fast sine transform to evaluate the six integrals in equation (10). However, there is one obstacle
for implementing this plan. The integrals in (10) need to be computed for different values
of λm, and there are too many of these values to make the algorithm efficient. The work-
around for this problem is to evaluate these integrals for a set of uniformly distributed values
λl = l�λ, l = 0, 1, 2, . . . and then to find the values needed for each of λm by interpolation.
Such an interpolation in the spectral parameter λ requires careful selection of discretization
steps and interpolation techniques. The details of our implementation are presented below.

Suppose function f (x) is to be reconstructed on the n × n × n Cartesian grid, and
the detectors are located at the nodes of 2D n × n Cartesian grids defined on the faces
of the cube (values at the edges of the cube will not be needed). We will assume that the
discretization step of measurements (in r) is approximately the same as the step of the Cartesian
grids. Then the number of samples n1 in one projection g(z, r) approximately equals

√
3n.

Depending on a type of the fast cosine Fourier transform algorithm used to compute (12), the
projections will have to be padded with zeros to make the total number of samples n2 either
a power of 2, or a product of small prime numbers. Thus, n1 � n2 < 2n1. The Nyquist
frequency λNyquist corresponding to such discretization equals π(n1 − 1)/D, where diameter
D = diam(�) = √

3R. With these parameters in mind we summarize the five steps of the
fast reconstruction algorithm.

Step 1. The first step is to compute a discrete version of (11) using the fast (discrete)
cosine Fourier transform of length n2. This will produce values I (z, λl) for the frequencies
λl = lλNyquist/(n2 − 1), l = 0, 1, . . . , n2 − 1. Importantly, as long as n1 � n2, the step of
discretization of I (z, λl) in λ is small enough to make it possible to approximately recover
values of I (z, λ) (or a linear function of I (z, λ)) for λ �= λl by interpolation.

Step 2. For each value of λl compute integrals in the form∫
∂�j

I (z, λl) sin
πmixi

R
sin

πmkxk

R
ds(z), j = 1, . . . , 6, (15)

for integer all integer mi,mk by means of the 2D fast sine Fourier transform.

Step 3. Compute approximate values of integrals∫
∂�j

I (z, λm) sin
πmixi

R
sin

πmkxk

R
ds(z), j = 1, . . . , 6,

by interpolating values obtained on step 2 (equation (15)). Some care should be taken
to guarantee accuracy of computations on this step. It is well known that a low order
interpolation in spectral parameter can lead to a suboptimal reconstruction, due to highly
oscillatory nature of the Fourier transformant. An example and analysis of this phenomenon
can be found in [15]. However, the Fourier transform of a finitely supported function is an
analytic function of the spectral parameter, even if the function itself is known imprecisely.
Therefore, higher order polynomial interpolation is applicable and does produce good results
in this case. In our numerical experiments we observed that, indeed, the linear interpolation
in λ yields rather inaccurate reconstruction. The increase in the order of the polynomial
interpolation significantly improves the image; if the 6th order Lagrange interpolation is
utilized, the interpolation error is dominated by the discretization errors and further increase
in the accuracy of interpolation is not needed.
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(a) (b) (c)

Figure 1. Numerical example: (a) the phantom, (b) reconstruction from the exact data and
(c) reconstruction from noisy data.

Step 4. Use values computed on step 3 to calculate λm by combining equations (9) and (10).

Step 5. Using the 3D fast Fourier sine transform to implement (14), compute values of f (x)

at the nodes of the 3D Cartesian grid.
A simple computation shows that the number of floating point operations implemented

on each step of the algorithm is O(n3 log n) for steps 1, 2, and 5, and O(n3) on steps 3 and 4,
resulting in a total O(n3 log n) operation count for this technique. This has to be compared
with O(n5) operation count required by a backprojection step of a method resulting from a
straightforward discretization of any of the explicit inversion formulae [8, 12, 19]. (The latter
estimate assumes that the reconstruction is done on the n × n × n Cartesian grid from n2

detector positions.)
In what follows we present a numerical example illustrating the work of our algorithm.

A function is reconstructed within the cube [0, 1] × [0, 1] × [0, 1]. The dimension of the grids
were defined by the values of parameters n = 129, n1 = 223 and n2 = 256. As a filter we
used the cosine window function

η(λ) =

cos

πλ

2λNyquist
, λ � λNyquist,

0, λ > λNyquist.

We utilized the same phantom as in [12] to facilitate the comparison of the present results with
the images reconstructed in the former work by application of discretized explicit inversion
formulae. The phantom consists of eight characteristic functions of the balls with radii ranging
from 0.06 to 0.13, whose centres lie in the plane x3 = 0. The cross section of the phantom by
the latter plane is shown in figure 1(a). Figure 1(b) shows the central cross section (x3 = 0)

of the reconstruction from the exact data.
In order to evaluate the sensitivity of the algorithm to noise in data, the imprecise

measurements were modelled by adding to the projections normally distributed noise with the
intensity 15% of the signal (in L2-norm). In this experiment the values of the reconstructed
function were set to zero outside of the cube [0.05, 0.95] × [0.05, 0.95] × [0.05, 0.95], since
the reconstruction from noisy data is unstable at the locations close to the detectors, due to
the singular nature of Green’s function. Such sensitivity is natural, and is an issue for other
reconstruction techniques as well. For example, the slices of 3D images obtained in [12]
were computed within the unit ball from the detectors located on a sphere of radius 1.1;
the reconstruction in the close vicinity of the detectors was also avoided. The grey scale
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Figure 2. Reconstruction from noisy data; surface plot.

representation of the reconstructed function is shown in figure 1(c); in figure 2 we demonstrate
the surface plot of the same function.

We believe that the quality of the reconstructed images in all of the above experiments is
as good as of those resulting from explicit inversion formulae (see [12]). Similarly to those
formulae the present technique demonstrates high stability of the algorithm to the perturbations
of the data. On the other hand, the computation time for the present algorithm in the above
experiment varied from 7 to 8 s on an AMD workstation with a 2 GHz processor; function
values at about 2 million points were reconstructed from about 97 thousand projections. For
comparison, the reconstruction reported in [12] from 33 000 projections at about a million
grid points by the fastest of our implementations of the explicit inversion formula took about
48 min. If the latter algorithm is used to process the same number of the projections and grid
points as in the present example (97 thousands and 2 million, respectively), the computation
time increases to about 7 h. It is fair to say that the fast algorithm is thousands time faster than
the straightforward discretization of any of the backprojection-type formulae.

4. Reconstruction in the presence of exterior sources

The series solution described above has an interesting property not possessed (to the best
of our knowledge) by any other currently known explicit reconstruction technique. Let us
consider a slightly more general problem. Suppose that region � is a proper subset of a larger
region �1 (� ⊂ �1) and that an L2 function F is defined on �1. In addition we will assume
that F(x) = 0 for all x ∈ ∂�. Let us denote the restriction of F on � by f, i.e.

f (x) =
{

F(x), x ∈ �,

0, x ∈ R
n\�.

We would like to reconstruct f (x) from the integrals g(z, r) of F over spheres with the centres
on ∂�:

g(z, r) =
∫

S
n−1

F(z + r ŝ)rn−1 dŝ, z ∈ ∂�.

Unlike in the previously considered problem, now the centres of the integration spheres are
lying on a surface contained within the support �1 of the function F. While we are still trying
to reconstruct the restriction f of F to �, the integrals we know are those of F and not of f .

It turns out that the solution to this problem is still given by formulae (3) and (6) (or
equivalently by (7), (8) and (6)). Indeed, if we extend functions um(x) by 0 to R

n, formula (2)
holds for all x ∈ R

n, and (3) remains unchanged. In formula (5) f can be replaced by F as
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(a) (b)

Figure 3. Reconstruction in the presence of exterior sources (a) phantom; the white line shows
location of the detectors (b) reconstructed image.

Figure 4. Reconstruction in the presence of exterior sources; surface plot.

follows:

αm =
∫

�

um(x)f (x) dx =
∫

�

um(x)F (x) dx

=
∫

∂�

(∫
�

�λm
(|x − z|)F (x) dx

)
∂

∂n
um(z) ds(z),

and the inner integral can be computed from projections as before:∫
�

�λm
(|x − z|)F (x) dx =

∫
R

+
g(z, r)�λm

(r) dr.

By combining the two above equations we again arrive at the formula (6).
This interesting property can be illustrated by a numerical example. We consider the

same phantom as in the previous section. This time, however, the detectors are located on
the surface of the cube � = [0.235, 0.765] × [0.235, 0.765] × [0.235, 0.765]. Location of
the detectors is shown in figure 3(a) by a white line. The integrals were computed over full
spheres, and the reconstruction was conducted, as before on the grid of size 129 × 129 × 129
within �. The result is presented in figure 3(b), and, as a surface plot, in figure 4. On the
latter figure one can notice shallow troughs resulting from imperfect resolution of sharp edges
of exterior sources by a finite number of detectors. The depths of these troughs, however, do
not exceed 6% of the maximum of the original function.
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