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Foreword

In August 2017, a group of applied mathematicians and plasma physicists gathered to discuss a
collaboration proposal to the Simons Foundation on the topic of optimal design of stellarators.
For the next six months, we met regularly, sometimes virtually and sometimes in person, to work
on that proposal. Most applied mathematicians in the group came with some understanding of
fluid mechanics and electromagnetics, but only the most general notions of what a stellarator is
and how plasmas are modeled. On the other hand, the physicists knew that solving the tough
challenges in stellarator design required deepening the mathematical foundations of the subject
and learning cutting-edge numerical algorithms that could be applied. Six months of proposal
writing also constituted an unintentional crash course, with the mathematicians often interrupting
heated debates to ask about vocabulary or to request an explanation of the question at hand
suitable for a five-year old. We (DB and ML) first met at those meetings, where we had frequent
whispered conversations in which Matt answered many of David’s questions about the physics,
and David suggested algorithms that could be applied.

When this proposed Hidden Symmetries and Fusion Energy collaboration was funded, the
months-long crash course gave way to years of the physicists and mathematicians in the group
learning to communicate effectively about plasmas, fusion, optimization, PDEs, and many other
topics. That meant not only understanding one another’s vocabulary, but also understanding
what questions interested who, and why those questions were the interesting ones. The book
you are reading was first imagined during the early days of this collaboration, when we were
all still learning how to talk to one another. Early drafts were an invaluable resource, both for
ourselves and for bringing our colleagues up to speed. The authors are experienced in both
applied mathematics and plasma physics and have been careful in their writing to appeal to both
audiences.

Communication is as essential to successful scientific relationships as to any other relation-
ship, and much of the success of the Simons Hidden Symmetries collaboration has been in the
continued communication and cooperation among the mathematicians and physicists involved.
We are leading the second phase of the collaboration now as an applied mathematician and a
plasma physicist who have learned something about how to talk to each other about stellarators.
We are thrilled to have this book, both for ourselves and as a way of teaching our students and
colleagues about stellarators and about the many exciting mathematical problems related to their
design and optimization.

David Bindel and Matt Landreman

xv

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



Preface

This book project arose out of the collaboration on Hidden Symmetries and Fusion Energy1

funded by the Simons Foundation, initially between 2018 and 2022 and then for a renewed pe-
riod from 2022 to 2025. This collaboration was formed to foster interactions among experts
in numerical optimization, dynamical systems, analysis of partial differential equations, and
plasma physics in order to find stellarator configurations with hidden symmetries. Given the
diverse backgrounds of the participants, establishing a common language was the first challenge
to tackle. The original idea was to gather a collection of definitions of fundamental concepts
relevant to stellarator design, in a form similar to a dictionary. However, due to the complexity of
both the phenomena at play and the various models describing them, the need for a different for-
mat quickly became clear. The final result is closer to an introduction to mathematical modeling
for stellarator design, and the end goal is twofold: making these topics accessible to a broader
audience of scientists, and stimulating new contributions to the field of stellarator research.

In this book, we aim to present the basic theoretical building blocks to understand modeling
of stellarator magnetic fields and some of the associated challenges, as well as the main stakes
behind optimization for the design of stellarators, in a self-contained manner. As often as pos-
sible, the ideas are presented using equations and pictures and complemented with references
to other relevant introductory material. The material is accessible to those who may not have a
background in physics but are interested in applications of mathematical and computational tools
to stellarator research. Readers are simply expected to have basic knowledge of classical physics,
electromagnetism, partial differential equations, and calculus of variations, but prior knowledge
of plasma physics is not required. We present the relevant models and their derivation when it is
not too involved, and we particularly emphasize the assumptions underlying each derivation and
each result.

In general, we aim to provide enough detail to cater to readers without any background while
using language close enough to the plasma physics literature. In this way we hope that, on
the one hand, the book will be accessible to a broad audience of scientists with an interest in
stellarator design, including physicists, mathematicians, computer scientists, and engineers, and,
on the other hand, it will equip this audience with sufficient knowledge in order to gain access to
more advanced literature about recent developments in stellarator design.

More practically, after the introduction, the book is split into two parts. The first part gathers
more general material regarding toroidal magnetic confinement, and the second part focuses on
stellarators, from modeling aspects to design techniques. Essential material about Maxwell’s
equations and classical mechanics is gathered, respectively, in Chapters 2 and 3, while Appen-
dices A and B provide a little more background on these topics. Several other chapters present
mathematical tools and are placed where they become necessary to continue the reading. Chap-
ters 5 and 9 introduce various types of coordinate systems, while Chapter 6 is dedicated to lever-
aging periodicity in the study of two fundamental equations.

1https://hiddensymmetries.princeton.edu/.

xvii
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xviii Preface

The first part of the book establishes a general introduction to the concept of a stellarator.
Starting from Maxwell’s equations, Chapter 4 provides the motivation behind the general concept
of toroidal confinement. Next, Chapter 7 explains the fundamental difference between two com-
peting types of toroidal magnetic confinement devices, the tokamak and the stellarator. Chapter
8 introduces the coupling between charged particles in a plasma and discusses electromagnetic
fields under the form of the ideal MHD model.

The second part builds toward the description of mathematical models and numerical meth-
ods specifically dedicated to stellarator design. Chapter 10 highlights challenges inherent to the
three-dimensional geometry of a stellarator, while Chapter 11 describes several common mathe-
matical models for the stellarator magnetic field under different simplifying assumptions. Chap-
ter 12 focuses on notions of symmetry and their consequences in terms of particle confinement.
Finally, Chapter 13 presents the main concepts at play in stellarator optimization, and Chapter
14 provides an overview of more advanced topics on this subject.

Earlier versions of the material in this book were released over the past few years and have
been used as teaching material both in the classroom and in more compact formats in summer
schools. Newcomers to the field of stellarators, on either the theoretical side or the experimental
side, have also reported their interest in these previous versions. In its final form, the book is
suitable for teaching a class on stellarator design. The two parts can be considered separately
from each other as well. For instance, a general introduction to concepts of magnetic confine-
ment in toroidal geometry, with an emphasis on what distinguishes the tokamak and stellarator
concepts, can be based on the first part, while a more advanced overview of optimization models
and methods for stellarator design can be based on the second part.

Supplementary information about the figures in this book is available at this link: https:
//bookstore.siam.org/ot202/bonus.
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Chapter 1

Introduction

Securing clean, safe, and abundant energy is a pressing global challenge. In order to avoid
further climate change, humanity must adopt carbon-free energy sources on a large scale. While
such sources exist, such as wind, solar, and nuclear fission energy, they also introduce additional
complications: wind and solar energy are not widely dispatchable and are intermittent, while
fission produces long-lived nuclear waste. As an alternative, harnessing fusion reactions holds
promise for a clean, safe, and abundant energy source. Under the conditions necessary to achieve
sustained fusion reactions, matter exists in a plasma state and can be confined by magnetic fields.
While laboratory fusion has been possible since the 1930s, the challenge remains to reach the
conditions for a self-sustaining reaction and harness the resulting energy.

Together, theoretical and experimental research in fusion energy has enabled significant
progress toward achieving net energy production. There remain open questions for the design
of the next generation of fusion devices. This book establishes the theoretical building blocks
foundational to the design of a particular magnetic configuration, the stellarator.

This chapter briefly defines and discusses central ideas in plasma physics and magnetic con-
finement.

1.1 Plasma
Plasma is a state of matter. It is often called the fourth state of matter, in addition to solid,
liquid, and gas. The characteristic behavior of each state of matter and the transition from solid
to liquid, to gas, and finally to plasma, are determined by the kinetic energy of the molecules or
atoms comprising the state.

Plasmas of relevance for magnetic confinement fusion are characterized by two defining fea-
tures: partial or full ionization and collective behavior dominated by long-range electromagnetic
forces.

• Ionization is the process of stripping electrons from atoms, resulting in some free elec-
trons.2 In a fully ionized gas, all of the electrons are stripped off all the atoms, and the
resulting nuclei and electrons move independently rather than being bound together as
atoms. In the plasma physics literature these nuclei are referred to as ions. This process

2Ionization can occur due to the collision of an atom with an electron or the absorption of a photon with sufficient
energy, causing an electron to be removed from the atom. The inverse processes can also occur, as an atom and two
electrons collide to form an atom and one electron, or an electron and ion can combine, releasing a photon. In equilibrium,
these processes balance each other to determine the degree of ionization. A further discussion on ionization can be found
in [91].

1
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2 Chapter 1. Introduction

requires sufficiently large energy, quantified by the temperature, to overcome the Coulomb
barrier, with the temperature being proportional to the averaged kinetic energy. If a gas
is partially ionized, not all of the electrons are stripped off some of the atoms. The frac-
tion of ionized atoms with respect to the total atom population depends on the temperature
and density of the gas. At room temperature, the ionization fraction of a typical gas is
negligibly small. In such a state, collisions with neutral particles are dominant. As the
temperature increases, the ionization fraction can become large enough for collisions with
neutral particles to be neglected. While neutrals may be present in some plasmas, plasmas
of relevance for magnetic confinement fusion are characterized by a substantial ionized
fraction. Since an ionized gas contains charged particles, a plasma interacts with electro-
magnetic fields.

• While collisions exist in both neutral gasses and plasmas, the collective behavior of neutral
gas particles is determined solely by collisions. In a simple approximation, collisions for
neutral particles are analogous to the exchange of energy and momentum experienced by
billiard balls as they hit one another. This is considered a short-range interaction because
the dynamics depend only on the properties of the colliding particles and not on those
of other particles in the system. Since a charged particle produces a short-range electric
field in its vicinity, this field only impacts the dynamics of nearby charged particles. A
collision between charged particles refers to this short-range interaction governed by the
fields. Charged particles are not in physical contact as they collide, unlike billiard ball
collisions. In addition, charged particles also interact with macroscopic electromagnetic
fields. Within the class of ionized gasses, weakly coupled plasmas are characterized by
the dominance of collective, long-range interactions over collisions. In some plasmas,
known as strongly coupled plasmas, short-range interactions become significant compared
to long-range interactions. Since the collision frequency increases with the particle number
density, an ionized gas must be sufficiently diffuse to be considered a weakly coupled
plasma.

Plasmas are dielectric, in that they tend to shield out electrostatic potentials. The Debye
length, λD, is the characteristic length scale over which other mobile charges damp the electric
field produced by a charge. In a plasma with species indexed by s the Debye length is defined by

λD =

(∑
s

nsq
2
s

ϵ0Ts

)−1/2

, (1.1)

where ns is the number density, qs is the charge, Ts is the temperature, and ϵ0 is the vacuum
permittivity. See, for example, Chapter 1 in [44]. In a plasma, the Debye length is typically much
smaller than other length scales of the system, such as the major or minor radius of the torus.
Many plasmas are quasineutral, meaning that the plasma appears neutral on length scales larger
than the Debye length. On length scales smaller than λD, there may be a local nonneutrality,
while on longer length scales, the plasma is neutral. Quasineutrality is characterized by∑

s

nsqs = 0. (1.2)

The plasmas of interest in this book are quasineutral.
Plasmas are ubiquitous in space and astrophysical environments. For example, the iono-

sphere, an upper layer in Earth’s atmosphere, is partially ionized, and this plasma plays a critical
role in shielding the planet from potentially harmful radiation from the sun. More generally, plas-
mas surround other astronomical bodies, such as other planets and pulsars. On the other hand,
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Electromagnetic
fields
E, B

Plasma
(Charged particles)

q, v

Lorentz force
F = q(v ×B +E)

Currents/charge density

J , ρ

Figure 1.1: Diagram of the coupling between fields (left box) and particles (right box). The
electric and magnetic fields, E and B, produce a Lorentz force F acting on particles with
charge q and velocity v. This, in turn, produces a current J and density ρ acting on the electric
and magnetic fields, E and B, through Maxwell’s equations.

on Earth, naturally occurring plasmas are not especially common but can be found in lightning
and auroras. However, laboratory-created plasmas are widely used in many industrial processing
applications [196], such as the deposition of thin layers of metal on surfaces as in solar panels or
watches or for processing of materials, including the etching of superconductors. In medicine,
plasma is used to treat specific cells [163]. Plasmas are also used in electric spacecraft propulsion
[194].

The general setting of plasma modeling is represented in Figure 1.1, illustrating the coupling
between electromagnetic fields and charged particle motion. In the presence of electromagnetic
fields, charged particles move due to the Lorentz force. In turn, the electromagnetic fields are
modified due to the presence and movement of charged particles. Thus, the motion of charged
particles in fields is a highly coupled problem. Plasma physics studies the phenomena emerging
from this complex system.

1.2 Fusion reactions and power source
Stars, including the sun, are giant balls of plasma bound by large gravitational forces. Stars are
fueled by nuclear fusion reactions, which occur when two atomic nuclei combine to form new
atomic nuclei and other products. The energy released by nuclear fusion reactions is due to the
strong attractive force that binds nuclei together. The nuclear fusion process leads to a slight
decrease in mass, resulting in the release of energy according to Einstein’s famous E = mc2

equation, where E is the energy released, m is the mass, and c is the physical constant defining
the speed of light. Therefore, during a nuclear fusion reaction, the difference in mass m between
the reactants and the products determines the change in energy, E.

The Coulomb force makes charges with equal signs repel and charges with opposite signs
attract. For two particles to undergo a fusion reaction, they must be brought close enough, on
the scale length of protons and neutrons, for the strong force to act. For particles with equal sign
charges, this requires overcoming the repulsive Coulomb force, acting over much larger length
scales. There are two basic ingredients for fusion reactions:

• sufficient energy, quantified by the temperature, to overcome the Coulomb barrier between
the nuclei;

• sufficient density of nuclei to increase the frequency of collisions and potential fusion
reactions.
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4 Chapter 1. Introduction

At such density and temperature, matter is in a plasma state. The nuclei also need to be confined
to the same vicinity for a sufficiently long period in order for a substantial number of fusion
reactions to take place.

In the sun and other stars, the strong gravitational field confines a high-temperature plasma,
yielding fusion reactions that power the star. Due to the large mass required, gravitational fields
are impractical for laboratory confinement of plasmas. In order to realize fusion on Earth, other
confinement techniques must be employed. The extreme temperatures and pressures required to
achieve terrestrial fusion will rapidly damage any material. Therefore, the plasma must be well-
separated from material surfaces. Any laboratory confinement device must be able to thermally
insulate the hot plasma from the cooler material surfaces. The leading techniques for terrestrial
confinement are inertial, involving the compression and heating of small targets using lasers
[330], and magnetic, using strong magnetic fields. This book focuses on magnetic confinement,
specifically, the stellarator concept.

There are several fusion reactions occurring in the sun, where the core temperature and den-
sity are approximately 15 million degrees Celsius and 1.4× 1018 particles per cubic meter. The
most energetically favorable reaction for terrestrial fusion, distinct from the dominant fusion re-
action in the sun, is the fusion of deuterium, 21D, and tritium, 31T, to produce helium, 42He, and an
energetic neutron, n0. This reaction, known as the D-T reaction, can be represented as

2
1D + 3

1T −→ 4
2He (3.5 MeV) + n0 (14.1 MeV). (1.3)

Under certain simplifying assumptions, the probability of a fusion reaction between a deuterium
atom and a tritium atom depends on their energy. This probability peaks at an energy of 100
keV,3 corresponding to about 1 billion degrees Celsius. A substantial number of D-T reactions
occur at 10 keV, about 100 million degrees Celsius or about 10 times the temperature of the sun’s
core. This temperature has been achieved in several magnetic confinement facilities, where D-T
reactions have been observed.

Nuclear fusion is one of the most energetic reactions known in nature. The D-T reaction
produces 3.4 × 108 MJ of energy for every kg of fuel, in comparison with the combustion of
gasoline producing 40 MJ. Fusion as a power source produces no greenhouse gasses and requires
fuel that is either readily available or can be produced through known pathways: deuterium is
found abundantly in Earth’s oceans, and tritium can be produced with irradiation of lithium4 by
an energetic neutron. There are now schemes proposed to produce tritium as a byproduct of
fusion reactions, for instance see Section 5.5 in [75]. Compared with wind and solar, fusion
energy could provide a baseload source since it does not suffer from intermittency.

For comparison, nuclear fission and nuclear fusion yield similar energy per kilogram of fuel.
However, nuclear fusion has several advantages over nuclear fission. While the D-T fusion reac-
tion produces an energetic neutron, which can cause material structures in the plasma vessel to
become radioactive, their half-life is only around 10 years. In contrast, the half-lives of fission
byproducts can be over 104 years. For this reason, fusion energy eliminates challenges associated
with long-lived radioactive waste. Unlike plutonium and uranium, which are the fuels of fission
power, the fuels required for fusion power are not readily weaponized. Fission depends on a
chain reaction since the byproducts of the fission reaction spawn more fission reactions. This can
potentially lead to exponential growth in the energy produced. On the other hand, fusion power
is inherently safe since it does not rely on a chain reaction.

In conclusion, harnessing the fusion mechanism as a power source on Earth would yield
numerous benefits to society.

3The plasma temperature is typically measured in units of energy. If measured in Kelvin, we multiply by Boltzmann’s
constant kB = 1.38× 10−23J/K.

4Limited lithium resources may present a challenge to fusion energy.

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



1.3. Magnetic confinement for fusion 5

1.3 Magnetic confinement for fusion
The interaction of charged particles constituting a plasma with magnetic fields can be exploited to
confine plasmas. This is the principle of magnetic confinement. In this context, the geometry of
the magnetic field is critical to achieve confinement. The following two notions are fundamental.
Magnetic field lines refer to the streamlines of the magnetic field, and flux surfaces or magnetic
surfaces refer to surfaces that are tangent to the magnetic field at all points.

The basis for toroidal magnetic confinement devices will be introduced in Chapter 7. The
stellarator and the tokamak are toroidal magnetic confinement devices involving an externally
imposed magnetic field. The total confining magnetic field in such devices is the sum of a field
produced by currents within the plasma and by external currents due to electromagnetic coils.
While other classes of devices exist, they will not be described in detail here.

Regardless of the method, the ultimate goal of all fusion power devices is to produce more
energy than what is required to initiate the reactions. The D-T fusion reaction (1.3) results
in a helium nucleus, or alpha particle, and a neutron. The neutron, being charge-neutral, is
not confined by the magnetic fields and can leave the device. On the other hand, the alpha
particle may be confined by the magnetic fields and can deposit its energy in the bulk plasma fuel
through collisions. Initially, external heating is supplied to achieve the conditions required for
the reaction. The ratio of the power produced by fusion reactions to the external power deposited
into the plasma defines the quantity Q. The scientific break-even point corresponds to Q = 1.
When the energy provided by the alpha particles is enough to heat the plasma and maintain the
fusion conditions, the reaction becomes self-sustaining. This is referred to as ignition and occurs
when Q→∞.

To reformulate, the goal of fusion energy research is to achieve ignition. Magnetic confine-
ment fusion research has a long history and continues to be an active area of research today. The
first laboratory magnetic confinement fusion device, known as a Z-pinch [20], was built in the
late 1940s, and many have been built around the world since. As of 2024, the magnetic con-
finement device that has produced the most fusion energy is the Joint European Torus (JET), a
tokamak that set the record in 2021 with 21.7 MJ produced [229]. JET holds the current record
for net energy gain on a magnetic confinement device withQ = 0.6 [87], set in 1997. Initiated in
1988, the ITER project is one of the largest multinational scientific collaborations and involves
35 countries. The experimental device is currently under construction in France and aims to
demonstrate the scientific viability of fusion power by reaching Q > 10 [149].

In order to reach ignition, the loss of energy due to deconfinement must be balanced by the
energy produced by fusion. Heat naturally leaks from a hot plasma due to thermal conduction.
The time scale of energy loss from the plasma is measured by the energy confinement time, τE .
As mentioned in Section 1.2, sufficient density and temperature are required for the fusion reac-
tion to occur. A simple figure of merit for fusion performance is the triple product, quantifying
the distance from ignition. Given the particle density n in m−3, the temperature T in keV, and
the energy confinement time τE in seconds, the triple product is simply defined by nTτE . For a
plasma in thermal equilibrium, the condition for ignition is given by a lower bound on the triple
product, called the Lawson criterion [190]:

nTτE > 3× 1021 m−3keVs.

While magnetic confinement experiments can reach the conditions necessary for fusion, the Law-
son criterion has not been met in any magnetic confinement experiments as of 2024. However,
some have come close [311]. The current record is held by the Tokamak Fusion Test Reactor
(TFTR) at 7.9× 1020 m−3keVs [108].

A more complete overview of magnetic confinement for fusion can be found in Chapter 1 in
[304] or Chapter 6 in [75].
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6 Chapter 1. Introduction

1.4 Plasma modeling
Modeling physical processes in a plasma is complex because each particle is coupled to every
other particle through the electromagnetic fields, as illustrated in Figure 1.1. While a set of equa-
tions describing the motion of all individual particles coupled to Maxwell’s equations provides a
complete picture of how a coupled system evolves, it is hopeless to solve these equations in prac-
tice for any physical system of interest. Simplified approximate models are, therefore, helpful
to glean physical understanding and for computational tractability. The choice of approxima-
tion depends on the problem at hand or the physical regime of interest, leading to a hierarchy of
plasma physics models. Various models exist for magnetic confinement fusion plasmas. These
can be organized into three overarching categories:

1. The particle-based approach studies the motion of particles in physical space in the pres-
ence of electromagnetic fields. The feedback of particles on the electromagnetic fields or
collisions between particles can be included or neglected.

Given electric and magnetic fields, single-particle motion refers to the study of the motion
of particles while neglecting its feedback on the fields. Here, a trajectory, or orbit, refers
to the particle motion evolving in time. Such approaches can provide a first approximation
of the confinement properties of a given strong magnetic field.

2. The kinetic approach studies the evolution of the distribution of particles in velocity and
position space rather than tracking the motion of individual particles. Particles can inter-
act with each other through collisions and can be coupled to electromagnetic fields. An
introduction can be found in Chapters 3–5 in [226] or Chapters 4–5 in [110].

3. The fluid approach studies the plasma as one or several fluids representing each species.
Each fluid is described by fields in physical space rather than a distribution of all particles
in velocity and position space. These fields include, for example, the density, pressure, and
fluid flow velocity.

Fluid models can be derived from kinetic models by averaging with respect to the velocity
and closing the system of equations thanks to additional approximations. The resulting
description in physical space has a reduced dimensionality compared to the velocity and
position in phase space. Details of the derivation can be found in [165, 43].

In this setting, multiple characteristic length scales and time scales are separated by orders
of magnitude. Table 1.1 provides a few characteristic length and time scales in magnetic con-
finement fusion plasmas. The Debye length, defined in (1.1), measures the characteristic decay
length of the electrostatic potential of a charged particle. In the presence of a magnetic field,
charged particles exhibit helical orbits around magnetic field lines with a characteristic radius
called the gyroradius and a characteristic frequency called the gyrofrequency, as will be dis-
cussed in Section 4.1. Charged particles collide with one another with a characteristic frequency
called the collision frequency [137]. As discussed in Section 1.3, the energy confinement time
measures the time scale over which energy is lost from the hot plasma. A toroidal device’s minor
radius is a length scale characteristic of the overall size of the device.

The separation of scales motivates the development of a hierarchy of models of various com-
plexity, obtained from asymptotic reductions based on the smallness of various physical param-
eters. As an example, the Debye length (1.1), λD, is much smaller than typical length scales for
fusion devices, so the plasma can be assumed to be quasineutral.

In this book, scale separation simplifies the single-particle and fluid approaches. Single-
particle approaches can be simplified following properties of the magnetic field. In magnetic
confinement devices, the strong external magnetic field results in an ion gyrofrequency, Ωi, that is
much larger than other frequencies of interest. Consequently, the particle motion can be averaged
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1.5. Stellarator design 7

Table 1.1: This table shows the typical length and time scales for several stellarator experiments:
Wendelstein 7-AS (W7-AS), the Large Helical Device (LHD), and Wendelstein 7-X (W7-X). Due
to the large range of scales, it is intractable to study phenomena involving all of these scales
simultaneously.

Name Parameter W7-AS [207] LHD [161] W7-X [283]

Electron Debye length λD,e [m] 3× 10−5 2× 10−5 9× 10−5

Ion gyroradius ρi [m] 2× 10−3 3× 10−3 2× 10−3

Device minor radius a [m] 0.20 0.60 0.50
Ion gyrofrequency Ωi [s−1] 9× 107 1× 108 2× 108

Collision frequency* νee [s−1] 1× 105 2× 105 4× 103

Energy confinement time τE [s] 0.5 0.33 0.1

*Collision frequency refers to electron-electron collision frequency.

over the fast gyrofrequency to obtain simpler guiding center models, as will be done in Section
4.2. Fluid approaches can be simplified by leveraging properties of the temperature and density,
as well as the magnetic field. A strong external magnetic field results in a small gyroradius
compared to other characteristic scales. If the temperature is not too large and the density is
sufficiently large, the collision frequency is large compared to other characteristic scales. These
scale separations provide a simplified single-fluid model known as ideal magnetohydrodynamics
(MHD), that will be introduced in Chapter 8. In practice, the collision frequency does not satisfy
this ordering under tokamak and stellarator reactor conditions. Nonetheless, ideal MHD has been
empirically demonstrated to be a valuable model for some fusion applications.

There is a wealth of interesting open problems related to the mathematical properties and
numerical approximations for magnetic confinement plasma modeling.

1.5 Stellarator design
The concept of confinement is paramount for fusion devices in general, particularly toroidal de-
vices such as tokamaks and stellarators. When designing a magnetic confinement device, max-
imizing the energy confinement time is an effective strategy for improving fusion performance
by increasing the triple product introduced in Section 1.3. One of the methods to achieve this is
by carefully designing the magnetic field.

The cross-section of tokamaks is constant the long way around the torus, a property re-
ferred to as axisymmetry, whereas the cross-sections of stellarators can vary significantly. Con-
sequently, tokamak and stellarator concepts have different objectives for the design of the total
magnetic field. Due to the symmetry of tokamaks, a substantial magnetic field driven by the
plasma current is necessary and sufficient for confinement, as will be discussed in Sections 7.1
and 7.2. As a trade-off, the large plasma current can drive instabilities that can cause confine-
ment loss. On the other hand, stellarators rely mostly on externally driven fields, so the risk of
large plasma instabilities is reduced. However, as a trade-off, confinement is no longer guaran-
teed due to symmetry-breaking. Nonetheless, the freedom in the choice of the external field is
leveraged to improve the confinement in a stellarator. Although the cross-sections of stellarators
are not symmetric, stellarators can leverage hidden symmetries of the magnetic field to achieve
confinement properties similar to those of tokamaks; such symmetries are the focus of Chapter
12. In switching from symmetric to nonsymmetric devices, an increasing modeling complexity
is introduced as the dimensionality of the physical space moves from two to three dimensions.

Even though the first stellarator experiments predated the first tokamak, the tokamak con-
cept soon took precedence in the 1960s, as early stellarators had poor confinement properties.
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With the increase in available computing power since the 1980s, modern stellarators have been
carefully designed using numerical optimization techniques.

In this book, stellarator design refers to the search for a desired external magnetic field and
the magnets producing this field. In order to maximize the confinement time, it is natural to
seek a stable equilibrium magnetic field. Stellarator design then requires optimization of the
external field and magnets to obtain equilibria with desirable properties, such as enhanced con-
finement, stability, and hidden symmetries. This book aims to build the theoretical foundations
for stellarator design.

1.6 Outline
This book is organized into two parts. Part I covers theoretical foundations and critical concepts
for magnetic confinement. These are applied in Part II to stellarator design and optimization.

Chapters 2 and 3 summarize essential background material, while more details are provided
in the appendices. Appendix A presents the set of equations that govern the evolution of elec-
tromagnetic fields, namely Maxwell’s equations, under various sets of assumptions. Chapter 2
provides a comparison of the corresponding models. Chapter 3 reviews the equations of motion
that describe the trajectories of charged particles in given electromagnetic fields. More details
on this material are provided in Appendix B, particularly the relation between these equations of
motion and the variational principles associated with the Lagrangian and Hamiltonian function-
als.

Throughout the rest of the book, increasingly complex models are leveraged to study desir-
able properties of the fields.

For simplicity, the discussion starts with neglecting the coupling between the plasma and
electromagnetic fields. Chapter 4 addresses particle confinement in a steady background mag-
netic field. This will motivate the desire for magnetic fields lying on nested toroidal surfaces.

Chapter 5 introduces convenient coordinate systems to describe toroidal confinement devices.
Chapter 6 presents essential tools to leverage periodicity in the study of some differential equa-
tions. In Chapter 7, these ideas are applied to discuss concepts related to magnetic confinement
and motivate the stellarator concept.

In Chapter 8, the particles and electromagnetic fields are coupled by modeling the plasma as
a single fluid using the ideal MHD equations under simplifying assumptions valid for magnetic
confinement fusion. Chapter 9 leverages the assumption of MHD equilibrium to define coordi-
nate systems aligned with the magnetic field. Chapter 10 highlights challenges associated with
the ideal MHD model in stellarators, and several approaches for modeling three-dimensional
(3D) equilibrium fields are discussed in Chapter 11. These models provide the equations govern-
ing the time-independent fields from which the particle trajectories and other physical quantities
of interest can be computed.

Chapter 12 introduces several notions of symmetry in stellarator design concepts and their
consequences on confinement properties. These symmetries can be approximately realized in a
configuration via optimization of the equilibrium magnetic field and magnet shapes using tech-
niques described in Chapter 13. Chapter 14 concludes with an overview of several current re-
search problems in stellarator optimization.

Chapters 5 and 9, respectively on nonorthogonal coordinate systems and magnetic coordi-
nate systems, are provided for a self-contained presentation. They appear only when they be-
come necessary to carry on the main discussion. Readers familiar with these topics can skip the
corresponding chapters as they are limited to standard material.

The chapters on 3D equilibrium fields, symmetry, and optimization are the most important as
they are fundamental to understanding stellarators. The rest of the book is constructed to enable
discussion of these three central topics.
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Part I

Electromagnetic fields and
particle motion
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Chapter 2

Minimal reminder on
Maxwell’s equations

Maxwell’s equations are partial differential equations (PDEs) describing the time and spatial de-
pendence of electric and magnetic fields given the charge and current density, ρ and J . Since this
theory is central to the study of plasmas, Appendix A briefly summarizes essential concepts. We
aim to provide a brief overview of the relevant models for stellarator design, but their justification
is beyond the scope of this book. The details of electromagnetic theory can be found in standard
texts such as [150]. The fundamental equations are highlighted in Table 2.1.

In Chapter 4, we will discuss the trajectories of particles in static electromagnetic fields with-
out considering the feedback of ρ and J on the fields. In Chapter 8, a more realistic model will
include the coupling as follows: the Lorentz force describes how the electric and magnetic fields
act on charged particle motion, while Maxwell’s equations describe how electric and magnetic
fields evolve in the presence of charge density ρ and current J .

In the remainder of the book, we will use the SI system of units. Maxwell’s equations are
sometimes presented in Gaussian units, with corresponding rescaled physical constants. For a
comparison between the SI and Gaussian systems, see [137].

11
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12 Chapter 2. Minimal reminder on Maxwell’s equations
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Chapter 3

Minimal reminder on
classical mechanics for
charged particle motion

Classical mechanics provides the equations of motion for bodies, such as charged particles, sub-
ject to given forces. Since the motion of charged particles is central to the description of plasmas,
Appendix B briefly summarizes essential concepts.

We briefly review concepts from classical mechanics related to three equivalent formulations
to study the evolution of a mechanical system. Newton’s approach relies on balancing forces
acting on a particle and the rate of change of its momentum. In contrast, variational approaches
rely on the principle of least action. Instead of focusing on forces, variational methods focus on
other physical quantities, such as kinetic and potential energy. They facilitate the identification
of conserved quantities associated with symmetries and are well-suited to arbitrary choices of
coordinates, while these can be cumbersome for a Newtonian formulation. However, nonconser-
vative forces, such as frictional forces, are more easily represented in the Newtonian approach
than in the Lagrangian or Hamiltonian approaches. For further reading on classical mechanics
see [157, 293, 90].

The Lagrangian approach will enable us to more efficiently derive the guiding center model
under the assumption of large magnetic field strength in Section 4.2, as scalar functions are
more straightforward to manipulate than a set of ordinary differential equations (ODEs). The
Hamiltonian approach will allow us to describe the concepts of integrability and perturbations
away from integrability in Section 10.2. These concepts are also applied to the description of a
single charged particle motion in electromagnetic fields, exploited later in Chapter 4, as well as in
Chapter 10 to focus on magnetic field lines. In this context, various coordinate systems exploiting
the geometry of the magnetic field will be key to expressing several problems compactly. Hence,
variational approaches will prove particularly useful.

We now summarize the Newtonian, Lagrangian, Hamiltonian, and phase-space Lagrangian
frameworks in Tables 3.1, 3.2, 3.3, and 3.4, respectively. In this context, it is important to note
that the trajectories are functions of time t that satisfy the equations of motion, and they will
always be denoted with a subscript T to distinguish them from the independent variables of the
Lagrangian or Hamiltonian. For example, qT refers to a trajectory as opposed to the independent
variable q.

13
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14 Chapter 3. Minimal reminder on classical mechanics for charged particle motion

Table 3.1: Summary of the Newtonian framework for classical mechanics. The equations of
motion, unknown quantities, and given quantities are provided along with the form of the force
for charged particle motion. Newton’s law is an equation for the trajectory of a particle, qT , as
a function of time t. Further details are available in Appendix B.1.

Equations of motion mq̈T (t) = F (qT (t), q̇T (t), t)

Unknowns qT

Given m, F

Charged particle F (q, q̇, t) = q (q̇ ×B(q, t) +E(q, t))

Table 3.2: Summary of the Lagrangian framework for classical mechanics. The equations of
motion, unknown quantities, and given quantities are provided along with the form of the La-
grangian for charged particle motion. The unknown in the equations of motion is the trajectory
of a particle, qT , as a function of time t. Further details are available in Appendix B.2.

Equations of motion
d

dt

(
∂L (qT (t), q̇T (t), t)

∂q̇

)
=
∂L(qT (t), q̇T (t), t)

∂q

Unknowns qT

Given L(q, q̇, t)

Charged particle L(q, q̇, t) =
m|q̇|2

2
+ q (A(q, t) · q̇ − Φ(q, t))

Table 3.3: Summary of the Hamiltonian framework for classical mechanics. The equations of
motion, unknown quantities, and given quantities are provided along with the form of the Hamil-
tonian for charged particle motion. The unknowns in the equations of motion are qT and pT
describing the trajectory of a particle as a function of time t. Further details are available in
Appendix B.3.

Equations of motion
q̇T (t) =

∂H(qT (t),pT (t), t)

∂p

ṗT (t) = −
∂H(qT (t),pT (t), t)

∂q

Unknowns qT , pT

Given H(q, p, t)

Charged particle H(q,p, t) =
m|p− qA (q, t) |2

2
+ qΦ(q, t)
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Chapter 3. Minimal reminder on classical mechanics for charged particle motion 15

Table 3.4: Summary of the phase-space Lagrangian framework for classical mechanics. The
equations of motion, unknown quantities, and given quantities are provided along with the form
of the phase-space Lagrangian for charged particle motion. The unknowns in the equations of
motion are qT and pT describing the trajectory of a particle as a function of time t. Further
details are available in Appendix B.4.

d

dt

(
∂Lph (qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q̇

)
=

Equations of
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q

motion
d

dt

(
∂Lph (qT (t), q̇T (t),pT (t), ṗT (t), t)

∂ṗ

)
=

∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂p

Unknowns qT , pT

Given Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

Charged

particle
L(q, q̇,p, ṗ, t) = p · q̇ − |p− qA(q, t)|2

2m
− qΦ(q, t)
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Chapter 4

Single-particle motion in
static electromagnetic
fields

In the context of magnetic confinement fusion, charged particles in the plasma and the electro-
magnetic fields are intrinsically coupled. However, in typical experimental conditions of interest
for stellarator design, a strong external magnetic field is imposed to confine particles. In com-
parison, the effect of the particles on the electromagnetic fields is sufficiently small to justify
neglecting the coupling in a first approximation, in order to gain basic intuition about particle
motion. This is the basis for single-particle motion models. These models neglect the coupling
between fields and particles and consider instead given stationary electromagnetic fields, while
the influence of the particle motion on the fields is not accounted for. In this setting, the Lorentz
force produced by the magnetic field acts on the particle. A particle then follows complex or-
bits defined as solutions of the equations of classical mechanics introduced in Chapter 3, and
there is a natural distinction between the motion along magnetic field lines and in the direction
perpendicular to the field lines, often referred to as the motion across magnetic field lines.

Section 4.1 considers the equations of motion in a simple setting: a straight, uniform mag-
netic field. Here solutions can be computed explicitly. The motion perpendicular to the field
lines is periodic with a period proportional to the magnetic field magnitude, while the motion
along the field direction is not affected by the field strength. If the magnitude and direction of the
field are not constant, the equations are not as simple, and so solutions are not known explicitly
in general. Yet, since the Lorentz force remains perpendicular to the field, particle dynamics will
still exhibit distinct properties in the parallel and perpendicular directions. Moreover, under the
assumption of a strong magnetic field, there is a natural separation between the time scale of the
motion along field lines in comparison to the fast periodic motion across field lines, called the
gyromotion. This powerful concept, central in the field of magnetic confinement fusion, leads
to an important tool, namely the notion of gyroaverage, to describe the motion averaged with
respect to the perpendicular periodic motion. Section 4.2 discusses the corresponding reduction
of the Lagrangian. Consequences of this model on the description of charged particle trajec-
tories are discussed in Section 4.3. Finally, Section 4.4 introduces the basic ideas of toroidal
magnetic fields, referring to magnetic fields lying in a toroidal domain, and their advantages for
confinement.

Beyond single-particle motion, the coupling between fields and particles will be introduced
in Chapter 8 in a fundamental model for the steady-state plasma and fields. This model is central
to optimization techniques for stellarator design.

17
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18 Chapter 4. Single-particle motion in static electromagnetic fields

4.1 Motion in a uniform magnetic field
The concept of magnetic confinement can be illustrated by studying the trajectory of a particle in
a strong, uniform magnetic field, in the absence of an electric field. We will use the orthonormal
coordinate system (ê1, ê2, ê3) such that ê1 × ê2 = ê3 and assume that the first vector is aligned
with the magnetic field, so that B = Bê1.

We consider the motion of a particle of mass m and charge q, denoting by q its position. The
Lorentz force (B.2) on the particle is given by F (q, q̇, t) = qB (q̇ × ê1). According to (B.1),
the resulting particle trajectory, qT : R → R3 parameterized by t, obeys equations of motion,
expressed here as a first order system of two equations rather than a single second order equation

dqT (t)

dt
= vT (t),

m
dvT (t)

dt
= qB (vT (t)× ê1),

(4.1)

where the first-order derivative of qT is the velocity and the first-order derivative of vT is the
acceleration. If the initial velocity is expressed as vinit = v∥ê1+v⊥ (cos(φinit)ê2 − sin(φinit)ê3),
the trajectory is given by

vT (t) = v∥ê1 + v⊥ (cos (Ωt+ φinit) ê2 − sin (Ωt+ φinit) ê3) ,

where Ω := qB/m defines the gyrofrequency. Hence the trajectory will spiral about the magnetic
field in a helical orbit. For an initial position qinit = (xinit, yinit, zinit), the particle position is given
by

qT (t) = (xinit + v∥t)ê1 +
(
yinit −

v⊥
Ω

sin(φinit) +
v⊥
Ω

sin (Ωt+ φinit)
)
ê2

+
(
zinit −

v⊥
Ω

cos(φinit) +
v⊥
Ω

cos (Ωt+ φinit)
)
ê3. (4.2)

Hence the motion in the direction of the magnetic field is constant, while the perpendicular
motion is periodic with a frequency given by Ω. The sign of Ω is the sign of the particle’s charge,
q. Hence positive ions of mass mi and charge qi will rotate clockwise in the ê2-ê3 plane, at
the frequency Ωi = qiB/mi, while electrons of mass me will rotate counterclockwise, at the
frequency Ωe = −eB/me. Moreover, because Ω is inversely proportional to the mass, electrons
rotate much more quickly than ions, with Ωe = − (mie/(meqi)) Ωi, where the mass ratio scales
as mi/me ≈ 103 and the charge ratio scales as e/qi ≈ 1.

When considering time scales t≫ Ω−1 for either species, it is useful to separate the motion
in the direction of the magnetic field, also described as along field lines, from the periodic mo-
tion in the plane perpendicular to the magnetic field, called the gyromotion. Starting from the
expression for the position (4.2), we will separate out the periodic and nonperiodic components
to study this gyromotion. We denote by ρT the component of the particle position that is periodic
in time, known as the gyroposition, and given by

ρT (t) =
v⊥
Ω

(cos(Ωt+ φinit)ê3 + sin(Ωt+ φinit)ê2). (4.3)

The nonperiodic term is then (RG)T (t) = qT (t)− ρT (t):

(RG)T =
(
xinit + v∥t

)
ê1 +

(
yinit −

v⊥
Ω

sin(φinit)
)
ê2 +

(
zinit −

v⊥
Ω

cos(φinit)
)
ê3. (4.4)

The quantity |ρ| is often referred to as the gyroradius. The component ρ is represented in Fig-
ure 4.1. The quantity RG is referred to as the guiding center position as it is the center about
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4.1. Motion in a uniform magnetic field 19

Figure 4.1: The motion in the plane perpendicular to the magnetic field is described by the
orthonormal ê2-ê3 basis. The direction of the magnetic field, ê1, points into the page. The
perpendicular component ṽ = v−(v · ê1)ê1 describes the periodic velocity in the perpendicular
plane. The particle position is decomposed into periodic and nonperiodic pieces as q = RG+ρ,
where ρ is the gyroposition and RG is the guiding center position.

Figure 4.2: In a straight, uniform magnetic field, charged particles exhibit fast helical motion
about field lines (red). Each charged particle is confined in the direction perpendicular to the
magnetic field but is free to move in the direction parallel to the magnetic field. The guiding
center trajectory (blue) describes the averaged particle’s motion along field lines, while the
gyromotion (black) describes the position.

which the particle is said to gyrate. In this setting, the guiding center moves purely along the
field line lying at the center of the helical motion, as illustrated in Figure 4.2.

In summary, in a straight, uniform field, the distance between the particle and its guiding
center is constant, while the motion of the guiding center is purely along a field line. In this way,
the particle is confined in the direction perpendicular to the magnetic field, but its motion is not
constrained in the direction parallel to the magnetic field. From a practical point of view, we
can only produce an approximately straight uniform magnetic field, for instance with a solenoid.
A solenoid is a cylindrical coil with several turns that generates a set of approximately straight
field lines in a given volume of space, as illustrated in Figure 4.3. In such a device, a particle
would stay away from the solenoid coils but could escape out the ends. An additional confining
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20 Chapter 4. Single-particle motion in static electromagnetic fields

Figure 4.3: A solenoid is used to produce an approximately straight, uniform magnetic field.

mechanism is needed to avoid losses of particles along the field lines. Two confinement con-
cepts have been developed to this avail: the mirror force, discussed in Section 4.3, and toroidal
confinement, discussed in Section 4.4.

As |ρ| = v⊥/Ω is typically much smaller than most length scales of interest for the dis-
cussions of magnetic confinement devices in this book, which are discussed in Section 1.4, the
particle motion is described by the guiding center motion to a good approximation. In Section
4.2 we will use this assumption to explore the trajectories of particles in the presence of more
general electromagnetic fields.

4.2 Gyroaveraged Lagrangian
In this section we consider in the 3D case, N = 3, the motion of charged particles of mass
m and charge q in general—not necessarily straight and uniform—static electric and magnetic
fields within the Lagrangian framework. As in the case of a straight uniform magnetic field, there
is a natural separation of time scales between the rapid gyration in the perpendicular plane and
the slower motion of the guiding center under the assumption that the magnetic field is strong.
By applying knowledge of the length and time scales involved, a simplified Lagrangian for the
guiding center motion, (4.21), can be derived as follows.

1. Starting from the phase-space Lagrangian for single-particle motion in static electric and
magnetic fields, (4.5), a coordinate transform is performed from the phase-space coordi-
nates (q, q̇,p, ṗ) to velocity-based coordinates (q, q̇,v, v̇), (4.6).

2. Under suitable assumptions, a small parameter, ϵ, is defined as the ratio of the gyroradius
to the typical length scales of the system (4.9).

3. An additional coordinate transformation is defined, (4.10)–(4.11), from the particle posi-
tion, q, to the guiding center position, RG, and the gyroposition, ρ. The particle velocity
v is also transformed, (4.13), to the guiding center parallel velocity v∥ in addition to the
rotation velocity of the gyroposition.

4. A new Lagrangian is obtained by retaining only the terms in the Lagrangian of the leading-
order O(ϵ0) and performing an average over the fast gyromotion using the operation de-
fined in (4.15).
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4.2. Gyroaveraged Lagrangian 21

Further discussion of the gyroaveraged Lagrangian can be found in [197], Chapter 6 of [120],
and [288].

4.2.1 Phase-space Lagrangian in velocity coordinates

While other sources work within the Newtonian framework and average the Lorentz force in
order to obtain the guiding center motion, working within the Lagrangian framework is beneficial
as it provides additional insight into the conserved quantities of the system. In particular, we use
the phase-space Lagrangian framework because it allows for more freedom in the coordinate
transformation. We will first express the phase-space Lagrangian in velocity variables rather
than momentum variables in order to more effectively apply the previous assumptions on the
guiding center motion. We will use the general phase-space Lagrangian for charged particle
motion (B.26) (see Appendix B.4.2), additionally assuming static fields, namely

Lph(q, q̇,p, ṗ) = p · q̇ − |p− qA(q)|2

2m
− qΦ(q). (4.5)

To leverage the assumption of fast gyromotion, it is convenient to use coordinates that depend
only on the characteristic length and time scales. Since this is not a feature of the canonical mo-
mentum, we will transform to a coordinate system based on the velocity rather than the canonical
momentum. In phase-space coordinates, (q, q̇,p, ṗ), the coordinate q̇ is the velocity. We define
the quantity v by

v(q, q̇,p, ṗ) =
p− qA(q)

m
.

As a consequence, using the canonical momentum introduced in (B.15) (see Appendix B.3.3)
and evaluated along any trajectory (qT ,pT ) : R→ R6, namely

pT (t) = mq̇T (t) + qA(qT (t)),

we then have q̇T (t) = v(qT (t), q̇T (t),pT (t), ṗT (t)). Hence this quantity v indeed defines the
velocity along a trajectory. Rather than defining v = q̇, the previous definition is convenient
for obtaining a formula for v̇ as a function of (q, q̇,p, ṗ). We therefore propose a coordinate
transformation [197] from the phase-space coordinates (q, q̇,p, ṗ) to (q, q̇,v, v̇) defined by

q(q, q̇,p, ṗ) = q,
q̇(q, q̇,p, ṗ) = q̇,

v(q, q̇,p, ṗ) =
p− qA(q)

m
,

v̇(q, q̇,p, ṗ) =
ṗ− q (q̇ · ∇)A(q)

m
.

(4.6)

Here, ∇ indicates derivatives with respect to q. The Jacobian of the transformation is 1/m2, so
this coordinate system is always defined. We denote by Lph the phase-space Lagrangian in this
modified coordinate system, namely

Lph(q, q̇,v, v̇) = (mv + qA(q)) · q̇ − m|v|2

2
− qΦ(q). (4.7)

Note that even though q̇ and v are equal along trajectories, in the new coordinate system they are
treated as independent variables.
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22 Chapter 4. Single-particle motion in static electromagnetic fields

4.2.2 Guiding center assumptions

In this context, we will apply several scaling assumptions in order to further reduce the La-
grangian, following intuition of the characteristic features of trajectories in a uniform mag-
netic field. We define various length and time scales that characterize slow and fast motion,
whose ratio defines a characteristic ordering parameter ϵ. For the fast gyration, Ω−1, with the
gyrofrequency Ω = qB/m,5 is the characteristic time scale; v⊥ is the characteristic velocity,
referring to the magnitude of the projection of v onto the plane perpendicular to the magnetic
field; and ρ = v⊥/Ω is the characteristic length scale of the fast gyration. For the comparatively
slow guiding center motion, vt =

√
2T/m is the characteristic velocity of thermal particles with

temperature T ; LB is the characteristic length scale of the system, defined as the gradient-scale
length through L−1

B ∼ |∇B|/B; and ωB ∼ vt/LB is the characteristic frequency of thermal
motion parallel to the field lines. Next, all physical quantities can be compared in magnitude to
LB and ωB .

The following assumptions, based on orders of magnitude presented in Table 1.1, will be
leveraged to considerably simplify the modified Lagrangian (4.7).

• The gyroradius is small compared with typical length scales of the system, implying

ρ/LB ≪ 1.

• The gyrofrequency is much larger than other frequencies of the system, implying6

ωB ≪ Ωi ≪ Ωe. (4.8)

Based on these assumptions, we will perform an asymptotic expansion with respect to the small
parameter

ϵ ∼ ρ

LB
∼ ωB

Ω
≪ 1. (4.9)

For the sake of simplicity, it is assumed that the two small parameters ρ/LB and ωB/Ω are
comparable to each other.

Under these assumptions, we expect the motion to be the sum of a fast gyromotion and a com-
paratively slow guiding center motion. This is the motivation for the coordinate transformation
in Section 4.2.3. We furthermore assume the following.

• The electrostatic energy, qΦ, is not too large compared to the thermal energy, T ,7

qΦ

T
∼ 1.

• The velocity is approximately isotropic in the directions parallel and perpendicular to the
magnetic field, with the velocity magnitude v =

√
v2⊥ + v2∥ satisfying

v ∼ v∥ ∼ v⊥.

• The velocity scales as the thermal velocity,

v ∼ vt.

These assumptions will form the basis for comparing the relative magnitude of each term in the
Lagrangian.

5Here Ω will be used without any subscript to refer to either the electron or ion gyrofrequency, depending on the
values of q and m, as the assumed scaling (4.8) holds for both species.

6As a reminder, the ion and electron gyrofrequencies are related by Ωe = − (mie/(meqi))Ωi, so Ωi ≪ Ωe: ions
rotate considerably more slowly than electrons.

7This implies that the guiding center motion across field lines is small with respect to the thermal velocity, vt.
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4.2. Gyroaveraged Lagrangian 23

4.2.3 Guiding center coordinates

In Section 4.1, where a uniform magnetic field was assumed, the guiding center motion along
field lines and the gyromotion in the perpendicular plane were conveniently described by appro-
priate coordinates. We now extend this approach to a nonuniform magnetic field by introducing
a coordinate transformation that allows us to separate the guiding center motion and the gyro-
motion. We anticipate that the leading-order guiding center motion with respect to the small
parameter ϵ will be described by the same equations of motion as those for a straight uniform
magnetic field.

We consider particle motion in a field B(q) = B(q)ê1(q) that is no longer assumed to be
straight and uniform. Here ê1(q) = b̂(q) is a local unit vector in the direction of the magnetic
field at q. The unit vectors ê2(q) and ê3(q) form a basis of the plane perpendicular to B(q). At
each point in q ∈ R3, (ê1, ê2, ê3) forms a local orthonormal basis, independent of the motion.
However, unlike in Section 4.1, this basis depends on space as the magnetic field is not uniform.
The unit vectors ê2 and ê3 span the plane perpendicular to the magnetic field. There could
be several ways of defining such unit vectors. For example, in a curved magnetic field, ê2
could be chosen to coincide with the unit vector in the direction of the magnetic field curvature,
κ =

(
b̂ · ∇

)
b̂, such that ê2 = κ/ |κ|, and ê3 = ê1 × ê2.

We then define a coordinate transformation from (q, q̇,v, v̇) to (RG, ṘG, ρ, ρ̇, φ, φ̇, v∥, v̇∥),
where RG is the guiding center position, ρ is the gyroradius, v∥ is the parallel velocity, and φ
is the gyroangle. Initially, we have the vector position r and vector velocity v with their time
derivatives, and we end up with a vector position RG and three scalars related to the velocity
(ρ, φ, v∥) along with their time derivatives. As we will see in Section 4.3.1, v∥ will correspond
with the parallel guiding center velocity along a trajectory. There are other possible choices of
guiding center coordinates [109].

Motivated by the analysis in Section 4.1, we decompose the position vector, q, into

q(RG, ρ, φ) = RG + ρ(ρ, φ,RG) (4.10)

with

ρ(ρ, φ,RG) = ρ (sin(φ)ê2(RG) + cos(φ)ê3(RG)). (4.11)

Here, the gyroposition vector ρ accounts for the periodic gyromotion in the perpendicular plane.
The scale of the gyromotion is assumed to be much smaller than the scale of the guiding center
motion, ρ/|RG| ≪ 1. Furthermore, the unit vectors are defined with respect to the magnetic
field evaluated at the guiding center position. Similarly, the coordinate transformation for q̇ is
decomposed into

q̇(RG, ṘG, ρ, ρ̇, φ, φ̇) = ṘG + ρ̇(RG, ṘG, ρ, ρ̇, φ, φ̇),

where

ρ̇(RG, ṘG, ρ, ρ̇, φ, φ̇) = ρ̇ (sin(φ)ê2(RG) + cos(φ)ê3(RG))

+ ρφ̇ (cos(φ)ê2(RG)− sin(φ)ê3(RG))

+ ρ
(
sin(φ)

(
ṘG · ∇

)
ê2(RG) + cos(φ)

(
ṘG · ∇

)
ê3(RG)

)
.

The above can be written in the compact form, namely

ρ̇(RG, ṘG, ρ, ρ̇, φ, φ̇) =
ρ̇

ρ
ρ(RG, ρ, φ) + φ̇

(
ρ(RG, ρ, φ)× b̂(RG)

)
+
(
ṘG · ∇

)
ρ(RG, ρ, φ). (4.12)
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24 Chapter 4. Single-particle motion in static electromagnetic fields

Here the operator ∇ denotes the gradient with respect to RG only, corresponding for the small
parameter ϵ to the leading order term of the full gradient. We decompose the velocity vector into

v(RG, ρ, φ, φ̇, v∥) = v∥b̂(RG) + φ̇
(
ρ(RG, ρ, φ)× b̂(RG)

)
. (4.13)

Here the first term describes the parallel motion along field lines while the second term describes
the gyration about field lines. Because v̇ does not appear in the Lagrangian, we will not define it
here.

We define the Lagrangian L̃ in the new coordinates by

L̃(RG, ṘG, ρ, ρ̇, φ, φ̇, v∥, v̇∥)

=
[
mv(RG, ρ, φ, φ̇, v∥) + qA (q(RG, ρ, φ))

]
· q̇(RG, ṘG, ρ, ρ̇, φ, φ̇)

−
m
∣∣v(RG, ρ, φ, φ̇, v∥)

∣∣2
2

− qΦ (q(RG, ρ, φ)). (4.14)

Terms in the Lagrangian involving ρ (4.11) will be periodic in φ, while there is no such peri-
odicity with respect to φ̇. Next, we will introduce the operation of averaging over this periodic
motion.

4.2.4 Ordering and gyroaveraging the Lagrangian

The previous Lagrangian (4.14) can now be simplified with the following operations:

• retaining only the leading-order terms, under the assumption (4.9), by neglecting all O(ϵ)
terms in the asymptotic expansion; 8

• averaging the Lagrangian over the fast gyromotion under the assumption (4.8) by perform-
ing the gyroaveraging operation defined as

⟨F ⟩φ =
1

2π

∫ 2π

0

F (φ) dφ, (4.15)

where F is any scalar or vector quantity. The Lagrangian is periodic with respect to φ, as
exhibited by its dependence on ρ (4.11). Therefore, the gyroaveraging operation is defined with
respect to φ and not φ̇. Performing the gyroaverage removes the fast variations of phenomena at
high frequencies ω ∼ φ̇ from the system to study phenomena that occur on a slower time scale.
Neglecting high-order terms provides a simpler model to study the leading-order guiding center
drifts. Next, for clarity, these operations will be performed successively on each term in L̃.

A few general comments will be helpful in this task. We will consider how the phase-space
variables will scale along a trajectory with respect to the characteristic length and time scales,
using assumptions defined in Section 4.2.2.

• Since LB represents a macroscopic length scale, the guiding center position will scale as

RG ∼ LB .
8In any asymptotic expansion, it would be standard to consider separately the lowest-order O(ϵ−1) terms and the

O(ϵ0) terms. In this case, the lowest-order Euler–Lagrange equations do not provide enough information in order to
determine the motion, and the corresponding lowest-order Lagrangian is said to be singular. However, when both the
O(ϵ−1) and O(ϵ0) terms are retained, the resulting Euler–Lagrange equations provide an equation of motion for each
of the phase-space variables [38].
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4.2. Gyroaveraged Lagrangian 25

Table 4.1: Scaling of phase-space guiding center coordinates with respect to the characteristic
length and time scales.

Coordinate RG ρ ṘG ρ̇ φ̇

Scales like LB ϵLB ωBLB ϵωBLB ωB/ϵ

• Given (4.9), then

ρ ∼ ϵLB . (4.16)

• Since the gyroangle increases rapidly with time, no assumption on the magnitude of φ will
be made. Instead, we will average over this angle.

• The guiding center motion is slow in comparison to the fast gyromotion, so

ṘG ∼ vt ∼ ωBLB .

• Given that ρ ∼ v⊥/Ω ∼ vt/Ω, the time derivative of the gyroradius will scale as

ρ̇ ∼ ρΩ̇/Ω ∼ ρḂ/B ∼ ρωB ∼ ϵωBLB ,

since Ω = qB/m is the gyrofrequency.

• Given intuition from trajectories in a straight magnetic field, then

φ̇ ∼ Ω ∼ ωB/ϵ. (4.17)

These scalings are summarized in Table 4.1.

Remark 4.1. We emphasize that LB quantifies the gradient length scale of all quantities that
depend on the guiding center position. For example, for a quantity a(RG) its gradient scales as
∇a(RG) ∼ a(RG)/LB . As a consequence, the time dependence along a trajectory of quantities
depending on the guiding center position can be estimated as

ȧ(RG) ∼ ṘG · ∇a(RG) ∼ vta(RG)/LB ∼ ωBa(RG).

First, we consider ρ̇ defined in (4.12). Given (4.16), the first term in (4.12) scales as ωBρ.
The third term has the same scaling as the first one, since the (ê1, ê2, ê3) basis depends on RG,

so from Remark 4.1,
(
ṘG · ∇

)
ê2,3(RG) ∼ ˙̂e2,3 (RG) ∼ ωB . On the other hand, the second

term scales as ϵ−1ωBρ ∼ O(ϵ0) since φ̇ ∼ ϵ−1ωB according to (4.17). Therefore,

ρ̇
(
RG, ṘG, ρ, ρ̇, φ, φ̇

)
= φ̇

(
ρ(RG, ρ, φ)× b̂(RG)

)
+O(ϵ). (4.18)

Then the vector and scalar potentials, initially introduced as functions of q, must instead be
expressed in terms of RG and ρ. Under the assumption that the scale of the gyromotion is much
smaller than the scale of the guiding center motion, ρ/|RG| ≪ 1, then{

A(q) = A(RG) + (ρ · ∇)A(RG) +O(ϵ2),
Φ(q) = Φ(RG) + (ρ · ∇) Φ(RG) +O(ϵ2).

(4.19)
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26 Chapter 4. Single-particle motion in static electromagnetic fields

We also note that the gyroaverage of any term that is linear in ρ will vanish since

⟨ρ⟩φ = 0. (4.20)

According to (4.18), the first term in L̃ can be written as

mv
(
RG, ρ, φ, φ̇, v∥

)
· q̇
(
RG, ṘG, ρ, ρ̇, φ, φ̇

)
= m

(
v∥b̂(RG) + φ̇

(
ρ(RG, ρ, φ)× b̂(RG)

))
·

(
ṘG + φ̇

(
ρ(RG, ρ, φ)× b̂(RG)

))
+O(ϵ).

Then, using (4.20) to simplify, the gyroaverage of the previous equation gives〈
mv(RG, ρ, φ, φ̇, v∥) · q̇

(
RG, ṘG, ρ, ρ̇, φ, φ̇

)〉
φ
= m

(
v∥b̂(RG) · ṘG + φ̇2ρ2

)
.

According to (4.18) and (4.19), the second term in L̃ is

qA (q(RG, ρ, φ)) · q̇
(
RG, ṘG, ρ, ρ̇, φ, φ̇

)
= qA(RG) ·

[
ṘG +

ρ̇

ρ
ρ(RG, ρ, φ)

+ φ̇
(
ρ(RG, ρ, φ)× b̂(RG)

)
+
(
ṘG · ∇

)
ρ(RG, ρ, φ)

]
+ q (ρ · ∇)A(RG) ·

(
ṘG + φ̇

(
ρ(RG, ρ, φ)× b̂(RG)

))
+O(ϵ).

Then by gyroaveraging with (4.20),〈
qA (q(RG, ρ, φ)) · q̇

(
RG, ṘG, ρ, ρ̇, φ, φ̇

)〉
φ

=
qφ̇ρ2

2

(
− [(ê2(RG) · ∇)A(RG)] · ê3(RG)+[(ê3(RG) · ∇)A(RG)] · ê2(RG)

)
+O(ϵ).

Using the vector identity A× (∇×B) = (∇B) ·A− (A · ∇)B, we obtain the vector identity
− [(ê2 · ∇)A] · ê3 + [(ê3 · ∇)A] · ê2 = ê3 · (ê2 × (∇×A)). We refer the reader to the NRL
Plasma Formulary for many useful vector identities [137]. Since ê3× ê2 = −b̂ and∇×A = B,
then 〈

qA (q(RG, ρ, φ)) · q̇
(
RG, ṘG, ρ, ρ̇, φ, φ̇

)〉
φ
= qA(RG) · ṘG −

qφ̇ρ2B(RG)

2
.

The third term is

−m
|v
(
RG, ρ, φ, φ̇, v∥

)
|2

2
= −

mv2∥

2
− mρ2φ̇2

2
.

This term does not depend on the gyroangle and so is unchanged under the gyroaverage.
According to (4.19), the final term is

−qΦ(q) = −qΦ(RG) +O(ϵ),
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and it is also independent of the gyroangle.
As a conclusion, we define the gyroaveraged Lagrangian, denoted by L, as

L
(
RG, ṘG, ρ, ρ̇, φ, φ̇, v∥, v̇∥

)
=
(
mv∥b̂ (RG) + qA(RG)

)
· ṘG −

mv2∥

2
+
ρ2
(
mφ̇2 − qφ̇B(RG)

)
2

− qΦ(RG). (4.21)

By construction, this gyroaveraged Lagrangian no longer depends on φ, even though it still
depends on φ̇. We will use this simplified Lagrangian to study guiding center motion.

4.3 Euler–Lagrange equations for the gyroaveraged
motion

The gyroaveraged Lagrangian (4.21) describes the dynamics of the guiding center RG in addi-
tion to the gyromotion variables, ρ and φ, and the parallel velocity, v∥, in a time-independent
magnetic field. We will evaluate the Euler–Lagrange equations associated to the minimization
of L, and perform further analysis of the conserved quantities and dynamics for guiding cen-
ter motion, respectively, in Sections 4.3.1–4.3.2 and Sections 4.3.3–4.3.6. The results will lead
to important concepts such as particle trapping and evidence the guiding center drift across field
lines. This will motivate the concept of toroidal magnetic confinement, introduced in Section 4.4.

4.3.1 Euler–Lagrange equations for auxiliary variables

Together with several further simplifications, a coordinate transformation from position q and
velocity v and their derivatives to the guiding center position RG, gyroradius ρ, gyroangle φ, and
parallel velocity v∥ and their derivatives was performed in Section 4.2.3 to obtain a gyroaveraged
Lagrangian. In order to isolate the guiding center motion, the auxiliary variables, ρ and φ,
describing the gyromotion, as well as v∥, can be eliminated by studying the associated Euler–
Lagrange equations.

First, thanks to the Euler–Lagrange equation for ρ, we can identify the gyrofrequency as fol-
lows. The gyroaveraged Lagrangian (4.21) is independent of ρ̇, ∂L/∂ρ̇ = 0. Hence, along any
trajectory QT = ((RG)T , ρT , φT , (v∥)T ) : R → R6, the Euler–Lagrange equation correspond-
ing to the gyroradius shows that

∂L
(
QT (t), Q̇T (t)

)
∂ρ

=
d

dt

∂L
(
QT (t), Q̇T (t)

)
∂ρ̇

⇒ ∂L
(
QT (t), Q̇T (t)

)
∂ρ

= 0.

Computing the partial derivative of the gyroaveraged Lagrangian (4.21), this implies

φ̇T (t) =
qB((RG)T (t))

m
. (4.22)

Hence φ̇ corresponds to the gyrofrequency Ω found in Section 4.1 but for a space-dependent
magnetic field B(RG). By analogy, we define the gyrofrequency as a function of the guiding
center position, namely

Ω(RG) =
qB(RG)

m
. (4.23)

In the literature, the gyrofrequency is expressed more compactly as Ω = qB/m.

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



28 Chapter 4. Single-particle motion in static electromagnetic fields

Second, thanks to the Euler–Lagrange equation for φ, we can identify a conserved quantity
associated with the nearly periodic gyromotion, consistent with the assumption ϵ ≪ 1. The
gyroaveraged Lagrangian (4.21) is independent of φ, ∂L/∂φ = 0. Hence, along any trajectory
QT : R→ R6, the Euler–Lagrange equation corresponding to the gyroangle shows that

∂L
(
QT (t), Q̇T (t)

)
∂φ

=
d

dt

∂L
(
QT (t), Q̇T (t)

)
∂φ̇


⇒ d

dt

(
mρT (t)

2φ̇T (t)−
ρT (t)

2qB((RG)T (t))

2

)
= 0.

This implies the conservation of the quantity 2mρ2φ̇−ρ2qB(RG) along any trajectory. This can
also be expressed in terms of the gyrofrequency asmρ2Ω(RG), along guiding center trajectories.
Any multiple of this quantity is conserved along trajectories, but the one that is most often used
in the literature is defined in terms of the perpendicular velocity, v⊥(ρ,RG) := ρΩ(RG), as

µ =
mv2⊥(ρ,RG)

2B(RG)
(4.24)

and is often referred to as the magnetic moment. This quantity can be interpreted as follows.
The gyromotion in the perpendicular plane produces a current loop of radius ρ, and the mag-
nitude of the associated magnetic dipole moment is µ. The magnetic moment plays a key role
in the dynamics of guiding center motion. In the literature, the magnetic moment is expressed
more compactly as µ = mv2⊥/(2B). Here v⊥ is the perpendicular velocity associated with the
gyromotion, as opposed to the velocity (ṘG)⊥ associated with the perpendicular guiding center
motion.

Remark 4.2. In classical mechanics, if a system exhibits separation of time scales between a fast
periodic motion and a slower variation of underlying physical quantities of interest, then there
exists an adiabatic invariant, defined as an approximately conserved quantity associated with
nearly periodic motion. This can be proved by asymptotic expansion using the separation of time
scales and averaging over the fast time scale [90]. The fast gyromotion of a single particle in a
given magnetic field provides nearly periodic motion, and the assumption ϵ≪ 1 ensures that the
magnetic field varies slowly with respect to this time scale. Hence the existence of an adiabatic
invariant is guaranteed.

The magnetic moment µ is an example of an adiabatic invariant. Here the magnetic mo-
ment is exactly conserved for the approximate gyroaveraged Lagrangian, but it would only be
approximately conserved for the original Lagrangian.

Last, thanks to the Euler–Lagrange equation for the parallel velocity v∥, we obtain a con-
straint in terms of guiding center variables. Using (4.21), we evaluate the Euler–Lagrange equa-
tion corresponding to the parallel velocity. Along any trajectory QT : R→ R6 it reads

d

dt

∂L
(
QT (t), Q̇T (t)

)
∂v̇∥

 =
∂L
(
QT (t), Q̇T (t)

)
∂v∥

= 0⇒
(
v∥
)
T
(t) = b̂((RG)T (t)) · ˙(RG)T (t). (4.25)

This fits with the intuition that v∥ is the velocity of the guiding center along the magnetic field.
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Remark 4.3. We will soon see that there is a component of ṘG across field lines, but it will be
smaller than v∥ by a factor scaling like ϵ. Therefore, to lowest order, the guiding center motion
follows field lines.

The next goal is to leverage (4.22), (4.23), (4.24), and (4.25) in order to isolate the guiding
center motion from (4.21), describing the trajectories of RG.

4.3.2 Energy conservation

Under the assumption of time independence of the electric and magnetic fields discussed in the
introduction of Section 4.2, ∂Φ/∂t = 0 and ∂A/∂t = 0, the Lagrangian (4.21) does not depend
explicitly on time, ∂L/∂t = 0. This will now result in conservation of energy for the guiding
center motion.

Indeed, the total time derivative of L along a trajectory QT : R→ R6 can be expressed as

dL
(
QT (t), Q̇T (t)

)
dt

= ˙(RG)T (t) ·
∂L
(
QT (t), Q̇T (t)

)
∂RG

+ ρ̇T (t)
∂L
(
QT (t), Q̇T (t)

)
∂ρ

+φ̇T (t)
∂L
(
QT (t), Q̇T (t)

)
∂φ

+ ˙(v∥)T (t)∂L
(
QT (t), Q̇T (t)

)
∂v∥

+ ¨(RG)T (t) ·
∂L
(
QT (t), Q̇T (t)

)
∂ṘG

+ρ̈T (t)
∂L
(
QT (t), Q̇T (t)

)
∂ρ̇

+ φ̈T (t)
∂L
(
QT (t), Q̇T (t)

)
∂φ̇

+ ¨(v∥)T (t)∂L
(
QT (t), Q̇T (t)

)
∂v̇∥

.

Applying the Euler–Lagrange equations for RG, ρ, φ, and v∥, we obtain

dL
(
QT (t), Q̇T (t)

)
dt

=
d

dt

(
˙(RG)T (t) ·

∂L
(
QT (t), Q̇T (t)

)
∂ṘG

+ ρ̇T (t)
∂L
(
QT (t), Q̇T (t)

)
∂ρ̇

+ φ̇T (t)
∂L
(
QT (t), Q̇T (t)

)
∂φ̇

+ ˙(v∥)T (t)∂L
(
QT (t), Q̇T (t)

)
∂v̇∥

)
. (4.26)

Along a trajectory QT : R→ R6, the energy for the guiding center motion is then defined as

E(t) := ṘG ·
∂L
(
QT (t), Q̇T (t)

)
∂ṘG

+ ρ̇
∂L
(
QT (t), Q̇T (t)

)
∂ρ̇

+ φ̇
∂L
(
QT (t), Q̇T (t)

)
∂φ̇

+ v̇∥
∂L
(
QT (t), Q̇T (t)

)
∂v̇∥

− L
(
QT (t), Q̇T (t)

)
, (4.27)

so that according to (4.26), the time derivative of the energy vanishes

dE(t)

dt
= 0,

so along a trajectory the energy E is constant in time. Thanks to the definition of the Lagrangian
(4.21), the magnetic moment (4.24), and parallel velocity (4.25), along a trajectory the energy
can be reformulated after elementary calculations as

E =
m
(
v∥
)2
T
(t)

2
+ µB((RG)T (t)) + qΦ. (4.28)
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30 Chapter 4. Single-particle motion in static electromagnetic fields

In the literature, this is expressed more compactly as

E =
mv2∥

2
+ µB + qΦ.

The conserved quantity E represents the total energy of a guiding center: the first two terms in
(4.28) account for the kinetic energy, the energy due to the motion, while the last term accounts
for the potential energy, the energy due to the fields.

Since E is conserved along a trajectory, it will be used below without any mention of argu-
ment, and considered as a prescribed parameter depending only on the initial conditions.

4.3.3 Particle trapping

Energy and magnetic moment conservation will have an important consequence on the guiding
center motion: particles may be trapped in regions with low magnetic field strength. To explain
this, for simplicity, here Φ is assumed to be constant in some region of space. The reader can
refer to Section 12.2 for justification.

The parallel velocity along a trajectory QT : R → R6 can be rewritten from the expression
for the energy invariant (4.28) under the form(

v∥
)2
T
(t) =

2 [E − qΦ− µB ((RG)T (t))]

m
.

Since v∥ represents the velocity along a trajectory, it must be real-valued, and therefore v2∥ must
be nonnegative. The sign of v2∥ depends on the comparison between the constant (E − qΦ)/µ
and the variable quantity B (RG). Moreover, defining Bcrit := (E − qΦ))/µ, then v2∥ vanishes
at points where B(RG) = Bcrit. The quantity v∥ may or may not change sign depending on
the value of Bcrit: either particles continuously move in the same direction along field lines, or
particles bounce between points of Bcrit.

Given B and Φ defining a physical system, the values of the energyE and adiabatic invariant
µ, respectively defined in (4.27) and (4.24), depend on the trajectory in phase space. From
this point of view, the constraint v2∥ ≥ 0 implies that trajectories cannot exist in regions of
phase space where B(RG) > (E − qΦ)/µ. Along an individual trajectory, the values of the
invariants (E,µ) are fixed, uniquely definingBcrit. At any time t along the trajectory, necessarily
B(RG)T (t) ≤ Bcrit. Therefore the trajectory cannot access regions where B(RG)T (t) > Bcrit.

The conservation of E and µ along individual trajectories leads to the result that trajectories
cannot access regions with sufficiently large magnetic field. This effect is known as mirroring,
as a trajectory will be reflected away from high field regions. While these trajectories refer to the
guiding center motion, particles exhibit a fast gyromotion about the guiding center trajectories.
Two types of particle motion are then defined according to the associated guiding center.

• Trapped particles have a guiding center trajectory such that v∥ changes sign for values of
RG such that B(RG) = Bcrit. These particles have sufficiently large values of the ratio
µ/E and become trapped in regions of low field strength.

• Passing particles have a guiding center trajectory such that v∥ maintains a constant sign.
These particles have sufficiently small values of µ/E and never mirror.

As noted in Remark 4.3, the motion of guiding centers, and therefore particles, approximately
follows magnetic field lines. To lowest order in ϵ, trapped guiding centers mirror between points
where B(RG) = Bcrit along field lines, while passing guiding centers continuously move along
field lines in the same direction.
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Particle trapping is an important concept for confinement. One of the earliest magnetic con-
finement devices, known as the mirror machine, relies on a magnetic field that varies along one
direction with a large value of the field strength on the two ends of the device. In this way, a large
population of particles are reflected and remain confined. Trapped and passing particles tend to
have very different confinement properties in magnetic confinement devices due to their distinct
trajectories. In particular, a major challenge of designing a stellarator is confining trapped par-
ticles, as will be discussed in Section 12.2. Additional discussion on particle trapping can be
found in Section 8.9 of [75].

4.3.4 Equation of motion for the guiding center

As a reminder from Section 4.1, in a uniform and straight magnetic field, guiding center motion
exhibits a constant velocity along field lines. The following sections will show that guiding
centers have an additional slow drift across field lines in the presence of, on the one hand, a
nonuniform magnetic field and, on the other hand, curvature in the field.

We will obtain the guiding center trajectories QT : R → R6 by considering the Euler–
Lagrange equation for the guiding center position, namely

d

dt

∂L
(
QT (t), Q̇T (t)

)
∂ṘG

 =
∂L
(
QT (t), Q̇T (t)

)
∂RG

,

using the guiding center Lagrangian expression (4.21) together with the definition of µ (4.24),
and∇ indicates ∂/∂RG. The equation reads

d

dt

(
m
(
v∥
)
T
(t)b̂ ((RG)T (t)) + qA ((RG)T (t))

)
= mv∥∇

(
˙(RG)T (t) · b̂ ((RG)T (t))

)
+ q∇

(
˙(RG)T (t) ·A ((RG)T (t))

)
− [µ∇B + q∇Φ] ((RG)T (t)) .

The time-derivative operator on the left-hand side can be written as

d/dt = ṘG · ∇+ v̇∥∂/∂v∥,

as RG and v∥ are the only phase-space variables appearing in the expression. Using the vector
identity∇(a · b) = a× (∇× b) + b× (∇×a) + (a · ∇)b+ (b · ∇)a as well as the definitions
of the electric and magnetic fields in terms of the vector and scalar potentials E = −∇Φ and
B = ∇×A from (B.5), we obtain

m ˙(v∥)T (t)b̂ ((RG)T (t)) = ˙(RG)T (t)×
(
m
(
v∥
)
T
(t)∇× b̂ ((RG)T (t)) + qB ((RG)T (t))

)
− [µ∇B − qE] ((RG)T (t)). (4.29)

In the literature, this is commonly written more compactly as

mv̇∥b̂ = ṘG ×
(
mv∥∇× b̂+ qB

)
− µ∇B + qE.

The resulting dynamics in the parallel and perpendicular directions are now obtained.

4.3.5 Parallel guiding center motion

By taking the dot product of (4.29) with b̂, the parallel guiding center acceleration is obtained as

˙(v∥)T (t) =
(
v∥
)
T
(t) ˙(RG)T (t) · κ ((RG)T (t)) −

1

m

[
µb̂ · ∇B − qE · b̂

]
((RG)T (t)) ,
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where κ =
(
b̂ · ∇

)
b̂ =

(
∇× b̂

)
× b̂ is the curvature of magnetic field lines. This is expressed

more compactly in the literature as

v̇∥ = v∥ṘG · κ−
µ

m
b̂ · ∇B +

q

m
E · b̂.

A discussion of the scaling of the different terms follows.

• The first term is smaller than the next two by a factor of ϵ according to the assumption
(4.9). It can be interpreted as a small parallel drift due to the field inhomogeneity.

• The second term expresses the fact that particles are repelled from regions of large field
strength, as discussed in Section 4.3.3.

• The third term accounts for acceleration in regions where the electric field is parallel to the
magnetic field.

4.3.6 Perpendicular guiding center motion

We now take the cross product of (4.29) with b̂, combined with the parallel velocity expression
(4.25), to obtain the following expression for the guiding center acceleration:

˙(RG)T (t) =

[ (
v∥
)
T
(t)

(
B ((RG)T (t)) +

m
(
v∥
)
T
(t)

q
∇× b̂ ((RG)T (t))

)

+

[
µ

q
b̂×∇B +E × b̂

]
((RG)T (t))

]
(
B ((RG)T (t)) +

m
(
v∥
)
T
(t)

q

[
b̂ ·
(
∇× b̂

)]
((RG)T (t))

)−1

.

Under the assumption (4.9), we note that mv∥∇× b̂/q is smaller than B by a factor of ϵ. There-
fore, the second term in the numerator is smaller than the first by a factor of ϵ, and similarly for
the second term in the denominator compared with the first. We now focus on the component of
the velocity that is perpendicular to the magnetic field, ˙(RG)⊥ = b̂×

(
ṘG × b̂

)
. Therefore, to

lowest order in ϵ,

(
(ṘG)T (t)

)
⊥
=
(
v∥
)2
T
(t)

[
b̂× κ

Ω

]
((RG)T (t))

+

[
µ

q

b̂×∇B
B

+
E ×B

B2

]
((RG)T (t)) . (4.30)

This is expressed more compactly as(
ṘG

)
⊥
= v2∥

b̂× κ

Ω
+
µ

q

b̂×∇B
B

+
E ×B

B2
.

The right-hand side has three separate terms.

• The first term is known as the curvature drift, denoted vκ, resulting from the centrifugal
force experienced by a particle moving along curved field lines. It depends on the mass,
field strength, and charge through Ω. The sign of this drift is different for ions and electrons
as the species gyrate in opposite directions.
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Figure 4.4: Illustration of a particle orbit in a magnetic field pointing into the page with a
gradient in the field strength pointing up. The trajectory of an ion is shown, with all motion
projected into the plane perpendicular to B. The ion will gyrate counterclockwise, with a smaller
gyroradius in the region of stronger field. This results in what is called a grad-B drift to the right.

• The second term is the grad-B drift, denoted by v∇B . This drift also depends on the field
strength and charge. A physical picture of the grad-B drift can be found in Figure 4.4.

• The third term is the E×B drift, denoted by vE . This drift does not depend on the charge
or mass, so it is the same for all species.

Further discussion of guiding center drifts can be found in Chapter 2 of [226], Section 2.4 of
[110], Chapter 8 of [75], and Chapter 6 of [120].

4.4 Introduction to toroidal confinement
We focus here on the impact of magnetic field-line geometry on confinement. Although the
magnetic field can be defined everywhere in space, in the context of magnetic confinement the
goal is to confine a plasma within a bounded volume.

As described in Section 4.1, in a straight magnetic field a particle will gyrate about field lines.
When the field is curved, that is, when its direction varies in space, or when its magnitude varies
in space, particles will exhibit a drift across field lines in addition to their motion along field
lines, as described in Section 4.3.

The structure of the magnetic field also affects collective properties such as the temperature
of the plasma. As particles are approximately free to move in the direction parallel to the field,
the temperature tends to reach an equilibrium rapidly along field lines [120].

In this section, we will use both the single-particle context and collective properties to discuss
a magnetic field structure that is a central consideration for confinement in toroidal devices: the
existence of nested toroidal flux surfaces.

4.4.1 Magnetic field lines and flux surfaces

In Section 4.1 we found that in a straight, uniform magnetic field, particles are confined in the
direction perpendicular to the magnetic field lines. From the equations of motion (4.1), there is
no confining force if the magnetic field vanishes. Moreover the radius of the gyromotion in the
perpendicular direction scales inversely with the field strength, as expressed in (4.3). In order to
take advantage of this perpendicular confinement, we will make the assumption that the magnetic
field strength does not vanish within the confinement volume.
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On the other hand, in a straight, uniform magnetic field, particles are not confined in the
direction parallel to the magnetic field lines. In order to avoid losses of particles along straight
field lines that leave the confinement volume, a different field-line structure is required. For
particles to be confined within a bounded volume, a natural idea is to bend a set of straight field
lines into a bounded volume. That is, field lines do not enter or exit through the boundary of this
volume; therefore the field must be tangent to this boundary.

We can now comment on the possible topology of the boundary of the confinement volume.
The simplest topology of a bounded volume is that of a sphere. The Hopf–Poincaré theorem
[36] states that a nonvanishing, continuous 3D vector field cannot be tangent to a topologically
spherical surface. However, a nonvanishing vector field can be tangent to surfaces with other
topologies, the simplest being a torus. As we make the assumption that the magnetic field is
nowhere vanishing, the boundary of the confinement volume cannot be a topologically spherical
surface. However, it is possible for the boundary to be a toroidal surface. We will now assume
that the confinement volume is toroidal. Depending on further assumptions on the model, this
confinement volume can either be considered as a user-defined input, or be obtained by postpro-
cessing an output.

Additional motivation for toroidal geometry arises from considerations of the collective prop-
erties of the particles. Since the temperature tends to reach an equilibrium rapidly along field
lines [120], toroidal magnetic confinement devices avoid field lines that connect the plasma core
to the cooler edge of the plasma. In this way, they maintain a hot plasma core that is not in con-
tact with the material walls. If field lines from the plasma core do not intersect material surfaces,
they must remain within a confined volume.

Within a bounded volume, each magnetic field line can exhibit different behaviors. If there
exists a surface to which a magnetic field line is everywhere tangential, then the corresponding
field line will lie on that surface instead of filling the plasma volume. Alternatively, if no such
surface exists, the magnetic field line can instead fill a volume and is then known as a chaotic
field line. Because temperature equilibrates rapidly along field lines [120], volume-filling field
lines are not desirable as temperature would then become constant throughout the volume. In-
stead, to confine a hot plasma within a much colder material wall, it is necessary to maintain
a temperature gradient between the core and the edge of the plasma. If there exists any region
within the confinement domain where the field lines are volume-filling, the temperature is ap-
proximately constant. Therefore, to maximize the temperature gradient, it is desirable for the
entire confinement volume to be filled with magnetic surfaces. Such surfaces are referred to
as continuously nested surfaces. According to the previous discussion on the Hopf–Poincaré
theorem, these surfaces cannot be spherical but can be toroidal.

The presence of toroidal magnetic surfaces in the volume is important for effectively confin-
ing a plasma. These considerations are the starting point for the concept of toroidal confinement.
If all of these surfaces are nested around a single closed field line, the latter is called a magnetic
axis. We denote this as the primary magnetic axis. Typically, the primary magnetic axis closes
after one toroidal transit. In between two surfaces nested about the primary magnetic axis, it is
possible to have a secondary magnetic axis. This secondary axis often does not close after one
toroidal transit. A secondary set of surfaces can be nested about this secondary axis, forming
what is called an island structure. Similar to chaotic regions, temperature is equilibrated rapidly
within magnetic island chains [74]. Ideally, it is desirable for the magnetic field to lie on contin-
uously nested toroidal surfaces with a single magnetic axis. This of course cannot be the case in
the entire space, but such continuously nested toroidal flux surfaces can occupy a certain volume.

In perfect axisymmetry, continuously nested closed flux surfaces are guaranteed within the
confinement domain if there is a nonzero toroidal current in the plasma. This statement will
be justified in Sections 10.1–10.2 by demonstrating that the magnetic field-line flow can be
described by a Hamiltonian system possessing a conserved quantity under the assumption of
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Figure 4.5: Poincaré plot of a surface S. To produce it, field lines are followed, and each time
they hit S, a point is marked on the plot with colors indicating a given field line. The magnetic
field is generated by the coils of the NCSX stellarator [322]. Within the confinement region there
are sets of magnetic surfaces as well as magnetic islands and chaotic field lines.

axisymmetry. However, in 3D geometry, such as in a stellarator or a tokamak with 3D pertur-
bations, field lines may become chaotic or may form islands in addition to forming nested flux
surfaces in some regions of space, as can be seen in Figure 4.5.

Remark 4.4. In order to maintain a temperature gradient across the confinement volume, con-
tinuously nested toroidal surfaces are beneficial. Many models leveraged in the context of stel-
larator design rely on the assumption of continuously nested toroidal surfaces, even though this
assumption is not always valid in three dimensions. This is naturally also the case within this
book, and in this context these surfaces will always be assumed to be smooth. In particular,
it will allow for the introduction of coordinate systems adapted to the flux surfaces and to the
periodicity inherent to toroidal geometries, as presented in Section 5.5. Thanks to these coordi-
nate systems, periodicity can be used to formulate simpler mathematical models, as illustrated
in Chapter 6.

A common way to visualize the structure of a given toroidal magnetic field B is through
a Poincaré plot. In a toroidal geometry, a toroidal angle refers to an angle measuring rotation
about the main axis of the torus.9 The setting for a Poincaré plot is a 2D plane, representing
a given surface S, at constant toroidal angle. The intersection of the magnetic axis with S is a
single point, and the intersection of the toroidally nested flux surfaces with S are closed curves
nested around that point. The intersection of island structures with S appears as a secondary set
of closed curves in between two primary closed curves. The plot is produced by following a set
of field lines through many full toroidal rotations around the device and placing a point wherever
a line passes through S. This process gradually fills out the closed curves as one follows field
lines lying on surfaces. For chaotic field lines, the Poincaré plot displays a set of points that do

9One example of a toroidal angle is the angle from cylindrical coordinates when the main axis of the torus is chosen
as the main axis for the cylindrical coordinates.
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(a) (b)

Figure 4.6: A purely toroidal field (a) cannot provide confinement due to the guiding center drifts.
Therefore, we are interested in a magnetic field with both toroidal and poloidal components such
that field lines twist to cover magnetic surfaces (b).

not fill out curves. Refer to Figure 4.5 for a Poincaré plot of the magnetic field produced by the
NCSX coils [322].

4.4.2 Poloidal component of the field

Toroidal magnetic fields are desirable for confinement and are naturally described using the
canonical cylindrical coordinates (R,ϕ, Z).10 In a toroidal region, a purely toroidal field only
has a toroidal component, denotedBϕ, so that B = Bϕϕ̂, and its field lines are toroidally closed,
each one of them forming a circle around the Z axis, as illustrated in Figure 4.6a. One could
imagine generating such a set of toroidally closed field lines by bending a long solenoid to join its
two open ends. Nearly toroidal field lines can be generated thanks to several individual circular
coils placed along a common circular axis, as illustrated in Figure 4.7. Further considerations
of such a toroidal system will now show that they do not lead to particle confinement. Instead,
there is a need for the field to wrap around the flux surfaces, as illustrated in Figure 4.6. In other
terms, the field will have both a component pointing the long way around the torus, referred to as
the toroidal component, as well as a component pointing the short way around the torus, referred
to as a poloidal component.

We study the field produced by such a coil configuration represented in Figure 4.7 with no
other sources of current. The Ẑ vertical axis is the main axis of the configuration, each plane
circular coil lies in a vertical plane including this axis, and they all lie on an axisymmetric torus.
For the sake of the argument we will assume that the resulting magnetic field is purely toroidal
and perfectly axisymmetric, meaning that B = Bϕϕ̂ and Bϕ is independent of the angle ϕ.
We will find that the magnitude of the toroidal field, Bϕ, generated by the coils is a nonconstant
function of the position. The field is stronger inside the toroidal shape, closer to the Ẑ axis of
symmetry, and decreases as a function of the major radius R. This can be seen by computing
the current passing through a particular circular surface S, lying in any horizontal plane whose
boundary is a circle with radius R included between the major and minor radius of the torus
shape supporting the coils and with height Z included between the highest and lowest points of
this torus shape. Hence the boundary of the surface, ∂S, links through all of the coils as shown in
Figure 4.7. Given a current density J supported by the coils and the normal n̂ to S, the resulting

10The cylindrical coordinates are uniquely defined only up to translations and rotations.
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Figure 4.7: In a toroidal vacuum magnetic field, the magnitude of the toroidal field varies as
Bϕ ∝ 1/R where R is the major radius, as can be seen by performing a line integral along
the toroidal loop (red) enclosing coil current I , including contributions from the electromagnetic
coils (blue).

current through S is then defined as

I =

∫
S

J(r) · n̂(r) d2r.

Since the loop ∂S goes through the electromagnetic coils and there is no other source of current,
the total current enclosed by the loop is the sum of the currents in each coil, independently of
the radius R and height Z. On the other hand, the current can also be expressed in terms of
the toroidal field, Bϕ. This component is independent of the toroidal angle by axisymmetry and
therefore is constant along the line integral. Indeed, from Ampère’s law (A.7) we find

I =
1

µ0

∮
∂S

B(r) · dl(r).

Using ϕ to parameterize the line integral such that B(r) · dl(r) = RBϕ(R,Z)dϕ we then get

I =
2πRBϕ(R,Z)

µ0
.

As a result, for this configuration, the toroidal field strength is actually independent of Z and
varies as Bϕ(R) ∝ 1/R. The field inside the toroidal surface bounded by the coils is then

B(R,ϕ) =
µ0I

2πR
ϕ̂(ϕ).

As discussed in Section 4.1, in a straight, uniform field, particles exhibit gyromotion about
field lines. If the magnetic field is nonuniform or curved or if an electric field is introduced, a
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particle will drift off of a field line on average, as discussed in Section 4.3. It is impossible to have
good confinement in a purely toroidal and perfectly axisymmetric field, for which B = Bϕϕ̂ and
Bϕ depends only on R as described above, because of the following two drift phenomena.

• In the presence of a magnetic field B with a nonzero gradient of the field strength B,
guiding centers drift off field lines at the velocity v∇B , introduced as the second term in
(4.30), namely

v∇B =
v2⊥
2Ω

B ×∇B
B2

,

where the gyrofrequency is Ω = qB/m and v⊥ is the magnitude of the velocity perpen-
dicular to the magnetic field. Since B ∝ ϕ̂ and ∇B ∝ R̂, on average a particle will drift
in the ϕ̂ × R̂ = −Ẑ vertical direction, either up or down depending on the sign of its
charge q. According to similar arguments, the curvature drift vκ also points in the positive
or negative vertical direction depending on the sign of the charge. We will use the term
magnetic drifts to denote both the grad-B and curvature drifts.

• As ions and electrons move in opposite directions, an electric field will appear in the
vertical direction as a result of the separation of charges. This results in an additional
E ×B drift, namely

vE =
E ×B

B2
.

Since E ∝ Ẑ and B ∝ ϕ̂, this drift is in the radial direction. As the sign of the E ×B
drift is independent of the charge, both species will drift together radially out of the device.

As a consequence, a purely toroidal field cannot provide sufficient confinement.
Thanks to a poloidal magnetic field component, pointing the short way around the torus,

these losses can be avoided. As we will discuss in Section 10.1, the existence of a poloidal mag-
netic field in axisymmetry ensures the existence of nested, toroidal magnetic surfaces. Consider
field lines that twist to lie on a toroidal surface, having both a poloidal component and toroidal
component, as represented in Figure 4.6b. As particles move along field lines, they will move
above and below the Z = 0 plane. Consider a particle with a magnetic drift in the Ẑ direction
starting from a given magnetic surface. When the particle is above the Z = 0 plane, it will have a
magnetic drift in the Ẑ direction away from that surface, and when it is below the Z = 0 plane it
will drift in the Ẑ direction back toward that surface. In this way, along a trajectory the net drift
averages to zero, so a charged particle stays confined to its initial magnetic surface on average.

As described in [101], an analogy can be made with the motion of honey on a rotating honey
dipper held horizontally. As gravity always pulls the fluid down, the honey will fall off the dipper
if it is stationary. However, if the dipper is rotated, the honey will fall away from the dipper while
it is on the bottom half and toward the dipper while it is on the upper half of the dipper. In this
way, on average the honey will remain confined. In the same way, the twisting of the magnetic
field lines allows particles to remain close to a given magnetic surface.

A poloidal magnetic field component is used for confinement in tokamaks and stellarators.
While the existence of a poloidal field component guarantees confinement in a tokamak, in a
stellarator additional constraints on the magnetic field are required to generally confine particle
orbits. These will be discussed respectively in Section 7.2 and Chapter 12.
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Chapter 5

Coordinate systems

Modeling toroidally confined plasmas requires the description of fields and other physical quan-
tities in a toroidal domain. While many generic coordinate systems exist to describe physical
domains, coordinate systems specifically adapted to given geometries are often more efficient
tools for simplifying the geometric representation from the theoretical and computational points
of view. This is particularly relevant in toroidal geometry, referring abstractly to a domain in R3

delimited by a genus one surface.
More specifically, in the context of toroidal confinement, for a given static magnetic field

under specific assumptions beyond the toroidal geometry, coordinates can be adapted to the shape
of the magnetic field itself.

• In general, toroidal coordinates rely on two periodic angle-like variables. A considerable
benefit of such coordinates is that convenient simplifications follow from the associated
periodicity of physical quantities, allowing, for instance, to leverage Fourier series tech-
niques. This will be illustrated in Chapter 6.

• Under the fundamental assumption of continuously nested flux surfaces, described in Sec-
tion 4.4, a radius-like coordinate can be defined from the toroidal flux surfaces. Physical
processes occurring within a given flux surface are typically distinct in their space scales
and time scales from those across surfaces. Many physical quantities, such as the temper-
ature, can be assumed to be constant on flux surfaces, so a function of a single variable can
model them.

A detailed introduction to these so-called flux coordinates for toroidal systems is provided in
[55].

A brief discussion of the domain of interest for PDE models in toroidal confinement devices
is presented in Section 5.2. A reminder of the canonical cylindrical coordinate system, often
used to describe toroidal systems, is proposed in Section 5.3. A discussion of nonorthogonal
coordinates, routinely arising in the description of magnetic geometries, is presented in Section
5.4. Section 5.5 discusses magnetic fields and toroidal magnetic surfaces as a motivation. Section
5.5.1 focuses on flux surfaces and how they are labeled. These surfaces form the basis for flux
coordinate systems, described in Section 5.5.2.

5.1 A general comment on notation
While physical laws are inherently independent of coordinate systems, choosing an appropriate
coordinate system can drastically simplify how they are expressed.

39
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To describe a domain of interest in physical space, denoted Dr ⊂ R3, it is standard to denote
by r ∈ Dr the position in space and to use a coordinate system to parameterize Dr. The relation
existing between any coordinate system

(
x1, x2, x3

)
, defined on a domain Dc ⊂ R3, and the

position vector r can be expressed by

r = R
(
x1, x2, x3

)
,

where R is a bijection between Dc and Dr. Equivalently, this relation can be expressed as(
x1, x2, x3

)
= (R)−1(r),

where (R)−1 denotes the inverse of R.
Any function on the domain of interest, either scalar-valued or vector-valued, can be ex-

pressed as a function of the position r or as a function of the coordinates
(
x1, x2, x3

)
. For

example, any quantity can be expressed as either a function fr defined on Dr or a function fc
defined on Dc, related as follows:

∀
(
x1, x2, x3

)
∈ Dc, fc

(
x1, x2, x3

)
= fr

(
R(x1, x2, x3)

)
. (5.1)

It is standard practice to use a single symbol to refer to either of these two functions. For instance,
B may refer to the magnetic field as a function of position or a function of a particular set of
coordinates. However, it is crucial to consider the relation between the two functions in practical
calculations. For example, any partial derivative of fc will necessarily involve the application of
the chain rule to the right-hand side of (5.1).

5.2 Domain of interest for toroidal confinement
In toroidal confinement, the goal is to achieve particle confinement through a carefully chosen
magnetic field. The existence of continuously nested magnetic surfaces, discussed in Remark
4.4, is often assumed in at least some part of space as discussed in Section 4.4. Since magnetic
confinement aims to confine a plasma within a given volume in R3, the domain of interest is
naturally bounded.

The domain of interest is a toroidal volume, even if the boundary is not necessarily one of
the nested flux surfaces. For simplicity, we assume that a straight axis passes through the torus
hole but does not intersect this volume. In some discussions, while remaining a bounded toroidal
volume, the domain of interest will also include regions without continuously nested toroidal
flux surfaces.

Most of this book focuses on the confinement properties of the magnetic field in such a
bounded toroidal volume. Outside of this bounded volume, magnets or coils must provide an
external magnetic field. In the context of the theoretical study of properties of partial differential
equations or their solutions, the boundary of this domain is assumed to be given. For some design
problems, the domain boundary is unknown and approximated through optimization techniques.
In other contexts, electromagnetic coils and the magnetic field generated by these coils may be
given, and the boundary of the domain of interest, defined as the last closed flux surface of the
field, is unknown. In Chapter 13, we will discuss some aspects of coil design. Some modeling
problems account for other experimental components outside the confinement region, though
this is beyond the scope of this book.

5.3 Canonical cylindrical coordinates
The classical cylindrical coordinates, denoted (R,ϕ, Z) ∈ R+ × [0, 2π) × R, can naturally
describe toroidal geometry, as illustrated in Figure 5.1. Given a reference axis Ẑ and a reference
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Figure 5.1: The standard cylindrical coordinate system: R measures the distance to the Ẑ axis,
and ϕ is the standard angle of the cylindrical coordinate system such that R̂× ϕ̂ = Ẑ.

plane perpendicular to Ẑ, the plane can be parameterized by Cartesian coordinates X and Y ,
with the unit vectors (X̂, Ŷ ) = (∇X,∇Y ) such that X̂ × Ŷ = Ẑ. The Cartesian coordinates
are related to the cylindrical coordinates through X = R cosϕ and Y = R sinϕ. The major
radius then measures the distance from the Ẑ axis, while ϕ is an angle measured in the x-y
plane. The unit vectors for the cylindrical coordinates can be expressed in terms of the gradients
of the corresponding coordinates as R̂ = ∇R, ϕ̂ = R∇ϕ, and Ẑ = ∇Z. A poloidal plane
is defined as a half-plane at constant ϕ, so that (R̂, Ẑ) is an orthonormal basis of the poloidal
plane, while ϕ̂ is orthogonal to the poloidal plane.

Cylindrical coordinates have a singularity at R = 0, along the Ẑ axis, as ϕ is discontinuous
across the axis. However, since we assume that there exists a straight axis passing through the
torus hole but not intersecting the domain of interest, we can choose this as the Ẑ axis. Then, the
singularity of cylindrical coordinates is outside the domain of interest, so this singularity does
not come into play in the context of this book.

Using cylindrical coordinates in the context of axisymmetric geometries is generally con-
venient, as ϕ is a symmetry direction. Note that these coordinates can be used independently
of the magnetic field geometry for nonsymmetric systems. In contrast, coordinate systems de-
pending on the magnetic field geometry may have the advantage of simplifying the expression of
quantities of interest. However, it is important to remember that additional assumptions on the
magnetic field geometry, such as flux coordinates, will restrict the existence of such coordinate
systems. In particular, cylindrical coordinates can describe systems without continuously nested
surfaces, while flux coordinates can only describe regions with continuously nested surfaces.

Section 4.6.1 of [55] discusses the cylindrical coordinate system.

5.4 Nonorthogonal coordinates
An orthogonal coordinate system

(
x1, x2, x3

)
is a system satisfying ∇xi · ∇xj = 0 for i ̸= j,

and all other coordinate systems are nonorthogonal. The interested reader can refer to [56] for a
complete presentation of Riemannian geometry including the material covered in this section.

While the classical cylindrical coordinates introduced in the previous section form an or-
thogonal system, a general coordinate system

(
x1, x2, x3

)
may not be orthogonal. One such

example, particularly useful to stellarators, is a general flux coordinate system previously intro-
duced in Section 5.5.2.
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Remark 5.1. Considering a coordinate system
(
x1, x2, x3

)
, two local bases can be defined at

any point R
(
x1, x2, x3

)
∈ R3:

• the contravariant basis (∇x1,∇x2,∇x3), that is, the basis of the gradients of the coordi-
nates;

• the covariant basis
(
∂R/∂x1, ∂R/∂x2, ∂R/∂x3

)
, that is, the basis of the partial deriva-

tives of the position vector.

As discussed in Section 5.1, these vectors may refer to functions of position or functions of a
particular set of coordinates. However, because of their definition, we distinguish between the
two bases. Since the gradient operator is defined independently of any coordinate system and
acts on functions depending on the position r, it is more common to express the contravariant
basis vectors as functions of the position, ∇xi(r). On the other hand, since the covariant basis
vectors are computed from partial derivatives with respect to coordinates, it is more common to
express the covariant basis vectors as functions of the coordinates, ∂R

(
x1, x2, x3

)
/∂xi.

We now turn to the so-called dual properties of the two bases. The contravariant basis vec-
tors ∇xi are perpendicular to isosurfaces of the coordinate xi, while the covariant basis vectors
∂R/∂xi are tangent to isosurfaces of the coordinates xj and xk. We can make the following
comments at any point in the domain of interest.

• The covariant basis vector ∂R/∂xi points in the direction in which only xi changes, as
illustrated in Figure 5.2. Since xj and xk are constant in the direction of the covariant
basis vector ∂R/∂xi, it follows that∇xj · ∂R/∂xi = 0 for i ̸= j.

• Consider the differential change in xi associated with a change in position, dr, namely
dxi = dr · ∇xi. According to the chain rule, dr =

∑3
j=1 ∂R/∂x

jdxj . According to the
previous bullet point, this then implies that∇xi · ∂R/∂xi = 1.

This can be summarized as a fundamental property: the covariant and contravariant bases are
said to be dual or reciprocal. That is, at any point where the coordinate system is defined,

∇xi
(
R
(
x1, x2, x3

) )
·
∂R

(
x1, x2, x3

)
∂xj

= δi,j for all indices i, j ∈ {1, 2, 3}. (5.2)

As a consequence of this duality, for (i, j, k) being either (1, 2, 3) or one of its cyclic permu-
tations, the basis vectors are related by the following expressions:

∂R
(
x1, x2, x3

)
∂xk

=
∇xi

(
R
(
x1, x2, x3

) )
×∇xj

(
R
(
x1, x2, x3

) )(
∇xi

(
R (x1, x2, x3)

)
×∇xj

(
R (x1, x2, x3)

))
· ∇xk

(
R (x1, x2, x3)

) ,
∇xk

(
R
(
x1, x2, x3

) )
=

∂R
(
x1, x2, x3

)
∂xi

×
∂R

(
x1, x2, x3

)
∂xj∂R

(
x1, x2, x3

)
∂xi

×
∂R

(
x1, x2, x3

)
∂xj

·
∂R

(
x1, x2, x3

)
∂xk

.

(5.3)

In general, these two bases are not orthogonal. However, some coordinate systems, such as
Cartesian or cylindrical coordinates, are orthogonal at any point r ∈ R3. Note that the con-
travariant and covariant bases can only be orthogonal simultaneously. In particular, it is a direct
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5.4. Nonorthogonal coordinates 43

Figure 5.2: Comparison of orthogonal (left) and nonorthogonal (right) flux coordinate systems
(r, θ, ϕ) in a plane of constant ϕ. In this plane, the (R,Z) axes of cylindrical coordinates are
represented for convenience. Curves of constant coordinate r for orthogonal and nonorthogonal
coordinates are shown with the color gradient indicating the change in r. In an orthogonal
system (left), the covariant and contravariant basis vectors for a given coordinate are parallel.
In contrast, in a nonorthogonal system (right), covariant and contravariant basis vectors are no
longer parallel.

consequence of (5.3) that the orthogonality of the contravariant basis implies the orthogonality
of the covariant basis.

As a consequence of (5.3), in an orthogonal coordinate system, each coordinate’s covariant
and contravariant basis vectors are parallel. In other words, ∇xi is parallel to ∂R/∂xi for all
i ∈ {1, 2, 3}. Indeed, in an orthogonal coordinate system, at any point

(
y1, y2, y3

)
∈ R3 any

two surfaces of constant coordinates, for example the surfaces of constant xi and constant xj

for i ̸= j, respectively {
(
x1, x2, x3

)
∈ R3, xi = yi} and {

(
x1, x2, x3

)
∈ R3, xj = yj}, have

orthogonal tangent planes along their intersection. By contrast, in a nonorthogonal coordinate
system, covariant and contravariant basis vectors are not necessarily parallel, and surfaces of
constant coordinates do not necessarily have orthogonal tangent planes, as illustrated in Figure
5.2.

The Jacobian, required to evaluate integrals, can be defined for a general coordinate system
in terms of covariant basis vectors as

√
g
(
x1, x2, x3

)
=

(
∂R

(
x1, x2, x3

)
∂x1

×
∂R

(
x1, x2, x3

)
∂x2

)
·
∂R

(
x1, x2, x3

)
∂x3

(5.4)

or, equivalently, in terms of contravariant basis vectors as

√
g
(
R
(
x1, x2, x3

) )
=

1(
∇x1

(
R (x1, x2, x3)

)
×∇x2

(
R (x1, x2, x3)

))
· ∇x3

(
R (x1, x2, x3)

) . (5.5)

These two formulas illustrate that, as discussed in Remark 5.1, the Jacobian can refer to either
a function of position or a function of coordinates. In practice, depending on the formula under
consideration, either option can be more convenient.
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A coordinate system is well-defined if and only if these sets of three either covariant or
contravariant vectors form a basis of R3 at any point of the domain. It is then clear that the
coordinate system is well-defined if and only if the denominator of the Jacobian is nonzero in
(5.5) and, equivalently, if and only if the Jacobian is nonzero in (5.4).

These bases are particularly useful for describing vector fields: any vector field can be ex-
pressed in terms of its components in either the covariant or contravariant bases. While the vector
field can be defined independently of any coordinate system, the definition of its components de-
pends on the choice of basis and, therefore, on the choice of a coordinate system. As a result, it
is standard to write the components as functions of the coordinates rather than functions of posi-
tion. A vector field A can be expressed in the contravariant basis at any point r = R

(
x1, x2, x3

)
as

A
(
R
(
x1, x2, x3

) )
=

3∑
i=1

Ai
(
x1, x2, x3

)
∇xi

(
R
(
x1, x2, x3

) )
. (5.6)

In order to find an explicit expression for the covariant componentsAi of the field, for any k from
1 to 3, consider the inner product of the previous identity with the kth covariant basis vector

A
(
R
(
x1, x2, x3

) )
·
∂R

(
x1, x2, x3

)
∂xk

=
3∑
i=1

Ai
(
x1, x2, x3

)
∇xi

(
R
(
x1, x2, x3

) )
·
∂R

(
x1, x2, x3

)
∂xk

.

According to the duality relation between the two bases (5.2), this yields

Ak
(
x1, x2, x3

)
= A

(
R
(
x1, x2, x3

) )
·
∂R

(
x1, x2, x3

)
∂xk

∀k ∈ {1, 2, 3}.

These Ak are the covariant components of the given vector field A. Correspondingly, the ex-
pression (5.6) is called the covariant form of the vector field A. Similarly, a vector field A can
be expressed in the covariant basis at any point r = R

(
x1, x2, x3

)
under the form

A
(
R
(
x1, x2, x3

) )
=

3∑
i=1

Ai
(
x1, x2, x3

) ∂R (x1, x2, x3)
∂xi

. (5.7)

In order to find an explicit expression for the components Ai of the field, for any k from 1 to 3,
consider the inner product of the previous identity with the kth contravariant basis vector

A
(
R
(
x1, x2, x3

) )
·
[
∇xk

](
R
(
x1, x2, x3

) )
=

3∑
i=1

Ai
(
x1, x2, x3

) ∂R (x1, x2, x3)
∂xi

·
[
∇xk

](
R
(
x1, x2, x3

) )
.

According to the duality relation between the two bases (5.2), this yields

Ak
(
x1, x2, x3

)
= A

(
R
(
x1, x2, x3

) )
·
[
∇xk

](
R
(
x1, x2, x3

) )
∀k ∈ {1, 2, 3}.

These componentsAk are the contravariant components of the given vector field A. Correspond-
ingly, the expression (5.7) is called the contravariant form of the vector field A.

A further discussion of nonorthogonal coordinates can be found in Chapter 2 of [55]. We
gather in Table 5.1 some of the basic formulas for integrating and differentiating in such coordi-
nates for later reference.
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Table 5.1: Summary of formulas used to describe the geometry of a nonorthogonal coordinate
system

(
x1, x2, x3

)
. The triplet of indices (i, j, k) is a circular permutation of {1, 2, 3}, A

denotes a differentiable vector field, and q denotes a differentiable scalar function.

Covariant form A =
3∑
i=1

Ai∇xi with Ai = A · ∂R/∂xi

Contravariant form A =
∑3
i=1A

i ∂R

∂xi
with Ai = A · ∇xi

Jacobian
√
g

(
∂R

∂x1
× ∂R

∂x2

)
· ∂R
∂x3

=
1

(∇x1 ×∇x2) · ∇x3

Relation between basis vectors
∂R

∂xk
=
√
g
(
∇xi ×∇xj

)
Relation between basis vectors ∇xk =

√
g−1

(
∂R

∂xi
× ∂R

∂xj

)

Differential volume d3r = |√g|dx1dx2dx3

Differential surface area
d2r = |√g||∇xk|dxidxj

(constant xk)
=

∣∣∣∣∂R∂xi × ∂R

∂xj

∣∣∣∣ dxidxj
Differential length (constant xj , xk) dℓ =

∣∣∣∣∂R∂xi
∣∣∣∣ dxi = |√g||∇xj ×∇xk|dxi

Unit normal vector (constant xk) n̂ =

(
∂R

∂xi
× ∂R

∂xj

) ∣∣∣∣∂R∂xi × ∂R

∂xj

∣∣∣∣−1

Divergence of a vector field ∇ ·A =
3∑
i=1

1
√
g

∂

∂xi
(√
gAi

)
Curl of a vector field ∇×A =

3∑
k=1

1
√
g

(
∂Aj
∂xi
− ∂Ai
∂xj

)
∂R

∂xk

Gradient of a scalar function ∇q =
3∑
i=1

∂q

∂xi
∇xi

Differential path dr =
3∑
i=1

∂R

∂xi
dxi
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46 Chapter 5. Coordinate systems

Figure 5.3: The position in a toroidal system is often described by two angles. A poloidal angle
increases from 0 to 2π on any closed poloidal loop about the magnetic axis, the short way around
the torus. One such poloidal loop is represented in black. A toroidal angle increases from 0 to 2π
on any closed toroidal loop about the major axis of the coordinate system, the long way around
the torus. One such toroidal loop is represented in red.

5.5 A magnetic field–dependent coordinate system
As the domain of interest is a toroidal volume, defining a toroidal coordinate system is useful.
This refers to a coordinate system with one radius-like coordinate, s, and two angle-like coor-
dinates parameterizing each surface of constant s. In any toroidal coordinate system, the term
toroidal angle refers to the direction the long way around the torus, while the term poloidal refers
to the direction the short way around the torus. Choosing a toroidal angle that increases by 2π
upon a toroidal loop and a poloidal angle that increases by 2π upon a poloidal loop is standard.
Other choices are also possible, such as choosing angles that increase by 1 upon a loop. The
coordinate curves are defined by fixing the surface label s and either the toroidal or the poloidal
coordinate. These coordinate curves close respectively poloidally or toroidally after a period of
2π. A brief description of toroidal geometry can be found in Figure 5.3.

In the context of toroidal confinement, under the fundamental assumption that the magnetic
field has continuously nested flux surfaces throughout the domain of interest, discussed in Re-
mark 4.4, we will define here particular toroidal coordinate systems depending on the magnetic
field. In the context of stellarator modeling, flux coordinates depend on a given magnetic field,
while in the context of stellarator design the magnetic field is unknown. Hence it is crucial to
keep in mind that a flux coordinate system can be defined abstractly even though the magnetic
field may be unknown.

As a side note, we mention that in principle, defining a local set of flux coordinates within
a magnetic island is possible. However, it is impossible to define a single set of valid flux co-
ordinates throughout the whole domain when continuously nested flux surfaces do not exist in a
whole domain of interest, for instance, because of the existence of magnetic islands.

5.5.1 Flux surface labels

Under the fundamental assumption that the magnetic field has continuously nested flux surfaces
throughout the domain of interest, discussed in Remark 4.4, certain physical quantities may be
constant on flux surfaces. We will refer to such quantities as flux functions. For example, in prac-
tice, particles are mostly confined to flux surfaces; therefore, in some models, the temperature,
density, and pressure are approximately flux functions.
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5.5. A magnetic field–dependent coordinate system 47

Figure 5.4: The toroidal flux, ΨT (s, ϕ), is the magnetic flux through a surface at constant ϕ
bounded by the surface labeled by s. This flux is independent of ϕ.

Under this assumption, there is a unique magnetic axis within the domain of interest. Then
a flux surface label, generally denoted by s, is a smooth one-to-one real-valued function defined
on the set of flux surfaces and changes monotonically with the distance to the magnetic axis,
either increasing or decreasing. In the stellarator literature, it is often assumed to vanish on the
magnetic axis. A value of s can uniquely label each flux surface, so a flux surface label is, in
particular, a flux function. We will introduce the two most natural examples of standard flux
labels: the poloidal and toroidal fluxes.

Let ϕ be a value of the toroidal angle, s be a value of the flux surface label, and ST (s, ϕ) be
the section of the bounded volume delimited by the flux surface s in the poloidal surface ϕ, as
illustrated in Figure 5.4. The toroidal flux, ΨT , of a given flux surface with flux label s, is the
flux of magnetic field through ST (s, ϕ). It can be expressed as

ΨT (s, ϕ) =

∫
ST (s,ϕ)

B(r) · n̂(r) d2r, (5.8)

where n̂(r) is an oriented unit normal to the surface ST (s, ϕ) at r, and d2r is the surface area
element. Since any constant s surface is a magnetic flux surface, the magnetic field is tangent
to these surfaces, in other words, B(r) · n̂(r) = 0 along these surfaces. Moreover, there are
no sources or sinks of magnetic field since ∇ ·B = 0. Therefore, for a given s, the flux ΨT is
independent of ϕ. Indeed, we can integrate the divergence-free condition over a closed volume
bounded by the constant s, ϕ = ϕ1, and ϕ = ϕ2 surfaces. Using the divergence theorem, the
divergence-free condition implies that the total flux through the boundary must vanish. Since the
constant s surface is a flux surface, the flux through each end must be equal in magnitude, or
ΨT (s, ϕ1) = ΨT (s, ϕ2).

Let θ be a poloidal angle. Similarly, the poloidal flux of a given flux surface, s, is the flux
of the magnetic field through a surface at constant θ bounded between the magnetic axis and the
constant s surface, denoted SP (s, θ), as illustrated in Figure 5.5. It can be expressed as

ΨP (s, θ) =

∫
SP (s,θ)

B(r) · n̂(r) d2r, (5.9)

where n̂(r) is an oriented unit normal to the surface SP at r. Again, since any constant s surface
is a magnetic flux surface, then the magnetic field is tangent to these surfaces, in other words,
B(r) · n̂(r) = 0 along these surfaces. Moreover, there are no sources or sinks of magnetic field
since ∇ · B = 0. Therefore, following an argument similar to that for the toroidal flux, for a
given s, the flux ΨP is independent of θ.
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48 Chapter 5. Coordinate systems

Figure 5.5: The poloidal flux, ΨP (s, θ), is the magnetic flux through a ribbon-like surface (pink)
at constant θ bounded by the surface labeled by s (orange) and the magnetic axis (black). This
flux is independent of θ.

Further discussion of flux functions can be found in Chapter 4 of [55].

5.5.2 Flux coordinates

Under the fundamental assumption that the magnetic field has continuously nested flux surfaces
throughout the domain of interest, discussed in Remark 4.4, toroidal coordinate systems can be
constructed using a flux label as the radius-like coordinate. These are known as flux coordinate
systems. For a fixed value of the flux label, the other two coordinates describe the position on the
corresponding flux surface. Here, as an illustration, we describe the particular choice of poloidal
and toroidal angles.

Under this assumption, any toroidal domain of interest can be described by flux coordinates
(s, θ, ϕ) ∈ R+ × [0, 2π) × [0, 2π), where ϕ is a toroidal angle, θ is a poloidal angle, and s is a
flux surface label. The label s is assumed to vanish on the magnetic axis and must be bounded.
If the boundary of the domain of interest is a flux surface, then there is a fixed flux label value
s0 > 0 such that the boundary is the flux surface labeled by s = s0. If not, the upper bound
for s can depend on the angles. An example of nested toroidal surfaces with circular cross-
sections is illustrated in Figure 5.7. It is important to underline that flux coordinate systems have
a singularity at s = 0, along the magnetic axis, as θ is discontinuous across the axis in any
toroidal plane, for constant ϕ, as illustrated in Figure 5.6.

Using any flux coordinates, the toroidal flux is expressed as

ΨT (s) =

∫ s

0

∫ 2π

0

B · ∇ϕ
∇s · ∇θ ×∇ϕ

(R(s′, θ, ϕ0)) dθds
′, (5.10)

where∇ϕ/|∇ϕ| is a unit normal to the surface, the integral is taken over a surface ST at constant
ϕ0 parameterized by {R(s′, θ, ϕ0), s

′ ∈ [0, s], θ ∈ [0, 2π)}, and |∇ϕ|(∇s · ∇θ × ∇ϕ)−1dθds′

is the surface area element. As B is tangent to the flux surface, the definition of the toroidal
flux is independent of the choice of a surface ST in the integral (5.10): the surface ST can be
any surface parameterized by R(s′, θ, ϕ0(s

′, θ)), s′ ∈ [0, s], θ ∈ [0, 2π), whose boundary is
a closed poloidal curve. While flux coordinates can be used with any flux label, we will use
the toroidal flux function ψ = ΨT /(2π) as the flux surface label in this text. In a torus with
circular cross-section surfaces centered about the same axis, as illustrated in Figure 5.7, a flux
label is the minor radius, measuring the distance to the magnetic axis within a poloidal plane.
Other examples of flux functions are described in Section 5.5.1. Similarly, several choices of the
toroidal and poloidal angles can be made, as discussed in Chapter 9.
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Figure 5.6: Poloidal angle θ and level curves of the flux label ψ = ΨT /(2π) in a poloidal half-
plane defined by a value of ϕ, with the color gradient indicating the change in ψ. In the poloidal
plane, the magnetic axis is the point enclosed by all the flux surfaces.

Figure 5.7: A flux coordinate system in a circular cross-section torus with circular cross-section
surfaces centered about the same axis. Poloidal and toroidal angles describe the location on a
flux surface. In this case, the magnetic axis (yellow) is the line enclosed by all nested surfaces
and is a circle. The major radius, R0, is the radius of this circle. A given point’s minor radius,
a, is the distance between the point and the magnetic axis within a poloidal plane defined by
constant ϕ. Coordinates similar to (a, θ, ϕ) can be constructed for nonaxisymmetric systems,
where a is a flux surface label.

For further reference, the poloidal flux is

ΨP (s) =

∫ s

0

∫ 2π

0

B · ∇θ
∇s · (∇θ ×∇ϕ)

(R(s′, θ0, ϕ)) dϕds
′, (5.11)

where ∇θ/|∇θ| is a unit normal, the integral is taken over a surface SP at constant θ0 param-
eterized by {R(s′, θ0, ϕ), s

′ ∈ [0, s], ϕ ∈ [0, 2π)}, and |∇θ|(∇s · (∇θ × ∇ϕ))−1dϕds′ is the

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



50 Chapter 5. Coordinate systems

surface area element. Similarly, the definition of the poloidal flux is independent of the choice
of a surface SP in the integral (5.11): the surface SP can be any surface parameterized by
R(s′, θ0(s

′, ϕ), ϕ), s′ ∈ [0, s], ϕ ∈ [0, 2π), whose boundary is a closed toroidal curve.

Remark 5.2. In the tokamak community, the poloidal flux function ψP = ΨP /(2π) is commonly
used, as discussed in Section 7.1.

Remark 5.3. We can relate the scale of these fluxes to the components of the magnetic field
under the assumption of a torus with a circular toroidal cross-section with major radius R0 and
minor radius a. Given the toroidal magnetic fieldBT = B ·∇ϕ/|∇ϕ|, the toroidal flux scales as
ΨT ≈ πa2BT . Likewise, if the poloidal magnetic field is BP = B · ∇θ/|∇θ|, then the poloidal
flux scales as ΨP ≈ 2πR0aBP . In practice, BT and BP are not constant, but this provides a
valid order of magnitude approximation.

As flux coordinates are generally nonorthogonal, which was introduced in Section 5.4, the
magnetic field can be expressed in its covariant form,

B(ψ, θ, ϕ) = Bψ(ψ, θ, ϕ)∇ψ(R(ψ, θ, ϕ)) +Bθ(ψ, θ, ϕ)∇θ(R(ψ, θ, ϕ))

+Bϕ(ψ, θ, ϕ)∇ϕ(R(ψ, θ, ϕ)),

and its contravariant form,

B(ψ, θ, ϕ) = Bθ(ψ, θ, ϕ)
∂R(ψ, θ, ϕ)

∂θ
+Bϕ(ψ, θ, ϕ)

∂R(ψ, θ, ϕ)

∂ϕ
.

This is the first example of simplification coming from the use of flux coordinates: the radial
contravariant component of the magnetic field vanishes following the assumption that B·∇ψ = 0
and the dual property of the two bases. Note that it is not sufficient to fully describe the magnetic
field by either the covariant or contravariant components, as the geometry of the flux surfaces
must also be provided to define the basis vectors.
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Chapter 6

Toroidal periodicity and
differential equations

The physical motivation for toroidal geometry was introduced in Chapter 4, and there is a nat-
ural notion of periodicity in such geometries. Vector field–dependent toroidal coordinates, with
two periodic angle-like variables, were then introduced in Chapter 5 under the fundamental as-
sumption of continuously nested flux surfaces of the vector field, discussed in Remark 4.4. In this
context, toroidal periodicity refers to the associated periodicity of physical quantities with respect
to the two angles, either in two dimensions along a fixed flux surface or in three dimensions.

This chapter illustrates how to take advantage of this toroidal periodicity to derive useful
expressions for the solutions to two particular differential equations that will play an essential
role on several occasions in the rest of the book. These examples evidence the relevance of flux
coordinates to obtain simplified formulations and, therefore, the importance of the assumption of
continuously nested magnetic surfaces introduced in Remark 4.4.

The first example considers an equation often derived from a divergence-free condition.
While this condition is standard in many applications of electromagnetism and fluid dynamics,
the periodic setting will provide a convenient general expression of the two initial unknowns in
terms of a single new unknown. The second example considers an equation describing transport
along the field lines of a given magnetic field. The periodic setting will give rise to a necessary
condition on the equation’s right-hand side for the existence of solutions. The Fourier series so-
lution will then be studied, including its standard form presented in the plasma physics literature.
Further comments on field lines and periodicity will also be formulated.

6.1 Divergence-free-like equation
The first equation of interest may be derived, in appropriate coordinates, in two different ways:
either from a divergence-free condition or to express that one component of the curl of a vec-
tor field vanishes. The unknowns are two functions, usually two components of a vector field
denoted by F1, F2. They are assumed to be smooth, and the equation reads

∂F1

∂x1
+
∂F2

∂x2
= 0 (6.1)

in a coordinate system
(
x0, x1, x2

)
. We will first comment on the PDE itself and then comment

on periodicity aspects.
Finding the components F1, F2 satisfying this condition is not a well-posed problem, as

many pairs of solutions exist. Nonetheless, the condition can be leveraged to express a simplified
relationship between the two unknowns in terms of a single function, as follows. We will see

51
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52 Chapter 6. Toroidal periodicity and differential equations

that there exists a function v such that 
F1 =

∂v

∂x2
,

F2 = − ∂v

∂x1
.

(6.2)

This function v can be referred to as a stream function and can be used to recast the vector field
in terms of only one function of three variables. Moreover, assuming that the functions F1 and
F2 are periodic with respect to

(
x1, x2

)
, this function v will be the sum of a periodic term and

linear terms with respect to x1 and x2.
This equation will come into play in the context of magnetic coordinates in Chapter 9 to study

the magnetic field both under its contravariant form in Section 9.1.1 and under its covariant form
in Section 9.1.2. The variable x0 will then be a flux label, while the variables x1, x2 will be
poloidal and toroidal angles, so the field will then be periodic with respect to the two angles.
In Sections 7.1, 10.3.4, and 13.4.4, the divergence condition arises in a 2D setting, where no
variable x0 exists, so the functions depending only on x0 are constant.

6.1.1 Existence

Given two functions F1 and F2 satisfying (6.1), we now prove the existence of a function v
satisfying (6.2). On the one hand, it is clear that, given any function f of two variables, any
function

v
(
x0, x1, x2

)
:= f

(
x0, x1

)
+

∫ x2

0

F1

(
x0, x1, x̃2

)
dx̃2

necessarily satisfies
∂v
(
x0, x1, x2

)
∂x2

= F1

(
x0, x1, x2

)
.

On the other hand, any such function v also satisfies

∂v
(
x0, x1, x2

)
∂x1

=
∂f
(
x0, x1

)
∂x1

+

∫ x2

0

∂F1

(
x0, x1, x̃2

)
∂x1

dx̃2

=
∂f
(
x0, x1

)
∂x1

−
∫ x2

0

∂F2

(
x0, x1, x̃2

)
∂x̃2

dx̃2 from (6.1)

=
∂f
(
x0, x1

)
∂x1

− F2

(
x0, x1, x2

)
+ F2

(
x0, x1, 0

)
.

In particular, if we choose f
(
x0, x1

)
:= C

(
x0
)
−
∫ x1

0
F2

(
x0, x̃1, 0

)
dx̃1 for any function C of

one variable, then the corresponding function

v
(
x0, x1, x2

)
:= C

(
x0
)
−
∫ x1

0

F2

(
x0, x̃1, 0

)
dx̃1 +

∫ x2

0

F1

(
x0, x1, x̃2

)
dx̃2

satisfies the desired property (6.2) under the assumption (6.1). There is no unique function v
satisfying this property since it is not affected by the choice of the function C(x0).

6.1.2 Periodic setting

In toroidal geometry, the functions F1 and F2 might be periodic with respect to
(
x1, x2

)
. We

will now see that periodicity provides more details about the function v, as discussed in [55].
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If F1 and F2 are assumed to be 2π-periodic with respect to the two variables
(
x1, x2

)
, then the

derivatives of v satisfying (6.2) must be periodic as well. However, v itself is not necessarily
periodic. Instead, v can be decomposed into the sum of a periodic term and a nonperiodic
term, with the latter term’s derivatives being periodic. In other words, there exists a function vp
periodic in

(
x1, x2

)
, and two functions f1, f2 of the variable x0, such that

v
(
x0, x1, x2

)
= f1

(
x0
)
x1 + f2

(
x0
)
x2 + vp

(
x0, x1, x2

)
,

satisfies (6.1)–(6.2).
The following statement summarizes the previous discussion:

If periodic functions F1, F2 satisfy
∂F1

∂x1
+
∂F2

∂x2
= 0,

there exists vp periodic in
(
x1, x2

)
and f1, f2 functions of x0 such that

v defined by v
(
x0, x1, x2

)
= f1

(
x0
)
x1 + f2

(
x0
)
x2 + vp

(
x0, x1, x2

)
satisfies F1 =

∂v

∂x2
and F2 = − ∂v

∂x1
.

In this context, v satisfies
∂v

∂x1
(
x0, x1, x2

)
= f1

(
x0
)
+
∂vp
∂x1

(
x0, x1, x2

)
,

∂v

∂x2
(
x0, x1, x2

)
= f2

(
x0
)
+
∂vp
∂x2

(
x0, x1, x2

)
.

This indeed implies that
∂

∂x1

(
∂v

∂x2

)
+

∂

∂x2

(
− ∂v

∂x1

)
= 0

for any functions f1, f2, and independently of adding any function of x0 to vp. Hence, neither of
the functions f1, f2 nor vp is unique.

6.2 Magnetic differential equation
The second equation of interest is a formulation of the so-called magnetic differential equation
(MDE). The prototype of this equation was introduced in [170]. For given field B and scalar
function F , it has the general form

B · ∇u = F, (6.3)

where u is the unknown. We assume the existence of closed flux surfaces and focus here on the
interpretation of this equation expressed in some appropriate flux coordinates. For clarity, we
will first ignore the radius-like variable and focus on a 2D periodic domain (0, 2π)2.

Using a particular choice of flux coordinates11
(
ψ, x1, x2

)
, a simple rescaling of (6.3), mul-

tiplying by the Jacobian
√
g, simplifies the problem at hand. Considering a periodic function f

of two variables, equal to
√
gF , and a real number ι ̸= 0,12 the problem is the following:

Find a periodic function u such that

ι
∂u

∂x1
+

∂u

∂x2
= f.

(6.4)

11These appropriate coordinates are the so-called magnetic coordinates introduced in Chapter 9.
12This real number is the so-called rotational transform introduced in Section 7.3.
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The solution is not unique since, given any solution u, the sum of u and any constant defines
another solution. Beyond the nonuniqueness, the differential operator has fundamental proper-
ties related to magnetic field lines in the periodic setting that will be central to the upcoming
discussion.

The MDE will come into play in the context of 3D equilibrium fields in Sections 10.2.3 and
10.3.1. It also comes into play in the context of Boozer coordinates in Section 9.2.3, although it
will be derived differently there.

6.2.1 Periodic setting

There is a necessary condition for the existence of periodic solutions to problem (6.4), and this
section is dedicated to proving this condition. However, it is not always a sufficient condition:
while it is sufficient for ι irrational, it is not sufficient if ι is rational. These conditions are related
to the fundamental properties of the differential operator, as we will now see.

For any periodic function u, the average with respect to
(
x1, x2

)
equals zero, namely∫

(0,2π)2
ι
∂u
(
x1, x2

)
∂x1

+
∂u
(
x1, x2

)
∂x2

dx1dx2 = 0.

Therefore, for a solution to problem (6.4) to exist, it is necessary for the average of the right-hand
side f with respect to

(
x1, x2

)
to vanish. A necessary condition for the existence of periodic

solutions is then ∫ 2π

0

∫ 2π

0

f
(
x1, x2

)
dx1dx2 = 0. (6.5)

The differential operator ι∂/∂x1+∂/∂x2 has another important property. Along any param-
eterized curve s 7→

(
x1P (s), x

2
P (s)

)
in the x1-x2 plane, consider any function u of two variables

evaluated along the curve as the function s 7→ u
(
x1P (s), x

2
P (s)

)
. Then, the derivative of this

function is

d

ds

[
u
(
x1P (s), x

2
P (s)

)]
= x1P

′
(s)

∂u
(
x1P (s), x

2
P (s)

)
∂x1

+ x2P
′
(s)

∂u
(
x1P (s), x

2
P (s)

)
∂x2

.

So, if the curve is such that {
x1P

′
(s) = ι,

x2P
′
(s) = 1,

(6.6)

then any function u satisfies

d

ds

[
u
(
x1P (s), x

2
P (s)

)]
= ι

∂u
(
x1P (s), x

2
P (s)

)
∂x1

+
∂u
(
x1P (s), x

2
P (s)

)
∂x2

. (6.7)

In particular, along any curve satisfying (6.6), any solution u to problem (6.4) satisfies

d

ds

[
u
(
x1P (s), x

2
P (s)

)]
= f

(
x1P (s), x

2
P (s)

)
. (6.8)

In other words, along each of the parallel straight lines s 7→
(
x1P (s), x

2
P (s)

)
satisfying (6.6), the

governing equation reduces to an ordinary differential equation, namely

y′(s) = f
(
x1P (s), x

2
P (s)

)
for the unknown y(s) := u

(
x1P (s), x

2
P (s)

)
. Such curves are called characteristics in the theory

of hyperbolic partial differential equations [70].
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Figure 6.1: Three characteristic curves, Cσ , represented in the x2-x1 plane for σ ∈ {1,−1, π}.
Comparison of the nonperiodic (left) and periodic (right) settings. The periodic domain (0, 2π)2

is represented in light red.

For the differential operator ι∂/∂x1+∂/∂x2, characteristics are lines of slope ι in the x2-x1

plane. They can be labeled by a parameter σ = x2 − x1/ι.13 The characteristic Cσ passing
through the point (0, σ) can be explicitly described as{

x1σ(s) = ιs,
x2σ(s) = s+ σ.

This is illustrated in Figure 6.1. Here σ represents the value of x2 when x1 = 0. In the nonpe-
riodic setting, they are infinite lines. In the periodic setting, the definition has to be interpreted
modulo 2π, and two situations can occur according to whether the parameter ι is rational or not.
Figure 6.2 illustrates both the periodic setting and the nonperiodic setting. More precisely,

• if ι is irrational, then the characteristics are also infinite periodic lines;

• if ι is rational, then the characteristics are closed curves.

Indeed, in the rational case, ι being represented by the irreducible fraction ι = N/D,14 for some
N and D in N, each characteristic Cσ wraps around the periodic domain since{

x1σ(s) = ιs mod 2π,
x2σ(s) = s+ σ mod 2π.

Starting at s = 0 from the point
(
x1σ(0), x

2
σ(0)

)
= (0, σ), each characteristic wraps around the

domain N times in the x1 direction and D times in the x2 direction before it closes onto itself,
as sD = 2πD is the smallest nonzero value of s along the characteristic such that{

x1σ(sD) = 0 mod 2π,
x2σ(sD) = σ mod 2π.

13There is no unique choice of a field-line label, as any real multiple of this label also defines a label. For instance,
α = x1 − ιx2 will be used in Section 6.2.4.

14In stellarators and tokamaks, the values of ι do not change sign within the confinement domain. Consequently, we
assume that the toroidal coordinate system is oriented so that ι > 0.
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x1 axis

2π

2π

s = 0

s = 2πs = 2π

s = 3π

s = 3π

s = 4πs = 4π

s = 6π

2πD
N
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x1 axis

2π

2π
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s = 6π

s = 2π2
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Figure 6.2: The characteristic C0 represented in the x2-x1 plane for ι = 2/3 (left) and ι = 1/π
(right). In the rational case, the characteristic is closed and parameterized by s ∈ (0, sD). The
interval of characteristic label, (0, 2πD/N mod 2π), is represented in blue along the x2 axis. In
the irrational case, since the characteristic is infinite, only the part corresponding to s ∈ (0, sD)
is represented, while the dashed line represents a part corresponding to s ≥ sD. The periodic
domain (0, 2π)2 is represented in light red, and the values of the parameter s ∈ (0, sD) are
indicated where the characteristic reaches a boundary of the periodic domain.

Moreover, in this case, the characteristics can be labeled by σ ∈ (0, 2πD/N mod 2π). Then,
from the property (6.7) of the differential operator, for any periodic function u, it is straightfor-
ward to verify that along any characteristics Cσ , u satisfies∫ 2πD

0

(
ι
∂u
(
x1σ(s), x

2
σ(s)

)
∂x1

+
∂u
(
x1σ(s), x

2
σ(s)

)
∂x2

)
ds = 0.

So, a necessary condition for the existence of a solution to (6.8) along a characteristic is∫ 2πD

0

f
(
x1σ(s), x

2
σ(s)

)
ds = 0.

Therefore, for the existence of a solution to problem (6.4) for ι rational, the integral of the right-
hand side must vanish along each closed characteristic, that is,

∀σ ∈ (0, 2πD/N mod 2π),

∫ 2πD

0

f(ιs, s+ σ) ds = 0. (6.9)

In the irrational case, however, since the characteristics are not closed, periodicity does not re-
quire any condition along characteristics.

Moreover, in the rational case, any function f satisfying (6.9) on each characteristic nec-
essarily satisfies the average condition (6.5). To prove this, we leverage the change of vari-
ables

(
x1, x2

)
= (ιs, s+ σ), between the sets {(s, σ) ∈ (0, 2πD)× (0, 2πD/N mod 2π)} and

{
(
x1, x2

)
∈ (0, 2π)2}. Note that this change of variables is well-defined since the corresponding

Jacobian, ι, is constant and, therefore, different from zero on the entire domain. As a matter of
fact, given any function f , the change of variable yields directly∫ 2π

0

∫ 2π

0

f
(
x1, x2

)
dx1dx2 = ι

∫ 2π/N

0

(∫ 2πD

0

f(ιs, s+ σ) ds

)
dσ.

This proves the claim.
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In conclusion, we have found a necessary condition for the existence of periodic solutions to
problem (6.4). In order to study solutions to this problem, we will assume that this condition is
satisfied. Hence, for further reference, we define the following assumption:

∫ 2πD

0

f(ιs, s+ σ) ds = 0 ∀σ ∈ (0, 2π/N) if ι ∈ Q, ι =
N

D
(irreducible fraction),∫ 2π

0

∫ 2π

0

f
(
x1, x2

)
dx1dx2 = 0 if ι ∈ R\Q.

(6.10)
Beyond this chapter, this assumption will be examined in the given context of various applica-
tions, specifically regarding physical interpretation.

6.2.2 Fourier series solution

Taking advantage of the periodic setting, an integrable solution can be sought in the form of a
Fourier series. To do so, we assume that the right-hand side f is integrable and that its Fourier
series can be integrated term by term. The unknown u is integrable, and its Fourier series can be
differentiated term by term.

First, in the Fourier series context, we interpret assumption (6.10) for the right-hand side f .
We write the Fourier expansion of the doubly periodic right-hand side f as

f
(
x1, x2

)
=

∑
(m,n)∈Z2

bm,ne
i(mx1−nx2),

with complex Fourier coefficients {bm,n}(m,n)∈Z2 . Since f is assumed to be integrable, the
Fourier series converges. In this context, assumption (6.10) can naturally be interpreted in terms
of Fourier coefficients bm,n of f . As a matter of fact, for ι both rational and irrational, the
assumption can be expressed by leveraging term-by-term integration:

• for ι irrational,

∫ 2π

0

∫ 2π

0

f
(
x1, x2

)
dx1dx2 =

∑
(m,n)∈Z2

bm,n


∫ 2π

0

eimx
1

dx1︸ ︷︷ ︸
=2πδ(m)



∫ 2π

0

e−inx
2

dx2︸ ︷︷ ︸
=2πδ(n)

 ,

• while for ι = N
D (irreducible fraction) and any σ ∈

(
0, 2πDN mod 2π

)
,

∫ 2πD

0

f(ιs, s+ σ) ds =
∑

(m,n)∈Z2

bm,n


∫ 2πD

0

ei(mι−n)s ds︸ ︷︷ ︸
2πDδ(n−ιm)

 e−inσ,

where δ is the Dirac-δ function. Therefore, in the Fourier setting, assumption (6.10) is equivalent
to {

bm,n = 0 ∀(m,n) ∈ Z2 such that mι = n if ι ∈ Q,
b0,0 = 0 if ι ∈ R\Q.

This can be equivalently stated, independently of whether ι is rational or not, as the following
assumption:

bm,n = 0 ∀(m,n) ∈ Z2 such that mι = n. (6.11)
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We then seek the solution u as a Fourier series

u
(
x1, x2

)
= K +

∑
(m,n)∈Z2\{(0,0)}

am,ne
i(mx1−nx2).

Since the solution is assumed to be differentiable term by term, formally

ι
∂u
(
x1, x2

)
∂x1

+
∂u
(
x1, x2

)
∂x2

=
∑

(m,n)∈Z2\{(0,0)}

i(ιm− n)am,nei(mx
1−nx2).

Hence, for such a u to satisfy the governing equation, the necessary conditions are

b0,0 = 0,

∀(m,n) ∈ Z2\{(0, 0)}, am,ni(ιm− n) = bm,n. (6.12)

For convenience we will denote by S0 the set of indices (m,n) ∈ Z2 such that m and n are
not both zero and ιm − n = 0, so S0 = {(m,n) ∈ Z2\{(0, 0)} such that n/m = ι}. For any
(m,n) ∈ S0, (6.12) reduces to a condition on the right-hand side of the governing equation,
namely bm,n = 0. Here, again, two situations can occur depending on the value of ι.

• When ι is irrational, S0 is empty, and the only condition on the right-hand side is b0,0 = 0.

• When ι is rational, S0 is not empty, and (6.12) implies for all (m,n) ∈ S0 the condition
bm,n = 0 in addition to the condition b0,0 = 0.

These two situations are unsurprising: they are precisely summarized by assumption (6.11).
Correspondingly, depending on the value of ι, two situations can occur in terms of the solution
u.

• When ι is irrational, under the necessary condition b0,0 = 0 on the right-hand side, (6.12)
uniquely defines the set of coefficients with indices in Z2\{(0, 0)},

am,n =
ibm,n
n− ιm

∀(m,n) ∈ Z2\{(0, 0)},

while the constant coefficient K is free.

• When ι is rational, under the necessary conditions bm,n = 0 for all (m,n) ∈ {(0, 0)}∪S0,
(6.12) uniquely defines the set of coefficients with indices in Z2\{(0, 0)} that are not in
S0,

am,n =
ibm,n
n− ιm

∀(m,n) ∈ Z2 with ιm ̸= n,

while the coefficients {am,n, (m,n) ∈ S0} as well as K are free.

There is at least one free parameter in any case, namely K, and free parameters reflect the fact
that the solution is not unique. Here, the solution is never unique, as was already mentioned just
after the statement of the governing equation (6.4).

In both cases, formally, under assumption (6.11) on the right-hand side, the general Fourier
solution u is usually written in the magnetic confinement literature in terms of free parametersK
and ∆mn as

u
(
x1, x2

)
= K +

∑
(m,n)∈Z2\{(0,0)}

(
i

n− ιm
bm,n +∆m,nδ(n− ιm)

)
ei(mx

1−nx2), (6.13)
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6.2. Magnetic differential equation 59

and the ∆m,n terms only play a role in the rational case. This expression can be confusing as
the denominator n− ιm vanishes for infinitely many indices (m,n) ∈ Z2\{(0, 0)}; however, it
is implicit that for these indices the numerator bm,n is assumed to be zero and the corresponding
term in the sum is considered to be zero. A more rigorous formulation would read

u
(
x1, x2

)
= K +

∑
(m,n)∈Z2,n̸=ιm

i

n− ιm
bm,ne

i(mx1−nx2) +
∑

(m,n)∈S0

∆m,ne
i(mx1−nx2).

(6.14)
It is crucial to understand that these last two formulas are only formal. In order to prove conver-
gence and justify the term-by-term differentiation, thereby proving the existence of a solution,
one has to study properties of the right-hand side f ’s Fourier coefficients, bm,n, as well as the set
of free parameters uniquely defining the Fourier solution, namely

{K} ∪ {∆m,n, (m,n) ∈ Z2, ι = n/m}. (6.15)

Remark 6.1. Approximation properties of real numbers by rational numbers come into play in
this context: given any real number ι, the quantity n − ιm gets arbitrarily small for infinitely
many indices (m,n) ∈ Z2. This is related to Hurwitz’s theorem, stating that for all ι ∈ R\Q,
there exist infinitely many n/m ∈ Q such that |ι− n/m| ≤ 1/

(√
5m2

)
.

In the perturbation theory of classical mechanics, the so-called problem of small divisors is
concerned with the fact that this quantity n − ιm appears in the denominator of a series. More
can be found about this in [164, 316].

In terms of convergence of the Fourier solution, in the first series in (6.14) there is a compe-
tition between the numerator bm,n and the denominator n− ιm. The convergence of this series
depends not only on properties of the right-hand side f ’s Fourier coefficients but also on the
value of ι.

In terms of numerical computation of the Fourier solution, only finite sums—corresponding
to truncated series—can be computed. While the quantity mι − n gets arbitrarily small in the
series terms, it can be small in truncated sums. This can be a source of accumulated error when
performing divisions by these small denominators in finite precision arithmetic. In particular, if
ι is irrational and well approximated by n/m with small values of |m|, |n|, this can affect the
accuracy of numerical solutions [12]. Such fractions are referred to as low-order rationals in the
literature.

6.2.3 An interpretation of the free parameters

In the rational case, the free parameters (6.15) in the formal Fourier solution (6.13) can then
be interpreted formally in the context of characteristics. This is the topic of this section, and
it will be done by comparing, along a characteristic, the solutions obtained from the method of
characteristics and the Fourier method, respectively.

As already mentioned, along any characteristic curve Cσ , the governing equation reduces to
an ordinary differential equation. More precisely, this ordinary differential equation for the un-
known yσ , defined earlier as the unknown u along the characteristic, or yσ(s) := u

(
x1σ(s), x

2
σ(s)

)
,

reads
dyσ(s)

ds
= f(ιs, s+ σ).

The method of characteristics considers values of the solution u separately along each char-
acteristic as a solution to this ordinary differential equation. Unlike the Fourier method, this
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method does not require any assumption of integrability of the solution u across characteris-
tics. Along a characteristic Cσ , the general form of solution—with respect to the reference point(
x1σ(0), x

2
σ(0)

)
= (0, σ)—reads

yσ(s) = yσ(0) +

∫ s

0

f
(
ιs̃, s̃+ σ

)
ds̃. (6.16)

Under assumption (6.9) on the right-hand side f , the solution along each characteristic is unique
for any given initial condition yσ(0), and this solution has C1 regularity with respect to s if f
is continuous along the characteristic. Here assumption (6.9) ensures that yσ is 2πD periodic.
However, the solution is not necessarily continuous across characteristics, and the periodic set-
ting of the two-dimensional problem will now lead to further considerations.

As discussed in Section 6.2.1, the domain can be described in terms of a set of closed char-
acteristics. Each point in the periodic domain lies on a unique characteristic. In this case, in
order to uniquely define a solution to (6.4) at each point

(
x1, x2

)
in the periodic domain, it is

then sufficient to define uniquely a solution (6.16) on each characteristic by providing one initial
condition per closed characteristic, namely, the value of yσ(0). Providing one value per char-
acteristic corresponds to providing a function of the characteristic label σ, hereafter denoted h.
Then, even though there is no unique solution to (6.4), there is a unique solution to (6.4) satisfy-
ing the condition u(0, σ) = h(σ). In other words, under assumption (6.9) on the right-hand side
f , given ι represented by the irreducible fraction ι = N/D, for some N and D in N, and given
any function h : (0, 2πD/N mod 2π)→ C, the following problem has a unique solution:

Find a periodic function u such that

ι
∂u

∂x1
+

∂u

∂x2
= f on (0, 2π)2,

u(0, σ) = h(σ) ∀σ ∈ (0, 2πD/N mod 2π).

(6.17)

This solution is given along each characteristic Cσ by

∀s ∈ (0, 2πD), u
(
x1σ(s), x

2
σ(s)

)
= h(σ) +

∫ s

0

f
(
ιs̃, s̃+ σ

)
ds̃. (6.18)

Remark 6.2. The value of the solution u at a given point (b, a) ∈ (0, 2π)2 can be obtained as
follows. First, compute the label σ(a,b) of the characteristic passing through the point, using
the formula σ(a,b) = a − b/ι mod 2π/N . In the x2-x1 plane represented in Figure 6.3, this
corresponds to tracing back, starting from (a, b), the periodic line of slope ι until it intersects
the horizontal axis, precisely at the point

(
σ(a,b), 0

)
in the x2-x1 plane. Second, find the value of

s(a,b) ∈ (0, 2πD) such that
(
x1σ(a,b)

(
s(a,b)

)
, x2σ(a,b)

(
s(a,b)

))
= (b, a), using the formula s = b/ι.

In Figure 6.3 this corresponds to the distance between the points (a − b/ι, 0) and (a, 0) in the
x2-x1 plane. Finally, the value of the solution u at the given point (a, b) in the x2-x1 plane can
be obtained as u

(
x1σ(a,b)

(
s(a,b)

)
, x2σ(a,b)

(
s(a,b)

))
from (6.18).

Here, there is no smoothness restriction on the initial condition h. The solution u is smooth
along each characteristic but not necessarily across characteristics, depending on the smoothness
of h and f . For comparison with (6.18), we can then evaluate the Fourier solution u in (6.13)
at any point

(
x1σ(s), x

2
σ(s)

)
along a characteristic Cσ , namely evaluate u

(
x1σ(s), x

2
σ(s)

)
, and

identify two terms: on the one hand, the f -dependent term is∑
(m,n)∈Z2,n̸=ιm

i

n− ιm
bm,ne

i(mx1
σ(s)−nx

2
σ(s)) =

∫ s

0

f
(
ιs̃, s̃+ σ

)
ds̃; (6.19)
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x2 axis

x1 axis

2π

2π

b

aσa− b/ι

Multiple of 2π
Figure 6.3: The closed characteristic C0 is represented in red in the x2-x1 plane, for ι = 2/3 as
in the left panel of Figure 6.2. The interval of the characteristic label, (0, 2πD/N mod 2π), is
represented in blue along the x2 axis. A given point (a, b) ∈ (0, 2π)2 and the characteristic Cσ
going through this point, labeled by σ = a− b/ι mod 2π, are represented in cyan.

on the other hand, the f -independent term is

K +
∑

(m,n)∈Z2\{(0,0)}

∆m,nδ(n− ιm)ei(mx
1
σ(s)−nx

2
σ(s))

= K +
∑

(m,n)∈Z2\{(0,0)}

∆m,nδ(n− ιm)ei(s(ιm−n)−nσ).

Remark 6.3. The set of indices T = S0∪{(0, 0)}, that is, T = {(m,n) ∈ Z2, n−ιm}, plays an
important role here. Indeed, in the previous sum, any term corresponding to a pair (m,n) /∈ T is
zero because then δ(n− ιm) = 0. The set T can be expressed differently for convenience, thanks
to the following statements. For any (m,n) ∈ T , n/m = N/D and, equivalently, nD = mN .
Hence, since D and N have no other common divisors than 1, n is divisible by N , and m is
divisible by D. So, the quantity n/N = m/D is a unique integer. Conversely, for any integer p,
the pair (pD, pN) belongs to T .

As a consequence we can write T = {(pD, pN), p ∈ Z}. This can then be leveraged to
conveniently rewrite the f -independent term above.

The f -independent term can then be written as

K +
∑

(m,n)∈Z2\{(0,0)}

∆m,nδ(n− ιm)e−inσ

=
∑
p∈Z

cpe
−ipNσ with c0 = K, and ∀p ∈ Z\{0} cp := ∆pD,pN .

This term is independent of s, so it is constant along Cσ . In particular, it is equal to its value for
s = 0, that is to u

(
x1σ(0), x

2
σ(0)

)
= u(0, σ), because the f -dependent term (6.19) is equal to 0
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62 Chapter 6. Toroidal periodicity and differential equations

for s = 0. Moreover, according to the initial condition in (6.17), the value of this sum over p is
also equal to h(σ).

Beyond an individual characteristic, it is natural to turn to the set of all characteristics. The
set of characteristics is described by σ ∈ (0, 2πD/N mod 2π). The f -independent term in the
Fourier solution, namely

∀σ ∈ (0, 2πD/N mod 2π),
∑
p∈Z

cpe
−ipNσ = h(σ),

is uniquely defined by the free parameters c0 = K and cp = ∆pD,pN for p ̸= 0. In other words,
the set of free parameters {cp, p ∈ Z} is precisely the set of degrees of freedom that uniquely
defines the right-hand side h of the initial condition in (6.17) as a Fourier series.

The conclusion then stems from the fact that the set of free parameters defined in (6.15),
namely {K}∪{∆m,n, (m,n) ∈ T \{(0, 0)}}, is equal to the set {cp, p ∈ Z}: the free parameters
that uniquely define the formal Fourier solution (6.13) are precisely the parameters required
to uniquely define an integrable function h and, therefore, uniquely define a solution with the
method of characteristics.

Table 6.1 summarizes the general form of the solution to the magnetic differential equation
on a 2D periodic domain.

6.2.4 3D setting and singularities

While the previous discussion in this section is limited to the 2D setting, the problem of interest
is usually derived in the 3D setting. Here, parts of the previous material are interpreted in the 3D
setting. For a particular flux coordinate system

(
ψ, x1, x2

)
, with ι being a nonvanishing function

of ψ, the problem of interest reads as follows:

Find a function u periodic with respect to
(
x1, x2

)
such that

ι(ψ)
∂u
(
ψ, x1, x2

)
∂x1

+
∂u
(
ψ, x1, x2

)
∂x2

= f
(
ψ, x1, x2

)
.

(6.20)

In this context, a Fourier solution can be sought, with coefficients depending on the variable ψ,
writing the Fourier expansion of the doubly periodic right-hand side f as

f
(
ψ, x1, x2

)
=

∑
(m,n)∈Z2

bm,n(ψ)e
i(mx1−nx2),

where the Fourier coefficients bm,n are complex-valued functions of ψ. Then, under the assump-
tion

bm,n(ψ) = 0 ∀(m,n) ∈ Z2 such that mι(ψ) = n, ∀ψ, (6.21)

including b0,0(ψ) = 0 for all ψ independently of the value of ι(ψ), formally, the general Fourier
solution reads

u
(
R
(
ψ, x1, x2

) )
= K(ψ) +

∑
(m,n)∈Z2\{(0,0)}

∆m,n(ψ)δ(n− ι(ψ)m)ei(mx
1−nx2)

+
∑

(m,n)∈Z2,n̸=ι(ψ)m

i

n− ι(ψ)m
bm,n(ψ)e

i(mx1−nx2).

(6.22)
In the 2D setting, the free parameters are constants. By contrast, the free parameters depend on
ψ in the 3D setting.
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∀(
m
,n

)
∈
Z2

s.
t.
n
=
ιm

∫ 2π 0

∫ 2π 0

f
( x1 ,

x
2
) dx

1
d
x
2
=
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⇔
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)
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+
∑
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64 Chapter 6. Toroidal periodicity and differential equations

Remark 6.4. Again, it is crucial to understand that (6.22) is only formal. On the one hand,
in the 2D context, the convergence properties of this series for each value of ψ still depend on
convergence properties of the Fourier series of

(
x1, x2

)
7→ f

(
ψ, x1, x2

)
, as well as on the free

set of parameters depending on ψ {∆m,n(ψ), (m,n) ∈ Z2\{(0, 0)}, ι(ψ) = n/m}, as discussed
in Section 6.2.2. On the other hand, in the 3D context, the smoothness of the solution depends
on some properties of the whole function f and the free set of functions

{ψ 7→ ∆m.n(ψ), (m,n) ∈ Z2\{(0, 0)}, ι(ψ) = n/m}.

This formal Fourier series solution expression is said to have two so-called singularities.
These singularities are related to the questions of the existence and uniqueness of a solution to
the 3D problem (6.20).

1. The first sum term in (6.22) is said in the literature to contain a so-called delta-function
singularity, referring to the fact that this term can be nonzero only at rational values of ι(ψ)
because of the δ-function. It corresponds to the fact that on rational flux surfaces, besides
being defined up to K(ψ), the solution is also defined up to the parameters

{∆m,n(ψ) ∀(m,n) ∈ Z2\{(0, 0)} such that mι(ψ) = n}.

For each given value of ι(ψ), this set is empty in the irrational case, whereas it is an infinite
set of free parameters in the rational case.

2. The second sum term in (6.22) is said in the literature to contain a singularity of type 1/x,
referring to the division by the quantity x = ι(ψ) − n/m, as it vanishes for every ψ and
(m,n) ∈ Z2 such that ι(ψ) = n/m. It corresponds to the fact that the solution does not
exist for some doubly periodic right-hand sides, as illustrated by the necessary condition
for the existence of solutions (6.21). Moreover, this quantity x also gets arbitrarily small
for values of (m,n) as {n/m, (m,n) ∈ Z2} includes arbitrarily accurate rational approxi-
mations of any real value ι(ψ). This is a concern from the series convergence point of view
and the numerical approximation point of view, as discussed in Remark 6.1. To avoid con-
fusion, it is important to remember that these ψ and (m,n) ∈ Z2 such that ι(ψ) = n/m
are not included in the summation term in (6.22): there is no division by zero.

However, these two so-called singularities have different physical interpretations. These will be
discussed further in Section 10.3.

In particular flux coordinates, known as magnetic coordinates that will be used to derive the
magnetic differential equation, characteristics and magnetic field lines coincide. In this context,
for the physical interpretation of 3D quantities, it is standard to consider averages over a flux
surface instead of the integrals over the periodic domain introduced in Section 6.2.1, that is, for
any physical quantity A, the quantity

⟨A⟩ψ :=

∫ 2π

0

∫ 2π

0

(A
√
g)
(
R
(
ψ, x1, x2

) )
dx1dx2∫ 2π

0

∫ 2π

0

√
g
(
R
(
ψ, x1, x2

) )
dx1dx2

(6.23)

rather than
∫ 2π

0

∫ 2π

0

Ã
(
R
(
ψ, x1, x2

) )
dx1dx2,

where Ã =
√
gA, and

√
g =

(
∇ψ · ∇x1 ×∇x2

)−1
is the Jacobian for a flux coordinate system(

ψ, x1, x2
)

as described in Section 5.5.2. For further reference, we call this operation ⟨·⟩ψ a
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6.2. Magnetic differential equation 65

flux-surface average. For a given surface labeled by ψ, it is then clear that these two integrals
are simply multiples of each other. So, they vanish simultaneously. Hence, in the 3D setting, the
necessary condition for the existence of doubly periodic solutions is∫ 2π

0

∫ 2π

0

f
(
R
(
ψ, x1, x2

) )
dx1dx2 = 0 ∀ψ,

⇔ ⟨F ⟩ψ = 0 ∀ψ,

where f =
√
gF . Similarly, when ι is rational, it is standard to consider integrals over closed

field lines in a different set of coordinates. We consider a coordinate system (ψ, α, l), with
the field-line label α := x1 − ιx2 and the length along the field line l, so that in particular
∂R/∂l = B/B, as well as the change of coordinates

(
ψ, x1, x2

)
=
(
ψ, x1L(α, l), x

2
L(α, l)

)
.

Further details on this coordinate system, including its nonvanishing Jacobian, can be found in
Section 9.3. Then the magnetic differential equation divided by B reads ∂R/∂l · ∇u = F/B or,
equivalently in the (ψ, α, l) coordinate system,

∂

∂l

[
u
(
ψ, x1L(α, l), x

2
L(α, l)

) ]
=
F

B

(
ψ, x1L(α, l), x

2
L(α, l)

)
.

So, on any given closed field line Cα lying on a flux surface labeled by ψ = ψ0 and of length
L(α), we have ∫ L(α)

0

∂

∂l

[
u
(
ψ, x1L(α, l), x

2
L(α, l)

) ]
dl = 0,

and the condition of existence of periodic solutions along the field line reads∫ L(α)

0

F

B

(
ψ, x1L(α, l), x

2
L(α, l)

)
dl = 0

rather than
∫ 2πD

0

f
(
ψ0, x

1
σ(s), x

2
σ(s)

)
ds = 0,

where for the record f =
√
gF . Furthermore, since |∂R/∂l| = 1, the differential length along

any field line C is dℓ = dl, so for any function A, we have∫ L(α)

0

A
(
ψ, x1L(α, l), x

2
L(α, l)

)
dl =

∮
C
Adℓ.

Hence, in the 3D setting, the necessary condition for the existence of periodic solutions along
closed field lines is∫ 2πD

0

(
√
gF )(ψ, ιs, s+ σ) ds = 0 ∀σ ∈

(
0,

2πD

N
mod 2π

)
, ∀ψ,

⇔
∮
C

F

B
dℓ = 0 for all closed field lines C on all surfaces ψ.
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Chapter 7

Toroidal magnetic
confinement

As mentioned, the concept of confinement is paramount for magnetic confinement devices. We
can now discuss the confinement of particles in toroidal magnetic configurations. This section
focuses on two leading approaches: the tokamak and the stellarator. In Section 7.1, we propose
a formal definition of axisymmetry, the fundamental property of the tokamak. In Section 7.2,
we will see that axisymmetry leads to the approximate conservation of the flux label along tra-
jectories, hence providing approximate particle confinement. Section 7.3 focuses on a concept
central to toroidal confinement, as it quantifies the poloidal twist of magnetic lines described in
Section 4.4.2: the rotational transform. Since this twist of the field lines is necessary for particle
confinement in toroidal geometry, examining the mechanisms that generate the twist is crucial.
In the literature, this is described as producing a rotational transform. The two subsections illus-
trate how it can be produced, respectively, with and without the assumption of axisymmetry. We
will find that confinement in axisymmetry is associated with a major challenge: the necessity of
a current within the confinement region. By contrast, without the assumption of axisymmetry,
this current is not necessary; instead, a nonaxisymmetric geometry can produce rotational trans-
form. This is the fundamental difference between the tokamak and stellarator concepts. Some
advantages and challenges of these two concepts are then discussed in Section 7.4.

A detailed computation of the rotational transform on the axis will be presented in Section
11.2. Section 12.1 will revisit particle confinement without axisymmetry.

7.1 Continuous symmetry and axisymmetry
In a given coordinate system

(
x1, x2, x3

)
, a continuous symmetry of a scalar field refers to the

independence with respect to a given coordinate. More explicitly, continuous symmetry of a
scalar field f

(
x1, x2, x3

)
with respect to xi is defined as

∂f
(
x1, x2, x3

)
∂xi

= 0.

In a Cartesian coordinate system, such a continuous symmetry would amount to a translational
invariance. In contrast, in the cylindrical coordinate system, introduced in Section 5.3, if xi is
the angle, then this amounts to a rotational invariance.

Axisymmetry of a scalar field is an invariance with respect to rotation about an axis and is an
example of a continuous symmetry. In cylindrical coordinates (R,ϕ, Z), it is the symmetry with

67

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



68 Chapter 7. Toroidal magnetic confinement

respect to the azimuthal toroidal angle, ϕ, so axisymmetry of a scalar field f is defined by

∂f(R,ϕ, Z)

∂ϕ
= 0.

Considering a vector field F as

F (R,ϕ, Z) = FR(R,ϕ, Z)R̂(ϕ) + Fϕ(R,ϕ, Z)ϕ̂(ϕ) + FZ(R,ϕ, Z)Ẑ,

axisymmetry of F is then defined by

∂FR(R,ϕ, Z)

∂ϕ
= 0,

∂Fϕ(R,ϕ, Z)

∂ϕ
= 0,

∂FZ(R,ϕ, Z)

∂ϕ
= 0.

This implies that the magnitude of an axisymmetric vector field F , namely F = |F |, is itself
axisymmetric.

We now obtain a simplified form for the magnetic field under the assumption of axisymmetry
and toroidal magnetic surfaces. Moreover, we will show that an axisymmetric vector potential
can be chosen under the same assumptions.

For an axisymmetric field B, the condition ∇ ·B = 0 can be expressed using the classical
formula for the divergence in cylindrical coordinates as

1

R

∂(RBR(R,Z))

∂R
+
∂BZ(R,Z)

∂Z
= 0

or, equivalently, ∂(RBR)/∂R+ ∂(RBZ)/∂Z = 0.

Remark 7.1. The previous equation is of the form (6.1). Considering the flux coordinates (R,Z)
as well as F1 = RBR and F2 = RBZ , we can thus apply the results discussed in Section 6.1.

According to Remark 7.1, we can express BR and BZ in terms of a stream function, χ, as
BR(R,Z) = −

1

R

∂χ(R,Z)

∂Z
,

BZ(R,Z) =
1

R

∂χ(R,Z)

∂R
.

Hence the poloidal component of the field, defined as BP := BRR̂ + BZẐ, can be expressed
as

BP (R,ϕ, Z) =
1

R
∇χ(R,Z)× ϕ̂(ϕ).

The axisymmetric field also has an axisymmetric toroidal component, Bϕ, even if it does not
appear in the divergence-free condition. Thus, we can write the total field as

B(R,ϕ, Z) =
1

R
∇χ(R,Z)× ϕ̂(ϕ) +Bϕ(R,Z)ϕ̂(ϕ).

As a result, B · ∇χ = 0. We assume that χ is differentiable, so the level sets of χ form surfaces,
except at critical points where∇χ = 0. These critical points may be isolated or may form critical
lines or surfaces, but we are not interested in purely toroidal fields such that∇χ = 0 in a volume,
as was explained in Section 4.4.2. As we are interested in toroidal confinement, we will assume
that these isosurfaces of χ are toroidal. In this case, χ is a flux function, and by axisymmetry,
the magnetic axis lies in a constant-Z plane.

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



7.1. Continuous symmetry and axisymmetry 69

We will show that the stream function χ is related to the normalized poloidal flux defined
in Remark 5.2 by ψP = ΨP /(2π). To compute the flux of a given surface χ = χ0, we choose
a surface SP to lie on the Z = Z0 plane, on which the magnetic axis lies. The surface SP is
an annulus bounded by the magnetic axis and a given magnetic surface, labeled by ψP . It is
the area bounded between the magnetic axis, Ra, and R0, the largest value of the major radius
corresponding to the intersection of SP and the isosurface χ = χ0. Then on SP the unit normal
is n̂ = Ẑ, and under the assumption of axisymmetry, the differential area element is expressed
by d2r = 2πRdR. So, the flux is

ψP =
1

2π

∫
SP

B(r) · n̂(r) d2r.

Since ϕ̂ = R∇ϕ and B · n̂ = (∇χ×∇ϕ) · Ẑ, then B · n̂ = (1/R)∂χ(R,Z)/∂R, and the flux
can be expressed as

ψP =

∫ R0

Ra

∂χ(R,Z0)

∂R
dR

= χ0 − χ(Ra, Z0).

Since the quantity χ(Ra, Z0) is independent of the surface considered, the difference between
the stream function and the poloidal flux is constant. As the stream function can be shifted by a
constant without changing the field, we are then free to write the magnetic field as

B(R,ϕ, Z) =
1

R
∇ψP (R,Z)× ϕ̂(ϕ) +Bϕ(R,Z)ϕ̂(ϕ). (7.1)

This simplified form for the magnetic field under the assumption of axisymmetry will become
useful in Sections 7.3 and 8.4. Since the gradient reads∇ = R̂∂/∂R+ ϕ̂/R∂/∂ϕ+ Ẑ∂/∂Z in
cylindrical coordinates, it can also be conveniently rewritten as

B(R,ϕ, Z) = ∇×

(
ψP (R,Z)

R
ϕ̂(ϕ) +

∫ Z

0

Bϕ
(
R,Z ′) dZ ′R̂(ϕ)

)
.

Then defining

AR(R,Z) =

∫ Z

0

Bϕ
(
R,Z ′) dZ ′

and

A(R,ϕ, Z) =
ψP (R,Z)

R
ϕ̂(ϕ) +AR(R,Z)R̂(ϕ), (7.2)

this shows that B = ∇ × A. This proves that for any axisymmetric divergence-free field, B,
with toroidal flux surfaces, there exists an axisymmetric vector potential A.

We will consider several other implications of axisymmetry in Sections 7.2 and 7.3. Under
the assumption of axisymmetry, there are only two nontrivial spatial variables, as the system is
assumed to be independent of the toroidal angle. Axisymmetric configurations are then said to be
2D. Some magnetic confinement devices, such as tokamaks, are designed to have magnetic fields
close to axisymmetry, according to the above definition. Without this assumption, a physical
system is said to be 3D. In particular, stellarator devices are inherently 3D configurations.
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7.2 Particle confinement in axisymmetry
This section demonstrates that axisymmetry is desirable because it guarantees momentum con-
servation, in turn guaranteeing the confinement of particles in the absence of collisions to leading
order. The starting point will be the Lagrangian for the motion of a single particle with mass m
and charge q in a magnetic field B.

We assume that the magnetic field is divergence-free. Hence, as described in Appendix B.2,
the field can be expressed in terms of a vector potential A as B = ∇×A. We also assume that
the field B is time-independent and axisymmetric.

We express the vector potential in the cylindrical coordinate system, (R,ϕ,Z) introduced in
Section 5.3 as A = ARR̂+ Aϕϕ̂+ AZẐ. Axisymmetry of B implies that A can be chosen to
be axisymmetric, as described in Section 7.1. Under the assumption of time independence, we
then express the Lagrangian for the particle motion (B.6) in the cylindrical coordinate system,

L(R,ϕ, Z, Ṙ, ϕ̇, Ż) =
m

2

(
Ṙ2 +R2ϕ̇2 + Ż2

)
+ q

(
AR(R,ϕ, Z)Ṙ+Aϕ(R,ϕ, Z)Rϕ̇+AZ(R,ϕ, Z)Ż

)
.

Under the assumption of axisymmetry, the Lagrangian becomes independent of ϕ. So ϕ is an
ignorable coordinate as defined in Appendix B.2.2. Thus, L has a continuous symmetry with
respect to ϕ. Next, we study the corresponding conserved quantity.

Along a trajectory, (RT , ϕT , ZT ) : R→ (RN )3, the corresponding Euler–Lagrange equation
for the toroidal angle is

d

dt

(
∂L(RT (t), ϕT (t), ZT (t), ṘT (t), ϕ̇T (t), ŻT (t))

∂ϕ̇

)
= 0.

Hence the so-called toroidal canonical momentum, defined as

pϕ(R,ϕ, Z, Ṙ, ϕ̇, Ż) :=
∂L(R,ϕ, Z, Ṙ, ϕ̇, Ż)

∂ϕ̇
,

is a constant of motion since along a trajectory

d

dt
[pϕ (RT (t), ϕT (t), ZT (t))] = 0.

Remark 7.2. This is an example of Noether’s theorem [90]: any continuous symmetry, in this
case, toroidal rotational symmetry, implies a conserved quantity, in this case, pϕ.

To gain additional insight into this quantity, we will now estimate the size of each term in

pϕ(R,ϕ, Z, Ṙ, ϕ̇, Ż) = mR2ϕ̇+ qAϕ(R,Z)R.

As can be seen in (7.2), the poloidal flux is ψP = RAϕ. As discussed in Remark 5.3, in a torus
with major radius R0, minor radius a, and poloidal field magnitude BP := |BP |, the poloidal
flux scales as ψP ≈ R0aBP .

We can also approximate Rϕ̇ ≈ vt, where vt =
√

2T/m is the thermal velocity. Moreover,
under the large aspect ratio assumption, namely a/R0 ≪ 1, thenR ≈ R0.15 So, we find the ratio
of the two terms in pϕ to be

mR2ϕ̇

qψP
≈ mvt
qBPa

≈ ρB

aBP
,

15Remember that R ∈ [R0 − a,R0 + a] in the toroidal domain of interest.
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where ρ = vtm/(qB) is the gyroradius introduced in Section 4.2. As can be seen in Table 1.1,
ρ/a≪ 1 in typical toroidal confinement experiments. Therefore, if the poloidal field strength is
of comparable size to the total field strength, this ratio ϵP := ρB/(aBP )≪ 1. So we can make
the approximation pϕ ≈ qψP .

As pϕ is then approximately constant on a flux surface meaning a particle on an initial mag-
netic surface ψ0

P will be confined within a small distance ∆ψP ≈ ϵPψ0
P from the initial surface.

As ϵP scales inversely with respect toBP , this is another way to understand the need for a strong
poloidal magnetic field for confinement in a tokamak as discussed in Section 4.4.2. More details
on confinement in axisymmetry can be found in [197] and Chapter 7 of [120].

In 3D geometry without axisymmetry, this result does not apply, so much more care must be
taken to achieve good confinement. However, a so-called hidden symmetry can be exploited to
obtain similar confinement properties in a stellarator, as will be explored in Section 12.1.

7.3 Rotational transform
As described in Section 4.4.2, a poloidal component for the magnetic field is required for confine-
ment, resulting in twisted field lines rather than a purely toroidal field lying in a plane. This twist
in the field lines is quantified by the rotational transform, ι, indicating the number of poloidal
turns of a field line around the magnetic axis for each toroidal turn around the Ẑ axis. In the
tokamak literature, the safety factor q = 1/ι is often used rather than the rotational transform.

For any given field line, the rotational transform can be defined in terms of the change in
poloidal angle, (∆θ)k, after the kth toroidal turn following a field line around the toroidal do-
main,

ι = lim
n→∞

n∑
k=1

(∆θ)k

2πn
.

This definition of the rotational transform holds even if flux surfaces do not exist since it relies
on a field line’s poloidal and toroidal rotations with respect to a field line that closes after one
toroidal transit. This closed field line is the magnetic axis in the presence of continuously nested
flux surfaces. Since magnetic field lines cannot cross one another, the rotational transform ι is
the same for all field lines on a given surface. If continuously nested flux surfaces exist, then the
rotational transform can be defined in terms of the toroidal and poloidal fluxes, (5.8)–(5.9), as

ι(ψ) =
dψP (ψ)

dψ
. (7.3)

Here ψ = ΨT /(2π) and ψP = ΨP /(2π) are the rescaled toroidal and poloidal fluxes. According
to this definition, the rotational transform is another example of a flux function.

The link between the rotational transform (7.3) and the poloidal component of the field can
be evidenced as follows. Given the expression for the poloidal flux ψP (5.11), we can evaluate
the rotational transform as defined above in a flux coordinate system (ψ, θ, ϕ), namely

ι(ψ) =
1

2π

∫ 2π

0

B · ∇θ
∇ψ · ∇θ ×∇ϕ

(R(ψ, θ0, ϕ)) dϕ,

where the integration is performed at fixed poloidal angle θ = θ0, and the Jacobian∇ψ ·∇θ×∇ϕ
cannot vanish for a well-defined flux coordinate system. Therefore, it is clear that ι(ψ) can be
nonzero only for magnetic fields with a nonzero poloidal component, B · ∇θ ̸= 0.

On a given surface, the rotational transform (7.3) quantifies the twist of field lines around
the surface. When the rotational transform is rational, ι = n/m for m ∈ Z\{0} and n ∈ Z, a
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(a) ι = 2 (b) ι = 3/2

Figure 7.1: Two examples of field lines on a toroidal surface. An ι = 2 field line (left) makes two
poloidal turns for each toroidal turn, while an ι = 3/2 field line (right) makes three poloidal
turns for two toroidal turns. As both are rational field lines, they close on themselves after a
finite number of toroidal turns.

field line closes on itself after n toroidal turns, having completed m poloidal turns. Therefore, a
single field line does not cover the entire surface, as illustrated in Figure 7.1. Flux surfaces with
rational values of ι are known as rational surfaces. When ι is irrational, a given field line comes
arbitrarily close to every point on what is called an irrational surface.

Now, the mechanisms for producing rotational transform to generate the twist of field lines
as they wrap around flux surfaces, will be explored both with and without the assumption of
axisymmetry.

• In the context of axisymmetry, as described below in Section 7.3.1, a relation between
the rotational transform and the toroidal current can be derived. As a result, rotational
transform can be produced by driving a toroidal plasma current.

• Without the assumption of axisymmetry, the previous argument does not hold; instead,
as described below in Section 7.3.2, the rotational transform can be related to geometric
properties of the magnetic axis, based on a near-magnetic-axis model. By contrast, in this
context, rotational transform can be produced by the nonplanarity of the magnetic axis and
nonaxisymmetry of the magnetic surfaces.

This introduces the fundamental difference between the tokamak and stellarator concepts that is
later discussed in Section 7.4.

7.3.1 Producing rotational transform with axisymmetry

The most straightforward way to produce rotational transform is with a toroidal plasma current,
creating a poloidal magnetic field from Ampère’s law (A.7). As we will now see, this is the
only possibility under the assumption of axisymmetry. This discussion assumes the existence of
closed, nested flux surfaces.

The starting point is the expression for the magnetic field in terms of the poloidal flux in
cylindrical coordinates (7.1) with ϕ̂ = R∇ϕ, repeated here for the reader’s convenience:

B(R,ϕ, Z) = ∇ψP (R,Z)×∇ϕ+Bϕ(R,Z)ϕ̂. (7.4)

We now consider the implications of the above expression on the toroidal current. In order to
define the toroidal current, consider a flux coordinate system (ψ, θ, ϕ) and a closed curve lying
on a flux surface at a constant toroidal angle, CT (ψ, ϕ) := {(ψ, θ, ϕ), θ ∈ [0, 2π)}, as well as
the surface enclosed by this curve, denoted by ST (ψ, ϕ) := {(ψ̃, θ, ϕ), ψ̃ ≤ ψ, θ ∈ [0, 2π)} and
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shown in Figure 5.4. The toroidal current through a surface ST (ψ, ϕ) is the surface integral

IT (ψ, ϕ) =

∫
ST (ψ,ϕ)

J(r) · n̂(r) d2r.

It can be expressed using Ampère’s law (A.7) as the line integral

IT (ψ, ϕ) =
1

µ0

∮
∂ST (ψ,ϕ)

B(r) · dl(r).

Since
dl =

∂R

∂θ
dθ

along the curve ∂ST (ψ, ϕ), then from the expression of B in (7.4), together with the dual rela-
tions (5.3), the integrand of the line integral reads

B · ∂R
∂θ

= ∇ψP ×∇ϕ ·
∂R

∂θ
.

Because ∂R/∂θ = ∇ϕ×∇ψ/(∇ψ ×∇θ · ∇ϕ) and∇ψP = ι∇ψ, it yields

B · ∂R
∂θ

= − ι|∇ψ ×∇ϕ|2

(∇ψ ×∇θ · ∇ϕ)
.

Therefore, this integrand is sign-definite and cannot vanish for a well-defined flux coordinate
system with ι(ψ) ̸= 0. Hence, under these conditions, the toroidal current IT is nonzero. Fur-
thermore, in order to produce rotational transform in an axisymmetric system with flux surfaces,
a toroidal current is necessary. Thus, axisymmetric devices require current in the confinement
region. This mechanism forms the basis for confinement in a tokamak, as discussed in Sec-
tion 7.4.1.

7.3.2 Producing rotational transform without axisymmetry

If axisymmetry is broken, the magnetic field cannot be written as (7.4), and the argument in
the previous section no longer holds. As we will see, rotational transform does not necessarily
require plasma current in the absence of axisymmetry. Instead, a classic result of Mercier [210,
116] demonstrates the mechanisms generating rotational transform on the magnetic axis from
3D fields.

The result of Mercier relies, under the assumption of continuously nested toroidal flux sur-
faces discussed in Remark 4.4, on an asymptotic expansion with respect to the distance from
the magnetic axis. While the complete proof of this result is postponed to Section 11.2 to avoid
long technical details, the resulting closed form of the approximate rotational transform on the
magnetic axis is introduced here for the sake of argument.

We will use a Frenet–Serret coordinate system to discuss this result, later proved in Section
11.2. We define orthonormal unit vectors, the unit tangent vector êP1 in the direction of the
magnetic field, the unit normal vector êP2 in the direction of the magnetic curvature κ, and a
vector êP3 orthogonal to the two previous ones, at any point P ∈ R3, as follows:

êP1 = b̂(P ),

êP2 =
κ(P )

|κ(P )|
with κ(P ) =

(
b̂(P ) · ∇

)
b̂(P ),

êP3 = êP1 × êP2 ,

(7.5)
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Figure 7.2: The magnetic axis of the TJ-II stellarator (black) with the orthonormal Frenet–Serret
unit vectors.

where b̂ is the direction of the magnetic field. The magnetic axis can be defined by a line r0(l),
where l is the arclength, a parameter measuring the distance along the curve. Along the magnetic
axis, the Frenet–Serret basis can be parameterized by l, and it will be written (ê1(l), ê2(l), ê3(l)).
The basis vectors ê2 and ê3 define a plane perpendicular to the magnetic axis. The Frenet–Serret
unit vectors on the magnetic axis of the Spanish stellarator TJ-II are shown in Figure 7.2.

As a result of the detailed calculation presented in Section 11.2, we find that the cross-
sections of the flux surfaces in the ê2-ê3 plane form ellipses. The calculation is discussed using
four key parameters, illustrated in Figure 7.3.

• The torsion τ(l) of the magnetic axis is defined by τ(l) = −ê′3(l) · ê2(l), and it satisfies
ê′3(l) = −τ(l)ê2(l). The torsion of a planar curve vanishes at all points, and τ can be
considered a measure of the nonplanarity of the magnetic axis.

• The ellipticity parameter, η(l), relates the major axis, a, and the minor axis, b, of the ellipse
through b = e−η(l)a. Thus, large values of η(l) indicate more pronounced ellipticity.

• The angle of the major axis of the ellipse with respect to ê2 is denoted by δ(l). Thus, large
values of δ′(l) indicate an ellipse rotating rapidly with respect to the normal direction.

• The number of net poloidal rotations of the curvature vector is denoted by the integer m.
Thus, large values ofm indicate that the Frenet–Serret frame is making more net rotations.

The expression for the rotational transform ι(ψ) on the magnetic axis, ψ = 0, of length L in
terms of these parameters is

ι(0) =
1

2π

(
−2πm− δ(L) + δ(0) +

∫ L

0

δ′(l)− τ(l)
cosh(η(l))

dl

)
.

In order to have a nonzero rotational transform in the absence of plasma current, a nonzero value
of either δ′(l) or τ(l) is required. These mechanisms imply the breaking of toroidal symmetry as
defined in Section 7.1, through either a nonplanar magnetic axis or magnetic surfaces with twist-
ing ellipticity. These mechanisms form the basis for confinement in a stellarator, as discussed in
Section 7.4.2.
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Figure 7.3: Plane perpendicular to the magnetic axis at a point r0(l). The unit vectors ê2(l) and
ê3(l) defined through (7.5) form a basis of the plane. The magnetic surfaces near the axis are
elliptical with major axis a and minor axis b.

7.4 Toroidal confinement devices
Toroidal magnetic confinement devices rely on rotational transform for confinement. In order to
produce the required rotational transform, the axisymmetric tokamak, described in Section 7.4.1,
relies on plasma current while the stellarator, described in Section 7.4.2, relies on the shaping of
the magnetic field.

7.4.1 Tokamak

A tokamak is one example of a toroidal confinement device with genus one topology. The mag-
netic field of a tokamak is designed under the assumption of axisymmetry according to the def-
inition provided in Section 7.1. Thus, many physical scalar quantities are independent of the
toroidal angle, ϕ. In practice, these scalar quantities are not exactly independent of the toroidal
angle because the magnetic field is not precisely axisymmetric. This symmetry-breaking can be
introduced unintentionally, for example, due to misaligned coils, or deliberately to control the
plasma’s stability [71]. However, this approximation is often sufficient because the field is close
enough to axisymmetry.

As shown in Section 7.2, a poloidal magnetic field is necessary for confinement in axisym-
metry. Moreover, as shown in Section 7.3, toroidal plasma current is required to produce this
poloidal component. While there is some self-generated plasma current,16 it is insufficient for
confinement, so it needs to be driven externally. Often, this is done with a transformer through
electromagnetic induction. An electric field is induced in the plasma by varying the current
through a central transformer coil, as illustrated in Figure 7.4. As the current through the trans-
former coil cannot be increased or decreased indefinitely, this cannot be used as a steady-state
approach. Driving current in a tokamak reactor requires a significant amount of energy, as de-
scribed for instance in Chapter 3 of [304], reducing its efficiency. Many dangerous plasma
instabilities are also driven by plasma current. The result of these instabilities is a sudden loss of
confinement of the plasma, called a disruption.

Although the need for current has some disadvantages, the tokamak configuration is advan-
tageous because of its simple geometry. The toroidal symmetry ensures that the collisionless
particle orbits are confined in the presence of a strong poloidal magnetic field, as discussed in

16A self-generated plasma current refers to a current generated by the plasma as opposed to an externally imposed
current.
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Figure 7.4: The poloidal magnetic field of a tokamak is produced by toroidal plasma current.
This plasma current is in turn driven inductively by transformer coils. The toroidal field is
produced by electromagnetic coils modeled as planar curves. Figure reproduced from [206].
Reprinted with permission from the Max Planck Institute for Plasma Physics. Tokamak. http:
//www.ipp.mpg.de/14869/tokamak , 2018. Accessed: 2018-10-04.

Section 7.2. The toroidal field coils of a tokamak are planar curves that are relatively easy to
construct in contrast with those of a stellarator, as illustrated in Figure 7.4.

7.4.2 Stellarator

While a stellarator is also a toroidal confinement device with genus one topology, unlike a toka-
mak, it is designed to be far from axisymmetry according to the definitions in Section 7.1. Due to
its lack of axisymmetry, plasma current is not required to produce a poloidal magnetic field com-
ponent. Instead, stellarators use torsion and ellipticity to produce rotational transform through
symmetry-breaking as discussed in Section 7.3. These mechanisms require shaping the mag-
netic field. This idea was the basis for the first stellarator designed by Spitzer [270], featuring a
magnetic axis shaped as a figure eight to produce torsion of the magnetic axis.

A significant advantage of the stellarator over the tokamak as a power plant concept is that it
does not require an external current drive, limiting technical challenges and costs associated with
driving current. Although stellarators generally do not have externally driven current, a small
amount of self-driven current arises due to the averaged motion of ions and electrons. Due to
the small plasma current, stellarators tend to be more stable than tokamaks in regard to current-
driven instabilities. Moreover, stellarators do not need an inductive electric field, so they can be
run in a steady state.

As stellarator coils have to produce a carefully shaped magnetic field to have a sufficient
poloidal field, they tend to be much more complex than tokamak coils, as illustrated in Figure 7.5.
Furthermore, due to their lack of axisymmetry, stellarators do not enjoy automatic magnetic field
integrability, discussed briefly in Section 7.1 and explored in more detail in Chapter 10. More-
over, automatic approximate particle confinement is no longer guaranteed in three dimensions
as it is for axisymmetry, as discussed in Section 7.2. This motivates the search for 3D magnetic
fields with more general symmetries, introduced in Chapter 12, and the numerical optimization
of the magnetic field and coils as discussed in Chapter 13.
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Figure 7.5: A stellarator confines charged particles with magnetic fields without continuous
toroidal symmetry. The coils of the Wendelstein 7-X device are shown along with the outer
magnetic surface (yellow) and a field line (blue). The rather complicated electromagnetic coils
produce the twisting of the field line around the surface. Figure reproduced from [205]. Reprinted
with permission from the Max Planck Institute for Plasma Physics. Magnetic coils and plasma
from Wendelstein 7-X. https://www.ipp.mpg.de/2523775/konzeptentwicklung, 2018.
Accessed: 2018-10-04.
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Chapter 8

Coupling of particles and
electromagnetic fields:
Ideal magnetohydrodynamics

While a plasma, made of charged particles, is intrinsically coupled to electromagnetic fields, con-
sidering the single-particle motion in given fields as in Chapter 4 leads to the notion of toroidal
confinement. In order to further investigate the concept of a stellarator as presented in Chapter 7,
it is now natural to introduce models coupling plasma and electromagnetic fields. Ideal MHD
models, central to this chapter, are fundamental models for the design of stellarators.

Magnetohydrodynamics refers to a hierarchy of fluid models of a plasma relevant for describ-
ing the large-scale, global behavior of the confinement and vacuum regions of fusion plasmas,
as described in Appendix A.3 and Section 5.2. They couple Maxwell’s equations with a fluid
model for the particles. They describe the plasma by a mass density ρ, the center of mass fluid
velocity u, species-summed pressure p, and current density J . Different MHD models describe
different physical regimes, corresponding to assumptions on the length and time scales of inter-
est, as introduced in Section 1.4. For example, some models include the effects of resistivity,
viscosity, and perpendicular heat diffusion. In this chapter, we focus on the relatively simple
ideal MHD model, assuming instead that the plasma is perfectly conducting and ignoring the
effect of viscosity. A more detailed discussion of other MHD models is presented in Chapters 10
and 11.

The ideal MHD equations will be discussed in Section 8.1. An important consequence of
the ideal MHD model is the preservation of the topology of magnetic surfaces as they move
with the plasma flow. This is known as flux freezing and is discussed in Section 8.2. For ap-
plications associated with magnetic confinement, it is important to understand the limit of ideal
MHD when the fluid flow and time dependence vanish, resulting in the ideal MHD equilibrium
equations. These are discussed in Section 8.3. The ideal MHD equilibrium equations are sig-
nificantly simplified under the fundamental assumption of the existence of continuously nested
toroidal magnetic surfaces discussed in Remark 4.4. In particular, this assumption allows for the
use of flux coordinates, with two periodic coordinates providing mathematical simplification as
illustrated in Chapter 6. As we have seen in Chapter 7, continuously nested toroidal surfaces
are guaranteed in axisymmetry. The Grad–Shafranov equation, resulting from the ideal MHD
equilibrium equations in axisymmetry, is presented in Section 8.4.

While continuously nested surfaces do not always exist in three dimensions, we can still seek
a class of simplified solutions assuming continuously nested surfaces. This simplifies the math-
ematical model and, in turn, reduces computational complexity. However, in three dimensions,
this simplification can lead to challenges associated with the behavior of solutions when∇p ̸= 0
on these surfaces, which is further discussed in Chapter 10.

79
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8.1 Ideal MHD
The ideal MHD equations can be obtained from kinetic or fluid models under certain assump-
tions.

• The collision frequency is sufficiently large so the electron and ion temperatures are equi-
librated.

• The gyroradius is small compared to length scales of interest.

• The system is nonrelativistic, so that the displacement current, ∂E/∂t, can be dropped
from Ampère’s law, as discussed in Remark A.3.

• Frequencies faster than the electron plasma frequency, the characteristic frequency of os-
cillations of the charge density [44], ωpe =

√
nee2/(µ0me), are not included. Here ne

and me are the electron number density and mass, respectively.

• The plasma is assumed to be perfectly conducting so its resistivity is negligible.

The details of how the ideal MHD model is obtained under these assumptions are explained more
thoroughly in many references [226, 76, 89].

These assumptions have the following consequences.

• Since the displacement current is dropped from Ampère’s law, MHD does not include light
waves.

• As this is a fluid model, it does not account for velocity space effects such as particle
trapping.

• As high frequencies and small wavelengths are neglected, MHD describes the macro-
scopic, low-frequency behavior of plasmas.

• An important result of the assumption of a perfectly conducting plasma is the frozen-in
theorem, stating that the magnetic field is frozen into the fluid and must move with it. This
will be discussed in Section 8.2.

Conditions for the validity of ideal MHD are described in more detail in Chapter 2 of [76].
We now outline the equations satisfied by the fluid mass density ρ, current density J , and

flow velocity u in the ideal MHD model. The continuity equation ensures mass conservation,

∂ρ

∂t
+∇ · (ρu) = 0. (8.1)

Momentum density obeys a similar conservation equation,

ρ

(
∂

∂t
+ u · ∇

)
u = J ×B −∇p. (8.2)

The ideal energy conservation equation is(
∂

∂t
+ u · ∇

)
p+ γp∇ · u = 0 (8.3)

and, when combined with (8.1), yields the entropy conservation equation,(
∂

∂t
+ u · ∇

)(
p

ργ

)
= 0. (8.4)

Here γ is the ratio of specific heats where γ = 5/3 for a monatomic gas.
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The electric and magnetic fields, E and B, obey Maxwell’s equations, presented in Chap-
ter 2, under the nonrelativistic limit, 

∇×B = µ0J ,

∇×E = −∂B
∂t

,

∇ ·B = 0.

(8.5)

The assumption of a perfectly conducting plasma can be stated as

E + u×B = 0. (8.6)

Since the electric field in a frame moving with velocity u is given by E + u×B, assuming |u|
is much smaller than the speed of light c, the above states that the electric field in the frame of
reference moving with the plasma is zero. Thus, the plasma is perfectly conducting.

Since the electric field E and current J can be expressed explicitly as

E = −u×B,

J =
1

µ0
∇×B,

they can be substituted from the other equations to obtain a PDE system for the unknowns ρ, u,
p, and B, 

∂ρ

∂t
+∇ · (ρu) = 0,

ρ

(
∂

∂t
+ u · ∇

)
u =

(∇×B)×B

µ0
−∇p,(

∂

∂t
+ u · ∇

)
p+ γp∇ · u = 0,

∂B

∂t
= ∇× (u×B) ,

∇ ·B = 0.

(8.7)

8.2 Flux freezing
An important consequence of the ideal MHD equations is Alfvén’s flux freezing theorem. This
theorem relies on the equation

∂B

∂t
= ∇× (u×B). (8.8)

The theorem states that the magnetic flux through an open surface moving with an ideal MHD
plasma does not change in time. Stated another way, magnetic field lines move with an ideal
MHD plasma. We will first discuss how this theorem follows from (8.8). We will then introduce
an important consequence for stellarator design: ideal MHD does not allow changes in the topol-
ogy of magnetic surfaces as they move with the plasma flow. This informs the choice of model
for practical stellarator design, discussed in detail in Chapters 10 and 11.
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8.2.1 Flux through a surface and conservation

In this section, we define the concept of magnetic flux through a surface and prove that it is
conserved when the surface is carried by the plasma flow under ideal MHD evolution.

Given a time-independent magnetic field B and any fixed surface S, the magnetic flux
through S is defined by

ΦS =

∫
S

B(r) · n̂(r) d2r.

Similarly, given a time-dependent magnetic field B(r, t) and any surface S(t) evolving in time,
at any time t the magnetic flux through S(t) is defined by

ΦS(t)(t) =

∫
S(t)

B(r, t) · n̂(r, t) d2r.

In the context of any fluid moving with velocity u, we introduce the concept of moving with
the flow. Trajectories are solutions to the differential equation ẋ(t) = u(x(t), t), and x(t) is the
trajectory emerging from x(0). A set of points moving with the flow is defined by

• an initial set of points S0, and

• at any time t, the set of points x(t) satisfying the initial condition x(0) ∈ S0 and the
differential equation ẋ(t) = u(x(t), t).

At a given time t, the set of points is denoted S(t). For example, this set can define a surface or
a volume moving with the flow.

In a plasma described by ρ, u, B, and p satisfying the ideal MHD model (8.7), consider the
magnetic flux through an open surface S(t) moving with the plasma flow, ΦS(t). We will now
determine the time derivative of ΦS(t) as it moves with the plasma. This time derivative includes
contributions from the time derivative of the magnetic field, namely ∂B/∂t+ (u · ∇)B, as well
as the time derivative of the unit normal vector and surface area element,

dΦS(t)(t)

dt
=

∫
S(t)

(
∂B(r, t)

∂t
+ (u(r, t) · ∇)B(r, t)

)
· n̂(r) d2r

+

∫
S(t)

B(r, t) ·
d
[
n̂(r)d2r(r)

]
dt

.

To compute the time derivative of n̂(r)d2r(r), we evaluate r at a point x(t) ∈ S(t) moving
with the plasma flow. According to [298, 89], we use the formula

d
[
n̂(r)d2r(r)

]
dt

= [−∇u(r, t) · n̂(r, t) +∇ · u(r, t)n̂(r, t)] d2r(r(t), t),

along with (8.8), to obtain

dΦS(t)(t)

dt
=

∫
S(t)

[
∇× (u(r, t)×B(r, t)) + (u(r, t) · ∇)B(r, t)− (B(r, t) · ∇)u(r, t)

+ (∇ · u(r, t))B(r, t)

]
· n̂(r) d2r.
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Figure 8.1: Two closed magnetic field lines are linked with each other. This linking of field lines
is preserved under ideal MHD.

Using the vector identity ∇× (A ×B) = A(∇ ·B) −B(∇ ·A) + (B · ∇)A − (A · ∇)B,
we then conclude that

dΦS(t)(t)

dt
= 0.

The so-called flux freezing theorem states that the magnetic flux is conserved through any surface
moving with the plasma under ideal MHD evolution.

8.2.2 Implications for the magnetic field topology

The flux freezing theorem can be interpreted in terms of the magnetic field dynamics: it precludes
changes in the magnetic field topology. The magnetic field topology refers to structures formed
by magnetic field lines, including the topology of magnetic surfaces when they exist and the
linking (or interlacing) of a field line with other field lines or with itself. This severely limits the
dynamics that ideal MHD models can describe.

The flux through any surface moving with the ideal MHD flow is constant according to the
discussion in Section 8.2.1. This has several implications:

• if we consider an initial magnetic field that contains a magnetic surface, this will remain a
magnetic surface as the field evolves;

• the topology of a given magnetic surface cannot change; for instance, the number of holes
in the surface cannot change in time;

• if the magnetic field contains continuously nested flux surfaces, this topology will be pre-
served, and magnetic islands cannot form;

• a magnetic field without continuously nested magnetic surfaces cannot evolve to a state
with continuously nested magnetic surfaces under the ideal MHD model.

Furthermore, flux freezing can be shown to preserve the number of times magnetic field lines
link with each other [76], and Figure 8.1 illustrates the notion of link. In this sense, the magnetic
field topology is said to be preserved under ideal MHD. These considerations will be discussed
in the application to 3D equilibrium models in Chapters 10 and 11.
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8.3 Ideal MHD equilibrium
We now consider the ideal MHD equations under the assumption of static equilibrium, cor-
responding to the MHD system (8.7) together with u = 0 and time independence of all the
fields at play. The characteristic velocities associated with ideal MHD are the Alfvén speed,
vA = B/

√
µ0ρ, and the sound speed, cs =

√
γp/ρ. When the magnitude of the flow speed |u|

is small in comparison to these speeds, |u| ≪ vA and |u| ≪ cs, then a static model is appropriate
[76]. Considering a characteristic length scale L associated with a physical system, such as the
major or minor radius of a torus, we can deduce a characteristic time scale associated with ideal
MHD dynamics, tA ∼ L/vA and ts ∼ L/cs. An equilibrium model is appropriate considering
time scales t≫ tA and t≫ ts. These assumptions are often relevant when considering the trans-
port time scales of fusion plasmas, as discussed in Section 1.4. The conservation of momentum
density (8.2) shows that the plasma pressure gradient balances electromagnetic forces,

J ×B = ∇p. (8.9)

The equilibrium fields must also satisfy the divergence-free condition and Ampère’s law. As a
summary, the ideal MHD equilibrium equations read

J ×B = ∇p,

∇×B = µ0J ,

∇ ·B = 0.

(8.10)

For magnetic confinement fusion, this nonlinear system of PDEs is often solved in a toroidal
domain Ω. The interested reader can refer to [33] for a result of existence for solutions to (8.10)
on a toroidal domain with the flux surface boundary condition, namely B · n̂ = 0, for certain
pressure profiles, and to [47] for the construction of solutions on a smooth bounded domain with
the same boundary condition and adding a small driving force.

The force balance condition (8.9) is often considered under the assumption that the pressure
depends only on a flux surface label, p(ψ), the notion introduced in Section 5.5.1. Then the force
balance equation (8.9) implies that J · ∇ψ = 0, so that streamlines of the current density and
magnetic field lie on surfaces of constant ψ.

The resulting equations in axisymmetry are described next in Section 8.4, and further details
about computing 3D MHD equilibria will be discussed in Chapters 10 and 11. Even in the
study of a steady-state solution, applying equilibrium models is sometimes challenging. There
are alternative methods for numerically approximating equilibria that consider instead long-time
solutions to time-dependent models, as described in Section 10.4.3.

8.4 MHD equilibrium in a tokamak: Grad–Shafranov
We now consider the MHD equilibrium equations under the assumption of axisymmetry as in-
troduced in Section 7.4.1. The derivation involves a simplified form for the magnetic field in
axisymmetry and a subsequent formulation of the current density. Both will then be combined
to evaluate the force balance condition. We will find that this reduces (8.10) to a 2D, nonlinear
PDE known as the Grad–Shafranov equation.

We begin with a convenient expression for the magnetic field in terms of the poloidal flux
function ψP , discussed in Section 7.3.1, in the cylindrical coordinate system (R,ϕ, Z). For
convenience, (7.4) is repeated here:

B(R,ϕ, Z) = ∇ψP (R,Z)×∇ϕ+Bϕ(R,Z)ϕ̂.
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This can be rewritten as

B(R,ϕ, Z) =
1

R
∇ψP (R,Z)× ϕ̂+RBϕ(R,Z)∇ϕ,

since ∇ϕ = ϕ̂/R. To simplify the above expression for the magnetic field, defining F := RBϕ
is standard. Because this function is related to the integrated poloidal current, IP (ψP ), defined
in Section 9.1.2, through F (ψP ) = µ0IP (ψP )/(2π), we note that F (ψP ) is a flux function.
Therefore, the magnetic field reads

B(R,ϕ, Z) =
1

R
∇ψP (R,Z)× ϕ̂+ F (ψP )∇ϕ.

Then the current can be expressed using Ampère’s law∇×B = µ0J ,

µ0J = ∇×
(
∇ψP
R2

×
(
Rϕ̂
))

+∇F (ψP )×∇ϕ.

Applying the vector identity∇× (A×B) = (∇ ·B)A− (∇ ·A)B + (B · ∇)A− (A · ∇)B,
we obtain

µ0J = ∇ ·
(
Rϕ̂
) ∇ψP

R2
−∇ ·

(
∇ψP
R2

)
Rϕ̂+ (Rϕ̂ · ∇)

(
∇ψP
R2

)
−
(
∇ψP
R2

· ∇
)(

Rϕ̂
)

+∇F (ψP )×∇ϕ. (8.11)

Several simplifications follow from the properties of the cylindrical coordinate system.

• Since ∇ ·
(
Rϕ̂
)
= R∇ · ϕ̂ + ϕ̂ · ∇R while in cylindrical coordinates ϕ̂ · ∇R = 0 and

∇ · ϕ̂ = 0, then∇ ·
(
Rϕ̂
)

vanishes. Therefore, the first term vanishes.

• In cylindrical coordinates the gradient reads∇ = R̂∂/∂R+ ϕ̂/R∂/∂ϕ+ Ẑ∂/∂Z, and so
∇ψP (R,Z) = R̂∂ψP (R,Z)/∂R+ Ẑ∂ψP (R,Z)/∂Z.

– Because (R̂, ϕ̂, Ẑ) is orthonormal, the differential operator∇ψP (R,Z) · ∇ is equal
to (∂ψP (R,Z)/∂R)∂/∂R+(∂ψP (R,Z)/∂Z)∂/∂Z. Moreover, since ∂ϕ̂/∂R = 0

and ∂ϕ̂/∂Z = 0, we find∇ψP · ∇(Rϕ̂) = (∂ψP (R,Z)/∂R) ϕ̂.

– Furthermore, because ϕ̂ · ∇ = 1/R∂/∂ϕ, then

(Rϕ̂ · ∇)
(
∇ψP
R2

)
=

1

R2

∂

∂ϕ

(
R̂
∂ψP (R,Z)

∂R
+ Ẑ

∂ψP (R,Z)

∂Z

)
.

But ∂R̂/∂ϕ = ϕ̂ and ∂Ẑ/∂ϕ = 0, so (Rϕ̂·∇)
(
∇ψP /R2

)
= ϕ̂/R2∂ψP (R,Z)/∂R.

Therefore, the third and fourth terms on the right-hand side of (8.11) vanish.

This yields a simplified expression for the current density, namely

µ0J = −R∇ ·
(
∇ψP
R2

)
ϕ̂+∇F (ψP )×∇ϕ.

As a result, in a tokamak, the vector unknowns, B and J , can be expressed in terms of the
scalar unknown ψP (R,Z), namely B = 1

R∇ψP (R,Z)× ϕ̂+ F (ψP )∇ϕ,

J = 1
µ0

(
−R∇ ·

(
∇ψP

R2

)
ϕ̂+∇F (ψP )×∇ϕ

)
.

(8.12)
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Given this form for B and J , the force balance equation J ×B = ∇p reads

1

µ0

[
−∇ψP (R,Z)∇ ·

(
∇ψP (R,Z)

R2

)
− F (ψP (R,Z))∇F (ψP (R,Z))

R2

]
= ∇p (ψP (R,Z)).

Since the left- and right-hand sides of this expression are proportional to ∇ψP , it is sufficient to
enforce the projection of force balance along ∂R/∂ψP . After multiplying through by (R2µ0),
this results in the Grad–Shafranov equation, namely

R2∇ ·
(
∇ψP (R,Z)

R2

)
= −µ0R

2p′(ψP (R,Z))− F (ψP (R,Z))F ′(ψP (R,Z)). (8.13)

This is a nonlinear elliptic equation for the unknown ψP (R,Z) while the pressure profile p
and the poloidal current function F = µ0IP /(2π) are given. In the literature, the notation
∆∗ψP = R2∇ ·

(
R−2∇ψP

)
is often used.

The Grad–Shafranov equation (8.13) is solved in a smooth bounded domain Ω in the R-Z
plane, together with the boundary condition ψP = ψP0 on ∂Ω for a fixed value ψP0. Prescribing
this constant Dirichlet boundary condition ensures that the boundary of Ω is a constant-flux
curve.

Once ψP is determined in Ω, the magnetic field is known from (8.12) in the axisymmetric
toroidal domain defined by the rotation of Ω about the symmetry axis. The boundary of the 3D
domain is the flux surface of label ψP0. The field is axisymmetric by construction. The shape
of the flux surfaces in R3 is determined by the rotation of ψP (R,Z) about the symmetry axis.
In conclusion, given the shape of the outer boundary and specified pressure and current profiles,
the Grad–Shafranov solution provides the shape of the inner flux surfaces.

More details about the Grad–Shafranov equation can be found in Chapter 7 of [120] and
Chapter 6 of [76]. For a discussion of computational methods for the Grad–Shafranov equation,
refer to Chapter 4 of [151]. In some special cases, the 3D MHD equilibrium equations can
be formulated using a Grad–Shafranov equation [34]. However, general 3D MHD equilibrium
models are more complex and will be discussed in Chapter 11.

8.5 Summary
Under various sets of hypotheses, the ideal MHD equations can be reduced to simpler models.
Common reduced models are gathered in Table 8.1.
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Part II

Toward stellarator design
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Chapter 9

Magnetic coordinates

Beyond the introductory material presented in Part I to study magnetic confinement in toroidal
geometry, further properties of magnetic fields can be leveraged to develop more specific theo-
retical tools in order to simplify the formulation of many mathematical questions.

Under the fundamental assumption that the given vector field B has continuously nested
toroidal flux surfaces throughout the domain of interest, toroidal coordinate systems using a flux
label as the radius-like coordinate were introduced in Section 5.5.2 under the name of flux coor-
dinates. Under the additional assumption that the vector field B is divergence-free, a particular
kind of flux coordinates, called magnetic coordinates, is introduced here as a convenient tool to
simplify the expression of the magnetic field and of other quantities of interest. With poloidal
angle and toroidal angle respectively denoted ϑ and φ, the fundamental property of magnetic
coordinates is that the ratio Bϑ/Bφ of the contravariant components of the magnetic field is a
constant on each magnetic surface. This implies that, given a value of the rotational transform
ι determining a given magnetic surface, field lines appear straight when represented in the φ-ϑ
plane, with a slope given by ι. This is an important example of the impact of the choice coor-
dinate system and how drastically it simplifies the description of magnetic field lines, from 3D
curves to straight lines.

This chapter is organized as follows. Magnetic coordinates are constructed from general flux
coordinates in Section 9.1.1. Their definition leads to the desired contravariant form and the
defining property. The covariant form is simplified under the assumption of MHD equilibrium in
Section 9.1.2. A special form of magnetic coordinates, called Boozer coordinates, is introduced
in Section 9.2. A related coordinate system, the field-line following coordinates, is introduced
in Section 9.3. Further simplifications of the expression in these field-line following coordinates
for differential and integral operators along field lines are derived. Section 9.4 presents a sum-
mary of covariant and contravariant forms of the magnetic field comparing formulas in the three
types of coordinate systems: magnetic coordinates, Boozer coordinates, and field-line following
coordinates.

In the following chapters, these coordinate systems will be exploited to describe several
challenges arising when studying nonaxisymmetric magnetic equilibria in Chapter 10 and to
present various models of MHD equilibrium both with and without the assumption of contin-
uously nested toroidal flux surfaces in Chapter 11. These coordinates systems are also key to
introducing various types of symmetries that can be leveraged to obtain confinement properties.
This will be done in Chapters 12 and 13.

91
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92 Chapter 9. Magnetic coordinates

9.1 Magnetic coordinates
Given a magnetic field B with continuously nested toroidal flux surfaces, magnetic coordinates
are constructed from a general flux coordinate system (ψ, θ, ϕ) where θ is any poloidal angle,
ϕ is any toroidal angle, and ψ = ΨT /2π is the toroidal flux label, introduced in Section 5.5.1.
Their derivation relies on the divergence-free assumption, ∇ ·B = 0, leveraged to simplify the
contravariant form of the field in Section 9.1.1. The covariant form can be further simplified
under the assumption J · ∇ψ = 0 as discussed in Section 9.1.2.

9.1.1 Contravariant form

Since B · ∇ψ = 0, as in any flux coordinate system, the radial contravariant component of the
field is zero, and therefore the magnetic field can be written as

B = Bθ
∂R

∂θ
+Bϕ

∂R

∂ϕ
,

(Bθ, Bϕ) being the toroidal and poloidal contravariant components. The divergence-free condi-
tion∇ ·B = 0 is then equivalent to

0 =
1
√
g

(
∂(Bθ

√
g)

∂θ
+
∂(Bϕ

√
g)

∂ϕ

)
, (9.1)

where
√
g = (∇ψ ×∇θ · ∇ϕ)−1.

Remark 9.1. Equation (9.1) is of the form (6.1). Considering the flux coordinates (ψ, θ, ϕ) as
well as the functions F1 = −Bθ√g and F2 = −Bϕ√g, we can thus apply the results discussed
in Section 6.1.

According to Remark 9.1, for a divergence-free magnetic field expressed in flux coordinates
(ψ, θ, ϕ), there exist one function λ periodic in (θ, ϕ) and two functions j, h of one variable
satisfying the following relations for α(ψ, θ, ϕ) := j(ψ)θ + h(ψ)ϕ+ λ(ψ, θ, ϕ):

Bθ
√
g = −∂α

∂ϕ
,

Bϕ
√
g =

∂α

∂θ
,

implying that B =
1
√
g

(
∂α

∂θ

∂R

∂ϕ
− ∂α

∂ϕ

∂R

∂θ

)
. (9.2)

As a consequence, leveraging the relations between basis vectors, summarized in Table 5.1, we
get

B = ∇ψ ×
(
∂α

∂θ
∇θ + ∂α

∂ϕ
∇ϕ
)
.

This immediately yields a more compact expression for the magnetic field:

B = ∇ψ ×∇α. (9.3)

Hence, the definition of α leads to the magnetic field expression:

B(R(ψ, θ, ϕ)) = [∇ψ](ψ, θ, ϕ)×
(
j(ψ)[∇θ](ψ, θ, ϕ) + h(ψ)[∇ϕ](ψ, θ, ϕ) + [∇λ](ψ, θ, ϕ)

)
.

So j and h are related to the toroidal and poloidal contravariant components of the field, and we
can now relate them to the toroidal and poloidal fluxes introduced in Chapter 5. Indeed, thanks

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



9.1. Magnetic coordinates 93

to the expression of the fluxes in flux coordinates, (5.10) and (5.11), we have

ΨT (ψ) =

∫ ψ

0

∫ 2π

0

[√
gB · ∇ϕ

] (
R
(
ψ̃, θ, ϕ0

))
dθdψ̃

=

∫ ψ

0

∫ 2π

0

∂α
(
ψ̃, θ, ϕ0

)
∂θ

dθdψ̃

=

∫ ψ

0

∫ 2π

0

j
(
ψ̃
)
dθdψ̃ as λ is periodic

= 2π

∫ ψ

0

j
(
ψ̃
)
dψ̃,

and similarly

ΨP (ψ) =

∫ ψ

0

∫ 2π

0

[√
gB · ∇θ

] (
R(ψ̃, θ0, ϕ)

)
dϕdψ̃

=

∫ ψ

0

∫ 2π

0

−
∂α
(
ψ̃, θ0, ϕ

)
∂ϕ

dϕdψ̃

=

∫ ψ

0

∫ 2π

0

−h
(
ψ̃
)
dϕdψ̃ as λ is periodic

= 2π

∫ ψ

0

−h
(
ψ̃
)
dψ̃.

Since, by choice of the flux label and definition of the rotational transform (7.3), we know that

ΨT (ψ) = 2πψ and ι(ψ) = ψ′
P (ψ),

this shows that
j(ψ) = 1 and h(ψ) = −ι(ψ).

To summarize, in terms of the magnetic field, we obtain

B
(
R(ψ, θ, ϕ)

)
= [∇ψ ×∇ (θ + λ− ι∇ϕ)]

(
R(ψ, θ, ϕ)

)
. (9.4)

Hence at any point R(ψ, ϑ, φ) we have

B · ∇ϕ =
(
∇ψ ×∇ (θ + λ)

)
· ∇ϕ,

B · ∇ (θ + λ) = ι
(
∇ψ ×∇ (θ + λ)

)
· ∇ϕ.

Therefore, at any point R(ψ, ϑ, φ),
(
∇ψ × ∇ (θ + λ)

)
· ∇ϕ = 0 if and only if B = 0, as

this is equivalent to both contravariant components vanishing. Since the field never vanishes, as
discussed in Section 4.4.1, this guarantees that

(
∇ψ ×∇

(
θ + λ

) )
· ∇ϕ ̸= 0 everywhere.

As a result, with ϑ := θ + λ and φ := ϕ, then (ψ, ϑ, φ) defines a coordinate system called
a magnetic coordinate system. Following this definition, (9.4) gives the contravariant expression
of the field in these magnetic coordinates as

B
(
R(ψ, θ, ϕ)

)
= [∇ψ ×∇ϑ]

(
R(ψ, θ, ϕ)

)
− ι(ψ) [∇ψ ×∇φ]

(
R(ψ, θ, ϕ)

)
, (9.5)

or equivalently,

B
(
R(ψ, θ, ϕ)

)
=
√
g
−1(

R(ψ, θ, ϕ)
)(

ι(ψ)
∂R(ψ, ϑ, φ)

∂ϑ
+
∂R(ψ, ϑ, φ)

∂φ

)
. (9.6)
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In a more compact way

B = ∇ψ ×∇ϑ− ι∇ψ ×∇φ⇔ B =
√
g
−1

(
ι
∂R

∂ϑ
+
∂R

∂φ

)
.

Noting that B · ∇φ = ∇ψ × ∇ϑ · ∇φ, also equal to
√
g−1, this quantity never vanishes as

pointed out earlier. At any point R(ψ, ϑ, φ), we then see that[
B · ∇ϑ
B · ∇φ

] (
R(ψ, θ, ϕ)

)
is constant on a flux surface and equal to ι(ψ). (9.7)

Since B · ∇φ ̸= 0 everywhere, the trajectories of magnetic field lines can be parameterized
by the toroidal angle, φ. While ψ is constant along magnetic field lines, the poloidal angle of a
field line will vary with the toroidal angle. Any field line can then be described by one value of
the flux label, ψl, and a function of the toroidal angle ϑl(φ). Physical quantities are 2π periodic
with respect to φ at fixed (ψ, ϑ), but a field-line trajectory does not necessarily close after a
change in φ of 2π. Therefore, the trajectory in φ may be defined for a range longer than 2π.

Along a field line, the chain rule reads

dR(ψl, ϑl(φ), φ)

dφ
=
∂R(ψl, ϑl(φ), φ)

∂ϑ

dϑl(φ)

dφ
+
∂R(ψl, ϑl(φ), φ)

∂φ
.

By definition, dR/dφ(ψl, ϑl(φ), φ) is proportional to B since it follows the path of a field
line. We can therefore write dR/dφ(ψl, ϑl(φ), φ) = A(ψl, ϑl(φ), φ)B(ψl, ϑl(φ), φ) for some
proportionality factor A. By dotting ∇φ into both sides of the above expression and applying
the duality of the basis vectors, we determine A = (B · ∇φ)−1. By dotting ∇ϑ in the above
expression and applying the definition for A, we determine the trajectory in the ϑ-φ plane,

dϑl(φ)

dφ
=

[B · ∇ϑ] (ψl, ϑl(φ), φ)
[B · ∇φ] (ψl, ϑl(φ), φ)

.

According to (9.7), this implies that

dϑl(φ)

dφ
= ι(ψl).

This is the defining property of magnetic coordinates:

On a flux surface ψ, field lines are straight in magnetic coordinates (ϑ, φ).

Magnetic coordinates have many applications in both analytic and numerical calculations.
For example, the computation of ideal MHD equilibrium fields can be formulated as a varia-
tional problem for the magnetic coordinates ψ(r) and λ(r), as will be done in Section 11.1.1.
Magnetic coordinates will be used for several calculations, such as in discussions of guiding
center confinement with omnigeneity and quasisymmetry in Sections 12.2 and 12.1.1.

Several choices of magnetic coordinates exist. We will discuss a particular choice of magnetic
coordinates, known as Boozer coordinates, in Section 9.2.

9.1.2 Covariant form

The magnetic field can also be written in the covariant form in magnetic coordinates (ψ,ϑ,φ):

B = Bψ∇ψ +Bϑ∇ϑ+Bφ∇φ.
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Here we obtain expressions for the covariant components (Bψ ,Bϑ,Bφ) given the currents linking
the plasma in the absence of radial current, J · ∇ψ = 0 or equivalently∇×B · ∇ψ = 0. Under
this assumption, we can then reformulate the covariant expression of the magnetic field, thanks
to convenient properties of Bϑ, Bφ, and Bψ . More generally, the analysis in this section applies
not just to magnetic coordinates but to any flux coordinate system, only requiring the absence of
radial current.

Even though the vanishing of radial current, J ·∇ψ = 0, is not required to construct magnetic
coordinates, it will simplify the covariant representation. The assumption of vanishing radial cur-
rent arises, for example, under the MHD equilibrium equations. Indeed, by combining Ampère’s
law with the ideal MHD force balance, we get ∇×B = µ0J ,

J ×B = ∇p,
p function of only ψ,

⇒ ∇×B · ∇ψ = 0. (9.8)

We now evaluate the radial current. From Table 5.1, the curl of B in magnetic coordinates is
expressed in the covariant basis in terms of the field’s covariant components as

√
g∇×B =

(
∂Bϑ
∂ψ
− ∂Bψ

∂ϑ

)
∂R

∂φ
+

(
∂Bψ
∂φ
− ∂Bφ

∂ψ

)
∂R

∂ϑ
+

(
∂Bφ
∂ϑ
− ∂Bϑ

∂φ

)
∂R

∂ψ
,

and the duality of the covariant and contravariant bases then yields

√
g∇×B · ∇ψ =

∂Bφ
∂ϑ
− ∂Bϑ

∂φ
.

Thus we obtain
∂Bφ
∂ϑ
− ∂Bϑ

∂φ
= 0. (9.9)

Remark 9.2. Equation (9.9) is of the form (6.1). Considering the magnetic coordinates (ψ, ϑ, φ)
as well as F1 = Bφ and F2 = −Bϑ we can thus apply the results discussed in Section 6.1.

According to Remark 9.2, there exist one function H periodic in (ϑ, φ) and two functions
I,G of one variable, defining H(ψ, θ, ϕ) := I(ψ)ϑ + G(ψ)φ + H(ψ, ϑ, φ), such that the co-
variant components of B expressed in magnetic coordinates (ψ, ϑ, φ) satisfy

Bϑ(ψ, ϑ, φ) =
∂H(ψ, ϑ, φ)

∂ϑ
,

Bφ(ψ, ϑ, φ) =
∂H(ψ, ϑ, φ)

∂φ
.

(9.10)

We can now relate the functions I and G to the integrated toroidal and poloidal currents.
In order to define the toroidal current, consider a closed curve lying on a flux surface at a

constant toroidal angle, CT (ψ,φ) := {(ψ, ϑ, φ), ϑ ∈ [0, 2π)}, as well as the surface enclosed
by this curve, denoted by ST (ψ,φ) :=

{(
ψ̃, ϑ, φ

)
, ψ̃ ≤ ψ, ϑ ∈ [0, 2π)

}
and shown in Figure

9.1. The toroidal current is then defined as

IT (ψ,φ) =

∫
ST (ψ,φ)

J(r) · n̂(r) d2r, (9.11)

where n̂ is a unit normal vector to the surface ST (ψ,φ), pointing in the same direction for all
r ∈ ST (ψ,φ). The above integral only includes contributions to the toroidal current from the
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96 Chapter 9. Magnetic coordinates

Figure 9.1: The integration curve at constant φ and ψ. The black curve encloses a surface
ST (ψ,φ) within the green surface. The toroidal current is integrated over ST (ψ,φ).

plasma current. But Ampère’s law reads µ0J = ∇×B, hence by Stokes’ theorem

µ0IT (ψ,φ) =

∮
CT (ψ,φ)

B(r) · dl(r) with dl = (∂R/∂ϑ) dϑ

=

∫ 2π

0

Bϑ(ψ, ϑ, φ) dϑ since Bϑ = B · ∂R
∂ϑ

.

As a consequence,

∂IT (ψ,φ)

∂φ
=

1

µ0

∫ 2π

0

∂Bϑ(ψ, ϑ, φ)

∂φ
dϑ

=
1

µ0

∫ 2π

0

∂Bφ(ψ, ϑ, φ)

∂ϑ
dϑ from (9.9)

= 0 by periodicity of Bφ.

Thus, the toroidal current is a flux function, IT (ψ). And beyond this remark,

µ0IT (ψ) =

∫ 2π

0

(
I(ψ) +

∂H(ψ, ϑ, φ)

∂ϑ

)
dϑ from (9.10)

= 2πI(ψ) by periodicity of H.

So finally, we have identified
I(ψ) =

µ0

2π
IT (ψ).

Similarly, in order to define the poloidal current, consider a closed curve lying on a flux
surface at a constant poloidal angle, CP (ψ, ϑ) := {(ψ, ϑ, φ), φ ∈ [0, 2π)}, as well as the surface
enclosed by this curve, denoted by SP (ψ, ϑ) :=

{(
ψ̃, ϑ, φ

)
, ψ̃ ≤ ψ,φ ∈ [0, 2π)

}
and shown in

in Figure 9.2. The poloidal current is then defined as

IP (ψ, ϑ) =

∫
SP (ψ,ϑ)

J(r) · n̂(r) d2r.
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(a) (b)

Figure 9.2: The integration curve at constant ϑ and ψ. The black curve encloses the green
surface SP (ψ, ϑ) through which the poloidal current is integrated.

Depending on SP (ψ, ϑ), the above integral includes contributions to the poloidal current from
outside the constant ψ surface, including both the plasma current and any external currents, such
as electromagnetic coils. But again, Ampère’s law combined with Stokes’ theorem gives

µ0IP (ψ, ϑ) =

∮
CP (ψ)

B(r) · dl(r) with dl =
∂R

∂φ
dφ

=

∫ 2π

0

Bφ(ψ, ϑ, φ) dφ since Bφ = B · ∂R
∂φ

.

As a consequence,

∂IP (ψ, ϑ)

∂ϑ
=

1

µ0

∫ 2π

0

∂Bφ(ψ, ϑ, φ)

∂ϑ
dφ

=
1

µ0

∫ 2π

0

∂Bϑ(ψ, ϑ, φ)

∂φ
dφ from (9.9)

= 0 by periodicity of Bϑ,

thus, the poloidal current is also a flux function, IP (ψ). And moreover,

µ0IP (ψ) =

∫ 2π

0

(
G(ψ) +

∂H(ψ, ϑ, φ)

∂φ

)
dφ from (9.10)

= 2πG(ψ) by periodicity of H.

So finally we have identified
G(ψ) =

µ0

2π
IP (ψ).

Furthermore, returning to the covariant form of the magnetic field, define the function K as

K(ψ, ϑ, φ) := Bψ(ψ, ϑ, φ)−
∂H(ψ, ϑ, φ)

∂ψ
.

Then, given a function H satisfying (9.10), the covariant form of an equilibrium magnetic field
in magnetic coordinates can be expressed as{

B = I∇ϑ+G∇φ+K∇ψ +∇H
with I(ψ) =

µ0

2π
IT (ψ) and G(ψ) =

µ0

2π
IP (ψ).

(9.12)

Additional details regarding magnetic coordinates can be found in Chapter 6 of [55] and Section 2
of [116].
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98 Chapter 9. Magnetic coordinates

9.2 Boozer coordinates
Boozer coordinates are a specific kind of magnetic coordinates. As magnetic coordinates, they
are defined given a magnetic field B under the assumption of the existence of flux surfaces in-
troduced in Remark 4.4. Moreover, they rely on the assumptions that the magnetic field is diver-
gence-free and that the radial current vanishes,∇×B · ∇ψ= 0. We remark that a generalization
of Boozer coordinates has been developed that does not require vanishing radial current [255].

Boozer coordinates are constructed such that the magnetic field has a simple form when
expanded in the covariant form. This specific choice of magnetic coordinates is especially useful
for some applications, as discussed in Section 12.1. The angles ϑB and φB are chosen such that
the magnetic field can be written in the following way:

B
(
R(ψ, ϑB , φB)

)
= I(ψ)[∇ϑB ]

(
R(ψ, ϑB , φB)

)
+G(ψ)[∇φB ]

(
R(ψ, ϑB , φB)

)
+K(ψ, ϑB , φB)[∇ψ]

(
R(ψ, ϑB , φB)

)
. (9.13)

More compactly, this is expressed in the literature as

B(ψ, ϑB , φB) = I(ψ)∇ϑB +G(ψ)∇φB +K(ψ, ϑB , φB)∇ψ.

Compared with the general covariant form for magnetic coordinates of equilibrium fields (9.12),
it shows that the Boozer angles must be chosen such that H vanishes.

As a result, in Boozer coordinates, the poloidal and toroidal covariant components of the
magnetic field, BϑB

= I and BφB
= G, are constant on any flux surface, as they depend only

on the flux label ψ. Furthermore, they can be related to the net toroidal and poloidal currents
as in (9.12). The only covariant component that is not constant on a flux surface is the radial
component Bψ = K. It will be studied hereafter and expressed explicitly in terms of the field
strength. Boozer coordinates will then become natural tools to study symmetries in the field
strength and leverage their benefits in terms of particle confinement, in particular leading to the
notion of quasisymmetry, introduced later in Section 12.1.

9.2.1 Justification

In order to find such a coordinate system, we can start from a magnetic field in the covariant form
(9.12) in any magnetic coordinate system (ψ, ϑ, φ). To define new coordinates

(
ψ, ϑ̃, φ̃

)
while

preserving the magnetic coordinate property, we define the new angles ϑ̃ and φ̃ as{
ϑ̃ = ϑ+ ι(ψ)γ(ψ, ϑ, φ),
φ̃ = φ+ γ(ψ, ϑ, φ),

for some function γ to be determined.

In fact, this guarantees that the new coordinates satisfy ϑ− ι(ψ)φ = ϑ̃− ι(ψ)φ̃. Since{
∇ϑ̃ = ∇ϑ+∇

(
ιγ
)
,

∇φ̃ = ∇φ+∇
(
γ
)
,

while I∇(ιγ) +G∇γ = ∇
(
Iιγ +Gγ

)
−
(
I ′ιγ +G′γ

)
∇ψ, we can express the magnetic field

B in the new contravariant basis
(
∇ψ,∇ϑ̃,∇φ̃

)
as

I∇ϑ+G∇φ+K∇ψ+∇H = I∇ϑ̃+G∇φ̃+K∇ψ+∇H+
(
I ′ιγ+G′γ

)
∇ψ−∇

(
Iιγ+Gγ

)
.

Hence, with the particular choice

γ (ψ, ϑ, φ) =
H (ψ, ϑ, φ)

I(ψ)ι(ψ) +G(ψ)
,

we can express the field in the desired form (9.13) with K = K + (I ′ι+G′)γ. With this choice
of transformation, we will denote ϑB = ϑ+ ι(ψ)γ(ψ, ϑ, φ) and φB = φ+ γ(ψ, ϑ, φ).
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Remark 9.3. In a stellarator, G(ψ)≫ I(ψ) since a large toroidal current is not required while
ι(ψ) ∼ 1. Therefore, the denominator I(ψ)ι(ψ)+G(ψ) is typically nonvanishing for conditions
of interest, and the coordinate transformation is well-defined.

9.2.2 Properties

The definition of Boozer coordinates leads to a simplified expression of the Jacobian. Since
Boozer coordinates are a particular choice of magnetic coordinates, we can leverage both the
covariant form of the field expressed in Boozer coordinates (9.13) and the contravariant form of
the field expressed in any magnetic coordinate system (9.6), namely

B
(
R(ψ, ϑB , φB)

)
=
√
g
−1(

R(ψ, ϑB , φB)
)(

ι(ψ)
∂R(ψ, ϑB , φB)

∂ϑB
+
∂R(ψ, ϑB , φB)

∂φB

)
,

B
(
R(ψ, ϑB , φB)

)
= I(ψ) [∇ϑB ] (ψ, ϑB , φB) +G(ψ) [∇φB ] (ψ, ϑB , φB)

+K(ψ, ϑB , φB) [∇ψ] (ψ, ϑB , φB).

Taking their dot product results in a new expression for
√
g = (∇ψ ×∇ϑB · ∇φB)−1, the

Jacobian, as follows:

√
g
(
R(ψ, ϑB , φB)

)
=

G(ψ) + ι(ψ)I(ψ)

B2
(
R(ψ, ϑB , φB)

) . (9.14)

This expression of the Jacobian now depends on the magnetic field strength and three flux func-
tions: the integrated poloidal current, the integrated toroidal current, and the rotational transform.
Furthermore, variations of the Jacobian on a surface are only due to the field strength. Thus, in
both the covariant and contravariant representations, all components of the magnetic field can be
described by five scalar quantities: I(ψ), G(ψ), ι(ψ), K(ψ, ϑB , φB), and B

(
R(ψ, ϑB , φB)

)
.

Furthermore, we will see in Section 9.2.3 that the covariant component K is related to B.

Remark 9.4. In a given coordinate system, knowing either the covariant or the contravariant
components of a vector field is sufficient to define a vector field. By opposition, if the field is
unknown and a magnetic coordinate system is used, then knowing either the covariant or the
contravariant components of a vector field is not sufficient to define a vector field because the
definition of the basis vectors depends on the definition of the field. For instance, in Boozer
coordinates, explicit formulas for I(ψ), G(ψ), ι(ψ), and K(ψ, ϑB , φB) are not sufficient to
determine the field B.

For convenience, according to Table 5.1, the covariant components of the field, namely Bψ(ψ, ϑB , φB) = K(ψ, ϑB , φB),
BϑB

(ψ, ϑB , φB) = I(ψ),
BφB

(ψ, ϑB , φB) = G(ψ),

then provide the following expression for the curl in Boozer coordinates:

∇×B
(
R(ψ, ϑB , φB)

)
=

1
√
g
(
R(ψ, ϑB , φB)

)[(I ′(ψ)− ∂K(ψ, ϑB , φB)

∂ϑB

)
∂R(ψ, ϑB , φB)

∂φB

+

(
∂K(ψ, ϑB , φB)

∂φB
−G′(ψ)

)
∂R(ψ, ϑB , φB)

∂ϑB

]
. (9.15)
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Boozer coordinates are especially useful for stellarators, as quasisymmetric magnetic fields are
important for confinement and precisely defined in terms of Boozer coordinates. Boozer coor-
dinates simplify the expression for the guiding center Lagrangian, enabling the formulation of
quasisymmetry as discussed in Section 12.1.1. The simple covariant form of the magnetic field
in Boozer coordinates is also used for numerical and analytical calculations, such as neoclassical
transport [224, 187]. In practice, Boozer coordinates are constructed to study quasisymmetry
and simplify numerical calculations.

Boozer coordinates are discussed in Section 6.6 of [55] and Section 2.5 of [116].

9.2.3 Radial covariant component

The Jacobian in Boozer coordinates expressed in (9.14) is determined from the field strength,
B
(
R(ψ, ϑB , φB)

)
, as well as the net poloidal and toroidal currents, G(ψ) and I(ψ), and the

rotational transform ι(ψ). Given these quantities, we will obtain here an expression for the radial
covariant component, K(ψ, ϑB , φB), by applying the MHD equilibrium force balance condition
(9.8).

Assuming Ampère’s law combined with the ideal MHD force balance with pressure only
depending on the flux label, p(ψ), the magnetic field satisfies

(∇×B)×B = µ0p
′(ψ)∇ψ.

The contravariant form of the field together with the curl expressed in (9.15) then gives

1
√
g
(
R(ψ, ϑB , φB)

)2
((

I ′(ψ)− ∂K(ψ, ϑB , φB)

∂ϑB

)
∂R(ψ, ϑB , φB)

∂φB

+

(
∂K(ψ, ϑB , φB)

∂φB
−G′(ψ)

)
∂R(ψ, ϑB , φB)

∂ϑB

)

×
(
∂R(ψ, ϑB , φB)

∂φB
+ ι(ψ)

∂R(ψ, ϑB , φB)

∂ϑB

)
= µ0p

′(ψ) [∇ψ] (ψ, ϑB , φB).

Taking the dot product with ∂R/∂ψ and using the duality of the basis vectors, we get the fol-
lowing equation for the radial covariant component K:

ι(ψ)
∂K(ψ, ϑB , φB)

∂ϑB
+
∂K(ψ, ϑB , φB)

∂φB

=
√
g
(
R(ψ, ϑB , φB)

)
µ0p

′(ψ) +G′(ψ) + ι(ψ)I ′(ψ). (9.16)

Remark 9.5. The partial differential equation (9.16) is a magnetic differential equation of
the form (6.4). Considering the Boozer coordinates (ψ, ϑB , φB) as well as the right-hand side
f(ψ, ϑB , φB) =

√
g
(
R(ψ, ϑB , φB)

)
µ0p

′(ψ)+G′(ψ)+ι(ψ)I ′(ψ) we can thus apply the results
discussed in Section 6.2.

According to Remark 9.5, let us first comment on the Fourier representation of the right-hand
side. Since the right-hand side f depends on the two angles (ϑB , φB) only via the Jacobian,
namely

√
g
(
R(ψ, ϑB , φB)

)
= (G(ψ) + ι(ψ)I(ψ))/B2

(
R(ψ, ϑB , φB)

)
, we focus on B−2. As

B is bounded away from zero (see Section 4.4.2) and doubly periodic, we write the doubly
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periodic function B−2 as

B−2
(
R(ψ, ϑB , φB)

)
= B−2

0 (ψ) +
∑

m,n,(m,n)̸=(0,0)

bm,n(ψ)e
i(mϑB−nφB) (9.17)

with B−2
0 (ψ) := (2π)−2

∫ 2π

0

∫ 2π

0
B−2

(
R(ψ, ϑB , φB)

)
dϑBdφB and the other Fourier coef-

ficients {bm,n(ψ)}(m,n)∈Z2,(m,n)̸=(0,0). The necessary condition for the existence of doubly
periodic solutions to (9.16), namely

∫ 2π

0

∫ 2π

0
f(ψ, x1, x2) dx1dx2 = 0, is then equivalent to

G(ψ) + ι(ψ)I(ψ)

B2
0(ψ)

µ0p
′(ψ) +G′(ψ) + ι(ψ)I ′(ψ) = 0.

Hence, under this condition, the right-hand side reads

f(ψ, ϑB , φB) =
(
G(ψ) + ι(ψ)I(ψ)

)
µ0p

′(ψ)
∑

(m,n)∈Z2\{(0,0)}

bm,n(ψ)e
i(mϑB−nφB) ∀ψ.

Because G(ψ) + ι(ψ)I(ψ) is nonvanishing according to Remark 9.3, the condition of existence
for periodic solutions along closed field lines when ι is rational reads

p′(ψ)bm,n(ψ) = 0 ∀(m,n) ∈ Z2 such that ι =
n

m
∀ψ.

Under these two conditions, formally, the general Fourier solution then reads

K(ψ, ϑB , φB) = K(ψ) +
∑

(m,n)∈Z2\{(0,0)}

∆m,n(ψ)δ(n− ι(ψ)m)ei(mϑB−nφB)

+
∑

(m,n)∈Z2,m̸=ι(ψ)n

i
(
G(ψ) + ι(ψ)I(ψ)

)
µ0p

′(ψ)

n− ι(ψ)m
bm,n(ψ)e

i(mϑB−nφB),

where K(ψ) and {∆m,n(ψ), (m,n) ∈ Z2\{(0, 0)}, ι(ψ) = n/m} are free functions. The solu-
tion exhibits the so-called Dirac-δ function and 1/x singularities mentioned in Section 6.2.4 and
will be discussed further in Section 10.3.

This expression summarizes how the radial covariant component K depends on the field
strength B. As a consequence, all components of the magnetic field in the covariant representa-
tion can be described by four scalar quantities: I(ψ), G(ψ), ι(ψ), and B

(
R(ψ, ϑB , φB)

)
. This

will highlight the critical role of the magnetic field strength B and will be central to symmetry
discussions in Section 12.1.

9.3 Field-line following coordinates
The concept of flux coordinates relies on the assumption of continuously nested toroidal sur-
faces in the region of interest. For a given magnetic field B, flux coordinates consist of one
radius-like coordinate, labeling surfaces between the magnetic axis and the outermost surface,
and two periodic angles, describing poloidal and toroidal cross-sections, respectively. The con-
cept of magnetic coordinates relies on the further assumption of a divergence-free field; magnetic
coordinates are flux coordinates with angles defined to guarantee that the ratio between the con-
travariant components of the field remains constant on each flux surface. The concept of field-line
following coordinates relies on one coordinate labeling field lines, denoted α, and one coordi-
nate measuring the length along individual field lines, l; field-line following coordinates are flux
coordinates but not magnetic coordinates.
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102 Chapter 9. Magnetic coordinates

Starting from magnetic coordinates, they will now be defined to simplify differential and
integral operators along field lines. However, the coordinate curves obtained by fixing the surface
label ψ and either α or l do not necessarily close in the poloidal or toroidal directions. Hence
α and l are not poloidal and toroidal angles; therefore, the system (ψ, α, l) does not define a
magnetic coordinate system. A field-line following coordinate system is sometimes called a
Clebsch coordinate system in the literature [116, 55].

Given any magnetic coordinate system (ψ, ϑ, φ), a field-line following coordinate system
(ψ, α, l) is defined by

• the same flux label ψ,

• the field-line label defined by α = ϑ− ι(ψ)φ,

• the length along a field line l, implicitly defined by ∂R(ψ,α,l)
∂l = b̂(ψ, α, l) or equivalently

B
(
R(ψ, ϑB , φB)

)
= B

(
R(ψ, ϑB , φB)

)∂R(ψ, α, l)

∂l
, (9.18)

where b̂ := B/B is the unit vector aligned with the magnetic field. Next, we obtain simplified
forms for both the contravariant and covariant components of the field and the Jacobian of the
new coordinate system.

Given the contravariant components of the magnetic field as expressed in magnetic coordi-
nates in (9.5), namely

B
(
R(ψ, ϑB , φB)

)
= [∇ψ ×∇ϑ]

(
R(ψ, ϑB , φB)

)
− ι(ψ) [∇ψ ×∇φ]

(
R(ψ, ϑB , φB)

)
,

the simplified contravariant form in field-line following coordinates reads

B
(
R(ψ, ϑB , φB)

)
= [∇ψ ×∇α]

(
R(ψ, ϑB , φB)

)
. (9.19)

Remark 9.6. Consequently, B · ∇α = 0, so α is constant along a magnetic field line. This
justifies the name field-line label. Therefore, this system shares a fundamental property with
magnetic coordinates: field lines are straight in the α-l plane since the coordinate α is constant
along field lines.

The covariant form for the magnetic field is defined as

B
(
R(ψ, ϑB , φB)

)
= Bψ(ψ, α, l) [∇ψ]

(
R(ψ, ϑB , φB)

)
+Bα(ψ, α, l) [∇α]

(
R(ψ, ϑB , φB)

)
+Bl(ψ, α, l) [∇l]

(
R(ψ, ϑB , φB)

)
.

The inner product of this expression with b̂ = ∂R/∂l shows that Bl = B thanks to the duality
of the covariant and contravariant bases. The other two components, Bψ and Bα, do not have
similarly simple formulas but can be obtained from the dual relations as Bψ = b̂ · ∇α×∇l and
Bα = b̂ · ∇l ×∇ψ.

The Jacobian is defined by

√
g
(
R(ψ, ϑB , φB)

)
=

1

[∇ψ ×∇α · ∇l]
(
R(ψ, ϑB , φB)

) .
Since combining (9.19) with (9.18) one gets

[∇ψ ×∇α · ∇l]
(
R(ψ, ϑB , φB)

)
= B

(
R(ψ, ϑB , φB)

)∂R(ψ, α, l)

∂l
· [∇l]

(
R(ψ, ϑB , φB)

)
,
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and, thanks to the duality of the basis vectors (see Table 5.1) the Jacobian can be written

√
g
(
R(ψ, ϑB , φB)

)
=

1

B
(
R(ψ, ϑB , φB)

) .
Remark 9.7. In order to specify a point on a magnetic surface, ψ, one must define a closed
curve that is not parallel to field lines, Cψ , on which l = 0. For example, one natural choice
is the intersection of the magnetic surface and a constant φ surface. The initial position along
Cψ defines the field-line label, α. The length l is then measured from l = 0 until a given field
line returns to Cψ at some length L(ψ, α). The position on the surface is then specified with
α ∈ [0, 2π) and l ∈ [0, L(ψ, α)). While physical quantities are periodic with respect to α, they
are not necessarily periodic with respect to L(ψ, α) unless field lines close.

The differential operator b̂ · ∇ also has a simpler expression in the new coordinates. Since
the gradient is defined as

∇ = ∇ψ ∂

∂ψ
+∇α ∂

∂α
+∇l ∂

∂l

then, according to (9.18), the operator can be written as

b̂ · ∇ =
∂R

∂l
· ∇ψ ∂

∂ψ
+
∂R

∂l
· ∇α ∂

∂α
+
∂R

∂l
· ∇l ∂

∂l
.

Finally, by duality of the bases, this yields

b̂ · ∇ =
∂

∂l
.

In summary, the (ψ, α, l) coordinate system builds upon magnetic coordinate systems to
simplify expressions for differential and integral operators along field lines. As in the case of
Boozer coordinates, the Jacobian takes a simple form and is related to the magnetic field strength.
While one of the covariant components of the field can be obtained explicitly in terms of the field
strength, the other two components require additional geometric quantities.

9.4 Summary
Table 9.1 summarizes the important properties of magnetic, Boozer, and field-line following
coordinate systems.
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Chapter 10

Challenges associated
with 3D equilibrium fields

In toroidal magnetic confinement, an axisymmetric setting is often referred to as a 2D setting,
because quantities that are independent of the toroidal angle can be studied as a function of only
two variables in a poloidal plane. A tokamak is then referred to as a 2D configuration. By
contrast, a nonaxisymmetric setting is referred to as a 3D setting. A stellarator is referred to as a
3D configuration. These two types of toroidal magnetic configurations have many different sets
of advantages and drawbacks in terms of confinement. In particular, unlike in a 2D setting, 3D
magnetic fields are no longer guaranteed to have continuously nested flux surfaces. This result
is the central point of this chapter and is particularly important for toroidal devices since closed
nested surfaces are crucial for confinement.

The equations of motion describing field-line trajectories in a toroidal magnetic field can
be cast as a Hamiltonian system. In this context, in Sections 10.1 and 10.2, we highlight the
relationship between the existence of surfaces in 2D and 3D on the one hand and the concept
of integrability of Hamiltonian systems on the other hand. Using this concept, the existence of
flux surfaces arises as a fundamental consequence of the Hamiltonian nature of the system under
the assumption of axisymmetry. As we will see, in 3D systems compared to 2D systems, the
loss of a continuous symmetry with respect to the toroidal angle results in a corresponding loss
of a conserved quantity. This has important implications for confinement, as the existence of
continuously nested flux surfaces is no longer guaranteed.

The existence or otherwise of continuously nested flux surfaces in 3D magnetic fields is
a property of the field-line Hamiltonian and independent of any additionally imposed physical
model, such as ideal MHD. Even though their existence is not guaranteed in 3D without axisym-
metry, we examine in Section 10.3 the consequences of the assumption of the existence of nested
flux surfaces, introduced in Remark 4.4, on the ideal MHD equilibrium current. This will lead to
further considerations on the assumption of flux surfaces and the equilibrium model:

• additional assumptions can guarantee the existence of a solution for a problem related to
this current in an MHD equilibrium in Section 10.3.2;

• the possible nonexistence of this solution motivates the consideration of different models,
either without the assumption of surfaces in Section 10.3.4 or beyond ideal MHD models
in Section 10.4.

The following chapters will present tools to study confinement for the design of 3D config-
urations. Various models of equilibrium magnetic fields will be presented in Chapter 11, while
symmetries and their consequences will be discussed in Chapter 12.

105
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106 Chapter 10. Challenges associated with 3D equilibrium fields

10.1 From existence to nonexistence of magnetic surfaces
In axisymmetric geometry, we will find that the equations describing the position of field lines
possess a conserved quantity, implying that the field lines lie on surfaces. When axisymmetry
is broken, however, the conserved quantity may be lost, leading to the possibility of nonexis-
tence of surfaces. In the following sections, we will describe how this conserved quantity arises
due to a variational principle for field-line flow analogous to the variational principle arising in
Hamiltonian mechanics.

10.1.1 Analysis of the vector potential

While in Section 5.5.2 and Chapter 9, the assumption of magnetic surfaces was leveraged to
introduce convenient coordinate systems, these surfaces do not exist for a general 3D field. Here,
we will introduce a new coordinate system without the assumption of surfaces to show that
axisymmetry yields the existence of magnetic surfaces. We will leverage this coordinate system
in Sections 10.1.2 and 10.1.3 to further study the structure of magnetic field lines without the
assumption of surfaces.

Consider a coordinate system (r, θ, ϕ), where r labels nested toroidal surfaces, not neces-
sarily flux surfaces, and (θ, ϕ) are poloidal and toroidal angles on these surfaces. The vector
potential is not uniquely defined since adding a curl-free field, the gradient of any scalar func-
tion, does not affect the value of B = ∇ × A. As mentioned previously in Remark A.1, the
standard to choose A is called the gauge. Any vector potential A can be expressed in the con-
travariant basis in terms of its covariant components (Aθ, Aϕ, Ar), but it can equivalently be
written in terms of three functions (ψ1,ψ2, g) as

A = ψ1∇θ −ψ2∇ϕ+∇g,

where Ar = ∂g/∂r, Aθ = ψ1 + ∂g/∂θ, and Aϕ = −ψ2 + ∂g/∂ϕ. This form for the vector
potential is convenient since the radial component of the vector potential is expressed in terms of
the gradient of a scalar function, the last term in the above expression. We then choose a gauge
in which the vector potential satisfies

A = ψ1∇θ −ψ2∇ϕ, (10.1)

and the corresponding magnetic field is

B = ∇ψ1 ×∇θ −∇ψ2 ×∇ϕ. (10.2)

Here surfaces of constant ψ1 do not necessarily overlap with those of constant ψ2, and neither
ψ1 nor ψ2 needs to coincide with magnetic fluxes. In comparison, the contravariant form (9.5)
of the magnetic field in magnetic coordinates can be written as

B = ∇ψ ×∇ϑ−∇ψP ×∇φ,

where the toroidal flux is 2πψ and the poloidal flux is ΨP = 2πψP , while ψ′
P (ψ) = ι(ψ). For

this reason, the notation ψT , ψP rather than ψ1, ψ2 is sometimes used in the literature even
without the assumption of surfaces [24].

If we assume that the toroidal magnetic field does not vanish within a volume, B ·∇ϕ ̸= 0 or
equivalently∇ψ1×∇θ ·∇ϕ ̸= 0, then (ψ1, θ, ϕ) defines a coordinate system within this volume.
As discussed earlier, this is a natural assumption in the context of toroidal magnetic confinement
since the toroidal component of the field is crucial to confinement considerations. We can then
express the vector potential (10.1) in this coordinate system under its covariant form as

A
(
R(ψ1, θ, ϕ)

)
= ψ1 [∇θ]

(
R(ψ1, θ, ϕ)

)
−ψ2(ψ1, θ, ϕ) [∇ϕ]

(
R(ψ1, θ, ϕ)

)
, (10.3)
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10.1. From existence to nonexistence of magnetic surfaces 107

with or without the assumption of magnetic surfaces. We can now consider the axisymmetric
case, where ϕ is a cylindrical toroidal angle introduced in Section 5.3 and ∂ψ2/∂ϕ = 0. As

B · ∇ψ2 =
∂ψ2

∂ϕ
∇ψ1 ×∇θ · ∇ϕ,

then as a consequence B · ∇ψ2 = 0. Since ψ2 is differentiable, the level sets of ψ2 form
surfaces, except at critical points where ∇ψ2 = 0. These critical points may be isolated or
may form critical lines or surfaces, but we are not interested in purely toroidal fields such that
∇ψ2 = 0 in a volume, as discussed in Section 4.4.2. Thus, we can conclude that axisym-
metry implies the existence of magnetic surfaces, yet their topology is not determined at this
point. As we will see next, breaking the toroidal symmetry may lead to the loss of magnetic
surfaces.

The (ψ1, θ, ϕ) coordinate system will be central to the discussion of a variational principle
for field-line flow and its relationship with Hamiltonian dynamics in the next section. This will
allow for exploring the existence of magnetic surfaces, or integrability, in more general fields in
Section 10.2.

10.1.2 Variational principle for field-line flow

We begin by showing that field lines obey equations of motion derived from a variational prin-
ciple analogous to Hamilton’s principle in classical mechanics. Given a magnetic field B, the
equations of motion describing the position of a field line, RT , as a function of the distance along
a field line, l, is given by

dRT (l)

dl
= b̂
(
RT (l)

)
, (10.4)

where b̂ := B/B. We consider the vector potential A for the divergence-free magnetic field B,
related by (A.5). We also consider two fixed values of the parameter l, denoted l1 and l2, together
with the associated functional:

W [RT ] :=

∫ l2

l1

A
(
RT (l)

)
· dRT (l)

dl
dl. (10.5)

The first variation of W [RT ] reads

δW [RT ; δRT ] =

∫ l2

l1

(
A
(
δRT (l)

)
· dRT (l)

dl
+A

(
RT (l)

)
· dδRT (l)

dl

)
dl

=

∫ l2

l1

δRT (l) ·
(
∇A

(
RT (l)

)
· dRT (l)

dl
−
(
dRT (l)

dl
· ∇
)
A
(
RT (l)

))
dl,

obtained by integration by parts using the boundary condition A ·δRT = 0 at the fixed endpoints
of the trajectory, namely RT (l1) and RT (l2). At a stationary point, δW [r; δr] must vanish for
any δR(l); thus, the quantity in parentheses on the second line of the above expression must
vanish. According to the vector identity (∇ × a) × b = (b · ∇)a − (∇a) · b for any smooth
vector fields a and b, we obtain the condition(

∇×A
(
RT (l)

))
× dRT (l)

dl
= 0,
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implying that dRT /dl is parallel to b̂ since B = ∇ × A. Furthermore, dRT (l)/dl is a unit
vector by definition. Thus, we recover the equations of motion describing a field line (10.4).

10.1.3 Relation to Hamiltonian dynamics

In Section 10.1.1, analyzing the vector potential in toroidal coordinates showed that axisymmetry
implies the existence of surfaces under the assumption that B · ∇θ ̸= 0 and B · ∇ϕ ̸= 0. This
property is a consequence of the Hamiltonian nature of field-line flow, as will be shown by
considering the equations of field-line flow as a Hamiltonian system. The connection between
Hamiltonian mechanics and the variational principle for field-line flow is explicitly shown by
casting the latter as a Hamiltonian system.

The functional W defined in (10.5) can then conveniently be expressed thanks to toroidal
coordinates (ψ1, θ, ϕ), by focusing on the integrand as follows. First, since B · ∇ϕ ̸= 0, field
lines can be parameterized by ϕ as RT : ϕ ∈ R 7→ (ψ1T (ϕ), θT (ϕ), ϕ) ∈ R3. Therefore, in
particular,

dRT (ϕ)

dϕ
=
∂R(ψ1T (ϕ), θT (ϕ), ϕ

∂ψ1

dψ1T (ϕ)

dϕ
+
∂R(ψ1T (ϕ), θT (ϕ), ϕ

∂θ

dθT (ϕ)

dϕ

+
∂R(ψ1T (ϕ), θT (ϕ), ϕ

∂ϕ
.

Hence, with the expression of the vector potential (10.3), along a trajectory, the integrand in
(10.5) can be expressed as

A
(
RT (ϕ)

)
· dRT (ϕ)

dϕ
= ψ1T (ϕ)

dθT (ϕ)

dϕ
−ψ2

(
ψ1T (ϕ), θT (ϕ), ϕ

)
.

Given two fixed values of the parameter ϕ, denoted ϕ1 and ϕ2, the functional W can then be
expressed as

W [ψ1T , θT ] =

∫ ϕ2

ϕ1

(
ψ1T (ϕ)

dθT (ϕ)

dϕ
−ψ2

(
ψ1T (ϕ), θT (ϕ), ϕ

))
dϕ. (10.6)

This is analogous to the functional that appears in the variational principle for Hamiltonian me-
chanics (B.10), where (θ,ψ1, ϕ) correspond to (q,p, t), and ψ2 corresponds to the Hamiltonian
H . The field-line flow setting is a 1- or 1.5-dimensional Hamiltonian system, depending on
whether axisymmetry is imposed.

The resulting Euler–Lagrange equations are given by
dθT (ϕ)

dϕ
=
∂ψ2(θ(ϕ),ψ1(ϕ), ϕ)

∂ψ1
,

dψ1T (ϕ)

dϕ
= −∂ψ2(θ(ϕ),ψ1(ϕ), ϕ)

∂θ
.

(10.7)

Thus, by analogy with Hamilton’s equations (B.11), if the system is axisymmetric, or equiva-
lently if ψ2 does not depend explicitly on ϕ, then ψ2 is a constant of the motion,

dψ2(θT (ϕ),ψ1T (ϕ), ϕ)

dϕ
= 0. (10.8)

Since an axisymmetric field-line flow can be described as a 1-dimensional Hamiltonian system
from (10.7), the fact that the Hamiltonian ψ2 is constant along a trajectory, as seen in (10.8), is
sufficient to show that the system is integrable. Thus, magnetic field lines are confined to lie on
invariant tori, namely the surfaces of constantψ2 in phase space, that correspond to toroidal mag-
netic surfaces in physical space. This is analogous to a time-independent Hamiltonian system,
yielding energy conservation (B.12).
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In nonaxisymmetric systems, integrability of the field-line flow is no longer guaranteed as
the Hamiltonian is not a constant of the motion. Further discussion of the Hamiltonian nature of
field-line flow can be found in many references [39, 21, 68, 116].

10.2 Integrability of Hamiltonian systems and existence of
flux surfaces

Since the behavior of magnetic field lines can be described by a Hamiltonian system, we now
apply techniques from Hamiltonian dynamics to illustrate the fundamental challenges associated
with nonaxisymmetric magnetic fields, specifically the nonexistence of flux surfaces. The in-
tegrability of the field-line Hamiltonian system gives rise to the existence of flux surfaces. In
Section 10.2.1, we introduce the Hamilton–Jacobi method to find solutions of integrable Hamil-
tonian systems. If a solution to the Hamilton–Jacobi equation exists, it can be leveraged to solve
the trajectories of the Hamiltonian system. This will be illustrated in Section 10.2.2 for the
case of action-angle coordinates. In Section 10.2.3, we consider the existence of solutions to
the Hamilton–Jacobi equation in a more general setting by constructing formal solutions using a
series expansion with respect to the distance from integrability. In general, however, a solution
of the Hamilton–Jacobi equation is not guaranteed to exist. We show that a convergent series
solution cannot be constructed in general. This highlights the critical challenges in maintain-
ing magnetic surfaces in a 3D magnetic field as one moves away from axisymmetry. In Section
10.2.4, we discuss the KAM theorem, describing the conditions under which surfaces may persist
in the presence of a perturbation away from integrability.

As the following discussion generally applies to 1- and 1.5-dimensional Hamiltonian sys-
tems, we primarily use notation consistent with the dynamical systems literature throughout the
section. The canonical coordinates are denoted (q, p, t) with H(q, p, t) the Hamiltonian and the
action-angle coordinates (Q,P, t), except for the specific example of the action-angle transfor-
mation for the field-line flow Hamiltonian considered at the end of Section 10.2.2. For clarity, a
correspondence between conventional variables of Hamiltonian mechanics and the Hamiltonian
for field-line flow is summarized in Table 10.1.

10.2.1 Hamilton–Jacobi method

Given the desirable properties of integrable systems, we now describe a method to identify a
constant of motion by seeking a new coordinate system where the Hamiltonian is independent
of one coordinate. Such a coordinate is referred to as ignorable. This method is called the
Hamilton–Jacobi method. It yields a PDE formulation of the integrability problem: a system is
integrable if the corresponding Hamilton–Jacobi equation has a solution. We are interested in
the 1-dimensional field-line flow Hamiltonian, so we consider only 1-dimensional autonomous
and 1.5-dimensional nonautonomous Hamiltonian systems. As a reminder, in the 1-dimensional
autonomous case, because of the existence of one constant of motion, the system satisfies the
definition of integrability. However, the subsequent discussion regarding nonintegrability can be
generalized to higher-dimensional systems.

The Hamilton–Jacobi method [164, 217, 90] relies on particular coordinate transformations,
so-called canonical transformations, to seek ignorable coordinates. A canonical transformation is
a diffeomorphism, (q, p) ∈ R2 7→

(
Q(q, p), P (q, p)

)
∈ R2, preserving the Poisson bracket in the

following sense. For any functions (f, g) defined on the phase space, we define functions (f̃ , g̃)
such that f̃

(
Q(q, p), P (q, p)

)
= f(q, p) and g̃

(
Q(q, p), P (q, p)

)
= g(q, p) for all (p, q) in phase

space. The Poisson bracket, defined in Section B.3, is then said to be preserved by the canonical
transformation if {f(q, p), g(q, p)} = {f̃

(
Q(q, p), P (q, p)

)
, g̃
(
Q(q, p), P (q, p)

)
} for all (p, q)
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Table 10.1: Correspondence between a generic Hamiltonian and the field-line flow Hamiltonian.
For consistency with the general Hamiltonian dynamics literature, we use (q, p, t) coordinates,
except where we consider the specific example of the Hamiltonian for field-line flow, in which
case we use (θ,ψ1, ϕ). The notation dof refers to the degree of freedom.

Generic (1- or 1.5-dof) Field-line flow

Canonical coordinates
q θ

p ψ1

Time-like coordinate t ϕ

Hamiltonian H(p, q, t) ψ2(θ,ψ1, ϕ)

Action-angle coordinates
P ψ = ΨT /2π

QT (t) = Q0 + ωT t QT (ϕ) = Q0 + ι(ψ)ϕ

Frequency ωT ι(ψ)

Hamiltonian in action-angle coordinates K(P ) ψP (ψ)

in phase space. In particular, both the mapping and its inverse are smooth and differentiable,
and it defines a coordinate transformation between (p, q) and (P,Q). The goal is to describe
the motion in a simplified form thanks to an appropriate coordinate system transformation. For
example, in Section 10.2.3, we will seek a coordinate transformation where the new Hamiltonian
is the zero function.

In this method, given a Hamiltonian system, the coordinate transformation is defined indi-
rectly via a generating function, which is the unknown. It is assumed that the generating function,
S : R×R×R→ R defined as a function of (q, P, t), is such that the coordinate transformation
(q, p) 7→

(
Q(q, p), P (q, p)

)
can be explicitly defined by the following relation:
p =

∂S(q, P, t)

∂q
,

Q =
∂S(q, P, t)

∂P
,

∀(p, q, P,Q, t) ∈ R5. (10.9)

In the literature, for instance in Chapter 9 of [90], there are four basic canonical generating
functions. The function S satisfying (10.9) is referred to as a generating function of the second
kind. It is standard to choose the second kind for the Hamilton–Jacobi method. The goal is then
to find S to obtain a desired simplified Hamiltonian in the transformed coordinate system (Q,P ).
As we will justify below, this can be expressed as finding S such that

H

(
q,
∂S(q, P, t)

∂q
, t

)
+
∂S(q, P, t)

∂t
= K

(
∂S(q, P, t)

∂P
, P, t

)
, (10.10)

where H is the original Hamiltonian and K is the new Hamiltonian in the transformed coordi-
nates. This is called the nonlinear Hamilton–Jacobi equation in S, a first-order PDE. The goal is
to find an S, a function of three independent variables, namely q, P , and t, satisfying (10.10).

The Hamilton–Jacobi equation arises to preserve the Hamiltonian structure when changing
coordinates via a generating function of the second kind. This means that in the new coordinates,
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the equations of motion are given by Hamilton’s equations with the new HamiltonianK. In order
to justify this, given the Hamiltonian H in terms of the original coordinates (q, p), let us assume
the existence of a function S satisfying (10.9). Then the total derivative of S along a trajectory,
(qT , pT ) : R→ R× R or (QT , PT ) : R→ R× R in the transformed coordinates, is given by

dS(qT (t), PT (t), t)

dt
= pT (t)

dqT (t)

dt
+QT (t)

dPT (t)

dt
+
∂S(qT (t), PT (t), t)

∂t
.

We will now use the above expression to simplify the variational functional introduced in (10.6).
Analysis of the variational functional will then lead to Hamilton’s equations in the new coordi-
nates. Indeed, by defining a function K, a function of the transformed coordinates (Q,P ) and
time t, as

K(Q,P, t) := H(q(Q,P ), p(Q,P ), t) +
∂S(q(Q,P ), P, t)

∂t
,

we can express the integrand along a trajectory (qT , pT ) : R→ R×R in terms of the new coor-
dinates as

pT (t)
dqT (t)

dt
−H(qT (t), pT (t), t)

= −QT (t)
dPT (t)

dt
−K(QT (t), PT (t), t) +

dS
(
q
(
QT (t), PT (t)

)
, PT (t), t

)
dt

,

where (QT , PT ) : R→ R× R is the trajectory in the new coordinates. Hence, compared to the
variational functional introduced to derive Hamilton’s equations (10.6), namely

W[qT , pT ] :=

∫ tfinal

tinit

(
pT (t)

dqT (t)

dt
−H(qT (t), pT (t), t)

)
dt,

we define the variational functional in the new coordinates by

W̃[QT , PT ]

:=

∫
final

tinit

−QT (t)dPT (t)
dt

−K(QT (t), PT (t), t) +
dS
(
q
(
QT (t), PT (t)

)
, PT (t), t

)
dt

 dt,

which is equivalent to

W̃[QT , PT ] =

∫ tfinal

tinit

(
PT (t)

dQT (t)

dt
−K(QT (t), PT (t), t)

)
dt

+
[
S
(
q
(
QT (t), PT (t)

)
, PT (t), t

)
− PT (t)QT (t)

]tfinal

tinit

.

So Hamilton’s equations of motion in the transformed coordinates, corresponding to stationary
points of W̃ for fixed initial and final points of the trajectory, are

dQT (t)

dt
=

∂K(QT (t), PT (t), t)

∂P
, (10.11a)

dPT (t)

dt
= −∂K(QT (t), PT (t), t)

∂Q
. (10.11b)
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The boundary terms in the definition of W̃ do not contribute to the equations of motion given
that trajectories are such that QT and PT are fixed at the boundaries. We can see that the equa-
tions of motion in the (q, p) coordinates are analogous to the equations of motion in the (Q,P )
coordinates when replacing H by K. Thus, the Hamiltonian structure is said to be preserved.

Thanks to the Hamilton–Jacobi method, we can study the equations of motion in a convenient
set of coordinates instead of the original ones. An appropriate change of coordinates can evidence
specific properties of a physical system, such as integrability, even though it may not be apparent
in the original coordinate system. To investigate if a system has a desired property, we can choose
a particular form of K. If the new Hamiltonian system clearly possesses the desired property,
then the existence of a solution to the Hamilton–Jacobi equation guarantees that the physical
system possesses the desired property.

Since we seek a transformation to an integrable system, then from (10.11b) we can, for
example, choose the new Hamiltonian to be independent of Q and t such that P is a constant of
the motion,

H

(
q,
∂S(q, P, t)

∂q
, t

)
+
∂S(q, P, t)

∂t
= K(P ). (10.12)

Suppose a generating function S(q, P, t) can be found as a solution to this equation. In that case,
the system is integrable since K is autonomous and one conserved quantity exists, namely P .

Even if a system is known to be integrable, the Hamilton–Jacobi method may yield a co-
ordinate system that greatly simplifies the motion. This will be demonstrated in Section 10.2.2
with the construction of action-angle coordinates. More generally, obtaining solutions to the
Hamilton–Jacobi equation may be difficult, as discussed in Section 10.2.3 by applying a pertur-
bation series solution. Moreover, a solution is not guaranteed to exist.

10.2.2 Action-angle coordinates

We now consider a particular setting to solve the Hamilton–Jacobi equation (10.12). We assume
an autonomous system exhibiting periodic motion: either p is periodic in q or both p and q are
periodic in time with the same frequency. The Hamilton–Jacobi method provides convenient
coordinates to describe such systems, known as action-angle coordinates. The trajectories in
these coordinates are particularly simple, as we assume the following: the momentum P is a
constant in time, the position Q grows linearly in time, and the latter can be interpreted as an
angle. Because the trajectories are so simple, this coordinate system will be well-suited to study
perturbations about integrable systems in Section 10.2.3.

We consider a 1D autonomous Hamiltonian system, with the Hamiltonian H(q, p). As a
reminder, in this case, H is a constant of the motion. Here, we will start from assumptions on the
transformed trajectories and describe the associated properties of the new Hamiltonian. We then
focus on simplifying the Hamilton–Jacobi equation through a judicious explicit choice for this
new Hamiltonian. More precisely, we seek a canonical coordinate transformation of a particular
form to simplify motion.

• We choose the new momentum P such that it is only a function of H , P = f(H(q, p)).
Since H is a constant of the motion, along any trajectory (QT , PT ) : R → R × R, this
yields

dPT (t)

dt
= 0. (10.13)

We also assume that the relation between H and P can be inverted so that we can express
the constant of motion H as a function of P only, H(q, p) = E(P (q, p)).
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• We further assume that the new position coordinate increases linearly in time, so along any
trajectory (QT , PT ) : R→ R× R,

dQT (t)

dt
= ωT (10.14)

for some given frequency ωT constant along each trajectory. Furthermore, we assume that
Q can be interpreted as an angle-like quantity. Thus, we expect many physical quantities
to be periodic in Q.

This has consequences on the form of the new Hamiltonian K.

• From the first assumption (10.13) and the second equation of motion (10.11b) we conclude
that the new Hamiltonian is independent of Q.

• From the second assumption (10.14) and the first equation of motion (10.11a) we conclude
that ∂K(Q,P, t)/∂P is independent of time.

Therefore, under these assumptions, we can express the new Hamiltonian in the general form
K(Q,P, t) = FP (P )+Ft(t) for some general functions FP and Ft. We note from the equations
of motion (10.11) that adding a function of only time, Ft, does not change the trajectories. Thus,
we can choose Ft(t) = 0. Hence, to satisfy the desired properties of the equations of motion, we
can choose the new HamiltonianK to be only a function of P . In other words, the Hamiltonian is
chosen to remain autonomous under the transformation. Under these assumptions the Hamilton–
Jacobi equation (10.10) then takes the form

∂S(q, P, t)

∂t
= K(P )− E(P ).

We are free to make the further simplifying assumption that K(P ) = E(P ). While this assump-
tion does not simplify the trajectories, it will simplify the Hamilton–Jacobi equation for S. In
particular, assuming K(P ) = E(P ), the generating function must be independent of time.

To summarize, under the assumptions on the new trajectories, (10.13) and (10.14), we choose
to define the new Hamiltonian as K(P ) = E(P ) so that the Hamilton–Jacobi equation boils
down to

∂S(q, P, t)

∂t
= 0. (10.15)

We will denote this time-independent generating function by W (q, P ).
Rather than solving explicitly (10.15) for S orW , we now derive a coordinate transformation

to the action-angle coordinates (Q,P ), valid for any generating function S(q, P, t) = W (q, P ).
In order to find an expression for Q in terms of the independent variables (q, P ), we start from
the second generating relation from (10.9),

Q(q, P ) =
∂W (q, P )

∂P
,

and integrate the first generating relation between an arbitrary initial point q0 and q to obtain an
expression for W :

W (q, P ) =

∫ q

q0

p
(
q′, P

)
dq′.

Combining the two, we get

Q(q, P ) =
∂

∂P

∫ q

q0

p
(
q′, P

)
dq′.
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We now seek a form for Q such that it can be interpreted as an angle-like quantity. To do so,
we consider the change in this new coordinate, ∆Q, over one period of the motion:

∆Q :=

∮
∂Q(q, P )

∂q
dq, that satisfies ∆Q =

∂

∂P

(∮
p(q, P ) dq

)
.

We require this change in the new coordinate, ∆Q, to be 2π:

∆Q = 2π.

So far, P has been assumed to be only a function of H . We can now specify the definition
of P to ensure that the above equality holds. Therefore, assuming that the definition of the
Hamiltonian, H(p, q), can be inverted to express p explicitly as a function of q and H , we
define the new momentum, often called the action variable, as an integral over one period of the
motion by

P (H) =
1

2π

∮
p(q,H) dq. (10.16)

The integral is performed along one period of the motion, beginning at coordinate q0 until the
trajectory returns to q0. It is clear from this definition that P is a constant of the motion as
expected since the integral is over q while H is constant along trajectories.

Even when the trajectories pT and qT are known, performing a coordinate transform can
still be helpful if the motion is simplified in action-angle coordinates. In this case, the integral
definition for P can be computed along a trajectory (pT , qT ) for a single period of the motion so
that

P =
1

2π

∮
pT (t)

dqT (t)

dt
dt.

Remark 10.1. We will now apply the action-angle coordinate transformation to the field-line
flow system under the assumption of axisymmetry. The field-line flow Hamiltonian system is inte-
grable under the assumption of axisymmetry, as it is a 1-degree-of-freedom autonomous system
with one constant of the motion, namely ψ2 as was shown in (10.8). Furthermore, we assume
that the momentum, ψ1, is periodic in the coordinate θ. Thus, a transformation into action-
angle coordinates exists for this system. Using the mapping to the field-line flow system given in
Table 10.1, the action integral (10.16) for the field-line flow Hamiltonian system is given by

P (ψ2) =
1

2π

∫ 2π

0

ψ1(θ,ψ2) dθ.

The integration is performed at constant ψ2 along a closed poloidal loop. Moreover, since
ψ1 = A · ∂R/∂θ from (10.3), we can rewrite the integral as P = 1/(2π)

∮
A(r) · dr. Upon

application of Stokes’ theorem, P is related to the magnetic flux through ST , a surface enclosed
by the isosurface of ψ2 at constant toroidal angle, as illustrated in Figure 5.5,

P =
1

2π

∫
ST

B · n̂ d2r,

where n̂ is a unit normal vector to ST . Therefore P = (1/2π)ΨT = ψ, the toroidal flux function
introduced in (5.8). By a similar argument, the new Hamiltonian is K(P ) = (1/2π)ΨP = ψP ,
the poloidal flux function introduced in (5.9).
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From (10.11a), the angle coordinate then satisfies

dQT (ϕ)

dϕ
=
dψP (ψ)

dψ
.

Recalling from (7.3) that ι(ψ) = ψ′
P (ψ), the frequency in the action-angle coordinates is the

rotational transform. As a consequence, the new coordinate increases linearly with the toroidal
angle,

QT (ϕ) = Q0 + ι(ψ)ϕ,

whereQ0 is an arbitrary initial condition. Therefore, the new angle coordinate can be interpreted
as the poloidal angle in magnetic coordinates described in Chapter 9, as the quantity (Q − ιϕ)
is constant along a field line.

10.2.3 Perturbations about integrability

Without axisymmetry, magnetic field lines are described by a 1.5-degree-of-freedom Hamilton-
ian. As such, it is not generally integrable, and the existence of continuously nested flux surfaces
is no longer guaranteed. To illustrate the challenges associated with maintaining integrability,
we consider the effect of a perturbation about a 1-degree-of-freedom autonomous Hamiltonian,
H0. We show that preserving integrability requires additional conditions to be imposed on the
Hamiltonian. This highlights the difficulty of constructing 3D integrable magnetic fields, even
very close to axisymmetry.

We express the perturbed Hamiltonian, H , as a series with respect to some small parameter
ϵ. We then seek conditions under which we can reveal the integrability of H by computing the
generating function, S, from the Hamilton–Jacobi equation (10.12) order by order in ϵ. In this
general approach, the existence of a solution for S at each order, together with the convergence
of the resulting series, would show thatH is integrable. We refer to [164, 73], Chapter 12 in [90],
and Chapter 2 in [195] for further details on the perturbation series approach. Here, we limit the
discussion to first-order terms for simplicity.

We begin with an integrable 1-degree-of-freedom Hamiltonian for which a canonical trans-
formation exists to the action-angle coordinates (Q0, P0), with the transformed integrable Hamil-
tonian H0(P0). Our interest lies in determining the integrability of the perturbed Hamiltonian,
H(Q0, P0, t), by seeking a particular canonical transformation from (Q0, P0) to (Q,P ) that
guarantees integrability of H . As a reminder, two independent constants of the motion are re-
quired for integrability since H(P0, Q0, t) is a 1.5-degree-of-freedom Hamiltonian, as opposed
to a single constant required for the unperturbed 1-degree-of-freedom Hamiltonian. Table 10.2
summarizes the correspondence between these two cases. Here, we will start from an assump-
tion on the periodicity of the motion in addition to assumptions on the two desired constants of
motion, motivated by properties of the integrable Hamiltonian H0.

• The motion is assumed to be periodic with respect to Q0 and time.

• The new momentum, P , is assumed to be a constant of motion.

• The new coordinate, Q, is assumed to be a constant of motion.

This has an important consequence on the new HamiltonianK from Hamilton’s equation (10.11).

• The new Hamiltonian K is independent of both P and Q.

Moreover, as already mentioned, adding any function of only time to the new Hamiltonian does
not affect the equations of motion. To satisfy the desired properties of the equations of motion,
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Table 10.2: Summary of notation for unperturbed and perturbed Hamiltonian systems. The
notation dof refers to degree of freedom.

Unperturbed Hamiltonian Perturbed Hamiltonian

Number of dofs 1-dof 1.5-dof

Original Hamiltonian H0(P0) H(Q0, P0, t)

Transformed coordinates (Q,P) (Q,P )

Transformed Hamiltonian K0 K

we are free to choose the new Hamiltonian to be constant, and for simplicity, we choose K = 0.
Under these assumptions, in what follows, we will first consider the coordinate transformation
for the unperturbed case to use it as a starting point in the perturbed case later.

In the unperturbed case, thanks to the integrability of H0, we can construct explicitly a coor-
dinate transformation from (Q0, P0) to (Q,P) in which the transformed Hamiltonian is as simple
as in the desired perturbed case, namely K0 = 0. As a reminder, in this case, along any trajec-
tories (Q0T , P0T ), we have dQ0T (t)/dt = ω0(P0T ) and dP0T (t)/dt = 0 with the frequency
ω0(P0) = dH0(P0)/dP0. Indeed, the associated Hamilton–Jacobi equation then takes the form

H0

(
∂S0(Q0,P, t)

∂Q0

)
+
∂S0(Q0,P, t)

∂t
= 0

for the generating function S0(Q0,P, t), and an explicit solution can be written under the form
S0(Q0,P, t) = −H0(P)t+Q0P. This coordinate transformation then gives

Q(Q0,P, t) =
∂S0(Q0,P, t)

∂P
,

P0(Q0,P, t) =
∂S0(Q0,P, t)

∂Q0
.

Therefore, the coordinate transform can then be expressed explicitly as{
Q = Q0 −H ′

0(P0)t,
P = P0.

(10.17)

As desired, P is a constant of the motion since P0 is one. Moreover, along any trajectory, defined
in the new coordinates as (QT ,PT ) and the original coordinates as (Q0T , P0T ), we have from
Hamilton’s equations of motion in the original coordinates

dQT (t)

dt
=
dQ0T (t)

dt
−H ′

0(P0T ),

and therefore
dQT (t)

dt
= 0.

Hence, Q is another constant of motion. Although we obtained two constants of the motion, Q
and P, we remark that they are not in involution, as the Poisson bracket {Q,P}Q0,P0 = 1. This
implies that the two quantities are not independent.
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We now turn to transforming the perturbed Hamiltonian H(P0, Q0, t) into the new coordi-
nates (Q,P ). The corresponding Hamilton–Jacobi equation reads

H

(
Q0,

∂S(Q0, P, t)

∂Q0
, t

)
+
∂S(Q0, P, t)

∂t
= 0 (10.18)

for the generating function S(Q0, P, t). Our goal is to obtain conditions under which this Hamil-
tonian system is integrable. Thus, using a perturbation series approach, (10.18) can be solved
order by order. Here, we only consider terms up to linear order. Assuming that the perturbed
Hamiltonian, H(Q0, P0, t), can be expressed as a series about H0(P0),

H(Q0, P0, t) = H0(P0) +
∞∑
i=1

ϵiHi(Q0, P0, t), (10.19)

for some ϵ≪ 1, we seek a generating function, S(Q0, P, t) as a series about S0(Q0, P, t),

S(Q0, P, t) = S0(Q0, P, t) +
∞∑
i=1

ϵiSi(Q0, P, t). (10.20)

At each order in ϵ, the O(ϵn) terms of (10.18) provide equations for the corresponding Sn. In
this section, we will not consider the convergence properties of (10.20). However, we note that
if for all i ≥ 1, there exists Si satisfying (10.18) at the corresponding order with respect to
ϵ, and if the resulting series for S(Q0, P, t) converges, then the desired canonical coordinate
transformation exists. If the corresponding new coordinates (Q,P ) are independent, then the
Hamiltonian H(Q0, P0, t) is integrable. If (10.20) does not formally converge but there exists an
Si satisfying (10.18) for all 0 ≤ i ≤ N where N is some integer and the corresponding (Q,P )
are independent, then we may say H(Q0, P0, t) is integrable up to some order N . Note that H
is integrable to at least zeroth order by assumption.

The O(ϵ) terms provide an equation for S1 given S0, H0, and H1:

dH0(P0)

dP0

∂S1(Q0, P, t)

∂Q0
+
∂S1(Q0, P, t)

∂t
= −H1

(
Q0,

∂S0(Q0, P, t)

∂Q0
, t

)
,

where the first term has been Taylor expanded around ∂S0(Q0, P, t)/∂Q0. Moreover the unper-
turbed frequency is ω0(P0) = dH0(P0)/dP0 and from (10.17) we have P0 = P + O(ϵ). Then
ω0(P0) = ω0(P ) +O(ϵ). Hence the O(ϵ) terms from (10.18) reduce to

ω0(P )
∂S1(Q0, P, t)

∂Q0
+
∂S1(Q0, P, t)

∂t
= −H1 (Q0, P, t) . (10.21)

As a reminder, constructing action-angle coordinates relies on the assumption of periodic motion.
We have assumed that periodicity is preserved by the perturbation such that, at each order, the
Hamiltonian and generating function are periodic in Q0 and in time.

Remark 10.2. The partial differential equation (10.21) is a magnetic differential equation of the
form (6.4). We can thus apply the results discussed in Section 6.2, considering the coordinates
(P,Q0, t) as well as the right-hand side F̃ (P,Q0, t) = −H1 (Q0, P, t).

According to Remark 10.2, let us first comment on the right-hand side’s Fourier representa-
tion. Since F̃ is doubly periodic, we write it as

H1 (Q0, P, t) =
∑
m,n

Hm,n
1 (P )ei(mQ0−nt).
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The necessary condition of existence for periodic solutions to (10.21) reads

Hm,n
1 (P ) = 0 ∀(m,n) ∈ Z2 such that mω0(P ) = n, ∀P. (10.22)

Then, formally, the general Fourier solution reads

S1(Q0, P, t) = S1(P ) +
∑

(m,n)∈Z2\{(0,0)}

∆m,n(P )δ(ω0(P )m− n)ei(mQ0−nt)

+
∑

(m,n)∈Z2,n̸=ω0(P )m

iHm,n
1 (P )

mω0(P )− n
ei(mQ0−nt).

This expression summarizes how the first-order generating function term S1 depends on the first-
order Hamiltonian term H1 and the zeroth-order generating function term S0 and Hamiltonian
term H0. In addition to exhibiting the Dirac-δ function singularity, the quantity (mω0(P ) − n)
appears in the denominator. As mentioned in Section 6.2.4, while there is no division by zero,
terms in the denominator can get arbitrarily small, meaning that the series may not converge.
Consequently,

• the nonuniqueness of the solution is reflected by the free parameters ∆m,n and S1,

• a necessary condition for the existence of a solution is that Hm,n
1 (P ) = 0 for all pairs

(m,n) ∈ Z2 such that mω0(P ) = n; moreover, the series can only converge under addi-
tional conditions on the Fourier coefficients Hm,n

1 .

In particular, as discussed in Remark 6.1, the existence of the solution requires additional con-
straints on H1 in the neighborhood of rational values of the rotational frequency, ω0(P ) = n/m
for n, m ̸= 0.

Even at first order in the perturbation amplitude, we obtain a restriction on the perturbed
Hamiltonian for the desired canonical coordinate transformation to exist. In other words, even if
a perturbation from integrability is arbitrarily small, it is not guaranteed to preserve integrability.
Similarly, to obtain integrability at higher orders of ϵ would require additional constraints on the
properties of H .

The preceding results illustrate that integrability is especially fragile in the neighborhood of
rational values of the unperturbed frequency, ω0(P ). In other words, the persistence of integra-
bility is particularly sensitive to the properties of Hm,n

1 for n/m close to ω0(P ). In the field-line
flow Hamiltonian context, recall that ω0(P ) corresponds to the rotational transform according to
Table 10.1. As the integrability of the magnetic field indicates the existence of flux surfaces, we
conclude that flux surfaces in the neighborhood of rational surfaces may not exist unless addi-
tional constraints are placed on the magnetic field. We explore this notion of fragility in more
detail in the following section.

10.2.4 Persistence of some flux surfaces: KAM theory

In Section 10.2.3, we evidence the difficulty in maintaining integrability, even if the Hamiltonian,
H(Q0, P0, t), remains close to an integrable Hamiltonian, H0(P0). This difficulty is heightened
near rational values of the unperturbed frequency, ω0(P0), where additional constraints must be
satisfied to ensure the existence of a solution to the Hamilton–Jacobi problem. In the unperturbed
system, trajectories are confined to invariant tori, forming surfaces of constant P0 that foliate
phase space. In the perturbed system, some or all of these surfaces may be destroyed due to loss
of integrability.
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Nonetheless, some invariant surfaces may persist in a perturbed system under appropriate
conditions. In this section, we briefly describe the persistence of some surfaces in the perturbed
system, following the results of Kolmogorov [160], Arnold [7], and Moser [218], known as the
KAM theorem. We will describe the theorem’s result here, but we refer the interested reader to
several other sources [248, 195] for the details of the proof.

The proof of the KAM theorem relies on a more sophisticated perturbation approach than that
presented in Section 10.2.3, allowing one to overcome the problem of small divisors for certain
initial conditions. For this reason, in this section, we do not express the perturbed Hamiltonian
as a series in a small parameter ϵ as in (10.19). Instead, we consider a perturbed Hamiltonian,
H , close to an integrable one, H0, and given by

H(Q0, P0, t) = H0(P0) + δH1(Q0, P0, t),

where δ is some parameter. Here H0(P0) defines the unperturbed Hamiltonian in action-angle
coordinates exhibiting periodic motion, as described in Section 10.2.2. Suppose the perturbed
Hamiltonian, H , is integrable and the periodicity of the motion is preserved. In that case, the
perturbed Hamiltonian can similarly be expressed in action-angle coordinates (Q,P ) as K(P )
for some canonical momentum P , a constant of the motion. If they exist, such momenta form
invariant tori foliating phase space, and each surface of constant P has an associated frequency,
ω(P ).

While such a global action-angle transformation is not always possible, some invariant sur-
faces may persist at finite and nonzero perturbation amplitude δ. An invariant surface, P0, of
the unperturbed Hamiltonian, with associated frequency ω0(P0), is said to persist if it can be
deformed continuously with respect to δ into an invariant surface Pδ of the perturbed system for
a frequency ωδ(Pδ).

The KAM theorem states that a given invariant surface persists under the following condi-
tions.

• Perturbations are sufficiently small, δ ≪ 1.

• The unperturbed frequency ω0(P0) satisfies the Diophantine condition,

∃(c, k) ∈ R+ × N, k ≥ 2, s.t. ∀(m,n) ∈ Z∗ × Z,
∣∣∣ω0(P0)−

n

m

∣∣∣ ≥ c

mk
. (10.23)

Here, c is a scalar that depends on the magnitude of the perturbation. This condition
excludes regions surrounding each rational value of the frequency ω0(P0) = n/m. For
the magnetic field-line flow context, where ω0(P0) is ι, the condition (10.23) means that
the rotational transform must be sufficiently irrational.

• The frequencies of the unperturbed Hamiltonian are nondegenerate,

|ω′
0(P0)| > 0, (10.24)

implying that there does not exist multiple unperturbed periodic orbits with the same fre-
quency. In the context of field-line flow, this means that the magnetic shear, ι′(ψ), cannot
vanish at any point. As there are applications in which this assumption cannot be made,
for example, stellarators sometimes are designed to have small magnetic shear, a similar
theory has been developed for degenerate systems [50, 217].

An important result of measure theory is that the set of frequencies satisfying the Diophantine
condition (10.23) is of nonzero measure in R, in the sense of Lebesgue. The KAM theorem
implies that for a Hamiltonian system sufficiently close to integrability satisfying (10.24), a set
of tori of the unperturbed Hamiltonian system with nonzero Lebesgue measure in phase space
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Table 10.3: Summary of notation for the field-line flow Hamiltonian (10.25).

Canonical Hamiltonian Field-line flow Hamiltonian

Perturbed Hamiltonian
H(Q0, P0, t) = H0(P0)

+δH1(Q0, P0, t)
ψ2(ψ1, θ, ϕ)

Unperturbed Hamiltonian H0(P0) ψ2
1/2

Perturbation δH1(Q0, P0, t) ψ2(ψ1, θ, ϕ)−ψ2
1/2

Frequency ω0 ψ1

survives. In the context of field-line flow, this means that a nonzero volume of flux surfaces can
persist, even in the presence of perturbations away from axisymmetry.

While the KAM theorem states conditions guaranteeing the persistence of invariant surfaces,
other invariant surfaces may break up as the perturbation from integrability, δ, increases. When
this happens, the trajectories no longer lie on nested tori and may exhibit different types of
behavior, as introduced in Section 4.4.1.

• The trajectories may fill an area on a Poincaré plot; they are then known as chaotic, some-
times called stochastic or irregular.

• The trajectories may lie on surfaces with a different topology, forming so-called island
structures.

• The trajectories may lie on so-called cantori, or partial barriers, that are partially destroyed
invariant tori forming surfaces that are not closed but instead have holes possibly crossed
by some trajectories.

Remark 10.3. We will now illustrate the KAM theorem by considering a model magnetic field. As
a reminder, the correspondence between the field-line flow and canonical Hamiltonian variables
is found in Table 10.1. In an orthonormal coordinate system (ψ1, θ, ϕ) with θ and ϕ assumed to
be 2π-periodic, we consider the field B

(
R(ψ1, θ, ϕ)

)
= ∇ψ1 ×∇θ −∇ψ2(ψ1, θ, ϕ)×∇ϕ,

ψ2(ψ1, θ, ϕ) =
ψ2

1

2
+ δψ1(ψ1 − 1)

[
cos(4θ − ϕ) + cos(4θ − 2ϕ) + cos(4θ − 3ϕ)

]
.

(10.25)
As seen in Section 10.1.1, ψ2(ψ1, θ, ϕ) is the Hamiltonian for the magnetic field-line flow. When
δ = 0, the corresponding Hamiltonian system is integrable, as the Hamiltonian becomes time-
independent, so ϕ-independent in this context.

We can make a correspondence betweenψ2(ψ1, θ, ϕ) and the perturbed Hamiltonian (10.19)
analyzed in Section 10.2.3. Here H0(P0) is analogous to ψ2

1/2, and H1(Q0, P0, t) is analogous
to the remaining terms in ψ2(ψ1, θ, ϕ). In particular, the unperturbed Hamiltonian, ψ2

1/2, is in
action-angle form, with canonical frequency given by d

(
ψ2

1/2
)
/dψ1 = ψ1, analogous to ω0.

This is summarized in Table 10.3. Recalling the necessary condition for integrability at O(ϵ)
(10.22), we note that this condition will not be satisfied when the perturbed Hamiltonian has
Fourier harmonics, (n,m), such that mψ1−n = 0 for the unperturbed frequency ψ1. Here this
occurs whenψ1 = 1/4, 1/2, and 3/4. According to the perturbation series approach discussion
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Figure 10.1: Poincaré plots are shown for the model magnetic field (10.25) with several values
of δ.

in Section 10.2.3, integrability will be most fragile near these surfaces. Indeed, this is illustrated
in Figure 10.1. As δ is increased from 0 to δ = 0.001, islands begin to form near these surfaces.
These island chains then overlap as δ is further increased to 0.01, resulting in secondary island
chains and a chaotic layer. However, we note that some surfaces persist at moderate δ. For
larger perturbation amplitude, δ = 0.1, almost all surfaces are destroyed, and the trajectories
become chaotic.

An important practical consequence of these results is that confinement is not entirely de-
stroyed upon an infinitesimal deviation away from axisymmetry, which necessarily occurs in all
real tokamak and stellarator devices. In closing, we note that the existence of some flux surfaces,
as shown above, is distinct from the existence of continuously nested flux surfaces, as occurs in
axisymmetric magnetic fields. This behavior results from the Hamiltonian nature of the flow of
static magnetic field lines. It is thus independent of the choice of physical model used to describe
the plasma itself. In modeling plasmas, it is therefore important to note the compatibility of
the magnetic field’s imposed properties with the model’s assumptions. Next, we discuss some
implications in the context of 3D MHD equilibria.

10.3 Singularities and surface currents in 3D ideal MHD
As we saw in Section 10.2, the existence or otherwise of magnetic surfaces in 3D is a direct
consequence of the Hamiltonian nature of the field-line flow system. In general, 3D magnetic
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fields may not be integrable. Nonetheless, as described in Section 4.4, flux surfaces guarantee
good confinement properties. Consequently, we are typically interested in configurations with
at least a region with good flux surfaces. Therefore, we consider the impact of this assumption
on the ideal MHD equilibrium model in Section 10.3.1. Then, in Sections 10.3.2 and 10.3.3, we
find that, under this assumption,

• additional requirements on the smoothness of the pressure profile or the magnetic geometry
guarantee the existence of a solution;

• sheet currents may form on rational surfaces.

In the literature, the current is said to exhibit a 1/x singularity and a delta-function (or δ-function)
singularity, both introduced in Section 6.2.4. As a reminder, there is no division by zero. Instead,
the 1/x singularity refers to terms in the denominator of the form ι(ψ)− n/m that can become
arbitrarily small and lead to nonconvergence.

As an alternative to imposing additional assumptions on the pressure or magnetic geometry,
we discuss the consequence of relaxing the assumption of continuously nested flux surfaces in
Section 10.3.4. When continuously nested flux surfaces are not assumed, magnetic islands or
regions of chaotic magnetic field lines can exist in the plasma volume. These more general ideal
MHD equilibrium solutions exhibit different properties and may not suffer from the previous
singularities.

10.3.1 Parallel current density

We consider an ideal equilibrium field B with closed nested flux surfaces and pressure constant
on each flux surface. The goal here is to emphasize that these assumptions are insufficient to
guarantee physical solutions for the current. We derive from the ideal MHD equilibrium model
an equation for the parallel current density, the so-called magnetic differential equation (MDE)
introduced in Section 6.2, and interpret the singularities of the Fourier solutions in terms of the
current. Analysis of the MDE highlights the challenges of obtaining 3D equilibrium solutions
due to the integral constraints that arise at rational surfaces. The existence of solutions will then
be closely related to current singularities and surface currents associated with rational surfaces
in the 3D setting.

The current J can be decomposed into its parallel and perpendicular components under the
form J = J∥B/B + J⊥. The perpendicular current J⊥ can be evaluated from the equilibrium
force balance J ×B = ∇p in terms of the magnetic field and the pressure profile as

J⊥ =
B ×∇p
B2

.

To determine the parallel current J∥, we use the fact that Ampère’s law ∇×B = µ0J implies
that∇ · J = 0, giving

B · ∇
(
J∥

B

)
= −∇ · J⊥.

Hence, for a given pressure profile p and a given field B, the parallel current satisfies the equation

B · ∇
(
J∥

B

)
= −∇ ·

(
B ×∇p
B2

)
. (10.26)

Remark 10.4. The partial differential equation (10.26) is a magnetic differential equation of the
form (6.3). Considering any magnetic coordinate system (ψ, ϑ, φ) as well as the right-hand side
F = −∇ ·

(
B ×∇p/B2

)
we can thus apply the results discussed in Section 6.2.
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According to Remark 10.4, let us comment first on the right-hand side. The necessary con-
dition of existence for doubly periodic solutions to (10.26) is ⟨F ⟩ψ = 0 for all ψ. Here, the
right-hand side is the divergence of a vector field. Using Table 5.1, for any field A, the flux-
surface average of its divergence, namely

⟨∇ ·A⟩ψ

=

∫ 2π

0

∫ 2π

0

[
√
g∇ ·A] (ψ, ϑ, φ) dϑdφ∫ 2π

0

∫ 2π

0

√
g(ψ, ϑ, φ) dϑdφ

=

∫ 2π

0

∫ 2π

0

[
∂

∂ψ
(
√
gA · ∇ψ) + ∂

∂ϑ
(
√
gA · ∇ϑ) + ∂

∂φ
(
√
gA · ∇φ)

]
(ψ, ϑ, φ) dϑdφ∫ 2π

0

∫ 2π

0

√
g(ψ, ϑ, φ) dϑdφ

,

always simplifies by periodicity with respect to (ϑ, φ) into

⟨∇ ·A⟩ψ =

∫ 2π

0

∫ 2π

0

[
∂

∂ψ
(
√
gA · ∇ψ)

]
(ψ, ϑ, φ) dϑdφ∫ 2π

0

∫ 2π

0

√
g(ψ, ϑ, φ) dϑdφ

.

Furthermore, because the pressure p depends only on the flux label ψ, the vector field defined by
(B × ∇p)/B2 =

(
p′(ψ)/B2

)
B × ∇ψ happens to be tangent to any flux surface. As a result,

the flux-surface average of F = −∇ ·
(
B ×∇p/B2

)
is always zero, without any additional

assumption on B and p.
Then, in the rational case, the necessary condition for the existence of periodic solutions to

(10.26) along closed field lines is
∮
C F/B dℓ = 0 for all closed field lines C and all surfaces

ψ. Here, to compute the line integral of F/B, we express F in the coordinate system (ψ, α, l)
introduced in Section 9.3 as

F (ψ, α, l) = −p′(ψ)B(ψ, α, l)

[
∂

∂l

(
B ×∇ψ · ∇l

B3

)
+

∂

∂α

(
B ×∇ψ · ∇α

B3

)]
(ψ, α, l).

(10.27)

In obtaining the above expression, we have applied the expression for the divergence in nonorthog-
onal coordinates; see Table 5.1.

As a consequence, along a given closed field line C of length LC , we have∫ LC

0

F (ψ, α, l)

B(ψ, α, l)
dl = −p′(ψ) ∂

∂α

(∫ LC

0

dl

B(ψ, α, l)

)
,

since the contribution to the integral from the first term in (10.27) vanishes due to the assumption
of periodicity in l and that B×∇ψ ·∇α = B2. As a result, the necessary condition of existence
for periodic solutions along closed field lines can be expressed as

p′(ψ)
∂

∂α

(∫ LC

0

dl

B(ψ, α, l)

)
= 0. (10.28)

To summarize this discussion on the right-hand side F of (10.26), the necessary condition for
the existence of doubly periodic solutions is automatically satisfied by F in the irrational case,
but not in the rational case.
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Since in magnetic coordinates we have B · ∇φ =
√
g−1 and B · ∇ϑ =

√
g−1ι(ψ), the

magnetic differential equation (10.26) can be written equivalently as

ι(ψ)
∂

∂ϑ

(
J∥

B

)
+

∂

∂φ

(
J∥

B

)
= −√g∇ ·

(
B ×∇p
B2

)
with the right-hand side F̃ :=

√
gF . Then, under assumption (10.28), the Fourier representation

of the right-hand side reads

F̃ (ψ, ϑ, φ) =
∑

(m,n)∈Z2\{(0,0)}

bm,n(ψ)e
i(mϑ−nφ) ∀ψ,

where the Fourier coefficients satisfy

bm,n(ψ) = 0 ∀(m,n) ∈ Z2\{(0, 0)} such that ι =
n

m
, ∀ψ, (10.29)

while b(0,0)(ψ) = 0 since the flux-surface average (6.23) of F , and equivalently the average of
F̃ , is always zero. Then, formally, the general Fourier solution reads(

J∥

B

)
(ψ, ϑ, φ) = K(ψ) +

∑
(m,n)∈Z2\{(0,0)}

∆m,n(ψ)δ(ι(ψ)m− n)ei(mϑ−nφ)

+
∑

(m,n)∈Z2,m̸=ι(ψ)n

i

n− ι(ψ)m
bm,n(ψ)e

i(mϑ−nφ).
(10.30)

This expression summarizes how the parallel current depends on the field strength B and the
pressure p, assuming that the two series converge. As a reminder, the convergence of the second
term depends exclusively on properties of the bm,n(ψ), these coefficients depending on the field
B and pressure p. In contrast, the convergence of the first term depends on the free parameters
∆m,n(ψ). Those are not determined by the MDE itself but could be determined from the full
ideal MHD equilibrium equations, taking the curl of B to compute J throughout the volume.

The Pfirsch–Schlüter current refers to the contribution to the parallel current from the two
summation terms. These have different physical interpretations.

• The so-called δ-function term, the first sum in (10.30), corresponds to localization of the
current density, J , to 2D surfaces, namely the set of rational flux surfaces. These localized
current densities are referred to as current sheets. The amplitude of this localized current
density is not determined by the MDE (10.26) itself.

• The so-called 1/x term, the second sum in (10.30), is not localized to rational surfaces and
is entirely determined by the right-hand side of the MDE. As a result, it depends on the
pressure gradient and is sometimes referred to as the pressure gradient–driven current.

The following two sections present a physical interpretation of the integral constraint and the
δ-function term.

Remark 10.5. As mentioned in Section 6.2.4, the literature refers to the 1/x singularity, meaning
the division by the quantity x = ι(ψ) − n/m, as it vanishes for every ψ and (m,n) ∈ Z2 such
that ι(ψ) = n/m17 as well as the δ-function singularity. See, for example, Section 2.11 in [116]
for a discussion of these current singularities.

17As a reminder, these ψ and (m,n) ∈ Z2 such that ι(ψ) = n/m are not included in the summation term in (10.30):
there is no division by zero.
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Recent analysis and numerical calculations have explored the nature of the current singular-
ities in the Hahm–Kulsrud–Taylor problem described in Section 10.3.4, consisting of a mirror-
symmetric 2D Cartesian geometry with an ι = 0 rational surface on the midplane. In [136], the
authors describe a singularity of the current scaling as 1/ι(ψ) near the rational surface under
particular hypotheses. Due to the compression of flux surfaces near the rational surfaces, their
solution for the current scales as 1/

√
x where x measures distance from the rational surface.

Note that the current density does not satisfy the integral constraints yet exhibits an integrable
singularity.

10.3.2 Satisfying the integral constraints at rational surfaces

We have just seen that the solution for the parallel current does not exist unless integral con-
straints on the right-hand side, F = −∇ · (B ×∇p) /B2, of the MDE (10.26) are satisfied
on rational surfaces, namely (10.28). As a reminder, a rational surface refers to a flux surface
labeled ψ such that the value of the rotational transform ι(ψ) is rational. We now consider suffi-
cient conditions for these constraints to be satisfied.

The necessary conditions of existence for periodic solutions are expressed in (10.28) along
each given closed field line C of length LC as

p′(ψ)
∂

∂α

(∫ LC

0

dl

B(ψ, α, l)

)
= 0. (10.31)

Since this condition is expressed as a product, there are two natural approaches to guarantee that
this constraint is satisfied: either by an assumption on the pressure profile or the magnetic field
geometry.

• One is to assume that the pressure gradient vanishes on all rational surfaces.

– This is, for instance, true under the assumption that p′(ψ) = 0 throughout the entire
plasma volume. The corresponding pressure profile is constant. However, this case is
of limited interest for many practical applications since a fusion device must support
significant pressure gradients.

– More generally, this can also be true under the assumption that p′(ψ) = 0 except
at a finite number of irrational surfaces. The pressure profile is piecewise constant
with a finite number of jumps, referred to as a stepped pressure profile as discussed
in Section 11.5. This allows for a pressure difference between the core and edge of a
fusion device.

– A yet more general assumption would be p′(ψ) = 0 on all rational surfaces but
with no restriction at any irrational surface so that the pressure gradient could be
discontinuous almost everywhere. The corresponding pressure profile would then be
fractal. This assumption was proposed by Grad [93] and was more recently studied
in [166].

• The other one is to assume that the magnetic field B on each rational surface satisfies

∂

∂α

(∫ LC

0

dl

B(ψ, α, l)

)
= 0.

The simplest way to do so is by avoiding rational surfaces.

– This is possible if ι′(ψ) = 0 throughout the plasma volume, and ι is a constant
irrational value. However, this constraint may be overly restrictive.
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– More generally, rational values of the rotational transform can be avoided under the
assumption that ι′(ψ) = 0 and ι is a constant irrational value, except for a finite
number of jumps. The magnetic surfaces on which such jumps occur must support
a current sheet. Such a configuration is referred to as having a stepped rotational
transform [201, 141].

As described in Section 8.3, the ideal MHD equilibrium equations are typically solved with
a prescribed plasma boundary and profiles of the rotational transform and pressure. An
ideal MHD equilibrium solution may not exist for a given 3D plasma boundary. However,
in principle, obtaining an equilibrium that satisfies the integral constraints may be possible
by carefully choosing the plasma boundary.

– A technique to construct B approximately satisfying the condition was proposed in
[300, 321, 301]. The technique assumes the rotational transform remains close to a
rational value, implying low magnetic shear. The magnetic field is represented as a
series expansion. The constraint ∂/∂α(

∮
1/B dℓ) = 0 is enforced at each order in

the expansion by tuning the magnetic geometry. However, the series expansion is not
convergent in general.

– A particular equilibrium solution has been computed to all orders [302], assuming
all field lines are closed.

The first approach requires that the pressure profiles are either constant or not smooth, but this
is often not realistic. On the other hand, the second approach potentially allows for pressure
profiles, and this may be considered more relevant as p′(ψ) can be continuous. However, the
class of admissible equilibrium boundary shapes may be reduced compared to the construction
of equilibria where the pressure gradient is constrained without assumption on the field.

These additional assumptions on the geometry of the domain or pressure profile are sufficient
to guarantee the existence of solutions to the MDE (10.26). These assumptions may not always
be desirable, as they further restrict the class of allowable equilibria.

From the point of view of computing approximate solutions, given B as an approximate
numerical solution of the ideal MHD equations, it is not guaranteed that the approximate right-
hand side F̃ of the MDE satisfies the integral constraint (10.28). Consequently, there is no
solution to the MDE in this case. Nevertheless, the parallel current can be evaluated directly
by applying Ampère’s law to the approximate equilibrium magnetic field instead of solving the
MDE.

On the other hand, it is not necessary to satisfy the integral constraint if alternatives to the
ideal MHD model with continuously nested surfaces are considered. This can include relaxing
the assumption of continuously nested surfaces or including nonideal effects. In Section 10.3.4,
we will explore the impact of relaxing the assumption of continuously nested surfaces in a simple
model. Several models without the assumption of surfaces are discussed in Sections 11.3, 11.4,
and 11.5. Section 10.4 discusses nonideal MHD models and their application to approximating
equilibrium fields.

10.3.3 Delta-function singularities

After integration, the δ-function singularity of (10.30) can be a nonzero and finite term local-
ized to rational surfaces and known as a current sheet. Current sheets may be interpreted as
idealizations of highly spatially localized currents in the limit of infinite conductivity. The be-
havior of such localized currents near rational surfaces has been investigated numerically by 3D
ideal MHD equilibrium codes [200, 192, 214]. In these three references, the current density was
computed from an ideal MHD equilibrium numerical solution. In certain limits, the resulting

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



10.3. Singularities and surface currents in 3D ideal MHD 127

densities display a localization in a region close to a 2D surface. This is consistent with the δ-
function current expected from the MDE solution under the assumption of continuously nested
flux surfaces.

• In [200], it is assumed that a finite number of nested closed flux surfaces exist, as opposed
to the continuously nested flux surfaces as discussed previously. Section 11.5 will present
more details on the corresponding equilibrium model. The jump in the tangential com-
ponent of the field is computed across a volume bounded by two closed flux surfaces and
is related to a current sheet on a surface in Section 10.3.4. The authors then study the
behavior of this jump in the limit as the toroidal flux between the two closed flux surfaces
approaches zero.

• In [192, 214], it is assumed that flux surfaces are continuously nested. The current den-
sity is evaluated from derivatives of the equilibrium magnetic field. More details on the
corresponding equilibrium model will be presented in Section 11.1.2. A single harmonic
(n,m) of the current density (10.30) can be examined to reveal a δ-function-like behavior
at a single surface where ι(ψ) = n/m. In both articles, the authors study the behavior of
such a mode as the resolution in the radial direction is refined.

Current sheets imply a discontinuity of the tangential magnetic field, as shown in Appendix
C. However, in many physical systems of interest, such a discontinuity will not arise. If we
seek solutions with a smooth tangential magnetic field, it is natural to consider modifying the
assumptions. In what follows, we will describe two ways to do so. In Section 10.3.4, we consider
a simplified ideal MHD equilibrium problem in the neighborhood of a rational surface. We will
find that magnetic islands can open up on the rational surface if the assumption of continuously
nested flux surfaces is relaxed. In Section 10.4, we will describe models that extend beyond ideal
MHD equilibrium and include important physical effects such as resistivity.

10.3.4 Islands and surface currents in a simplified model

As we have seen in previous sections, so-called current singularities can arise at rational surfaces,
and we want to gain further insight into the nature of these singularities in ideal MHD equilibria.
This section aims to showcase a family of magnetic fields, close to each other and not necessarily
smooth, focusing on their behavior on a given rational surface. Rather than attacking the full 3D
problem, we consider a simplified 2D setting containing some key features, allowing us to isolate
a single rational surface. Imposing smoothness of the magnetic field will lead to an island chain
on the rational surface. Imposing that the rational surface remains a flux surface and allowing for
nonsmoothness then leads to a surface current instead of an island chain at that rational surface.

The so-called Hahm–Kulsrud–Taylor [98] model refers to an equilibrium magnetic field with
continuously nested surfaces in 2D slab geometry18 with oppositely directed magnetic fields
about a symmetry plane. By applying a perturbation to the boundary of the domain, this model
is widely used to study a range of reconnection phenomena involving the formation of current
sheets and magnetic islands [329], and the plasmoid instability, a secondary instability of current
sheets with applications in fusion, space, and astrophysical plasmas [46]. We will leverage this
method to compute a perturbed ideal MHD equilibrium exhibiting islands and current sheets,
focusing on the first-order term in a series expansion. Specifically, we will focus on the behavior
of the solution on the symmetry plane that is also a rational surface with ι = 0 in the unperturbed
domain. The computational details will be presented in Appendix D for clarity.

We consider the ideal MHD equilibrium model. The divergence-free condition is∇ ·B = 0
and the force balance condition (8.9) reads ∇p = J × B. Taking the curl of (8.9) and using

18A 2D slab geometry refers to a 3D problem such that physical quantities are independent of one Cartesian coordinate.
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Ampère’s law ∇×B = µ0J to eliminate J = (∇×B)/µ0, we can recast (8.9) in a form that
is independent of the pressure, p, and given by

∇×

((
∇×B

)
×B

)
= 0. (10.32)

The pressure p was eliminated here, but it can be reconstructed from the field B. We do not
constrain the pressure to be a flux function. Instead, we will build a family of solutions to a
boundary value problem for the magnetic field governed by (10.32).

Consider a physical system in R3 described by Cartesian coordinates (x, y, z), where x acts
as a radial coordinate, while y and z are angle-like coordinates. All physical quantities are
assumed to be 2π-periodic with respect to the y coordinate and independent of the z coordinate.
Thinking of z as the toroidal angle, the latter corresponds to assuming axisymmetry. Moreover,
to simplify the problem further, we assume that the z component of the field is a constant BT .
While a will represent a reference length of the problem, the parameter δ > 0 will stand for the
amplitude of the perturbation.

As a consequence of the assumption of axisymmetry, magnetic surfaces are guaranteed in the
solution. However, because the poloidal field vanishes when ι = 0, the assumptions described in
Section 10.1 are no longer satisfied. For this reason, magnetic surfaces exist but do not all close
with the same topology and can possibly exhibit island structure.

The original procedure presented in [98] uses the parameter δ and focuses on small perturba-
tions in the regime δ ≪ a. However, δ has units of length and is therefore scale dependent. In the
following discussion, we perform a perturbation series analysis with respect to the dimensionless
small parameter d = δ/a in the regime d ≪ 1, following a more recent version of the analysis
presented in [51].

For a fixed integer k and fixed value a > δ with x±d(y) = ±a(1 − d cos(ky)), we will
consider 2D domains defined by

Ωd = {(x, y), y ∈ (0, 2π), x ∈ (x−d, x+d)}.

Both the reference domain, for d = 0, and the perturbed domain, for 1 > d > 0, are shown in
the y-x plane in Figure 10.2. We will also refer to the half-domain:

Ω+
d := Ωd ∩ {(x, y) ∈ R2, x > 0}.

Because of periodicity with respect to y, we define the boundaries as

Γ+
d = {(x+d(y), y) , y ∈ (0, 2π)} , Γ−

d = {(x−d(y), y) , y ∈ (0, 2π)} ,

Γd = Γ+
d ∪ Γ−

d .

The general boundary value problem for B can now be stated as follows: ∇× ((∇×B)×B) = 0 in Ωd,
∇ ·B = 0 in Ωd,
B · n̂ = 0 on Γd.

(10.33)

We focus on building a family of solutions under the following assumptions.

1. The field B has a z component that is constant in space for all d ≥ 0.

2. The field B is independent of z.
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Figure 10.2: The reference, d = 0, and perturbed, d > 0, domains in the y-x plane are shown.
The black and red lines correspond to x = ±a and x±d(y), respectively.

3. We are going to focus on B up to linear order in d, and consider a reference solution
independent of y.

4. The solutions satisfy a reflection symmetry property across x = 0 that allows the BVP to
be reduced to a problem on the half-domain Ω+

d .

We can leverage these assumptions as follows.

i. The amplitude of the z component of the magnetic field will be denoted BT .

ii. The field B and its divergence can be written B(x, y) = Bx(x, y)x̂+By(x, y)ŷ+BT ẑ and
∇ ·B = ∂Bx/∂x+ ∂By/∂y. So, as a consequence of the divergence condition in (10.33),
we get

∂Bx(x, y)

∂x
+
∂By(x, y)

∂y
= 0.

Remark 10.6. The previous equation is of the form (6.1). Considering the coordinates
(x, y) as well as F1 = −Bx and F2 = −By , we can thus apply the results discussed in
Section 6.1, more precisely, the existence result discussed in 6.1.1.

According to Remark 10.6, for the field components there exists one function ψ of (x, y)
satisfying 

Bx(x, y) = −∂ψ(x, y)
∂y

,

By(x, y) =
∂ψ(x, y)

∂x
.

(10.34)

As a result, given a constant BT , the magnetic field is entirely defined by the scalar function
ψ since it can be expressed as

B(x, y) = BT ẑ + ẑ ×∇ψ(x, y). (10.35)

iii. In general, it is possible to recast the boundary value problem (10.33) as a boundary value
problem for ψ on Ωd. However, we will focus on ψ and B up to linear order in d.
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To that avail, we expand the function ψ(x, y) as a perturbation series with respect to d,
focusing on the zeroth and first-order terms,

ψ(x, y) = ψ0(x) + dψ1(x, y) +O
(
d2
)
, (10.36)

and similarly for the magnetic field:

B(x, y) = B0(x, y) + dB1(x, y) +O
(
d2
)
. (10.37)

The relation (10.35) between B and ψ naturally leads to relations between their correspond-
ing terms in the previous expansions. Under the assumption that the perturbed magnetic
field retains a constant out-of-plane component equal to BT , the reference magnetic field
B0 is related to the reference ψ0 as follows:

B0 = BT ẑ + ẑ ×∇ψ0(x), (10.38)

while the perturbed magnetic field is related to ψ1 as follows:

B1 = ẑ ×∇ψ1(x, y). (10.39)

iv. We impose reflection symmetry, meaning that ψ(−x, y) = ψ(x, y). Consequently, we seek
ψ1 in Ω+

d rather than the full Ωd. As we will see, depending on the value of a parameter
denoted Ψk(0), the resulting solution is not necessarily differentiable across x = 0, so it
will not be a strong solution.19

In this context, we can first construct a reference B0 satisfying the original equilibrium
boundary value problem (10.33), thanks to an appropriate choice of ψ0. We can then show
that the general boundary value problem (10.33) for B1—thanks to the derivation of a modified
boundary condition for ψ1—reduces to a boundary value problem for ψ1 on the reference do-
main, Ω0, instead of the perturbed domain Ωd. Finally, we can construct a family of solutions for
ψ1 that leads to different properties of the resulting solution B, defined up to order O(d). For
clarity, this procedure is presented in detail in Appendix D.

As described in Appendix D, given parameters a, B0, k, and d, we can construct solutions
for ψ on the half-domain Ω+

0 to O(d0) (see (D.7) for reference),

ψ0(x) =
B0x

2

2a
,

and O(d1) (see (D.13) for reference),

ψ1(x, y) =

(
Ψk(0) cosh(kx) +

aB0 −Ψk(0) cosh(ka)

sinh(ka)
sinh(kx)

)
cos(ky).

Given these solutions ψ0 and ψ1, we obtain a family of first-order approximations of ψ pa-
rameterized by the value of Ψk(0) and defined on the full domain Ω0 by

ψ(x, y) =
B0

2a
x2 + d

(
Ψk(0)

(
cosh(kx)− sinh(k|x|)

tanh(ka)

)
+ aB0

sinh(k|x|)
sinh(ka)

)
cos(ky),

(10.40)

where the absolute value guarantees the reflection symmetry ψ(−x, y) = ψ(x, y). As a remark,
imposing reflection symmetry can yield a nondifferentiable solution along the x = 0 plane. As

19In this case, it will still be a solution but in a weaker sense (more precisely as a distribution).
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noted earlier, the corresponding field is a weak solution of the PDE problem (10.33), a solution
in the sense of distributions.

Considering the family of first-order approximate fields B(x, y) = BT ẑ + ẑ × ∇ψ(x, y)
obtained from ψ (10.40), we now emphasize the relation between the parameter Ψk(0) and prop-
erties of the corresponding equilibrium along the symmetry plane.

On the one hand, consider the amount of magnetic flux (per unit length in z) crossing the
symmetry plane. It is defined between y = 0 and y = Y and along the surface at x = 0 by∫ Y

0

B(0, y) · x̂ dy =

∫ Y

0

Bx(0, y) dy.

Thus since ∫ Y

0

B(0, y) · x̂ dy = ψ(0, 0)− ψ(0, Y ),

so ∫ Y

0

B(0, y) · x̂ dy = dΨk(0)(1− cos(kY )). (10.41)

Hence, Ψk(0) is proportional to the flux crossing the x = 0 axis.
On the other hand, consider the current density K along the symmetry plane, as described in

Appendix C, defined in terms of the field jump across the symmetry plane by

K(0, y) = µ−1
0 n̂× [[B]]x=0(y).

Since Bz is constant while along the symmetry plane n̂ = x̂, then the current density can be
expressed as

K(0, y) = µ−1
0 [[By]]x=0ẑ(y).

The jump in By across the axis x = 0 can be expressed at a point y in terms of ψ as

[[By]]x=0(y) =
∂ψ(x, y)

∂x

∣∣∣∣
x→0+

− ∂ψ(x, y)

∂x

∣∣∣∣
x→0−

. (10.42)

Due to reflection symmetry, the function ψ(x, y) may not be differentiable at x = 0. Therefore,
in order to evaluate the jump in ∂ψ/∂x, we compute the one-sided derivatives by taking the
limits x→ 0+ and x→ 0− as follows:

∂ψ(x, y)

∂x

∣∣∣∣
x→0+

= dk

(
− Ψk(0)

tanh(ka)
+

aB0

sinh(ka)

)
cos(ky),

∂ψ(x, y)

∂x

∣∣∣∣
x→0−

= dk

(
Ψk(0)

tanh(ka)
− aB0

sinh(ka)

)
cos(ky);

therefore, the jump can be expressed as

[[By]]x=0(y) =
2kd cos(ky)

sinh(ka)

[
aB0 −Ψk(0) cosh(ka)

]
. (10.43)

The current density along x = 0 can finally be expressed as

K(0, y) = µ−1
0

2kd cos(ky)

sinh(ka)

[
aB0 −Ψk(0) cosh(ka)

]
ẑ. (10.44)

There are two particular values of interest for the parameter Ψk(0). One is Ψk(0) = 0, for
which the flux (10.41) is always zero, so the corresponding field has a flux surface lying on the
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axis x = 0 while there is a current supported on this surface according to (10.44). Note that for
Ψk(0) ̸= 0, the solution is not constant along the x = 0 plane. Hence, this plane is not a level
set. The other one is Ψk(0) = aB0/ cosh(ka), for which the field jump (10.43) is always zero,
so the symmetry plane does not support a surface current and it is not a flux surface according to
(10.41).

We now consider the topology of the level sets of ψ for these two approximate solutions in
the domain Ω0, where we say that the boundaries x = ±a are closed in y and z by periodicity.
In this context, magnetic islands correspond to regions where the level sets of ψ are closed
but with a different topology than the boundaries. The centers of magnetic islands, called O
points, correspond to isolated local minima and maxima of ψ, while the points that separate
magnetic islands, called X points, correspond to saddle points or their nonsmooth counterparts
as illustrated in Figure D.3. If there are no X or O points in the domain, then all of the level
sets of ψ have the same topology as the boundaries. Given the expression (10.40) for ψ, the
existence of local extrema and saddle points can be determined as detailed in Appendix D. The
properties of the function ψ depend on the parameters d, k, and a. In particular, since the Hahm–
Kulsrud–Taylor model is derived in the d≪ 1 regime, according to Appendix D we will assume
d < sinh(ka)/(k2a2 sinh(kxL)) and d < cosh(ka)/(k2a2) where xL is the unique solution of
kxL = 1/ tanh(kxL). We now summarize the important results:

• In the nonsmooth case, corresponding to Ψk(0) = 0, there are two sets of stationary points,
(±x1, yS) and (±x2, yS) for any yS satisfying kyS = π[2π], where the values x1 and x2
are the two positive solutions of sinh(ka)/(dka2)x1,2 = cosh(kx1,2) with 0 < x1 < x2.
The points (±x1, yS) are isolated local minima while (±x2, yS) are saddle points. These
stationary points will appear in the domain Ω0 if x1,2 ∈ (0, a). Since when d goes to
0 then x1 goes to 0 while x2 goes to infinity (see Figure D.1 for reference), in the limit
d ≪ 1 then x1 < a while x2 > a. Hence, for d small enough, this gives rise to sets of
magnetic islands off of the x = 0 plane20 if x1 < a, while the x = 0 plane remains a
magnetic surface.

• In the smooth case, corresponding to Ψk(0) = aB0/ cosh(ka), there are two sets of saddle
points away from the x = 0 plane, (±xS , yS) for any yS satisfying kyS = π[2π] and xS
is the unique positive solution of cosh(ka)/(dka2)xS = sinh(kxS). On the x = 0 plane,
there are sets of saddle points for all yM such that kyM = 0[2π] and local minima for all
ym such that kym = π[2π]. Since when d goes to 0 then xS goes to infinity (see Figure D.5
for reference), in the limit d≪ 1 then xS > a. Hence, for d small enough, this gives rise
to magnetic islands on the x = 0 plane with no X points away from the x = 0 plane.

An illustration of these different topological structures arising in the solutions for Ψk(0) = 0
and Ψk(0) = aB0/ cosh(ka) is displayed in Figure 10.3.

To summarize, we have used a linearized perturbed ideal MHD equilibrium model without
assuming continuously nested flux surfaces. We have seen that rational surfaces can support
different structures depending on whether the rational surface is assumed to remain a flux surface.
If the rational surface remains a flux surface, then a current sheet is supported on the rational
surface in the model considered. This is analogous to the δ-function singularity discussed in
previous sections under the assumption that continuously nested surfaces remain. If the rational
surface does not remain a flux surface, then magnetic islands open up along the rational surface.

20These islands off of the x = 0 plane are referred to in the literature as residual islands [25] or shielded-half-islands
[53], and from Appendix D we know that their O points get closer to the x = 0 plane as d goes to zero. It was shown
[25] that nonlinear terms, that are neglected in the linear method considered in this section, yield a contribution to the
total current density that prevents the existence of residual islands. As a result, continuously nested flux surfaces are
present near x = 0 when d > 0. Therefore, these islands’ appearance is interpreted as an artifact of the linear model.
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Figure 10.3: Solutions of (10.40) in the y-x plane for Ψk(0) = 0 for δ = 0.6 (left) and for
Ψk(0) = aB0/ cosh(ka) for δ = 0.3 (right), with B0 = 1, a = 1, and k = 1.

In terms of the parameter Ψk(0) defining the family of solutions, this corresponds to Ψk(0) = 0
and Ψk(0) ̸= 0, respectively.

In this section, by relaxing the assumption of continuously nested surfaces, we could exhibit
equilibria with different behavior near a rational surface, namely a flux surface or an island chain.
In the next section, we relax other assumptions of the ideal MHD model and illustrate how these
may impact 3D magnetic fields.

10.4 Beyond ideal MHD equilibria
So far, in this chapter, we have considered magnetic fields under the ideal MHD equilibrium
model. As a reminder, ideal MHD equilibria correspond with the steady state, ∂/∂t = 0, and
static, u = 0, limit of the ideal MHD evolution equations, (8.1)–(8.6). Several limitations of the
ideal MHD equilibrium model have been discussed previously.

• The current density may exhibit localization near rational surfaces, behavior that may be
challenging to approximate numerically, as described in Section 10.3.3.

• The ideal MHD equilibrium equation for the parallel current density generally does not
have a solution unless constraints are placed on the pressure profile or geometry, as de-
scribed in Section 10.3.2.

• Topological changes observed in experimental fusion plasmas, known to significantly im-
pact transport and confinement [314, 244], cannot arise in ideal MHD because of the flux
freezing constraint, as described in Section 8.2.

It is then natural to consider models beyond ideal MHD, including time dependence and
nonideal effects. In this section, we will introduce other time-evolution models that include
additional physical effects and discuss the implications for 3D magnetic fields. Specifically,
in Section 10.4.1, we will consider the addition of resistivity, relaxing the frozen-in flux con-
straint. In Section 10.4.2, we will discuss viscosity, allowing for diffusion of momentum, and
perpendicular heat diffusion, allowing for diffusion of pressure. In Section 10.4.3, we discuss
the application of time-evolution models for approximating equilibria.

10.4.1 Resistive MHD models

The ideal MHD model assumes an ideally conducting plasma and is often used in stellarator
optimization to model the steady-state plasma and magnetic field. However, in practice, fusion
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plasmas are not ideally conducting because there is a small amount of friction due to collisions
between electrons and ions. This effect, briefly mentioned in Section 8.1, is known as resistivity
and can be described by kinetic models. Reduced models describing kinetic effects can also
be introduced into fluid models as illustrated in [43]. We present the equations of the so-called
resistive MHD models and discuss the consequences on the flux freezing constraint. This will
highlight why resistivity is an important extension of ideal MHD to model processes involving
changes in the magnetic field topology.

Without resistivity, solutions of the ideal MHD model may become unbounded after a finite
time interval [324, 111, 309]. Furthermore, as discussed in Section 10.3, solutions to the ideal
MHD model can have δ-function behavior near rational surfaces. Some regularizing effects of
resistivity on solutions of the ideal MHD time-evolution model are studied in [189].

Compared to ideal MHD, in Ohm’s law (8.6), resistivity is modeled by the addition of a
right-hand side proportional to a scalar quantity η, hence replacing the latter by

E + u×B = ηJ . (10.45)

Resistivity, η ≥ 0, characterizes the resistance of a material to the flow of charged particles,
also called current. In plasmas, several effects can contribute to the overall plasma resistivity.
Collisions between electrons and ions are one important source of resistivity. For instance, the so-
called Spitzer model [271] accounts for this collisional effect and leads to the scaling η ∝ T−3/2

e

where Te is the electron temperature. For simplicity, the discussion in this section is limited to a
simple model where η is constant with respect to space and time.

As a reminder, flux freezing arises due to the ideal induction equation (8.8) for B, namely

∂B

∂t
= ∇× (u×B).

To illustrate how the flux freezing constraint is affected by resistivity, we will now derive the
corresponding resistive induction equation. Combining on the one hand (10.45) with Faraday’s
law, ∇×E = −∂B/∂t, and on the other hand Ampère’s law ∇×B = µ0J together with the
vector identity∇× (∇×B) = ∇(∇·B)−∆B yields the desired resistive induction equation:

∂B

∂t
= ∇× (u×B) +

η

µ0
∆B. (10.46)

Hence, the resistive induction equation has an additional diffusion-like term on the right-hand
side compared to ideal MHD. This additional term depends only on B, but not on u. As a result,
the magnetic field lines still diffuse without any flow.

As described in Section 8.2, the change in the magnetic flux through a surface S is

dΦS(t)

dt
=

η

µ0

∫
S(t)

n̂(r, t) · (∆B(r, t)) d2r,

while in the ideal MHD model dΦS/dt = 0. Thus, flux freezing generally does not hold in the
resistive MHD model. Since flux freezing need not hold everywhere, nonzero resistivity allows
for changes in the topology of magnetic field lines and the formation of magnetic islands via
magnetic reconnection.

Compared to ideal MHD, in the energy conservation equation (8.3), resistivity is modeled by
a source of electromagnetic heating, so the equation becomes

1

γ − 1

[(
∂

∂t
+ u · ∇

)
p+ γp∇ · u

]
= J · (E + u×B).

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



10.4. Beyond ideal MHD equilibria 135

As a reminder from Section 8.1, γ is the ratio of specific heats. According to the resistive Ohm’s
law (10.45), the right-hand side reduces to

1

γ − 1

[(
∂

∂t
+ u · ∇

)
p+ γp∇ · u

]
= ηJ2. (10.47)

In Section 10.4.2, we will see that (10.47) can also be modified to include effects due to viscous
dissipation and thermal conduction.

Remark 10.7. As in Section 8.1, combining (10.47) with the continuity equation (8.1) leads to a
modified entropy equation:

ργ

γ − 1

(
∂

∂t
+ u · ∇

)(
p

ργ

)
= ηJ2.

Assuming η ̸= 0, on inspection of (10.47) it appears that a static equilibrium, ∂/∂t = 0 and
u = 0, implies that J = 0. Since we are generally interested in equilibria with a current J ̸= 0,
an additional source term is introduced for the pressure, SP , into (10.47):

1

γ − 1

[(
∂

∂t
+ u · ∇

)
p+ γp∇ · u

]
= ηJ2 + SP . (10.48)

If ηJ2 > 0 in (10.47), this term leads to an increase in energy due to electromagnetic heating. In
a steady state, since 0 = ηJ2+SP , the pressure source term must be negative, SP < 0, and thus
actually acts as a sink. Therefore, SP is often chosen to be negative in order to reach a steady
state with nonzero current.

Remark 10.8. As will be discussed in Section 10.4.3, computing equilibria is an important
application of time-dependent MHD models for stellarators. Computing resistive equilibria with
current motivated the introduction of the source SP . In practice, other source terms can also be
included to model additional effects.

To summarize, a time-dependent resistive MHD model with a constant η is obtained by com-
bining the resistive Ohm’s law (10.45) and the modified energy conservation equation (10.47)
with (8.1), (8.2), and (8.5):

∂ρ

∂t
+∇ · (ρu) = 0,

ρ

(
∂

∂t
+ u · ∇

)
u =

(∇×B)×B

µ0
−∇p,

1

γ − 1

[(
∂

∂t
+ u · ∇

)
p+ γp∇ · u

]
=

η

µ2
0

|∇ ×B|2 + SP ,

∂B

∂t
= ∇× (u×B) +

η

µ0
∆B,

∇ ·B = 0.

(10.49)

As in (10.46), the resistive Ohm’s law (10.45) has been used to eliminate the electric field, E, in
Faraday’s law. Moreover, the current J was also eliminated as it can be expressed explicitly as
J = 1

µ0
∇×B.

In general, the numerical solution of (10.49) is very challenging and the subject of active
research. In Section 10.4.3, we will discuss briefly some general considerations for computing
approximate equilibrium solutions of resistive MHD models.
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10.4.2 Other diffusion effects: Momentum and pressure

As discussed in Section 10.4.1, even though kinetic models describe the details of collisions
between electrons and ions, the effect can still be captured in MHD models by a diffusive term
for the current density. Similarly, collisions between other particle species can produce additional
diffusion effects, including momentum and pressure. Like resistivity, the details of the collisional
dynamics can be described by kinetic models. The relationship to fluid models is derived in [43].

From the ideal MHD force balance, J ×B = ∇p, it follows that B · ∇p = 0. Hence, the
pressure is constant along magnetic field lines. In a region of chaotic magnetic field lines, where
a given magnetic field may fill the volume, the ideal MHD model implies that the pressure must
also be constant in these regions. In practice, however, nonzero diffusion of heat along field lines
can lead to pressure gradients in chaotic regions, as has been confirmed experimentally in the
W7-AS [323, 251] and LHD [259, 287, 285] stellarators. Thus, nonideal effects are required
to model these regions more accurately. This section discusses some of these effects, such as
viscosity, anisotropic pressure, and heat diffusivity.

Collisions between particles moving in a plasma can result in the transfer of momentum.
This produces an effect called viscosity that can inhibit flows. Since momentum is proportional
to mass and mi ≫ me, in the absence of neutrals, collisions between ions are a dominant source
of viscosity. A reduced model for viscosity can be introduced into the MHD model by replacing
the momentum balance equation by

ρ

(
∂

∂t
+ u · ∇

)
u = J ×B −∇p+ µ∆u. (10.50)

The constant µ is referred to as a viscosity coefficient and the term µ∆u acts like a diffusive
term for the fluid flow providing a simple model for diffusion of momentum. Since the model
depends only on the flow u and not on the field B, unlike resistivity, other equations in the MHD
model are unchanged.

Remark 10.9. The momentum balance equation (10.50) can be derived by simplification of a
more general pressure term. The total force acting on a fluid element is then denoted by ∇ · ←→p
[76, 135] where←→p is a symmetric 3× 3 matrix also known as a stress tensor. The stress tensor
can be decomposed into

←→p (r) = p(r)
←→
I +

←→
Π (r).

Here p(r) is the scalar pressure already considered in the discussion so far and
←→
I is the identity

tensor. The terms in the so-called viscous stress tensor
←→
Π (r) are derived from kinetic descrip-

tions, including various collisional processes, and depend on the collisionality of the plasma
under consideration. Under certain assumptions, ∇ ·

←→
Π ≈ −µ∆u. More on this can be found

in [43, 28].

The entropy equation (10.48) can be further modified to include diffusion of pressure by
adding a thermal conductivity term,

1

γ − 1

[(
∂

∂t
+ u · ∇

)
p+ γp∇ · u

]
= ηJ2 + SP +∇ ·

(
ρ←→κ · ∇

(
p

ρ

))
, (10.51)

where ←→κ is a thermal conductivity tensor. By setting ρ to be constant and choosing ←→κ to be
diagonal, with parallel and perpendicular thermal conductivity coefficients, κ∥ and κ⊥, we arrive
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at a simple model for anisotropic pressure diffusion where

∇ ·
(
ρ←→κ · ∇

(
p

ρ

))
= ∇ ·

(
κ∥∇∥p+ κ⊥∇⊥p

)
.

The parallel and perpendicular gradients are defined as∇∥ = b̂
(
b̂ ·∇

)
and∇⊥ = ∇− b̂

(
b̂ ·∇

)
.

This model for anisotropic pressure diffusion has been used to study the stochastic field regions
[143], as it allows for temperature equilibration both parallel and perpendicular to the magnetic
field.

Incorporating (10.50) and (10.51) into (10.49) provides a generalized MHD model including
nonideal effects associated with resistivity, viscosity, and thermal transport, given by

∂ρ

∂t
+∇ · (ρu) = 0,

ρ

(
∂

∂t
+ u · ∇

)
u =

(∇×B)×B

µ0
−∇p+ µ∆u,

1

γ − 1

[(
∂

∂t
+ u · ∇

)
p+ γp∇ · u

]
=

η

µ2
0

|∇ ×B|2 + SP +∇ ·
(
ρ←→κ · ∇

(
p

ρ

))
,

∂B

∂t
= ∇× (u×B) +

η

µ0
∆B,

∇ ·B = 0.

(10.52)

In practice, the values of the diffusion coefficients, including η, µ, κ∥, and κ⊥, can be both physi-
cally and numerically motivated. They can, for example, be informed by empirical measurements
or selected to aid numerical stability.

Solving nonideal MHD models in stellarator geometry presents an additional challenge be-
cause of the strongly shaped, nonaxisymmetric computational domain. Tools that address these
challenges have only been developed relatively recently. Examples of nonideal MHD initial-
value codes with some stellarator modeling capability include M3D-C1 [152], NIMROD [269],
JOREK [48], M3D [282], MIPS [291], and HINT2 [287]. The HINT2 model will be discussed
in greater detail in Section 11.3.

10.4.3 Numerical approximation of equilibria

In general, obtaining exact analytic solutions for stellarator equilibria is impossible, but numeri-
cal methods can be used to compute approximate equilibria. In order to overcome the challenges
associated with ideal MHD equilibria, we will discuss briefly some general considerations for
computing approximate equilibrium solutions as quasi-steady-state solutions to time-dependent
nonideal MHD models.

Given a time-dependent model, the corresponding equilibrium model is defined by setting
the time-derivative terms to zero. An equilibrium or steady-state solution can be defined as
the solution to the equilibrium model. There may or may not be a relationship between the
long-time behavior of a time-dependent solution and an equilibrium solution. Depending on the
initial conditions, the solutions of a nonlinear time-dependent model can exhibit several types of
behavior.

1. After some time, the solution reaches a steady state, and all quantities become independent
of time.
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138 Chapter 10. Challenges associated with 3D equilibrium fields

2. The solution converges with time to an equilibrium. In the long term, it may evolve slowly
compared to some time scales of interest. This defines a quasi-steady state.

3. The solution does not reach either a steady state or a quasi-steady state; for example, it
may become unbounded or exhibit cyclic behavior.

Suppose, for some initial condition, the solution converges to a steady state or reaches a quasi-
steady state. In that case, this can be the basis for a numerical method to approximate the cor-
responding equilibrium by computing numerically an approximate solution to the initial-value
problem for a long time. Since the topology of the magnetic field is not prescribed by the topol-
ogy of the initial condition, this approach can be advantageous to approximate stellarator equi-
libria without continuously nested flux surfaces.

On the other hand, the question of convergence to a steady-state solution for a given initial
condition remains an open question. Besides, computing long-term solutions to a time-dependent
problem is considerably more costly than directly computing solutions to an equilibrium prob-
lem, particularly if the solution converges slowly toward a steady state. From the numerical point
of view, it is also difficult to distinguish between steady-state and quasi-steady-state solutions.
Furthermore, sensitivity to the initial condition may complicate the numerical approximation of
solutions to nonlinear models.

Several reduced models incorporating some features of the nonideal MHD evolution but with
accelerated convergence properties have been proposed. This includes the so-called relaxation
methods that form the basis for 3D MHD equilibrium codes such as HINT and HINT2 [286].
These are discussed in Section 11.3. An iterative method allowing pressure transport along field
lines is the basis for the PIES code [250] and is discussed in Section 11.3.
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Chapter 11

Models of 3D ideal MHD
equilibrium magnetic
fields

To model stellarators and many other physical phenomena, equilibrium solutions and their stabil-
ity properties are often studied to assess steady-state behavior. In stellarators, achieving a steady
state is desirable for confining energy. In principle, the particles and the fields are coupled. Due
to the separation of scales in magnetic confinement devices, it is often a good approximation
to model the large-scale behavior with ideal MHD models as introduced in Section 8.3. While
other models exist, the MHD equilibrium model has been shown to be relatively reliable for
fusion plasmas with strong magnetic fields. See, for instance, Chapter 2 of [76]. Ideal MHD
equilibrium provides a relatively simple set of equations and is computationally tractable. For
this reason, ideal MHD is often applied to study the global behavior of toroidal plasmas, includ-
ing both the plasma and the vacuum region surrounding the plasma.

While ideal MHD models the equilibrium balance between the plasma and magnetic field
the impact of the equilibrium field on the plasma dynamics is also of interest. Therefore, once a
time-independent magnetic field is obtained, other models can be leveraged to assess properties
of the field, such as stability, transport, and particle trajectories, as described in Chapter 4.

We will consider several levels of approximation. Pressure gradients and currents in the
plasma can be included, as in Sections 11.1.2 and 11.3. An important subset of ideal MHD
models is the force-free model, presented in Section 11.4, where all currents are parallel to
the magnetic field while the pressure is constant throughout the domain of interest. MRxMHD
extends the force-free model, introduced in Section 11.5, allowing for annular regions, each
with a force-free magnetic field. In the vacuum model, presented in Section 11.6, currents and
pressure gradients are not included in the equilibrium model. Thus, some models include the
feedback of the plasma on the magnetic field. However, the vacuum model does not.

There is also a distinction between models based on the assumption of surfaces. As discussed
in Chapter 10, the existence of continuously nested toroidal flux surfaces cannot generally be
assumed in 3D. However, models based on this assumption are often applied because of their
computational efficiency. These are discussed in Sections 11.1.1 and 11.1.2. In Section 11.2,
the existence of 3D equilibrium solutions with magnetic surfaces is demonstrated by considering
an asymptotic expansion of the ideal MHD equations near the magnetic axis. An alternative
model assumes the existence of only some surfaces in Section 11.5. Others rely on the existence
of only one surface, serving as the boundary of the computational domain in Sections 11.4 and
11.6. Models not assuming the existence of any surfaces are presented in Sections 11.3 and 11.6.
We will discuss the benefits and related challenges of the various 3D equilibrium models in the
context of different applications. Section 11.7 presents a summary of the PDE models introduced
in this chapter and proposes an analogy with a fluid mechanics model.

139
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140 Chapter 11. Models of 3D ideal MHD equilibrium magnetic fields

11.1 Equilibria with assumption of surfaces
In the context of axisymmetry, the ideal MHD force balance equations result in the Grad–
Shafranov equation, introduced in Section 8.4, a PDE for the poloidal flux function ψP given
the boundary of the toroidal domain and two flux functions, F (ψP ) and p(ψP ). The field is
then defined in terms of ψP . Although continuously nested flux surfaces do not always exist in
3D fields, imposing this assumption provides a numerically tractable boundary value problem.
Moreover, as discussed in Remark 4.4, this assumption is relevant because such surfaces ex-
hibit favorable confinement properties. The assumption should ultimately be checked with other
methods described in the following sections, which do not assume the existence of surfaces.

In analogy with the Grad–Shafranov problem, for 3D systems, it is common to consider ideal
MHD force balance solutions, namely B satisfying (∇×B)×B = µ0∇p(ψ) in Ω,

∇ ·B = 0 in Ω,
B · n̂ = 0 on ∂Ω,

(11.1)

with prescribed pressure p(ψ), rotational transform ι(ψ), domain boundary ∂Ω, and toroidal flux
function on the boundary ψ(∂Ω).

11.1.1 Variational principle for equilibria

This section focuses on the variational principle for MHD equilibria with surfaces. This follows
from the intuition that the plasma will tend toward a state that minimizes the energy. Equilibria
will then be found via variational calculus techniques to minimize the plasma energy, subject
to constraints. These constraints include the existence of a set of closed, nested flux surfaces.
However, this is not to say that the variational principle provides any information on the evolution
to an equilibrium state. The idea of finding ideal MHD equilibria via energy minimization was
first studied in the 1950s [170], but remains widely used today for numerical approximation of
equilibria.

The goal here is to show that finding solutions to (11.1) is equivalent to finding stationary
points of W defined by

W [B, p] =

∫
Ω

(
B2(r)

2µ0
− p(r)

)
d3r, (11.2)

with respect to perturbations of B and p, subject to several constraints:

1. there exists a set of flux surfaces such that B · ∇ψ = 0, labeled by a toroidal flux label ψ;

2. ∇ ·B = 0;

3. the pressure as a function of flux is fixed δp(ψ) = 0;

4. the rotational transform as a function of flux is fixed, δι(ψ) = 0;

5. the total toroidal flux enclosed by the toroidal domain is fixed, δψ = 0 on ∂Ω.

Constraints 1 and 4 correspond to constraints of ideal MHD and preclude changes to the magnetic
field topology, as discussed in Section 8.2. Constraints 3 and 4 arise from the assumption that
p(ψ) and ι(ψ) are prescribed in (11.1). Constraint 5 corresponds to the assumption that the
plasma is surrounded by a perfectly conducting boundary such that the magnetic field lines must
lie tangent to this surface. This constraint also ensures that the prescribed ψ(∂Ω) is fixed and ∂Ω
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11.1. Equilibria with assumption of surfaces 141

remains a flux function according to (11.1). Although we assume that flux surfaces exist, their
shapes are unknown and will be determined from the variational principle. We now see that the
constraints on the variational principle ensure that the second and third ideal MHD conditions
in (11.1) are satisfied and the prescribed quantities are held fixed. The force balance condition,
the first expression in (11.1), is satisfied by stationary points of the energy functional. This will
now be shown by directly evaluating the linear perturbation to the energy functional thanks to an
expression for the perturbed magnetic field subject to the above constraints.

First, the field B is expressed in a flux coordinate system (ψ, θ, ϕ), with the toroidal flux
function ψ = ΨT /2π, to obtain a convenient expression for the perturbation subject to the
desired constraints. As a reminder, the field is unknown. Therefore, the position of surfaces of
constant ψ is also unknown, while θ and ϕ are the poloidal and toroidal angles that are given
functions of space, assumed to be fixed. As shown in equation (9.4), the magnetic field in a
toroidal system under constraints 1 and 2 can generally be expressed as

B
(
R(ψ, θ, ϕ)

)
= [∇ψ ×∇ (θ − ιϕ+ λ)]

(
R(ψ, θ, ϕ)

)
.

Therefore, we will consider variations of the functions {λ(r), ψ(r)} rather than B(r), as the
angles {θ(r), ϕ(r)} and the rotational transform ι(ψ) are given.

The linear perturbation to the magnetic field can then be expressed as

δB[λ(r), ψ(r); δλ(r), δψ(r)] = ∇δψ(r)×∇
[
θ(r)− ι

(
ψ(r)

)
ϕ(r) + λ(r)

]
+∇ψ(r)×∇

[
−ι′
(
ψ(r)

)
δψ(r)ϕ(r) + δλ(r)

]
.

Moreover, constraint 3 is enforced by expressing the perturbation to the pressure at a given
position in terms of the perturbation to the flux label,

δp(r) = p′
(
ψ(r)

)
δψ(r).

The first variation of W with respect to λ is

δW [λ, ψ; δλ] =

∫
Ω

B ×∇ψ · ∇δλ
µ0

d3r,

and using integration by parts, it can be written as

δW [λ, ψ; δλ] = −
∫
Ω

δλ
(∇×B) · ∇ψ

µ0
d3r,

noting that if ∂Ω is a flux surface, the boundary term vanishes. Thus, a condition satisfied by
stationary points of W reads

(∇×B) · ∇ψ = 0. (11.3)

We now consider the first variation of W with respect to ψ,

δW [λ, ψ; δψ] =

∫
Ω

(
B · (∇δψ ×∇(θ − ιϕ+ λ) +∇ψ ×∇ [−ι′ϕδψ])

µ0
− p′δψ

)
d3r,

where both ι and p are considered functions of ψ, and ′ indicates derivatives with respect to ψ.
Using integration by parts, noting that the boundary terms will vanish as δψ = 0 on ∂Ω, it can
be written

δW [λ, ψ; δψ] =

∫
Ω

δψ

(
∇×B · ∇(θ − ιϕ+ λ) + ι′ϕ∇×B · ∇ψ

µ0
− p′

)
d3r.
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142 Chapter 11. Models of 3D ideal MHD equilibrium magnetic fields

The second term in the above expression will vanish from (11.3), so we have the condition

1

µ0
∇×B · ∇(θ − ιϕ+ λ)− p′ = 0.

Because (∇×B)×B = ∇ψ ((∇×B) · ∇ (θ − ιϕ+ λ)) due to (11.3), this yields

(∇×B)×B

µ0
· ∂R
∂ψ
− p′ = 0. (11.4)

Together, conditions (11.3) and (11.4) correspond to the B × ∇ψ and ∂R/∂ψ components
of the force balance condition, respectively. The B component of force balance is satisfied from
the assumption B · ∇ψ = 0. As a result, any stationary point of W satisfies the three vector
components of (11.1). Therefore, finding stationary points of W with respect to λ and ψ is
equivalent to finding solutions of (11.1) under the above assumptions.

This implies that an equilibrium magnetic field can be obtained efficiently from a variational
method if the assumption of constraints 1–5 is applicable. Applications for 3D MHD calculations
will be discussed in the following section.

The discussion in this section is similar to that in [170] and [116]. A discussion of numerical
applications of energy principles for MHD equilibria is given in Section 4.5 of [151].

11.1.2 Computational approach

Under the assumption of continuously nested flux surfaces, equilibrium fields on a given domain
Ω can be sought by applying the previous variational approach, for instance, via a gradient-
descent method. This is the basis for the NSTAB [79] and VMEC [132, 129] codes. The DESC
code solves the same system without a variational approach [66].

For this approach, several quantities need to be supplied.

• The pressure p(ψ) is a given function depending only on the flux surface label. The profile
may have a simple functional form, such as a spline or power series, and can be chosen to
be consistent with experimental data.

• The rotational transform ι(ψ) is a second given function depending only on the flux surface
label. Alternatively, the toroidal current enclosed by a flux surface, IT (ψ), can be given
instead. In this case, the variational approach can be applied iteratively with different ι(ψ)
profiles until the desired toroidal current profile is matched. In both cases, these profiles
can similarly be chosen to be consistent with experimental measurements. The current
profile can be chosen to be consistent with kinetic calculations.

• The boundary of the domain must be supplied, often using a Fourier series, as displayed
in (13.11). The value of the toroidal flux (5.10) on ∂Ω, ΨT , is also specified, setting the
overall scale of the magnetic field.

The above approach is referred to as fixed-boundary since the plasma boundary is prescribed and
coincides with the boundary of the computational domain.

There is an alternative approach known as free-boundary, considering the location of elec-
tromagnetic coils and their currents to be instead prescribed within the computational domain,
and the plasma boundary is computed self-consistently. The region outside the plasma do-
main within the computational domain is called the vacuum region. We then seek a plasma
boundary ∂Ω for which the total field in the vacuum region, BV , satisfies two conditions: the
total pressure should be continuous across the boundary between the vacuum and plasma re-
gion,

(
p+B2/2µ0

)
|∂Ω =

(
B2
V /2µ0

)
|∂Ω, while the boundary should define a flux surface,
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BV · n̂|∂Ω = 0. The assumption of continuity of total pressure arises from imposing force
balance at the boundary. This method is implemented via the following iterative process.

1. Choose the coil currents and positions, the total toroidal flux, and two flux functions, p(ψ)
and either ι(ψ) or IT (ψ).

2. Choose an initial guess for the plasma boundary ∂Ω.

3. Given the the plasma boundary ∂Ω, follow steps (a) to (e):

(a) The magnetic field B is determined in Ω using the fixed-boundary equilibrium ap-
proach as described above.

(b) From the solution B, the total pressure at the inside of the plasma boundary is
evaluated as

(
p+B2/2µ0

)
|∂Ω, and the plasma current is evaluated inside Ω as

J = ∇×B/µ0.

(c) The vacuum magnetic field outside Ω, denoted BV , satisfying the boundary con-
dition BV · n̂|∂Ω = 0, can be represented using a scalar potential as BV = ∇Φ.
Laplace’s equation, ∆Φ = 0, is then solved outside Ω, with the Neumann boundary
condition, n̂ · ∇Φ|∂Ω = 0. The net coil currents and plasma currents are used to
solve for Φ as described in Section 11.6.

(d) From the solution BV , the total pressure on the outside of the plasma boundary is
evaluated as

(
B2
V /2µ0

)
|∂Ω.

(e) While
(
p+B2/2µ0

)
|∂Ω ̸=

(
B2
V /2µ0

)
|∂Ω, update the boundary ∂Ω of the plasma

domain and repeat step 3.

This method is used in the free-boundary VMEC code [129].

11.2 A near-axis approach with the assumption of surfaces
Some of the challenges associated with 3D MHD equilibria can be circumvented by restricting
our attention to a localized region near the magnetic axis. A near-axis approach to construct such
local equilibria is presented here using a vacuum magnetic field model for simplicity, although it
has been extended to a more general ideal MHD model [210]. The approach relies on an asymp-
totic expansion with respect to the distance from the axis under the assumption of continuously
nested toroidal flux surfaces introduced in Remark 4.4. Unlike the numerical approximation of
equilibrium solutions, the near-axis expansion approach provides closed-form expressions for
quantities of interest, yielding further insight into the connection between geometry and confine-
ment properties. As an illustration, we will obtain expressions for the geometry of the magnetic
surfaces and the corresponding rotational transform on the magnetic axis. Section 11.2.1 defines
a local coordinate system and the asymptotic expansion to obtain an approximate vacuum mag-
netic field model. Section 11.2.2 focuses on the flux label and the shape of corresponding flux
surfaces. Section 11.2.3 focuses on the field-line label and the properties of the corresponding
rotational transform.

11.2.1 From the axis to a nearby equilibrium model

The starting point is a simple closed curve defining the magnetic axis. A local coordinate system
is first defined starting from this curve. The equations for a vacuum magnetic field with surfaces
are then expressed in this coordinate system. An asymptotic expansion with respect to the dis-
tance from the axis is applied, and the resulting equations are solved to obtain the magnetic field
near the axis to a desired order.
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The magnetic axis R0 is parameterized by the length, l. The corresponding Frenet–Serret
orthonormal basis introduced in Section 7.3 is denoted by (ê1(l), ê2(l), ê3(l)). As a reminder,
the unit vector ê1(l) = R′

0(l) is tangent to the magnetic field, the curvature κ(l) = R′′
0(l),

ê2(l) = κ(l)/|κ(l)| is a unit vector in the curvature direction, and ê3(l) = ê1(l)×ê2(l). We then
define polar coordinates in the ê2-ê3 plane, namely (ρ, ϑ) ∈ R+ × [0, 2π). The parameterized
position can then be expressed as

R(ρ, ϑ, l) = R0(l) + ρ cos(ϑ)ê2(l) + ρ sin(ϑ)ê3(l). (11.5)

In order to construct an orthogonal coordinate system, we define the angle ω = ϑ+
∫ l
0
τ(l′) dl′,

where τ(l) = −ê′3(l) · ê2(l) is the torsion of the magnetic axis introduced in Section 7.3.2. In
the orthogonal coordinate system (ρ, ω, l) the Jacobian is given by

√
g(ρ, ω, l) = ρ

(
1− κ(l)ρ cos

(
ω −

∫ l

0

τ(l′) dl′

))
, (11.6)

where κ(l) = |κ(l)| is the magnitude of the curvature. For convenience, the geometric factor is
then defined near the curve as h(ρ, ω, l) = 1− κ(l)ρ cos

(
ω −

∫ l
0
τ(l′) dl′

)
, so that

√
g = ρh.

We seek a vacuum field solution, introduced in Section A.3, near the curve R0, so B is both
divergence- and curl-free. From the curl-free condition, we can represent the field by a scalar po-
tential, B(r) = ∇Φ(r). From the divergence-free condition, the potential must satisfy Laplace’s
equation, following Section A.3, ∆Φ(r) = 0. Since continuously nested flux surfaces are as-
sumed to exist, the magnetic field can be described in terms of field-line following coordinates
by a toroidal flux label ψ and a function labeling field lines, α, satisfying

∇Φ(r) = ∇ψ(r)×∇α(r), (11.7)

as described in Section 9.3. In order to build the vacuum magnetic field, we now seek the
unknown scalar functions Φ, ψ, and α. There is no unique solution to this problem for two
reasons: (1) each unknown can be defined up to an additive constant without altering (11.7), and
(2) the right-hand side being bilinear in (ψ, α), each of these two unknowns can be multiplied
respectively by a constant and its inverse without altering the equation. This second point will
be addressed through the constant µ defined below by imposing that ψ(r) be the toroidal flux
label. The functions Φ(r) and α(r) need not be periodic functions of l and ω, while ψ(r) must
be periodic as it is related to the magnetic flux.

Expressed in the orthogonal coordinate system (ρ, ω, l), (11.7) is equivalent to the following
set of equations for ψ, α and Φ:

1

ρh

(
∂ψ

∂ρ

∂α

∂ω
− ∂ψ

∂ω

∂α

∂ρ

)
=
∂Φ

∂l
,

1

ρh

(
∂ψ

∂ω

∂α

∂l
− ∂α

∂ω

∂ψ

∂l

)
=
∂Φ

∂ρ
,

1

h

(
∂ψ

∂l

∂α

∂ρ
− ∂α

∂l

∂ψ

∂ρ

)
=

1

ρ

∂Φ

∂ω
,

(11.8)

where as a reminder h =
√
g/ρ is a known function of (ρ, ω, l). Moreover, Laplace’s equation

for Φ is expressed as

1

hρ

∂

∂ρ

(
hρ
∂Φ

∂ρ

)
+

1

hρ2
∂

∂ω

(
h
∂Φ

∂ω

)
+

1

h

∂

∂l

(
h
∂Φ

∂l

)
= 0. (11.9)
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Rather than search for a general solution to (11.8)–(11.9) for ψ, α, and Φ, this approach
focuses on a local solution near the magnetic axis, thanks to the following asymptotic series
expansions in ρ/L≪ 1 where L is the length of the magnetic axis: Φ(ρ, ω, l) = Φ0(ω, l) + Φ1(ω, l)ρ+Φ2(ω, l)ρ

2 +O(ρ3),
ψ(ρ, ω, l) = ψ2(ω, l)ρ

2 +O(ρ3),
α(ρ, ω, l) = α0(ω, l) + α1(ω, l)ρ+O(ρ2),

(11.10)

where ψ0 = 0 as the magnetic flux vanishes on the magnetic axis, and ψ1 = 0 from analyticity
assumptions [156]. As a remark, the definition of the geometric quantity h directly reads as an
expansion h0 + h1(l, ω)ρ with respect to ρ where h0 = 1.

The next goal is to understand the properties of the lowest-order flux function, ψ2, and lowest-
order field-line label, α0. We will, therefore, focus on the lowest orders of (11.8) that involve
these two quantities, namely 

∂α0

∂l
= −∂Φ2

∂ω

1

2ψ2
,

∂α0

∂ω
=
∂Φ0

∂l

1

2ψ2
.

(11.11)

Because these are coupled to Φ0 and Φ2, we will also consider the lowest-order terms in (11.8)
involving Φ0, namely

∂Φ0

∂ω
= 0, (11.12)

as well as the lowest-order terms in (11.9) involving Φ0 and Φ2, namely

4Φ2 +
∂2Φ2

∂ω2
+
∂h1
∂ω

∂Φ1

∂ω
+
∂2Φ0

∂l2
= 0. (11.13)

Since Φ0 and Φ2 are coupled to Φ1, we determine Φ1 from the lowest-order terms in (11.8)
involving Φ1, yielding

Φ1 = 0. (11.14)

Given a curve R0, and any functions Φ0 and Φ2 satisfying (11.12) and (11.13), then the
vector field defined by∇(ρ2ψ2)×∇α0 associated to functions α0 and ψ2 satisfying (11.11) has
the following properties:

• it is divergence-free,

• it exhibits continuously nested flux surfaces defined as the level sets of ψ2,

• it is consistent with the assumption of a vacuum field.

In Sections 11.2.2 and 11.2.3, we will discuss solutions for ψ2 and α0, respectively, in order to
interpret the geometry of the flux surfaces and the relationship between this geometry and the
rotational transform.

11.2.2 Flux surfaces

Since it isψ2 that defines the lowest-order flux surface shapes for the vector field∇(ρ2ψ2)×∇α0,
the goal is to obtain a PDE satisfied by ψ2(ω, l), find a class of solutions, and comment on the
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corresponding shape of flux surfaces. From (11.11), since partial derivatives commute, we obtain
the following PDE for 1/ψ2:

∂

∂ω

(
∂Φ2

∂ω

1

ψ2

)
+
∂

∂l

(
∂Φ0

∂l

1

ψ2

)
= 0. (11.15)

To obtain an equation on ψ2 alone we then turn to Φ2 and Φ0.

Remark 11.1. The lowest-order magnetic field, defined by B0 = ∇Φ0, coincides with the
magnetic field on the magnetic axis R0. In particular, along the magnetic axis, the magnetic
field is tangent to the curve: B0 = B0R

′
0, where the amplitude of the field is B0 =

√
B0 ·B0.

Moreover, l is the length along the curve, so this amplitude can also be expressed along the curve
as B0 = B0 ·R′

0 because R′
0 is a unit vector.

On the one hand, Φ0 satisfies (11.12). This implies that Φ0 is an unknown function of l only:
Φ0(l). Moreover, according to the previous remark, the lowest-order magnetic field satisfies
B0 = Φ′

0∇l. So since by duality R′
0 · ∇l = 1 then the function Φ0 is related to the magnetic

field strength on the axis as B0(l) = Φ′
0(l). On the other hand, thanks to (11.14), Φ2 satisfies

(11.13) now written as

4Φ2 +
∂2Φ2

∂ω2
+Φ′′

0 = 0. (11.16)

Using the method of variation of constants, the general solution could be sought in the form of
the sum of two products: a product of cos(ω) by a function of ω and l, and a product of sin(ω)
by another function of ω and l. Without loss of generality, any function of l only can be added
simultaneously to the argument ω in the cosine and sine functions. Since the polar angle in the
ê2-ê3 plane, defined as ϑ = ω −

∫ l
0
τ(l′) dl′, is of particular interest for the interpretation of the

solutions in the following discussion, the general solution for Φ2 can be expressed in terms of
Φ0 as

Φ2(ω, l) = −
Φ′′

0(l)

4
+ Cc(l) cos(2u(ω, l)) + Cs(l) sin(2u(ω, l)), (11.17)

where u(ω, l) = ω−
∫ l
0
τ(l′) dl′ + δ(l) and δ(l), Cc(l), and Cs(l) are integration constants with

respect to ω. Here δ(l) = u(ω, l)−ϑ can be interpreted as an angle with respect to the curvature
vector.

A linear PDE for ψ2 can now be obtained. Combining (11.15) with (11.16) gives

∂Φ2

∂ω

∂ψ2

∂ω
+Φ′

0

∂ψ2

∂l
+ 4Φ2ψ2 = 0.

It can be verified [155] that the set of functions

ψ2(ω, l) = Φ′
0(l)µ

(
eη(l) cos2 u(ω, l) + e−η(l) sin2 u(ω, l)

)
, (11.18)

depending on constants of integration η(l) and µ,21 satisfies the previous differential equation if
Cs and Cc satisfy 

Cc(l) = −Φ′
0(l)η

′(l)

4
,

Cs(l) =
Φ′

0(l)(δ
′(l)− τ(l))
2

tanh(η(l)).

21By specifying that ψ is a toroidal flux label, the constant µ can be shown to be 1/2. We will keep the following
expressions in terms of general µ.
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(a) (b)

Figure 11.1: We consider a surface of constant ψ near the magnetic axis, R0(l) (a). The cross-
section of such a surface in the plane spanned by ê1(l) and ê2(l) is shown in (b). A point in this
plane is given in the (ρ, ϑ, l) coordinate system by (11.5). Near the axis, the magnetic surfaces
take the form of an ellipse with major axis a and minor axis b.

In a neighborhood of the curve R0, given any two functions Φ0 and η of l, any constant µ, and
any function α0, the field ∇(ρ2ψ2) × ∇α0 exhibits continuously nested toroidal flux surfaces,
defined by the level sets of the flux label ψ2(ρ, ω, l) = ρ2ψ2(ω, l).

The geometry of these flux surfaces can then be interpreted from (11.18). Defining the quan-
tities 

a(l) =
e−η(l)/2√
µΦ′

0(l)
,

b(l) =
eη(l)/2√
µΦ′

0(l)
,

the expression for the flux label ψ2 now reads

ψ2(ρ, ω, l) =
ρ2 cos2 (u(ω, l))

a2(l)
+
ρ2 sin2 (u(ω, l))

b2(l)
.

This formula now provides an interpretation of the shape of flux surfaces in a neighborhood of
the curve since fixing a value of ψ2 defines a particular magnetic surface, while l is a toroidal
angle. Indeed, at fixed ψ2, for each value of l the previous expression defines an ellipse, in
the l-dependent ê2-ê3 plane, parameterized by ρ and the angle u measured with respect to the
semiminor axis of the ellipse. The semiminor and semimajor axes are defined by a(l)

√
ψ2 and

b(l)
√
ψ2, respectively. The eccentricity of the ellipse is given by e =

√
1− e−2η(l), with larger

values of e indicating stronger elongation of the ellipse.
As the angle with respect to the semiminor axis is given by u = ϑ + δ(l) and ϑ denotes an

angle in the poloidal plane with respect to the curvature vector, δ(l) can be interpreted as the
angle between the major axis of the ellipse and the curvature vector. The coordinate system is
shown in Figure 11.1.
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148 Chapter 11. Models of 3D ideal MHD equilibrium magnetic fields

Remark 11.2. Three free functions arise in the expression for ψ2, namely η(l), Φ0(l), and δ(l).
As shown by the formulas for the semiminor axis, the semimajor axis, and eccentricity, the choice
of these free functions impacts the shape of the flux surfaces.

11.2.3 Rotational transform

As discussed in Section 4.4.2, the rotational transform is essential for toroidal confinement. We
will compute the rotational transform of the field ∇(ρ2ψ2) × ∇α0 on the magnetic axis. This
will evidence the dependence of the rotational transform on the geometry of the magnetic axis
and flux surface. Notably, the class of approximate equilibrium solutions studied in this section
will be shown to allow for nonzero rotational transform, highlighting the potential for stellarators
to generate rotational transform without plasma current. The goal is to obtain a PDE involving
α0(ω, l) and find a class of solutions to comment on the associated rotational transform.

Combining the first equation of (11.11) with the expressions (11.17) for Φ2 and (11.18) for
ψ2 obtained in the previous section yields a simple differential equation for α0,

∂α0

∂l
= −2 (δ′(l)− τ(l)) cos (2u(ω, l)) tanh(η(l)) + η′(l) sin (2u(ω, l))

4µ
(
eη(l) cos2(u(ω, l)) + e−η(l) sin2(u(ω, l))

) .

This is equivalent to a more convenient formulation:

∂α0

∂l
=

1

2µ

(
∂

∂l

[
arctan

(
e−η(l) tanu(ω, l)

)]
− δ′(l)− τ(l)

cosh(η(l))

)
.

Then α0 can be expressed depending on a constant of integration α as

α0(ω, l) = α+
1

2µ
arctan

(
e−η(l) tanu(ω, l)

)
− 1

2µ

∫ l

0

δ′(l′)− τ(l′)
cosh(η(l′))

dl′. (11.19)

Following the discussion in Chapter 9, recall that the field-line label for a given magnetic
field can be expressed conveniently in terms of the rotational transform using a general flux
coordinate system. In order to study the rotational transform, we now introduce a convenient flux
coordinate system for the field ∇(ρ2ψ2)×∇α0. Since α0 is independent of ρ, it is equivalently
independent of flux in a flux coordinate system. Hence, the flux label can be chosen arbitrarily.
The toroidal angle is chosen to be the normalized length along the axis, ζ = 2πl/L. A poloidal
angle can then be defined starting from ϑ, the polar angle in the ê2-ê3 plane. Due to the rotation
of the curvature vector, a 2π period in ϑ can generally correspond with m toroidal transits in
addition to one poloidal transit for some integer m. The poloidal angle is defined as a shift to ϑ
such that it is a purely poloidal angle, ϑ = ϑ − m2πl/L. In terms of the initial angles (ω, l),
ϑ(ω, l) = ω −

∫ l
0
τ(l′) dl′ −m2πl/L.

Since α0 is independent of the flux label ψ, the discussion in Chapter 9 leads to the field-line
label expressed in the poloidal and toroidal angles as

α0

(
ω
(
ϑ, l
)
, l
)
= ϑ− ι0

2πl

L
+ λ

(
ϑ, l
)
,

where λ is a periodic function of the two angles, and the rotational transform ι0 is independent
of ψ. Thanks to periodicity with respect to toroidal angle l, the rotational transform then satisfies

ι0 =
α0

(
ω
(
ϑ, 0
)
, 0
)
− α0

(
ω
(
ϑ,L

)
, L
)

2π
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for any value of ϑ. Evaluating this expression with the α0 solution (11.19) in the coordinate
system (ϑ, l), we obtain

ι0 =
1

4πµ

(
−2πm− δ(L) + δ(0) +

∫ L

0

δ′(l)− τ(l)
cosh(η(l))

dl

)
.

As a consequence, for the field ∇(ρ2ψ2) × ∇α0 defined from the magnetic axis R0, rotational
transform can be produced near the axis due to the following geometric features:

• torsion τ(l) of the magnetic axis,

• rotating ellipticity δ′(l) of the flux surfaces,

• and rotation of the curvature vector, m.

In other words, if the magnetic axis is nonplanar or the flux surfaces are ellipses that twist as one
moves toroidally, there may be a nonzero rotational transform. A stellarator’s magnetic axis can
be chosen so that ι0 is sufficiently large to provide confinement.

In conclusion, we have constructed approximate 3D equilibrium solutions with magnetic
surfaces valid locally in a neighborhood of the magnetic axis with a possibly nonzero rotational
transform. This classic result of Mercier [210] is also discussed in [267, 116, 156]. While this
section has focused on solutions of the vacuum equations, similar techniques can be applied
in the presence of current and pressure gradients. Understanding 3D equilibria with near-axis
expansions continues to be an active area of research [81, 185, 186], and near-axis solutions
have been shown to be consistent with 3D numerical equilibrium calculations of quasisymmetric
configurations [176]. These solutions can be used in stellarator optimization, as will be discussed
further in Chapter 14. Details about the domain of validity of the near-axis expansion can be
found in [178].

11.3 Equilibria without the assumption of surfaces
Remark 4.4 motivates the interest for continuously nested flux surfaces. As discussed in Sec-
tion 10.2, in general 3D geometry, continuously nested toroidal flux surfaces are not guaranteed
to exist. In this section, we discuss models for computing equilibrium solutions allowing for a
pressure gradient, ∇p ̸= 0, without the assumption that magnetic surfaces exist and are con-
tinuously nested toroidal surfaces. Other approaches for computing 3D equilibria without the
assumption of surfaces, but with additional assumptions on the pressure profile, are described in
Sections 11.4, 11.5, and 11.6.

As a reminder, the force balance condition (8.9) implies that B · ∇p = 0 and J · ∇p = 0 so
that pressure is constant both along field lines and along streamlines of the current density. While
models assuming surfaces can satisfy this condition by enforcing that pressure is a given flux
function, the pressure cannot be imposed in the absence of surfaces as it will not generally satisfy
these conditions. Several numerical approaches for finding solutions without continuously nested
toroidal flux surfaces have been developed. In this section, three particular iterative approaches
will be discussed.

The approach employed by the PIES code [250] is to provide a pressure distribution p as
well as an initial guess for B in Ω such that B · ∇p = 0. For example, the initial field could be
computed with the variational approach introduced in Section 11.1. The ideal MHD equilibrium
equations (8.10) are then solved iteratively for the field and the current as follows.
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150 Chapter 11. Models of 3D ideal MHD equilibrium magnetic fields

• Given a field B, the updated current is computed in two steps.

– The current density perpendicular to the magnetic field is known from the force bal-
ance J ×B = ∇p,

J⊥ =
1

B
b̂×∇p.

– The parallel current can be computed by enforcing that ∇ · J = 0, a direct conse-
quence of∇×B = µ0J ,

B · ∇
(
J∥

B

)
= −∇ ·

(
1

B
b̂ · ∇p

)
.

• Given J = J⊥ + J∥b̂, the updated magnetic field can be determined from∇×B = µ0J .

This iteration continues until a convergence criterion is met. Several approaches can be used to
numerically solve the magnetic differential equation for J∥. In regions of good flux surfaces,
magnetic coordinates can be leveraged similarly to the analysis in Section 10.3. A statistical
averaging approach can be employed in regions of chaotic fields, as described in [169]. As dis-
cussed in Section 6.2, solutions to the MDE may not always exist and can give rise to nonsmooth
behavior. Methods of correction of the source function [138] and resonance broadening theory
[251] have been proposed to enable the solubility of the MDE.

The HINT [106] and HINT2 [286] codes use a procedure that involves iterating on the mag-
netic field and pressure, starting from an initial guess for each. The field and the pressure are
then computed iteratively as follows.

• Given magnetic field B, the updated pressure p is determined iteratively, starting from an
initial guess, to satisfy approximately B · ∇p = 0 within a prescribed tolerance.

• Given a pressure p, the updated B is determined from a time-dependent model,
ρ
∂u

∂t
= −∇p+ (∇×B)×B

µ0
,

∂B

∂t
= ∇×

(
u×B − η

µ0
∇×B

)
,

where the density ρ is constant and fixed.

This iteration continues until a convergence criterion is met. The solution is then interpreted as
an equilibrium state. The HINT and HINT2 model neglects the nonlinear term (u · ∇)u of the
momentum equation in the resistive MHD model (10.49) discussed in Section 10.4.1.

The SIESTA code [130] uses a variational method similar to that described in Section 11.1.1.
An ideal MHD equilibrium is initially computed. Then, its pressure is used as an initial guess,
and the initial guess for the magnetic field is the sum of the ideal MHD equilibrium field plus a
small resonant magnetic perturbation. The goal of the following iterative process is to solve the
force balance system, J ×B −∇p = 0, without assuming the existence of nested surfaces.

• A physics-based preconditioner is used to obtain a descent direction of the energy func-
tional defined in Section 11.1.1. The pressure and magnetic field are updated according to
the descent direction.

• The magnetic field is allowed to resistively relax for several iterations following:

∂B

∂t
=

η

µ0
∆B.
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The iterations associated with reducing the ideal force balance error and resistive relaxation are
interlaced to allow the magnetic surfaces to break up while approximately satisfying ideal MHD
force balance. The resistivity parameter η is generally chosen to be larger than physical values
to accelerate the convergence.

11.4 Force-free fields
The force-free equilibrium model is another equilibrium model without the assumption of con-
tinuously nested flux surfaces. In this model, the pressure force ∇p is neglected: J ×B = 0.
Consequently, the plasma current is parallel to the magnetic field everywhere. In this section, we
discuss the question of the existence and uniqueness of solutions, as well as a variational method
for computing such states.

As a remark, the force-free model is consistent with the assumption of a nonintegrable mag-
netic field. If a given field line comes arbitrarily close to every point within a domain Ω, then
from J ×B = ∇p, we conclude that pressure must be constant within Ω. Therefore, the mag-
netic field is force-free. Force-free fields have been used to model stellarator equilibria under
certain conditions, for example in [2].

Combining J ×B = 0 and ∇×B = µ0J gives (∇×B)×B = 0. This implies that the
equilibrium field satisfies for some scalar function λ

∇×B = λB. (11.20)

A force-free magnetic field is a solution to this equation, and the overall scale factor of a solu-
tion is not determined from (11.20). While λ refers to any scalar function, it is related to the
corresponding current J = ∇×B/µ0 since

λ =
µ0

B2
J ·B.

So, more precisely, λ is proportional to the parallel current density. Because the current is parallel
to the magnetic field, this can be restated in terms of the current magnitude J as

λ = ±µ0

B
J.

Remark 11.3. Combining∇ ·B = 0 and (11.20) implies that

B · ∇λ = 0.

In other words, λ is constant along field lines. When λ is taken to be a constant to satisfy
the above, the corresponding model is called the linear force-free model. We will make this
assumption throughout this discussion. This assumption is physically motivated, for example,
for modeling a chaotic magnetic field in which gradients of λ cannot be supported.

The existence and uniqueness of solutions to (11.20) has been shown for toroidal domains
and toroidal annuli under specific assumptions [167]. Related comments are summarized below.

• Consider a toroidal domain Ω. The boundary of the domain is a flux surface under the
following condition:

B · n̂ = 0 on ∂Ω. (11.21)

Moreover, the toroidal flux enclosed by Ω can be specified to determine the overall scale
of B. Given a fixed constant ΨT and a surface at constant poloidal angle bounded by ∂Ω,
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(a) (b)

Figure 11.2: A force-free equilibrium can be computed in an annular region Ω bounded by
toroidal surfaces Γouter and Γinner given the flux of magnetic field through a surface at constant
toroidal angle, ST , represented in green in (a), and the flux through a surface at constant poloidal
angle, SP , represented in blue in (b), bounded by Γinner and Γouter.

denoted ST , the corresponding assumption reads∫
ST

B · n̂ d2r = ΨT . (11.22)

If the constant λ is fixed, the force-free equation (11.20) in Ω together with a boundary
condition (11.21) as well as the flux condition (11.22) has a unique solution.

• Consider a toroidal annulus Ω defined as Ωouter\Ωinner, where Ωouter and Ωinner are toroidal
volumes such that Ωinner ⊂ Ωouter, as represented in Figure 11.2. These volumes are limited
by two toroidal surfaces, Γouter and Γinner, so that ∂Ω = Γouter ∪ Γinner. Consider two
surfaces bounded by Γouter and Γinner, one at constant poloidal angle, denoted ST , and one
at constant toroidal angle, denoted SP . Given fixed constants ΨT (Γouter) and ΨT (Γinner),
the toroidal flux and poloidal flux enclosed by Ω can be specified as

∫
ST

B · n̂ d2r = ΨT (Γouter)−ΨT (Γinner),∫
SP

B · n̂ d2r = ΨP (Γouter)−ΨP (Γinner).

(11.23)

If the constant λ is fixed, the force-free equation (11.20) in Ω together with the boundary
condition (11.21) on the entire boundary and the flux constraints (11.23) has a unique
solution.

Alternatively, the magnetic helicity can be prescribed instead of λ, as will be done in the next
paragraph. Given a magnetic field B and its vector potential A, the magnetic helicity is defined
by

K =

∫
Ω

A ·B d3r. (11.24)

If K is prescribed, then λ is sought together with B to satisfy the above condition. Rather
analogously to helicity in fluid dynamics, K is a measure of the knottedness of magnetic field
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lines, as discussed further in [16]. Although K depends explicitly on A, if ∂Ω is a flux surface
such that B · n̂|∂Ω = 0, then K is independent of the choice of gauge, a notion introduced
in Section A.1. The helicity K can be interpreted as the Gauss linking number [15], a notion
relevant in fields such as knot theory, algebraic topology, and differential geometry.

As in Section 11.1.1, force-free equilibria in a toroidal domain can be found by minimizing
an energy functional. Consider the functional W defined by

W [A] =

∫
Ω

(∇×A) · (∇×A)

2µ0
d3r,

subject to the following constraints:

1. the total magnetic helicity (11.24) is given and constant;

2. the boundary of the domain, ∂Ω, is a magnetic surface such that B · n̂|∂Ω = 0;

3. the boundary of the domain is fixed such that the perturbation to the magnetic field satisfies
δB · n̂|∂Ω = 0;

4. the toroidal magnetic flux through Ω is fixed,∫
ST

B · n̂ d2r = ΨT on ∂Ω.

This leads to the result that the perturbation to the vector potential satisfies δA × n̂ = 0
on ∂Ω.22

Imposing constraint 1 with a Lagrange multiplier α and computing the first variation in W with
respect to A yields

δW [A; δA] =

∫
Ω

(
(∇×A) · (∇× δA)

µ0
− α (A · (∇× δA)− δA · (∇×A))

)
d3r.

Integrating by parts, we obtain

δW [A; δA] =

∫
Ω

δA ·
(
∇× (∇×A)

µ0
− 2α∇×A

)
d3r

+

∫
∂Ω

δA× n̂ ·
(
αA− ∇×A

µ0

)
d2r.

The surface term vanishes under constraint 4, hence

δW [A; δA] =

∫
Ω

δA ·
(
∇× (∇×A)

µ0
− 2α∇×A

)
d3r. (11.26)

Thus for any stationary point A of W the corresponding field B = ∇ × A indeed satisfies
(11.20) with λ = 2α/µ0. The existence of a variational principle can form the basis for efficient
numerical approximation of a force-free field.

22This can be seen by noting that the perturbed magnetic field can be written in magnetic coordinates as

δB = ∇δψ ×∇α+∇ψ ×∇δα = ∇× (δψ∇α− δα∇ψ) , (11.25)

where α = ϑ− ιφ is the field-line label and δψ = 0 on δΩ from constraint 4. Thus, the perturbed vector potential can
be taken to be δA = −δα∇ψ on ∂Ω.
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While the variational principle presented in Section 11.1.1 requires that the local topology
of the magnetic field is fixed during variations, only the global helicity is fixed when performing
variations of (11.26). This model allows for islands or chaotic field regions to form as the energy
is minimized.

The extension of this model to describe multiple force-free regions is presented in the follow-
ing section. The Boundary Integral Equation Solver for Taylor states (BIEST) code [204] relies
on a force-free field model in a fixed stellarator geometry and can approximate fields in a single-
region domain and a multiple-region domain. In both cases, the Stepped Pressure Equilibrium
Code (SPEC) [140] can also be used to compute force-free magnetic fields.

11.5 Multiregion stepped pressure equilibrium
The multiregion relaxed MHD (MRxMHD) equilibrium model [134, 54] generalizes the single-
volume force-free state by allowing discontinuous, or stepped, pressure profiles and thus permit-
ting the pressure to vary throughout the plasma volume. The domain is partitioned into nested
toroidal annuli volumes in which the plasma is force-free and p is constant. These volumes
are separated by interfaces that accommodate jumps in p. The geometry of the interfaces is not
known a priori and must satisfy a specified set of jump and flux conditions described below. Note
that these interface conditions are similar to those used in immiscible fluid models or capillary
interface models where the interfaces between phases or fluids are unknown.23

Consider a toroidal domain, Ω, in which p and λ are piecewise constant. The domain is
partitioned into m nested toroidal subregions Ωi for all i from 1 to m. The innermost volume,
Ω1, is a genus one torus, while the other volumes, Ωi for i ≥ 2, are genus two tori. For each i
from 2 tom, Ωi is bounded by two nonintersecting toroidal surfaces, Γi−1 and Γi. The innermost
volume Ω1 is bounded by a single toroidal surface, Γ1, while the outermost boundary is the
domain boundary, Γm = ∂Ω. The discontinuities of p and λ occur at the surfaces, Γi.

The components of the model are described below.

• The parameters {λi}1≤i≤m define the λ profile as λ = λi in Ωi for all i from 1 tom, while
the magnetic field B = Bi in Ωi for all i from 1 to m satisfies

∇×Bi = λiBi in Ωi. (11.27)

• The parameters {pi}1≤i≤m define the stepped pressure profile as p = pi in Ωi for all i
from 1 to m, while the total pressure balance, including the plasma pressure p and the
magnetic pressure B2/(2µ0) at the interfaces, is expressed as

[[p+B2/2µ0]]Γi
= 0 ∀i between 1 and m− 1. (11.28)

• The flux surface conditions hold at the interfaces

B · n̂ = 0 on Γi ∀i between 1 and m.

• The parameters {ΨiT ,ΨiP }2≤i≤m define the toroidal and poloidal fluxes across each annu-
lar subdomain 

∫
STi

B · n̂ d2r = ΨiT ∀i between 2 and m,∫
SPi

B · n̂ d2r = ΨiP ∀i between 2 and m.
(11.29)

23A discussion of a flux condition on an artificial boundary within the domain to ensure well-posedness for a Navier–
Stokes problem is presented in [124], while [125] addresses numerical aspects of a flow through an aperture in an infinite
wall, and [145, 294] discuss a jump condition modeling force balance at an unknown interface.
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Here STi
is a surface at constant toroidal angle bounded by surfaces Γi and Γi−1, and SPi

is a surface at constant poloidal angle bounded by surfaces Γi and Γi−1.

• The parameter Ψ1
T defines the toroidal flux across the innermost toroidal domain Ω1∫

ST1

B · n̂ d2r = Ψ1
T , (11.30)

where ST1
is a surface at constant toroidal angle bounded by Γ1.

In summary, given {λi, pi,ΨiT }1≤i≤m and {ΨiP }2≤i≤m, the force-free field equations (11.27)
can be solved, subject to the constraints (11.28)–(11.30), to determine the position of free sur-
faces {Γi}1≤i≤m and value of the magnetic field Bi in ∪1≤i≤mΩi. In place of {λi}1≤i≤m, the
total helicity in each Ωi may be prescribed and, in place of ψ1

T ∪ {ΨiT ,ΨiP }2≤i≤m, the value of
the rotational transform on each Γ−,+

i for 1 ≤ i ≤ m may be fixed.
An important characteristic of the model is that Γi, referred to as ideal interfaces, are mag-

netic surfaces. Between these ideal interfaces, the topology of the magnetic field is not con-
strained. This way, the model allows for islands and chaotic regions while allowing for a pressure
differential across the volume thanks to pressure jumps at the interfaces.

This model is the basis for the Stepped Pressure Equilibrium Code (SPEC) [140]. This code
solves for the magnetic field, iterating on the position of the interfaces until the constraints are
satisfied.

11.6 Vacuum fields
Vacuum fields are an important subset of force-free magnetic fields corresponding to λ = 0 and
do not assume continuously nested toroidal surfaces. As described in Section A.3, the vacuum
model for magnetic fields can be used if there is no current in a given domain, J = 0. For
the vacuum approximation to be valid, an additional assumption of vanishing pressure gradients
must be made since J ×B = 0. Even if these assumptions are not valid within the confinement
region, the vacuum model can describe the region outside the confinement region. Under the
vacuum assumption, B is curl-free from∇×B = µ0J , so it can be written in terms of a scalar
potential, B = ∇ΦB . The scalar potential ΦB must satisfy Laplace’s equation, ∆ΦB = 0. In a
toroidal domain, additional constraints on the functional form of ΦB and boundary condition are
necessary to ensure that Ω is current-free.

Consider Laplace’s equation in a toroidal domain, Ω, assuming general toroidal and poloidal
angles θ and ζ, and a radial coordinate, r, that is not necessarily a flux label. In general, as
B = ∇ΦB must be periodic in θ and ζ, the scalar potential can be separated into periodic and
nonperiodic pieces,

ΦB(r, θ, ζ) = Φ̃B(r, θ, ζ) +A(r)ζ + C(r)θ, (11.31)

where Φ̃B is periodic in θ and ζ.
The constraints placed on the functions A(r) and C(r) by the vacuum field assumption will

now be discussed. Because there is no current inside Ω, the current enclosed by a poloidal loop
about the torus vanishes. Hence Ampère’s law∇×B = µ0J , using a loop at constant ϕ on the
boundary of the toroidal domain, ∂Ω, gives∮

ζ=const.
B · dl = 0. (11.32)
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Using dl = (∂R/∂θ) dθ this implies that C(r) = 0 everywhere in Ω. Similarly, the function
A(r) can be determined by considering a loop at constant θ on ∂Ω,∮

θ=const.
B · dl = µ0IP . (11.33)

Using dl = (∂R/∂ζ) dζ, this implies that A(r) = µ0IP /2π. As there is no current in Ω, IP is
the total coil current linking the plasma poloidally, and thereforeA(r) is a constant. The integrals
in (11.32) and (11.33) are described in Section 9.1.2.

The boundary condition for ΦB on ∂Ω is determined by specifying B · n̂ on ∂Ω,

n̂ · ∇Φ̃B = B · n̂− µ0IP
2π

n̂ · ∇ζ on ∂Ω.

If ∂Ω is a magnetic surface, then B · n̂ = 0.
To summarize, a field B(r, θ, ζ) = ∇(Φ̃B(r, θ, ζ)+µ0IP /2πζ) is a vacuum field in a toroidal

domain Ω if Φ̃B satisfies Laplace’s equation

∆Φ̃B(r, θ, ζ) = −
µ0IP
2π

∆(ζ) in Ω

subject to this Neumann boundary condition on ∂Ω. The system can be solved using a Green’s
function method, as in the NESTOR code [212].

Alternatively, the fields in a vacuum region can also be computed using the Biot–Savart law
(A.9) applied to sources of current outside the vacuum region. Thus, the magnetic field can be
determined if the currents in electromagnetic coils are provided.

11.7 Summary and analogy with steady Euler flow
Table 11.1 summarizes the models that describe equilibrium stellarator magnetic fields in a
toroidal domain Ω with an associated boundary condition.

As an example of the connection between plasma and fluid dynamics, the MHD equilibrium
equations share many similarities with the steady Euler flow equations. Over the years, this has
facilitated the exchange of ideas between the fluid dynamics and plasma physics communities.
Examples include [215, 113, 33].

The steady, ∂/∂t = 0, incompressible Euler equations with constant density, ρ0, are equa-
tions for the flow velocity u and pressure P . They can be written (u · ∇)u = −∇

(
P

ρ0

)
∇ · u = 0.

⇔

 (∇× u)× u = −∇
(
P

ρ0
+
u2

2

)
∇ · u = 0.

Conservation of momentum density is expressed by the first equations, while the second equation
expresses incompressibility of the flow. The vorticity is defined as ω = ∇× u. Beltrami flows
describe states where the vorticity is parallel to u and are analogous to force-free fields. Flows
with vanishing vorticity can be expressed in terms of a potential and are analogous to vacuum
fields. The comparison is presented in Table 11.2.
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Table 11.1: Summary of MHD equilibrium models.

MHD equilibrium Force-free fields Vacuum fields

(surfaces assumed)

Hyp. J ×B ̸= 0 J ×B = 0 J = 0

∇p ̸= 0 ∇p = 0 and λ = const. ∇p = 0

J ×B = ∇p ∇×B = λB

PDE
∇ ·B = 0 ∆Φ̃B = 0

model

µ0J = ∇×B µ0J = ∇×B

Given p(ψ), ι(ψ), ΨT λ, ΨT IP

Unkn. B B Φ̃B

With J function of B J function of B B = ∇
(
Φ̃B + (µ0IP /2π) ζ

)
BC B · n̂ = 0 B · n̂ = 0 n̂ · ∇Φ̃B + (µ0IP /2π) n̂ · ∇ζ = B · n̂

Table 11.2: A comparison of the steady Euler models with the MHD equilibrium models.

Hyp. Steady Euler models MHD equilibrium models

(∇× u)× u = −∇
(
P

ρ0
+
u2

2

)
(∇×B)×B = µ0∇p

∇ · u = 0 ∇ ·B = 0

Beltrami flows/fields ∇× u = αu ∇×B = λB

(vorticity parallel to field) ∇ · u = 0 ∇ ·B = 0

Potential flows u = ∇φ B = ∇ΦB

(zero vorticity) ∆φ = 0 ∆ΦB = 0
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Chapter 12

Symmetries in
stellarators

The notion of symmetry has a long history in physics. Due to the strong connection between
symmetries and conserved quantities, leveraging symmetries can provide new physical insight,
as illustrated in Appendix B. For further examples, in toroidal magnetic confinement, axisym-
metry implies conservation of the canonical angular momentum, as described in Section 7.2, and
existence of magnetic surfaces, as in described Section 10.1.

The most natural type of symmetry in a toroidal geometry is axisymmetry. Although the stel-
larator is not axisymmetric, other types of symmetries of the magnetic field have been introduced
to design stellarators with some improved properties. Such symmetries are referred to as hidden
symmetries. In particular, symmetry concepts have been introduced in order to exploit properties
of the equilibrium magnetic field to improve confinement properties.

In Section 12.1, an important symmetry guaranteeing confinement of guiding center trajecto-
ries, quasisymmetry, is discussed. In Section 12.2, a generalization of quasisymmetry known as
omnigeneity is introduced. Other symmetries, such as NP symmetry and stellarator symmetry,
are used to simplify the geometric description of stellarators. In Section 12.3.1, a periodicity in
the number of field periods, often referred to as NP symmetry, is presented. In Section 12.3.2,
a discrete reflection symmetry, known as stellarator symmetry, is described. While these two
discrete symmetries may not result in improved confinement as quasisymmetry and omnigeneity
do, they are present in almost all experimental stellarator configurations to date.

While each symmetry has an exact theoretical definition, it is important to keep in mind
that perfect symmetry can never be achieved in practice. Indeed, on the one hand other physics
considerations must be accounted for when designing the magnetic field, and on the other hand
coils cannot be engineered to perfectly reproduce the desired field. Moreover, the theoretical
models for stellarator design focus on the field and coils, but do not take into account any other
parts of the device. Nonetheless, symmetries can be achieved up to a small level of tolerance,
and the design of stellarator configurations with hidden symmetries is an active area of research.
It is, for instance, the main focus of the Hidden Symmetries and Fusion Energy collaboration, an
interdisciplinary collaboration funded by the Simons Foundation from 2018 to 2025.24

The next chapter will turn to optimization models and computational methods for stellarator
design. In particular, hidden symmetries of the equilibrium field will be one of many engineering
and physics objectives of interest for the optimization.

24The collaboration website can be found at https://hiddensymmetries.princeton.edu/.
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160 Chapter 12. Symmetries in stellarators

12.1 Quasisymmetry
In the context of axisymmetry, independence of physical quantities with respect to the toroidal
angle yields conservation of angular momentum, providing approximate particle confinement.
The concept of quasisymmetry similarly allows for conservation of a canonical momentum due
to a symmetry of the magnetic field strength when expressed in a specific coordinate system.
This hidden symmetry provides a method for confinement of guiding center trajectories.

The notion of quasisymmetry [23, 232] is introduced in terms of Boozer coordinates, de-
scribed in Section 9.2. It is defined as a symmetry of the field strength, B, with respect to
a linear combination of Boozer angles, ϑB and φB . As a reminder, this definition then re-
lies on the assumption that the magnetic field has continuously nested toroidal flux surfaces,
discussed in Remark 4.4. A magnetic field B is quasisymmetric if there exists a change of co-
ordinates (ψ, ϑB , φB) → (ψ, χ, η), where χ = MϑB − NφB and η = M ′ϑB − N ′φB with
M ′N ̸=MN ′, such that the magnetic field amplitude is independent of the coordinate η,

∂

∂η

[
B (R(ψ, χ, η))

]
= 0. (12.1)

The assumption M ′N ̸= MN ′ is required for a well-defined Jacobian. Thus there exists a
symmetry direction when the field strength is expressed in Boozer coordinates.

The term quasisymmetry refers to the fact that it is a property of the field strength B rather
than the full vector field B. By contrast, axisymmetry introduced in Section 7.1 refers to a
symmetry of each of the vector components of the field.

Consequences of quasisymmetry on guiding center motion, in particular the associated con-
servation of canonical momentum, will be studied in Section 12.1.1. Different choices of the
parameters (M,N,M ′, N ′) will define different types of quasisymmetry; some of them will
be discussed in Section 12.1.2. Other definitions of quasisymmetry that do not require Boozer
coordinates are discussed in Section 12.1.3.

12.1.1 Guiding center motion in quasisymmetry

We will study the consequences of this symmetry on guiding center motion. As a reminder
from Section 7.2, if the Lagrangian is independent of one coordinate, this implies the existence
of a conserved quantity. Our aim will be to compute this conserved quantity and discuss the
implications. The analysis will be similar to that in Section 7.2, where axisymmetry was shown
to provide angular momentum conservation for charged particle motion, yielding approximate
confinement of the motion to flux surfaces under the assumption of a strong magnetic field.

Consider the guiding center motion for charged particles of mass m and charge q in static
electric and magnetic fields within the Lagrangian framework presented in Section 4.2 under the
following assumptions. The magnetic field has continuously nested flux surfaces, guaranteeing
the existence of Boozer coordinates. It is quaisymmetric and satisfies B = ∇×A. The electric
field satisfies E = −∇Φ. To simplify the discussion we will assume Φ is a flux function. In
practice, this is a good approximation for stellarator configurations [116].

To investigate the impact of quasisymmetry on guiding center motion, we use the gyroaver-
aged Lagrangian (4.21) rewritten using the definition of the magnetic moment µ = mρ2φ̇2/(2B),

L(RG, ṘG, ρ, ρ̇, φ, φ̇, v∥, v̇∥)

=
(
qA(RG) +mv∥b̂ (RG)

)
· ṘG −

mv2∥

2
+
ρ2mφ̇2

2
+ µ (RG, ρ, φ̇)B(RG)− qΦ(RG).

(12.2)
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Here again RG is the guiding center position, ρ is the gyroradius, φ is the gyroangle, and v∥ is the
parallel velocity. The Lagrangian will first be expressed in the linear combinations of Boozer co-
ordinates defined above (ψ,χ,η) and then simplified under the assumption of quasisymmetry. As
a reminder, the transformation from Boozer coordinates (ψ, ϑB , φB) to their linear combinations
(ψ, χ, η) is given by 

ϑB =
Nη −N ′χ

M ′N −MN ′ ,

φB =
Mη −M ′χ

M ′N −MN ′ .

The change of coordinates from (RG, ṘG) to (ψ, ψ̇, χ, χ̇, η, η̇) is defined by
RG

(
ψ, ψ̇, χ, χ̇, η, η̇

)
= R(ψ, χ, η),

ṘG

(
ψ, ψ̇, χ, χ̇, η, η̇

)
= ψ̇

∂R (ψ, χ, η)

∂ψ
+ χ̇

∂R (ψ, χ, η)

∂χ
+ η̇

∂R (ψ, χ, η)

∂η
.

The first two terms in the Lagrangian can then be simplified as follows. The vector potential
can be expressed in Boozer coordinates as

A(ψ, ϑB , φB) = ψ∇ϑB − ψP (ψ)∇φB ,

where ψP = ΨP /2π is the poloidal flux function such that ψ′
P (ψ) = ι(ψ). Note that upon

application of a curl, we recover the Boozer contravariant form of B (9.6). Then[
A(RG) · ṘG

] (
ψ, ψ̇, χ, χ̇, η, η̇

)
=
Nψ −MψP (ψ)

M ′N −MN ′ η̇ +
M ′ψP (ψ)−N ′ψ

M ′N −MN ′ χ̇.

Using the covariant form (9.13) of the field in Boozer coordinates (ψ, ϑB , φB) with b̂ = B/B,
we obtain[

b̂ (RG) · ṘG

] (
ψ, ψ̇, χ, χ̇, η, η̇

)
=
ψ̇K(ψ, χ, η) + χ̇ (−N ′I(ψ)−M ′G(ψ)) + η̇ (NI(ψ) +MG(ψ))

B(ψ, χ, η) (M ′N −MN ′)
.

Here K is the radial covariant component of the magnetic field. In Section 9.2.3 it was shown
that if ι /∈ Q,25 then

K(ψ, ϑB , φB) = K(ψ) + iµ0
dp(ψ)

dψ

∑
m,n,mn̸=0

(
G(ψ) + ι(ψ)I(ψ)

n− ι(ψ)m
bm,n(ψ)

)
ei(mϑB−nφB),

where bm,n are the Fourier harmonics of 1/B2. So if B(R(ψ, ϑB , φB)) varies on a surface only
through χ = MϑB −NφB , then so must K as bm,n vanishes for m/n ̸= M/N . Therefore, K
has the same symmetry properties as B in Boozer coordinates.

Defining Q = (ψ, ψ̇, χ, χ̇, η, η̇, φ, φ̇, v∥, v̇∥), the gyroaveraged Lagrangian in Boozer coor-
dinates then reads

L(Q) = mv∥
ψ̇K(ψ, χ) + χ̇ (−N ′I(ψ)−M ′G(ψ)) + η̇ (NI(ψ) +MG(ψ))

B(ψ, χ) (M ′N −MN ′)

+ q

(
Nψ −MψP (ψ)

M ′N −MN ′ η̇ +
M ′ψP (ψ)−N ′ψ

M ′N −MN ′ χ̇

)
−
mv2∥

2
+
ρ2mφ̇2

2
+ µ (ψ, χ, ρ, φ̇)B(ψ, χ)− qΦ(ψ).

25Even though this argument relies on ι /∈ Q, the result is still true with closed field lines [67, 35].
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162 Chapter 12. Symmetries in stellarators

This right-hand side being independent of η shows that L is independent of η. The Euler–
Lagrange equation corresponding to η then implies that the canonical momentum, defined by
pη(Q) = ∂L(Q)/∂η̇, is conserved along trajectories: for any QT : R→ R10,

∂L(QT (t))

∂η
=

d

dt

(
∂L
(
QT (t)

)
∂η̇

)
⇒

dpη
(
QT (t)

)
dt

= 0. (12.3)

This canonical momentum is explicitly given by

pη(Q) =
1

M ′N −MN ′

(
mv∥

(
NI(ψ) +MG(ψ)

)
B(ψ, χ)

+ q
(
Nψ −MψP (ψ)

))
.

The conservation of pη implies that particles remain confined to constant pη surfaces in phase
space. According to Appendix B.3.2, since guiding center motion defines a 2-degree-of-freedom
Hamiltonian system, the existence of two conserved quantities, namely pη and energy, implies
integrability of the guiding center motion. Thus the guiding center trajectories are confined to
invariant tori in phase space in a quasisymmetric system. We now consider the implications
for confinement in physical space. As we did in Section 7.2, we will consider the relative size
of each term in pη under the assumption of a strong magnetic field, ϵ = ρ/LB ≪ 1, where
ρ = mvt/(qB) is the gyroradius and LB is a typical length scale of the magnetic field, as
introduced in Section 4.2.2.

• Here we will approximate v∥ ∼ vt where vt is the thermal velocity, as was assumed in
Section 4.1.

• The scaling of the toroidal flux is assumed to be ψ ∼ r2BT /2, where r is an approximate
scale of the minor radius and BT is an approximate toroidal field strength. Assuming that
ι ∼ O(ϵ0), the poloidal flux is assumed to scale as ψP (ψ) ∼ ιψ since ψ′

P (ψ) = ι.

• In stellarators, the toroidal plasma current is much smaller than the poloidal current in the
coils, so we can assume that I(ψ)≪ G(ψ), as the covariant components are defined such
that G(ψ) = µ0IP (ψ)/2π and I(ψ) = µ0IT (ψ)/2π. Since most of the poloidal current
flows through the coils, G is assumed independent of ψ. This assumption also leads to
G ∼ RBT , where R is the approximate scale of the major radius.

• We assume that the approximate minor and major radii scale as r ∼ R ∼ LB .

It then follows that the ratio of the two terms in pη scales as

mv∥
(
NI(ψ) +MG(ψ)

)
/B

q
(
Nψ −MψP (ψ)

) ∼ vtG

Ωr2G/(2R)
∼ ρ

LB
∼ ϵ≪ 1,

where Ω = qB/m is the gyrofrequency.
Thus, we can approximate pη ∼ q

(
Nψ −MψP (ψ)

)
/(M ′N −MN ′) to lowest order in ϵ.

So the Euler–Lagrange equation (12.3) implies that, to lowest order in ϵ, along any trajectory
ψT : R→ R,

dψT (t)

dt
≈ 0.

We can therefore conclude that guiding center orbits stay close to a flux surface under the as-
sumption of a strong magnetic field, as they do in axisymmetry. In this way, guiding center
motion exhibits good confinement properties under the assumption of quasisymmetry.
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(a) (b)

Figure 12.1: (a) The last magnetic surface of NCSX is shown with the color scale indicating field
strength. (b) The field strength on the last magnetic surface is plotted as a function of the two
Boozer angles. As NCSX is quasiaxisymmetric, B is nearly constant along lines of constant ϑB .
This approximately quasiaxisymmetric equilibrium was obtained through numerical optimization
techniques, presented in Chapter 13.

12.1.2 Types of quasisymmetry

Quasisymmetry can be organized into three categories, depending on the values of M and N
defining the coordinate χ =MϑB −NφB .

Quasiaxisymmetry (QA) refers to the case N = 0. Thus contours of B close toroidally
without wrapping poloidally around the flux surface as illustrated in Figure 12.1. Several other
configurations have been designed to be close to QA, including Aries-CS [223], CFQS [264],
ESTELL [61], QuASDEX [123], and MUSE [246]. The stellarator NCSX was designed to be
approximately quasiaxisymmetric [322] and was partially constructed at the Princeton Plasma
Physics Laboratory.

Quasipoloidal (QP) symmetry refers to the caseM = 0 so that contours ofB close poloidally
without wrapping toroidally around the flux surface. Section 2.7 from [174] shows that this type
of symmetry cannot be achieved in practice near the axis due to the requirement that the pressure
gradient vanishes on the axis. However, away from the axis, it may be possible to get close to
QP symmetry. The Quasi Poloidal Stellarator [279] is an example of a configuration designed
for QP symmetry.

Quasihelical (QH) symmetry refers to the case M ̸= 0 and N ̸= 0. Thus contours of B close
both toroidally and poloidally, or helically as illustrated in Figure 12.2. The Helically Symmetric
Experiment (HSX) at the University of Wisconsin - Madison [5] is a quasihelically symmetric
stellarator experiment. Several other QH configurations have also been designed [232, 171] but
not constructed.

12.1.3 Other definitions

Several equivalent definitions of quasisymmetry are described in other references, for example,
[116, 177]. One representation that does not rely upon a transformation to Boozer coordinates
will be discussed in this section.

According to [121], a magnetic field B is quasisymmetric if there exists a flux function F (ψ)
such that

B ×∇ψ · ∇B = F (ψ)B · ∇B. (12.4)
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(a) (b)

Figure 12.2: (a) The last magnetic surface of HSX is shown with the color scale indicating field
strength. (b) The field strength on the last magnetic surface is plotted as a function of the two
Boozer angles. As HSX is quasihelically symmetric, B is nearly constant along lines of constant
ϑB −NPφB (black), where NP is the number of field periods as defined in Section 12.3.1. This
approximately quasihelically symmetric equilibrium was obtained through numerical optimiza-
tion techniques, presented in Chapter 13.

This expression of quasisymmetry will be leveraged to study the motion of trapped particles in
Section 12.2.

Using the contravariant representation of the magnetic field in Boozer coordinates to rewrite
the right-hand side and the covariant representation to rewrite the left-hand side of (12.4), we can
see that the definition of quasisymmetry presented in Section 12.1 implies (12.4) with

F (ψ) =
NI(ψ) +MG(ψ)

ι(ψ)M −N
(12.5)

for quasisymmetry with poloidal mode M and toroidal mode N .
The converse is also true: a magnetic field B satisfying (12.4) also satisfies (12.1). Indeed,

expressing (12.4) in Boozer coordinates, for all (ψ, ϑB , φB) ∈ (a, b)× (0, 2π)× (0, 2π)

(
− F (ψ)− I(ψ)

)∂B(ψ, ϑB , φB)

∂φB
+
(
G(ψ)− ι(ψ)F (ψ)

)∂B(ψ, ϑB , φB)

∂ϑB
= 0 (12.6)

and writing B in a Fourier series in the two angles,

B(ψ, ϑB , φB) =
∑
m,n

Bm,n(ψ)e
i(mϑB−nφB),

implies the following condition:

∀(m,n) ∈ Z2,∀ψ ∈ (a, b),
((
I(ψ) + F (ψ)

)
n+

(
G(ψ)− ι(ψ)F (ψ)

)
m
)
Bm,n(ψ) = 0.

In order to satisfy this condition, some Bm,n(ψ) can be constantly equal to zero, but the corre-
sponding terms would not contribute to the field B. Other Bm,n(ψ) can be nonzero at least for
some interval (c, d) ⊂ (a, b). Hence, in order to express explicitly the consequence of (12.6)
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on the Fourier field B, the goal is now to identify the pairs of indices (m,n) such that the
condition

∀ψ ∈ (c, d),
(
I(ψ) + F (ψ)

)
n+

(
G(ψ)− ι(ψ)F (ψ)

)
m = 0 (12.7)

is satisfied since only Fourier modes for these indices will contribute to the field.
The functions of ψ in this expression have an important property: the two functions I + F

and G − ιF of ψ cannot vanish simultaneously. For future reference, this can equivalently be
expressed by

∀ψ ∈ (a, b),

{
either I(ψ) + F (ψ) ̸= 0,
or G(ψ)− ι(ψ)F (ψ) ̸= 0.

(12.8)

This important property can be proved by contradiction as follows. Assume that there exists
a ψ0 such that {

I(ψ0) + F (ψ0) = 0,
G(ψ0)− ι(ψ0)F (ψ0) = 0,

or equivalently {
F (ψ0) = −I(ψ0),
G(ψ0) + ι(ψ0)I(ψ0) = 0.

This is a contradiction since the Jacobian of the Boozer coordinate system can be expressed as√
g = (G(ψ) + ι(ψ)I(ψ))/B2 and is not zero for all ψ ∈ (a, b).

Two possible situations can then arise:

(i) ∀ψ ∈ (c, d), I(ψ) + F (ψ) = 0 or (ii) ∃ψ0 ∈ (c, d), I(ψ0) + F (ψ0) ̸= 0.

(i) In the first situation, (12.7) is equivalent to

∀ψ ∈ (c, d), (G(ψ)− ι(ψ)F (ψ))m = 0.

Besides, (12.8) implies that

∀ψ ∈ (c, d), G(ψ) + ι(ψ)F (ψ) ̸= 0,

and therefore m = 0.
Hence in situation (i), the field B has the form

B(ψ, ϑB , φB) =
∑
n

B0,n(ψ)e
−inφB ,

it only depends on φB and hence it satisfies (12.1) for η = ϑB , and this field satisfies (12.1)
for (M,N) = (0, 1).

(ii) In the second situation, by continuity there is a neighborhood D of ψ0 such that

∀ψ ∈ D, I(ψ) + F (ψ) ̸= 0.

Then (12.7) implies that

∀ψ ∈ D,mG(ψ)− ι(ψ)F (ψ)
I(ψ) + F (ψ)

= n.
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This is equivalent to  either m = 0, and so n = 0,

or ∀ψ ∈ D, G(ψ)− ι(ψ)F (ψ)
I(ψ) + F (ψ)

=
n

m
.

So the pairs of indices (m,n) satisfying (12.7) are either (0, 0) or the pairs satisfying

∀ψ ∈ D, G(ψ)− ι(ψ)F (ψ)
I(ψ) + F (ψ)

=
n

m
.

This implies that the left-hand side is constant on D and that there exists a rational number
K = N∗

M∗
, with two coprime integers (N∗,M∗), such that M∗n = N∗m.

Hence in situation (ii), the field B has the form

B(ψ, ϑB , φB) =
∑
k∈Z

BkM∗,kN∗(ψ)e
ik(M∗ϑB−N∗φB),

it only depends on M∗ϑB −N∗φB , and hence it satisfies (12.1) for η =M ′ϑB −N ′φB as
long as (M ′, N ′) are chosen so that M∗N

′ ̸= N∗M
′.

As announced, this proves that in either of the two possible situations the definition (12.1) is
indeed verified by a field satisfying the definition (12.4).

12.2 Omnigeneity
As a reminder from Section 4.2, guiding center theory requires the assumption of a strong mag-
netic field. As discussed in the previous section, quasisymmetry implies the conservation of
canonical momentum, yielding guiding center confinement under this assumption. However,
quasisymmetry is not a necessary condition for confinement. We will discuss a generalization of
quasisymmetry, known as omnigeneity, enabling the confinement of guiding center trajectories
in a similar way but without involving conservation of a canonical momentum. As a reminder
from Section 4.2, guiding center trajectories in a strong magnetic field tend to move along field
lines. As discussed in Section 4.4, the motion is confined in the direction parallel to the field in
the presence of continuously nested toroidal flux surfaces. In a toroidal magnetic field, the cur-
vature and gradient of the field lead to components of the guiding center velocities perpendicular
to the field. These are known as drifts and can generally lead to unconfined orbits. Omnigeneous
magnetic fields guarantee a vanishing time-averaged magnetic drift of particle trajectories away
from a given magnetic surface. In this way, particles stay confined to a given magnetic surface
on average.

The definition of omnigeneity then requires a preliminary discussion about particle trajec-
tories. We begin with a brief reminder of guiding center motion. We will then define the
time-averaged magnetic drifts that form the basis for the definition of omnigeneity. These time-
averaged drifts will then be related to a so-called parallel adiabatic invariant, an approximate
conserved quantity in magnetic confinement devices as introduced in Remark 4.2, to demon-
strate the connection between omnigeneity and a symmetry of this adiabatic invariant.

To define omnigeneity, we will analyze guiding center motion in a static magnetic field with-
out a radial current, (∇×B) ·∇ψ = 0, and without an electric field. As discussed in Section 4.2,
guiding center motion is obtained under the assumption that ϵ = ρ/LB ≪ 1, where ρ is the gy-
roradius and LB is a typical length scale of the magnetic field strength.

At O(ϵ0), the motion of guiding centers is simply along field lines. The magnetic moment
µ = mv2⊥/(2B) is conserved along a guiding center trajectory, where v⊥ is the magnitude of the
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velocity perpendicular to the magnetic field, introduced in Section 4.3.1. In addition, the energy
of a particle, E = mv2∥/2+µB, is conserved in time-independent fields, as described in Section
4.3.2. As a reminder, along a trajectory, the parallel velocity can be expressed in terms of E and
µ,

v∥ = ±
√

2(E − µB (RG))

m
.

According to Section 4.3.3, this results in trapping of some particles in regions of low magnetic
field strength, the parallel velocity can vanish at points where the field strength B reaches the
critical value Bcrit := E/µ, a constant along a trajectory. Particles with Bcrit value exceeding the
maximum magnetic field strength in a given region are said to be passing particles, and otherwise
they are said to be trapped particles. Defining σ = sign(v∥), v∥ can also be written as a function
of position and the constants of motion E and µ:

v∥ (RG, E, µ, σ) = σ

√
2(E − µB (RG))

m
. (12.9)

For passing particles, σ is conserved along the trajectory, while for trapped particles σ flips along
different segments of the trajectory.

At O(ϵ), the drift (4.30) experienced by guiding center trajectories is repeated here for con-
venience. Along any guiding center trajectory, the drift velocity is given for (RG)T : R → R3

by

(
(ṘG)T (t)

)
⊥
=

[
v2∥b̂× κ

Ω
+
µb̂×∇B

qB

]
((RG)T (t)) .

In this section, we will use the shorthand notation Vdrift(t) =
(
(ṘG)T (t)

)
⊥

to denote the guid-
ing center drift velocity along a trajectory. The component of the velocity corresponding to drifts
away from magnetic surfaces, also called radial drift, is given by Vdrift · ∇ψ. Under the assump-
tion that ∇×B · ∇ψ vanishes, then b̂× κ · ∇ψ =

(
b̂×∇B · ∇ψ

)
/B. Hence the radial drift

can be written as

[Vdrift · ∇ψ] ((RG)T (t)) =

[(
v2∥ +

µB

m

)
B ×∇B · ∇ψ

B2Ω

]
((RG)T (t)) . (12.10)

Treating v∥ as a function of position and using the identity∇ · (B×∇ψ) = 0, a consequence of
∇ψ · (∇×B) = 0, this expression can be further simplified as follows:

[Vdrift · ∇ψ] ((RG)T (t)) =
[v∥
Ω
∇ ·
(v∥
B
B ×∇ψ

)]
((RG)T (t)) . (12.11)

If Vdrift · ∇ψ could vanish along all trajectories, then all particles would be confined to mag-
netic surfaces up toO(ϵ). However, in practice obtaining a magnetic field such that this constraint
is satisfied is very restrictive [49]. Yet under a weaker condition, particles could remain within
a small distance of a given surface, still providing good confinement. Indeed, a less restrictive
condition is to seek that particles remain close to a given surface, the distance being quantified
by an averaging process. We define an approximate time average. Since the O(ϵ0) motion is
along magnetic field lines, we can approximate the time along a trajectory by considering only
the parallel motion. In order to introduce this time average, we now leverage the (ψ, α, l) co-
ordinate system introduced in Section 9.3, where ψ is a flux label, α is a field-line label such
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that B = ∇ψ × ∇α, and l measures length along field lines. The corresponding Jacobian is√
g = 1/B. The approximate differential time is then dt = dl/v∥. During a portion of a tra-

jectory when σ = +1, the change in l is positive while v∥ > 0. Therefore t increases along the
trajectory. Similarly, when σ = −1, the change in l is negative while v∥ < 0, thus t increases.
We conclude that dt = dℓ/|v∥| where dℓ = σdl measures length along a trajectory, and the time
average operation is independent of σ.

Formally, the time average of a given quantity A is defined as

⟨A⟩ (ψ, α,E, µ) =

∮
A(ψ, α, l) dl

v∥(ψ, α, l, E, µ, σ)∮
dl

v∥(ψ, α, l, E, µ, σ)

.

The notation
∮

indicates integration along a time interval, depending on the trapping state and
type of magnetic surface.

• In the case of trapped particles, this O(ϵ0) parallel motion is periodic in time, since par-
ticles move between points l± where B(ψ, α, l±) = Bcrit. The time average can then be
performed along the closed loop from l− to l+ and back to l−:

⟨A⟩(ψ, α,E, µ) =

∫ l+

l−

A(ψ, α, l) dl

v∥(ψ, α, l, E, µ, σ)
−
∫ l−

l+

A(ψ, α, l) dl

v∥(ψ, α, l, E, µ, σ)∫ l+

l−

dl

v∥(ψ, α, l, E, µ, σ)
−
∫ l−

l+

dl

v∥(ψ, α, l, E, µ, σ)

=

∫ l+

l−

A(ψ, α, l) dl

v∥(ψ, α, l, E, µ, σ)∫ l+

l−

dl

v∥(ψ, α, l, E, µ, σ)

.

• For passing particles on a rational surface, the parallel motion is also periodic, and the time
average can be performed along a closed field line.

• For passing particles on an irrational surface, the parallel motion is no longer periodic.
In this case, the time average can be performed by integrating along a field line until it
comes arbitrarily close to its starting point. In this case, as discussed in [55, 116], the time
average then reads

⟨A⟩ (ψ, α,E, µ) =

∫ 2π

0

∫ L

0

A(ψ, α, l)

v∥(ψ, α, l, E, µ, σ)
dldα∫ 2π

0

∫ L

0

dldα

v∥(ψ, α, l, E, µ, σ)

, (12.12)

where the l integral is taken along one toroidal loop from 0 to L.

The time interval associated with the average is then defined as

τ(ψ, α,E, µ) =

∮
dl

v∥(ψ, α, l, E, µ, σ)
.

In order to introduce the definition of omnigeneity, we now turn to evaluating the time average
of the radial drift. Since v∥ can be treated as a function of (ψ, α, l, E, µ), we will also treat the
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radial drift as a function of position. Using the expression for the divergence from Table 5.1, the
radial drift (12.11) is evaluated in the (ψ, α, l) coordinate system:

[Vdrift · ∇ψ] (ψ, α, l, E, µ) =

[
mv∥

q

(
∂v∥

∂α
+
∂

∂l

[
v∥b̂×∇ψ · ∇l

B

])]
(ψ, α, l, E, µ, σ) .

(12.13)

The averaging procedure applied to the radial drift then gives

⟨Vdrift · ∇ψ⟩ (ψ, α,E, µ) =

∮ [
m

q

(
∂v∥

∂α
+
∂

∂l

[
v∥b̂×∇ψ · ∇l

B

])]
(ψ, α, l, E, µ) dl

τ(ψ, α,E, µ)
.

In the above, since the integration is performed at constant α, the α derivative can be pulled out
of the integral. Since the average is performed over a closed loop in l, the averaged radial drift
simplifies to

⟨Vdrift · ∇ψ⟩ (ψ, α,E, µ) =
m

∂

∂α

(∮
v∥ (ψ, α, l, E, µ, σ) dl

)
qτ(ψ, α,E, µ)

.

A condition to cancel the averaged radial drift then reads

∂

∂α

(∮
v∥(ψ, α, l, E, µ, σ) dl

)
= 0. (12.14)

Using the expression for v∥ (12.9), this condition can be written equivalently as

∂

∂α

∮ √1− B(ψ, α, l)

Bcrit
dl

 = 0. (12.15)

This shows that the condition only involves properties of the magnetic field, since the quantity
Bcrit is constant along a trajectory. If (12.15) is satisfied for all 1/Bcrit ∈ [0, 1/Bmin] where Bmin
is the minimum magnetic field strength in the confinement region, then the time-averaged radial
drift for all guiding center trajectories will vanish. A magnetic field satisfying this property is
said to be omnigeneous [99, 41].

In the case of passing particles on an irrational magnetic surface, since the time average
(12.12) involves a periodic integral in α, the omnigeneity condition is automatically satisfied.
Thus passing particles are well-confined if irrational magnetic surfaces exist. However, confine-
ment of passing particles on rational surfaces [67] and trapped particles requires an additional
restriction on the magnetic geometry. The search for omnigeneous magnetic fields, therefore,
requires special attention to these cases.

We now highlight the connection between omnigeneity and symmetry properties. The quan-
tity that appears in the omnigeneity condition (12.15), namely

J∥(ψ, α,E, µ) =

∮
v∥(ψ, α, l, E, µ, σ) dl, (12.16)

is called the parallel adiabatic invariant. As we will demonstrate, J∥ is an approximately con-
served quantity associated with periodic motion and is, therefore, an adiabatic invariant according
to Remark 4.2.
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With the definition (12.14), we remark that omnigeneity is equivalent to

∂

∂α

(
J∥(ψ, α,E, µ)

)
= 0 ∀(ψ, α,E, µ).

This shows that symmetry of J∥ with respect to α implies time-averaged confinement. The paral-
lel adiabatic invariant can next be interpreted as an approximate constant of the motion. Indeed,
the averaged radial drift is related to the derivative of J∥ through ⟨Vdrift · ∇ψ⟩ = m/(qτ)∂J∥/∂α.
Besides, the in-surface magnetic drift ⟨Vdrift · ∇α⟩ can be evaluated using a procedure similar to
the one used to obtain the radial magnetic drift. The resulting averaged drift reads

⟨Vdrift · ∇ψ⟩ (ψ, α,E, µ) =
m

qτ(ψ, α,E, µ)

∂J∥(ψ, α,E, µ)

∂α
,

⟨Vdrift · ∇α⟩ (ψ, α,E, µ) = − m

qτ(ψ, α,E, µ)

∂J∥(ψ, α,E, µ)

∂ψ
.

(12.17)

Using the chain rule, the averaged change in J∥ along a trajectory can then be stated as

⟨Vdrift · ∇
(
J∥
)
⟩ (ψ, α,E, µ) =

[
∂J∥

∂α
⟨Vdrift · ∇α⟩+

∂J∥

∂ψ
⟨Vdrift · ∇ψ⟩

]
(ψ, α,E, µ) = 0.

This implies that the drift orbits are approximately confined to surfaces of constant J∥. Another
way to state the omnigeneity condition is as follows: surfaces of constant J∥ should align with
surfaces of constant ψ.

Remark 12.1. Quasisymmetry implies omnigeneity as follows. If a magnetic field satisfies (12.4),
then the radial drift (12.10) can be written as

[Vdrift · ∇ψ] (ψ, α,E, µ) =
[
v∥
∂

∂l

(v∥
Ω

)
F (ψ)

]
(ψ, α,E, µ).

Since the time average operation involves a periodic integral over l normalized by v∥, the aver-
aged radial drift ⟨Vdrift · ∇ψ⟩ = 0. Therefore, quasisymmetric magnetic fields satisfy the omni-
geneity property (12.14). However, omnigeneity includes a much wider class of magnetic fields
than quasisymmetry. The relationship between quasisymmetry and omnigeneity is discussed in
several references [41, 40, 182]. It can be shown that an infinitely differentiable omnigeneous
magnetic field must be quasisymmetric [41].

Construction of nearly omnigeneous magnetic fields has been demonstrated [241] based on
equilibria near the magnetic axis introduced in Section 11.2. The Wendelstein 7-X stellarator is
an example of an existing quasiomnigeneous configuration designed with numerical optimization
techniques [95, 96].

12.3 Discrete symmetries
In addition to quasisymmetry or omnigeneity, stellarators can possess discrete symmetries. In
contrast to a continuous symmetry, approximate particle confinement is not a consequence of
discrete symmetries. Instead, discrete symmetries can be leveraged to simplify stellarator design.
Invariance with respect to spatial translation, known as field period orNP symmetry, is discussed
in Section 12.3.1, while symmetry with respect to reflection about a specific plane, known as
stellarator symmetry, is discussed in Section 12.3.2.
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Figure 12.3: The last closed magnetic surface of the W7-X configuration is shown with the color
scale indicating the field strength. The electromagnetic coil shapes are shown for one field period
of the device.

12.3.1 Field period symmetry

A magnetic field B is said to possess field period symmetry, also known as NP symmetry, if it
satisfies {

B(ψ, θ, ζ + 2π/NP ) = B(ψ, θ, ζ),
or B(R,ϕ+ 2π/NP , Z) = B(R,ϕ, Z),

when expressed in either flux coordinates, introduced in Section 5.5.2, or cylindrical coordinates,
introduced in Section 5.3. The constantNP is a positive integer and can be referred to as the field
periodicity. A given stellarator configuration is said to possess NP symmetry if the equilibrium
magnetic field B is NP symmetric.

In an NP symmetric configuration, many physical quantities are periodic with respect to
NP . This property can be leveraged to simplify both computational and practical problems. For
example, the W7-X stellarator has five toroidal field periods, and as a result, the same coil shapes
can be used for each field period. In Figure 12.3, a magnetic surface of W7-X is shown, with
the color scale indicating the field strength. The electromagnetic coils are shown for one field
period.

12.3.2 Stellarator symmetry

Stellarator symmetry refers to a discrete symmetry with respect to a specific reflection transfor-
mation. The assumption of stellarator symmetry has been made in the design of almost every
stellarator configuration to date [186]. A detailed discussion of stellarator symmetry is given
in [52].

A transformation T between vector fields can be defined as follows. If two vector fields F
and G are such that G = T (F ), and can be expressed in cylindrical coordinates as{

F = FRR̂+ Fϕϕ̂+ FZẐ,

G = GRR̂+Gϕϕ̂+GZẐ,
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Figure 12.4: Stellarator symmetry describes an inversion about the line Z = 0, ϕ = 0. The
last-closed surface of the stellarator symmetric W7-X configuration is shown.

then G is defined by  GR(R,ϕ, Z) = FR(R,−ϕ,−Z),
Gϕ(R,ϕ, Z) = Fϕ(R,−ϕ,−Z),
GZ(R,ϕ, Z) = FZ(R,−ϕ,−Z).

The transformation T is an inversion about the line ϕ = 0, Z = 0, as illustrated in Figure 12.4.
The term stellarator symmetry for a vector field F is the property defined by

T [F ] = −FRR̂+ Fϕϕ̂+ FZẐ. (12.18)

A given stellarator configuration is said to possess stellarator symmetry if the equilibrium mag-
netic field B is stellarator symmetric.

It can be shown that if the magnetic field B exhibits this symmetry, then so does the current
density J upon application of Ampère’s law∇×B = µ0J in cylindrical coordinates. Suppose
that a vector field F possesses stellarator symmetry. This implies that the magnitude F of the
vector field exhibits the following symmetry:

F (R,−ϕ,−Z) = F (R,ϕ, Z).

Thus the field strength B and magnitude of the current density J exhibit this property for a
stellarator symmetric configuration.

In order to simplify the expression of some physical quantities of a stellarator symmetric
field, stellarator symmetry can also be expressed in general flux coordinates (ψ, θ, ζ) introduced
in Section 5.5.2, where ψ is a flux label, θ is a poloidal angle, and ζ is a toroidal angle. For a co-
ordinate system preserving stellarator symmetry, the following property holds for the cylindrical
coordinates (R,ϕ, Z):  R(ψ,−θ,−ζ) = R(ψ, θ, ζ),

ϕ(ψ,−θ,−ζ) = −ϕ(ψ, θ, ζ),
Z(ψ,−θ,−ζ) = −Z(ψ, θ, ζ).

Therefore, if G = T (F ) where T is the transformation from the stellarator symmetry definition
(12.18), then the cylindrical components of the fields expressed in terms of flux coordinates
satisfy  GR(ψ, θ, ζ) = FR(ψ,−θ,−ζ),

Gϕ(ψ, θ, ζ) = Fϕ(ψ,−θ,−ζ),
GZ(ψ, θ, ζ) = FZ(ψ,−θ,−ζ).
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Hence, given (12.18), for a stellarator symmetric field F , FR is odd with respect to (θ, ζ) while
FZ and Fϕ are even. Thus stellarator symmetry implies a definite parity of many physical quan-
tities, and these quantities are even or odd with respect to (θ, ζ). Quantities with a definite parity
can be expressed in terms of only a sine or cosine series rather than a general Fourier series. For
example, in a stellarator symmetric field B, the field strength B can be expressed with just a
cosine series:

B(ψ, θ, ζ) =
∑
m,n

Bmn(ψ) cos(mθ − nζ).

This illustrates how stellarator symmetry provides computational efficiency by reducing the num-
ber of degrees of freedom required to define a field.
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Chapter 13

Optimization for
stellarator design

As we have seen in Chapter 7, one advantage of stellarators compared to tokamaks is that they
do not rely on a large plasma current to produce the necessary rotational transform. On the other
hand, as described respectively in Sections 10.2 and 7.2, neither existence of magnetic surfaces
nor single-particle confinement is guaranteed in 3D configurations as each is in axisymmetry. In-
stead, other desirable properties can be studied to guarantee favorable confinement capabilities.
Stellarators are then carefully designed to satisfy approximately a set of desirable properties,
and this is commonly formulated within an optimization framework. Optimization of tokamak
magnetic fields is also possible [127]. However, because the number of degrees of freedom is
reduced for 2D compared to 3D configurations, there is a smaller optimization landscape to lever-
age in order to improve confinement. Since confinement in stellarators is primarily provided by
external fields, it may be easier to design and control the external fields to maintain good per-
formance. On the other hand, since tokamaks rely on magnetic fields produced by the plasma
for confinement, the performance becomes much more sensitive to changes in the plasma pro-
files. Consequently, this presents a challenge for optimizing tokamak performance as it requires
controlling internal profiles. A similar situation arises for stellarator performance as the ratio of
thermal to magnetic pressure, quantified by the parameter β discussed further in Section 13.1,
increases. In this regime, the increased plasma pressure generally drives plasma current as dis-
cussed in Sections 10.3.1 and 13.1.1, and an increased fraction of the magnetic field is driven
by the plasma current. However, even at higher β, the fraction of the magnetic field produced
by the plasma current is smaller in stellarators than in tokamaks. Thus, stellarator performance
may be less sensitive to changes in the plasma profiles. For these reasons, the field of numerical
stellarator optimization is more developed than that of tokamak optimization.

In a stellarator device, magnets or coils must ultimately produce the desired magnetic field,
and these must be manufactured and assembled. The concept of stellarator design refers to two
aspects:

1. the magnetic field is designed based on equilibrium models,

2. coils are designed to generate this desired magnetic field.

In addition to the concept of confinement, central to the field design, some engineering and
manufacturing considerations must also be accounted for in the coil design.

The stellarator design process can be performed with two different approaches. In the so-
called two-stage approach, the field is designed first, and the coils are designed in the second
step. By contrast, the field and coils are designed simultaneously in the so-called single-stage
approach. Since the two-stage approach decouples the two aspects, it generally reduces the
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computational cost of the problem. This advantage has made the two-stage approach more widely
used. However, the second stage might result in complicated coil shapes [88, 153]. These might
be impossible to construct and may also interfere with the maintenance and diagnostics of the
experiment. Besides, tight tolerances on coil manufacturing and positioning are a significant
driver of costs for the stellarator program. In this context, the one-stage approach provides addi-
tional flexibility, allowing for balance between engineering tolerances and deviation of physics
objectives.

Stellarator design problems are commonly formulated in terms of numerical optimization:
a function defining various physics or engineering objectives is minimized, possibly subject to
additional constraints. Iterative optimization algorithms are then leveraged to approximate a
solution to the numerical problem, either a local or a global minimum. This chapter will describe
standard optimization considerations, techniques, and tools for stellarator design. Examples of
desirable physical and engineering properties will be presented respectively in Sections 13.1 and
13.3. Then, based on models presented in Chapter 11, we will describe the two steps of stellarator
design in the two-stage approach: optimization of the plasma boundary with the fixed-boundary
approach in Section 13.2 and optimization of coil shapes in Section 13.4. Section 13.5 presents
a few examples of optimized configurations to illustrate some successes and challenges.

13.1 Physics objectives for stellarator optimization
The primary goal of stellarator optimization is to achieve good plasma confinement. In the
two-stage approach, confinement properties of a given equilibrium magnetic field are assessed
independently of the coils.

The existence of magnetic surfaces within a large volume and confinement of single-particle
trajectories are the most standard properties leveraged in stellarator design. It is important to
remember that measures of these theoretical confinement properties, in practice, cannot be eval-
uated exactly but will be approximated from calculations of the equilibrium magnetic field. For
example, symmetry properties discussed in Chapter 12 cannot be achieved exactly. However,
sufficient guiding center confinement may still be achieved if these symmetry properties hold to
a high enough precision.

In addition to symmetry, many other considerations, both physical and practical, can be taken
into account in the optimization process. Often, proxy functions are used as simplified figures
of merit for approximating the behavior of more complex physics objective functions. For ex-
ample, measurements of quasisymmetry are a proxy for guiding center confinement. Defining
proxy functions for stellarator optimization is an active field of research. We now outline im-
portant physics considerations and some corresponding proxy functions commonly leveraged in
stellarator optimization.

13.1.1 Plasma current

The current resulting from plasma motion has an important impact on toroidal confinement de-
vices. In a tokamak, plasma current is required for confinement, as discussed in Section 7.3.1.
The plasma current in a tokamak is typically mostly externally driven, with some contribution
from self-driven mechanisms. By contrast, externally driven plasma current is not required for
confinement in a stellarator. Nonetheless, self-driven sources remain. In general, these self-
driven sources of plasma current [116] arise from both MHD and kinetic effects. The parallel
bootstrap current arises due to collisions between trapped and passing particles in the presence of
density and temperature gradients. The parallel Pfirsch–Schlüter and perpendicular diamagnetic
currents occur due to MHD equilibrium pressure gradients. The impact of the plasma current
on some equilibrium properties and coil complexity can be considered in the design process.
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The diamagnetic and Pfirsch–Schlüter currents arise from considerations of MHD force balance,
(∇ × B) × B = µ0∇p, given B and p as a function of the flux label only, as mentioned in
Section 10.3.1. The perpendicular diamagnetic current is evaluated from force balance as

J⊥ =
B ×∇p
B2

.

This diamagnetic current generally arises in the presence of a pressure gradient. As for the
parallel current, it satisfies the MDE resulting from∇ · J = 0:

B · ∇
(
J∥

B

)
= −∇ · J⊥.

Since the MDE does not constrain the average value of the quantity on a magnetic surface S(ψ),
namely 〈

J∥

B

〉
S(ψ)

=
1

4π2

∫ 2π

0

∫ 2π

0

J∥

B
dθdζ,

this averaged parallel current is not set by MHD theory. The Pfirsch–Schlüter current refers to
the component of the parallel current that is constrained by the MDE, namely

JPS = J∥ −B
〈
J∥

B

〉
S(ψ)

. (13.1)

Since the right-hand side of the MDE is proportional to the pressure gradient, the Pfirsch–
Schlüter current is said to be pressure-driven. It can give rise to an outward shift of the magnetic
axis, known as the Shafranov shift, potentially leading to a degradation of magnetic surfaces
with increasing pressure [296] as described in Section 13.1.2. One approach to reducing the
Pfirsch–Schlüter current is by minimizing the right-hand side of the MDE. This right-hand side
is proportional to the geometric factor B×∇B ·∇ψ and is related to the geodesic curvature, the
component of the magnetic field curvature that is tangent to a flux surface. Hence, a design crite-
rion for the W7-AS stellarator was minimizing the geodesic curvature, and experiments verified
the resulting Shafranov shift [307].

Since the rotational transform impacts confinement properties in a device, it is important to
emphasize the relation between current sources and the ι profile. As discussed in Section 7.3.1, in
the lack of any contribution from the 3D field geometry, ι is proportional to the integrated toroidal
current, defined in (9.11). It can be shown [116] that the Pfirsch–Schlüter current does not
contribute toward the integrated toroidal current. On the other hand, the diamagnetic current can
only contribute to the integrated toroidal current in the presence of nonzero ⟨J∥/B⟩S(ψ). While
neither the Pfirsch–Schlüter current nor the diamagnetic current directly impacts the rotational
transform, they both can affect other equilibrium properties with increasing β, as described in
Section 13.1.2.

While the average quantity
〈
J∥/B

〉
S(ψ)

impacts the ι profile, it is not constrained by MHD
yet can be determined from kinetic theory or current drive mechanisms. The bootstrap current
is one important kinetic effect that can drive this averaged current. In the presence of density
and temperature gradients, trapped guiding center orbits provide the bootstrap current, enhanced
through collisions with passing particles. Since changes in the density and temperature profiles
during device operation may modify the bootstrap current and, therefore, the ι profile, it may
be desirable to minimize the bootstrap current. If the bootstrap current is reduced, the magnetic
field structure becomes less sensitive to changes in β. Since the width of trapped-particle orbits
drives this current source, considerations of characteristic orbit widths may inform the choice
of stellarator class during the design process. For example, in quasisymmetric configurations
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introduced in Section 12.1, the orbit width under the assumption of I ≪ G is proportional to
MG/(Mι−N). The choice of quasisymmetry helicity defined through M and N has an impact
on the bootstrap current as follows:

• For QP configurations, M = 0 and N ̸= 0, the bootstrap current is small in magnitude
and vanishes if I = 0.

• For QA configurations, M ̸= 0 and N = 0, and the orbit width is inversely proportional
to the rotational transform.

• For QH configurations, M ̸= 0 and N ̸= 0, the orbit width is inversely proportional
to Mι − N . For typical configurations, N ≫ Mι, and the orbit width is reduced in
QH configurations compared to QA configurations. Therefore, QH configurations may be
advantageous for their reduced bootstrap current.

We can also consider the impact of orbit width in omnigeneous configurations introduced in
Section 12.2. While the orbit width in omnigeneous magnetic fields generally differs from the
simple expression above, similar conclusions can be made with regard to the choice of helicity for
the closure of the magnetic field contours. If the contours of the field strength of an omnigeneous
magnetic field close poloidally, as they do in a QP configuration, the configuration is said to
be quasi-isodynamic (QI). QI configurations may be advantageous for some design scenarios
since they have vanishing bootstrap current [119]. Optimization for small bootstrap current may
also be performed with proxy functions, such as a low-collisionality model [263] or other semi-
analytic fits of kinetic calculations [181].

As an illustration, control of the edge rotational transform is vital for designs with an island
divertor [84]. The divertor is the device used to remove heat and unwanted fusion products,
such as helium, from the confinement region. It requires that material structures intersect a
large island at a specific location. Thus, an uncontrolled shift in the rotational transform may
lead to malfunction of such a divertor system. Furthermore, the rotational transform may shift
to low-order rational values due to the bootstrap current. This effect may lead to the potential
growth of magnetic islands, as described in Section 13.1.2, especially in low-shear devices. The
Wendelstein 7-X (W7-X) configuration was designed for reduced bootstrap current [96] and is
close to QI.

Despite these disadvantages of plasma current, significant bootstrap current may be desirable
in some situations. For instance, the bootstrap current may provide a source of rotational trans-
form in addition to the external coils; hence, the coil complexity may be reduced. In some situa-
tions, pressure-driven plasma current can also reduce the width of islands compared to those in a
vacuum configuration [18]. For instance, the National Compact Stellarator eXperiment (NCSX)
was designed to be quasiaxisymmetric with a significant fraction of rotational transform provided
by the bootstrap current [131].

13.1.2 Equilibrium properties

One of the most fundamental objectives in designing a stellarator is obtaining a large volume
of continuously nested magnetic flux surfaces. As explained in Chapter 10, rather than exhibit-
ing continuously nested magnetic surfaces, a general 3D magnetic field contains islands and
chaotic regions, and both may degrade confinement properties. Moreover, even while starting
from an equilibrium without islands and chaotic regions, there is no guarantee that solutions to
an MHD model will conserve the same magnetic field structure. Physics objectives for stellara-
tor optimization can be based on quantifying certain equilibrium properties related to magnetic
surfaces, islands, and chaotic regions, both in the equilibrium and its time evolution. The ability
to obtain a large volume of nested surfaces can be related to two quantities. The first is the ratio
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of the plasma pressure to the magnetic pressure, known as the plasma β. It is formally defined as
β := p/(B2/(2µ0)) and can be evaluated differently. For example, p and B can be evaluated at
the magnetic axis, providing a local measure of β. Alternatively, p and B may be averaged over
the entire plasma volume, providing a global measure of β. The second is the magnetic shear,
defined as ι′(ψ).

High values for β are associated with two effects that can make achieving a large volume of
nested surfaces challenging.

• Increasing plasma pressure produces an outward shift of the magnetic axis known as the
Shafranov shift. At large values, when the shift becomes comparable to the minor radius,
this effect leads to the break-up of flux surfaces [272, 116].

• As β is increased, the current produced by the plasma, such as the MHD-driven diamag-
netic and Pfirsch–Schlüter currents and neoclassical-driven bootstrap currents, described
in Section 13.1.1, can produce resonant magnetic perturbations that degrade magnetic sur-
faces [259, 142, 202].

For these reasons, an operating limit on β in stellarators often arises due to properties of the
equilibrium. This is referred to as the equilibrium β limit.

The presence of magnetic islands is associated with two main effects impacting plasma per-
formance in stellarators. On the one hand, magnetic islands may degrade performance since they
lead to local flattening of the pressure profile [74]. On the other hand, nonlinear interactions
between magnetic islands can also lead to the formation of chaotic magnetic fields [195], as il-
lustrated in Figure 10.1. As illustrated in Section 10.3.4 for a simplified model, rational surfaces
can be associated with δ-function current densities or magnetic islands, depending on whether
continuously nested surfaces are assumed. To highlight the connection between magnetic islands
and properties of the rotational transform, we consider here a time-independent magnetic field
with continuously nested flux surfaces, expressed in magnetic coordinates (ψ, ϑ, φ). We then
focus on a given rational surface, ψ0, with ι(ψ0) = N/M . A resonant perturbation to the mag-
netic field can be applied, and its resonant radial component can be expressed in the magnetic
coordinates of the unperturbed field as δB · ∇ψ = Bψm,n(ψ) exp (i(mϑ− nφ)), associated to a
pair (m,n) satisfying nM = mN . In this framework [247, 193], the width of the corresponding
magnetic island can be obtained as

w ∝

(
Bψm,n(ψ0)

mι′(ψ0)

)1/2

. (13.2)

• Since island width goes like 1/
√
m, resonant surfaces at low-order rationals, as defined in

Remark 6.1, in the equilibrium are associated with the formation of large islands. There-
fore, avoiding low-order rational surfaces can be an approach to obtaining and maintaining
a large volume of nested surfaces. Since the rational numbers are dense within real num-
bers, a practical approach is to identify a specific set of low-order resonant values of ι and
to choose a target value far from that set [231]. Hence, in this case, the magnetic shear is
close to zero.

• By contrast, since island width goes like 1/
√
ι′(ψ), magnetic shear can reduce island

width. Therefore, an alternative approach is to target large magnetic shear. The function
ι then varies significantly within the volume. While this results in ι crossing numerous
low-order rational surfaces, the width of the corresponding islands is reduced due to large
magnetic shear.

In practice, the magnetic island width [105] and other related figures of merit [142, 10] can
be directly minimized for a set of rational surfaces in the optimization of stellarator coils.
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13.1.3 Quasisymmetry and omnigeneity

As described in Chapter 12, certain symmetries of the magnetic field lead to approximate con-
finement of guiding center trajectories. Two strategies to achieve approximate guiding center
confinement in an optimized configuration are to impose quasisymmetry or impose omnigeneity.

Quasisymmetry implies guiding center confinement [21] and neoclassical properties that are
comparable to those of an equivalent tokamak [116], including the ability to rotate in the direction
of quasisymmetry [121]. Quasisymmetry is typically targeted in optimization by minimizing the
symmetry-breaking Fourier harmonics of the magnetic field strength. Writing B in a Fourier
series in the two Boozer angles,

B(ψ, ϑB , φB) =
∑
m,n

Bm,n(ψ)e
i(mϑB−nφB),

a common objective function to achieve approximate quasisymmetry with helicity M and N is
a function of ψ only defined as

fQS,1(ψ) =

∑
mN ̸=nM

B2
m,n(ψ)

B2
0,0(ψ)

. (13.3)

The alternative form of quasisymmetry described in Section 12.1.3 can also be used to define an
objective function [184]:

fQS,2(ψ) =

〈(
B ×∇ψ · ∇B − FB · ∇B

B2

)2
〉
ψ

, (13.4)

where F defined through (12.5) is a function of ψ only and ⟨·⟩ψ is the flux-surface average
defined in (6.23).

An omnigeneous magnetic field does not allow any time-averaged drift of particles off mag-
netic surfaces. Omnigeneity can be targeted in optimization by computing properties of the
parallel adiabatic invariant (12.16). If J∥ is constant on a magnetic surface for all values of the
particle energy and magnetic moment, then the collisionless trajectories will experience no net
radial drift, or the magnetic field is omnigeneous [41]. Thus, several properties involving J∥,
such as its variation within a flux surface for all classes of particles,

fQO(ψ,E) =

∫ µmax

0

∫ 2π

0

(
J∥(ψ, α,E, µ)− ⟨J∥(ψ, α,E, µ)⟩ψ

)2
dαdµ, (13.5)

have been targeted in stellarator optimization [274, 62]. Here a fixed value of E can be chosen
while integration is performed for all µ since the geometric dependence of J∥ only enters through
Bcrit = E/µ in (12.15). Alternatively, the magnetic field can be compared with models that are
explicitly constructed to be omnigeneous [92, 154, 65], and the difference between the two can
be minimized.

13.1.4 Neoclassical transport

Collisions between charged particles will generally enhance the transport due to guiding center
drifts due to the unconfined particle motion. Known as neoclassical transport, this process is
amplified in nonomnigeneous configurations. Neoclassical theory predicts the behavior of the
bulk population of charged particles, described by a Maxwell–Boltzmann distribution to the
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Figure 13.1: The so-called neoclassical diffusion coefficient,D∗
11, as a function of the normalized

collisionality, ν∗ = νR/(ιv), where ν is the collision frequency, ι is the rotational transform, v
is the speed, and R is the major radius. The dashed and solid curves correspond respectively
to a tokamak equilibrium field and to the W7-X equilibrium field. At higher collisionality, the
stellarator and tokamak fields exhibit similar scaling of the diffusion coefficient with ν∗. At low
collisionality, the axisymmetric field exhibits a regime in which D∗

11 ∝ ν, while the stellarator
exhibits D∗

11 ∝ 1/ν. Thus, the neoclassical transport in a general 3D field can be especially
deleterious at low collisionality. Figure reproduced from [117]. Used with permission of IOP
Publishing, Ltd, from “Stellarator and tokamak plasmas: a comparison,” P. Helander, C. D.
Beidler, T. M. Bird, M. Drevlak, Y. Feng, R. Hatzky, F. Jenko, R. Kleiber, J. H. E. Proll, Yu.
Turkin, 54, 12, 2012; permission conveyed through Copyright Clearance Center, Inc.

lowest order. The Maxwell–Boltzmann distribution models a population of particles of mass m
and temperature T in thermodynamic equilibrium

f(v) = A exp

(
−mv

2

2T

)
(13.6)

for constant A.
In classical unoptimized stellarators, neoclassical transport is typically the dominant trans-

port channel, as opposed to turbulent transport due to fluctuations. Stellarators experience en-
hanced neoclassical transport at low collisionality in comparison with tokamaks, as illustrated in
Figure 13.1. Since neoclassical transport is reduced in quasisymmetric and omnigeneous mag-
netic fields, objective functions defined in Section 13.1.3 can be targeted to improve neoclassical
confinement. Neoclassical transport is often computed with reduced models [322, 172]. As an
example, the effective ripple [224, 236] quantifies the geometric dependence of transport in the
low-collisionality 1/ν regime:

ϵ
3/2
eff (ψ) =

π

4
√
2V ′(ψ)ϵ2ref

∫ 1/Bmin

1/Bmax

∫ 2π

0

∑
i

(
∂Ki(α, λ)

∂α

)
λIi(α, λ)

dλdα. (13.7)

Here λ = µ/E is the pitch angle, Bmin and Bmax are the minimum and maximum values of
the field strength on a surface labeled by ψ, ϵref is a reference aspect ratio, and V (ψ) is the
volume enclosed by the constant ψ surface. Summation is performed over trapping wells, and
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this requires identifying all the points where the field magnitude B is equal to the critical value
Bcrit along a given field line. We have defined the integrals along a field line:

Ii(α, λ) =

∮
v∥

Bv
dl,

Ki(α, λ) =

∮ v3∥

Bv3
dl.

A brief overview of neoclassical physics in stellarators can be found in Section 4 of [116]. A
review of neoclassical optimization strategies is given in [221].

13.1.5 Energetic particles

Energetic particles are particles with much higher velocities than the typical velocity of the entire
population. To be more precise, we can introduce the bulk population, consisting of particles
approximately in thermodynamic equilibrium, described by a Maxwell–Boltzmann distribution
(13.6). The typical velocity of the bulk can then be quantified using the thermal velocity of a
Maxwellian distribution, vt =

√
2T/m. In this context, energetic particles are then defined as

particles with v ≫ vt.
Alpha particles, produced through a nuclear fusion reaction, as mentioned in Section 1.2, are

an example of energetic particles. In order for the fusion reactions to be self-sustaining, alpha
particles must be confined long enough to deposit their energy in the bulk population. Losses of
energetic particles concentrated in a region of space can lead to damage of in-vessel experimental
components and must be avoided.

The confinement of energetic particles can be studied by following single-particle trajecto-
ries in the presence of collisions with other charged particles [59, 209]. Collisional diffusion and
deflection are minimal at energies near the birth energy of 3.5 MeV for a D-T reaction (Chapter
3 in [120]), so collisionless guiding center orbits are an informative metric of energetic parti-
cle confinement. If the collision frequency is small enough that energetic ions can complete
their bounce or transit orbits, then the parallel adiabatic invariant (12.16) is an approximately
conserved quantity along energetic particle trajectories. Thus, one method to improve energetic
particle confinement under the collisionless approximation is by targeting omnigeneity or qua-
sisymmetry as described in Section 13.1.3.

By optimizing equilibria to be close to quasisymmetry, it has been shown that excellent en-
ergetic particle confinement can be obtained [184, 181]. There is some evidence that targeting
quasisymmetry near the half-radius may also improve energetic particle confinement [122]. Con-
finement can also be improved [60, 9] by targeting objective functions that quantify the net radial
drift of certain classes of trapped particles [62, 225, 295]. As an example, a common function to
quantify confinement [225, 295] is

γc(ψ, α,E, µ) =
2

π
tan−1

(
⟨Vdrift · ∇ψ⟩ (ψ, α,E, µ)
⟨Vdrift · ∇α⟩ (ψ, α,E, µ)

)
, (13.8)

defined in terms of the average radial and in-surface drifts introduced in (12.17). Minimizing γc
promotes the alignment of surfaces of constant J∥ with magnetic surfaces.

13.1.6 Stability

Stability is a general property of equilibria in the context of dynamical systems. The robustness
of an equilibrium to perturbations is referred to as stability. Stability is defined as follows in

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



13.2. Fixed-boundary MHD optimization 183

terms of the time evolution of solutions starting from a perturbed state, defined as the sum of
the equilibrium plus a small perturbation. For a stable equilibrium, any given perturbation away
from equilibrium will decay in time. On the other hand, an unstable equilibrium is characterized
by perturbations that grow in time.

The stability of magnetically confined fusion plasmas to macroscopic perturbations is well
modeled by MHD theory, as for instance discussed in Chapter 2 of [75]. Starting from a pertur-
bation of an MHD unstable equilibrium, the plasma might evolve toward a lower energy state.
This process can result in significant expulsion of energy from the plasma and lowering confine-
ment, potentially damaging device components. The maximum achievable plasma β can also
be limited by MHD instabilities associated with pressure gradients and magnetic field curvature.
This imposes constraints on the parameter space in which devices can be operated, also known
as operating regimes.

Common proxies for reducing pressure-driven MHD instabilities include the Mercier crite-
rion [211] and the magnetic well parameter [94],

fW (ψ) = V ′′(ψ), (13.9)

where V (ψ) is the volume enclosed by the magnetic surface labeled by ψ and primes indicate
derivatives.

These criteria have been widely applied in stellarator optimization [318, 260, 42, 123]. The
magnetic shear, introduced in Section 13.1.2 in the context of equilibrium magnetic islands, can
also be used to improve stability with respect to pressure-driven modes [114].

While linear MHD stability proxy functions are often used in design studies, there is some
experimental evidence that stellarator configurations may be able to operate above the linear
MHD stability β threshold [303]. Rather than restricting the operating regime, MHD instabilities
can grow to relatively small amplitudes that slowly degrade the confinement. For example, the
LHD has operated up to a volume-averaged β of 5% without any abrupt termination of the plasma
due to large-scale MHD instabilities [259]. While the operating β may not always be determined
by pressure-driven instabilities, it may be desirable to design a stellarator with an increased linear
β limit to reduce transport caused by MHD modes.

In addition to pressure-driven modes, a class of MHD instabilities can be driven by plasma
current. Since stellarators have a much smaller total current than tokamaks, they enjoy overall en-
hanced stability properties. However, as β increases, the bootstrap and Pfirsch–Schlüter currents
described in Section 13.1.1 may increase in magnitude, and current-driven modes may become
unstable. Thus, reducing these sources of self-driven current may enhance MHD stability.

13.1.7 Summary

In Table 13.1, we summarize common confinement objectives for stellarator optimization.

13.2 Fixed-boundary MHD optimization
Both the free-boundary approach and the fixed-boundary approach to computing an MHD equi-
librium were introduced in Section 11.1.2. As a reminder, in the former, the computational
domain includes not only the plasma volume but also a vacuum region surrounding the plasma,
as well as the location of electromagnetic coils supporting prescribed currents. By contrast, in
the fixed-boundary approach to compute an MHD equilibrium on a given domain Ω, the bound-
ary ∂Ω of the computational domain is the plasma boundary. The latter is, therefore, the nat-
ural approach in the framework of two-stage stellarator optimization and is the topic of this
section.
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Table 13.1: Summary of common stellarator equilibrium objectives.
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Island width (13.2) !

Shafranov shift !

Magnetic shear ! !

Bootstrap current ! !

Pfirsch–Schlüter current (13.1) ! !

Geodesic curvature ! ! ! !

Mercier criterion !

Magnetic well (13.9) !

Quasisymmetry (13.3), (13.4) ! !

Omnigeneity (13.5), (13.8) ! !

Effective ripple (13.7) !

The MHD equilibrium equations are repeated here for convenience: (∇×B)×B = µ0∇p in Ω,
∇ ·B = 0 in Ω,
B · n̂ = 0 on ∂Ω.

(13.10)

Solutions are computed assuming that a continuously nested set of magnetic surfaces exist, la-
beled by the toroidal flux 2πψ as explained in Section 5.5.1. Magnetic coordinates (ψ, ϑ, φ) can
then be used to describe the domain. The pressure, p(ψ), and one other function of flux, such as
the rotational transform ι(ψ) or enclosed toroidal current IT (ψ), are prescribed. Many models
of 3D equilibria exist, as discussed in Chapter 11. However, this model has historically been the
standard choice for fixed-boundary optimization using codes such as VMEC [132], NSTAB [79],
BETA [11], or DESC [66]. This is partly for computational efficiency, as the variational principle
introduced in Section 11.1.1 can be employed. The assumption, discussed in Remark 4.4, of con-
tinuously nested flux surfaces is also convenient as many physical quantities of interest are based
on models with magnetic surfaces, such as the Boozer coordinate transformation introduced in
Section 9.2.

In this context, the magnetic geometry throughout the volume Ω is determined by the shape
of ∂Ω. As many physical parameters depend on the magnetic geometry, it is thus reasonable
to search for the optimal shape of ∂Ω with respect to a set of physics objectives. This is the
fixed-boundary optimization approach, first introduced by Nührenburg and Zille [232].

The plasma boundary, ∂Ω, is a toroidal surface and can be parameterized by a poloidal angle
θ and toroidal angle ϕ. The toroidal angle is often chosen to coincide with the cylindrical angle
ϕ. In cylindrical coordinates, the plasma boundary can be described by the radiusR(θ, ϕ) and the
height Z(θ, ϕ). These coordinates can be expressed in a Fourier series. In particular, under the
assumption of stellarator symmetry introduced in Section 12.3.2, R(θ, ϕ) is even in (θ, ϕ) while
Z(θ, ϕ) is odd in (θ, ϕ). Since they are also real-valued, they can then be expressed compactly
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in terms of real Fourier series as
R(θ, ϕ) =

∑
(m,n)∈DR

Rm,n cos(mθ − nϕ),

Z(θ, ϕ) =
∑

(m,n)∈DZ

Zm,n sin(mθ − nϕ),
(13.11)

where, by a combination of the real-valued and parity properties of R and Z, DZ ⊂ Z2 is the
set of (m,n) pairs such that n > 0 only for m = 0 otherwise n ∈ Z for m ≥ 0, or more
compactly DZ := (N× Z) ∪ ({0} ×N), and DR = DZ ∪ (0, 0). Equivalently we could choose
D̃Z := (Z × N) ∪ (N × {0}); however, the previous choice is more common. So, the set of
parameters {

Rm,n ∈ R, (m,n) ∈ DR
}
∪
{
Zm,n ∈ R, (m,n) ∈ DZ

}
uniquely defines the shape of ∂Ω. In practice, a finite number of these modes are retained. As-
suming that the maximum poloidal and toroidal mode numbers are fixed and denoted respectively
by M and N , the finite sets DRM,N and DZM,N of indices are defined as{

DRM,N := {(m,n) ∈ DR,m ≤M, |n| ≤ N},
DZM,N := {(m,n) ∈ DZ ,m ≤M, |n| ≤ N}.

The corresponding 2(2MN +M +N) + 1 parameters{
Rm,n ∈ R, (m,n) ∈ DRM,N

}
∪
{
Zm,n ∈ R, (m,n) ∈ DZM,N

}
are the minimization variables for the fixed-boundary MHD optimization. This is simply one
choice of parameterization for toroidal surfaces used in the widely used VMEC code. Another
possible choice used in the NSATB code is the Garabedian representation [77, 80].

Given a plasma boundary, as well as two free functions of the flux, such as the pressure p and
either the toroidal current enclosed by a flux surface IT or the rotational transform ι, the problem
is then to find an MHD equilibrium field B satisfying (13.10) on the corresponding domain.
Under additional assumptions [139, 233], including assumptions on the pressure profile (see
[134, 54] and the related Section 11.5), the problem can be well-posed, meaning that there exists
a unique solution. In practice, an approximate solution can be computed thanks to a numerical
method. Alternatively, the current can be considered an output of the equilibrium calculation,
determined by self-consistent modeling of the bootstrap current, the parallel current predicted
by neoclassical theory [131, 279, 181]. In this approach, the equilibrium is computed with an
iterative method: (i) an MHD equilibrium is computed with a prescribed IT (ψ) according to
(13.10), and (ii) the bootstrap current Iboots

T (ψ) is computed from the resulting equilibrium field.
If the two currents do not match, then IT (ψ) is updated to Iboots

T (ψ) for the next iteration. The
two steps are iterated until IT (ψ) and Iboots

T (ψ) match.
Given an equilibrium field, the total objective function, usually denoted by χ2, is commonly

defined via contributions from various specific objectives. For quantities of interest defined by
functions f equilibrium

i of the field and associated target values f target
i , the total objective function

can then be written as

χ2(B) =
∑
i

(
f target
i − f equilibrium

i (B)
)2

σ2
i

, (13.12)

where the σi’s are scaling factors setting the relative importance of each of the contributions. De-
pending on the specific objectives, the total objective χ2 can be evaluated, for instance, directly
from the Fourier coefficients of B as in Section 13.1.2, or can require some postprocessing, such
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as computing its magnitude or performing integration as in Section 13.1.4. While some possible
choices of objectives were introduced in Section 13.1, choosing the physics objectives in order to
define the total objective χ2, including the functions f equilibrium

i as well as the target values f target
i ,

is an active field of research.
If the boundary is described for fixed maximum poloidal and toroidal mode numbers, M and

N , by a set of 2(2MN +M +N) + 1 coefficients

SN,M :=
{
Rm,n ∈ R, (m,n) ∈ DRM,N

}
∪
{
Zm,n ∈ R, (m,n) ∈ DZM,N

}
,

and if Bb denotes the MHD equilibrium defined by (13.10) on the corresponding domain, the
fixed-boundary optimization problem can be expressed as

min
SN,M

χ2
(
Bb (SN,M )

)
.

The choice of optimization algorithm will determine how the optimization parameters are ad-
justed to arrive at a local or global minimum within a given tolerance. In practice, several opti-
mization algorithms have been applied to the fixed-boundary approach [274, 222, 60], including
gradient-free methods such as the Brent algorithm [31], particle swarm [234], and differential
evolution [276], as well as gradient-based methods such as the Levenberg–Marquardt algorithm
[216]. Historically, gradient-based methods for equilibrium optimization rely on finite-difference
approximations of the gradient rather than analytic gradients. Recent advances in the numerical
methods related to stellarator optimization will be further discussed in Chapter 14.

To summarize this fixed-boundary approach, the problem is to find an optimal toroidal surface
representing the boundary of a plasma in an equilibrium model. The problem is defined in terms
of the following.

• The objective function χ2 is defined in terms of the functions f equilibrium
i and the values{

f target
i , σi

}
i
.

• Two flux functions, p(ψ) and IT (ψ), are fixed to define a well-posed equilibrium problem,
or IT (ψ) is iterated for consistency with bootstrap current calculations.

The complete optimization process can be described by the following iterative method.

1. (Initialization) Find an initial boundary shape ∂Ωinit.

(a) Compute the initial MHD equilibrium magnetic field in Ω from ∂Ωinit.

(b) Evaluate the objective χ2 from the resulting magnetic field.

2. (Iteration) Until χ2 satisfies a stopping criterion, repeat the following steps.

(a) Adjust ∂Ω according to the optimization algorithm.

(b) Compute the MHD equilibrium magnetic field in Ω from ∂Ω.

(c) Evaluate the objective χ2 from the resulting magnetic field.

In practice, this process relies on two codes: an MHD equilibrium code to compute an ap-
proximate MHD equilibrium and an optimization code implementing the optimization algorithm.
For example, equilibrium calculations are often performed in VMEC, DESC, or SPEC, and this
scheme is implemented in various optimization codes, including STELLOPT [273], ROSE [60],
SIMSOPT [183], and DESC [64]. Moreover, other physics codes can be used in order to evaluate
equilibrium properties and objective functions.

The first demonstration of this approach by Nührenberg and Zille [232], leveraging the BETA
equilibrium code, resulted in the Helias class of stellarators. The boundary was optimized to
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Figure 13.2: A cross-section of a modular coil of the NCSX stellarator, displaying the conducting
material that comprises the winding pack in addition to support and cooling structures. Figure
reproduced from [277]. Reprinted from B. Stratton, A. Brooks, T. Brown, D. Johnson, G. Labik,
E. Lazarus, N. Pomphrey, S. Raftopoulos, M. Zarnstorff; External magnetic diagnostics for the
National Compact Stellarator Experiment. Rev. Sci. Instrum. 1 October 2006; 77 (10): 10E314,
with the permission of AIP Publishing.

obtain a quasisymmetric magnetic field, in addition to considerations on the rotational transform,
on the magnetic well, and on bootstrap current. The W7-X stellarator was later designed based
on further optimization of one of the Helias configurations [13]. Several other examples will be
given in Section 13.5.

In the two-stage approach, once the fixed-boundary optimization is complete, a set of elec-
tromagnetic coils consistent with ∂Ω are sought. This generally nontrivial task will be discussed
next.

13.3 Engineering metrics for stellarator optimization
In a stellarator, the plasma shape and confinement properties depend strongly on the magnetic
field produced by the coils and, thus, on the properties of the coils themselves. Historically,
the construction and assembly of stellarator coils have been a significant driver of the cost of
stellarator experiments [159, 252]. This makes coils and their properties a key consideration in
modern stellarator optimization.

A critical engineering aspect is the manufacturability of a coil set, as coil shapes that are very
complex are more difficult to build and install. The electromagnets providing the magnetic field
in stellarators consist of several substructures, including several turns of conducting material,
support structures, and cooling systems. For context, the winding pack of one NCSX modular
coil is provided in Figure 13.2. The compatibility of stellarator coil shapes with the required
winding pack structure must be accounted for in the optimization.

The coil shapes must also not interfere with other required device components. The re-
gion between the plasma boundary and the coils is needed to allow for several experimental
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Figure 13.3: A schematic of the ARIES-CS stellarator power plant concept. The modular coils
lie on a supporting surface (blue). There must be sufficient space between coils to accommo-
date maintenance ports and vacuum pumping ducts. There must be sufficient space between
the coils and the plasma (red) to allow for the blanket (pink), divertor plates (yellow), neutron
shielding (dark yellow), coolant manifold (green), and vacuum vessel (beige). Figure reproduced
from [223]. The ARIES-CS compact stellarator fusion power plant, Najmabadi, F., Raffray, A. R.,
Abdel-Khalik, S. I., Bromberg, L., Crosatti, L., El-Guebaly, L., . . . Zarnstorff, M., Fusion Science
and Technology, 54 (2008), pp. 655–672, reprinted by permission of Taylor & Francis Ltd.

components, such as the first wall and vacuum vessel. In a reactor, a minimum coil-plasma
distance is necessary to have sufficiently thick neutron shielding and blanket used for absorp-
tion of neutrons and tritium breeding [172]. Moreover, there should be sufficient width between
coils to allow for diagnostic and maintenance ports. In Figure 13.3, a schematic diagram of the
ARIES-CS stellarator power plant concept illustrates how stellarator coils must accommodate
various structures in an experiment or reactor.

These engineering features can be quantified using several objective functions.

• Coil length: Long coils are costly since more conducting material is required.

• Coil curvature: There is a minimum value of the radius of curvature due to the cross-
section of the winding pack. Tight bends may also reduce the integrity of conducting
material.

• Coil torsion: Torsion, measuring the nonplanarity of the coil, may lead to strains on the
conducting material.

• Coil-coil spacing: Sufficient space is needed for diagnostic and maintenance access.

• Coil-plasma distance: Sufficient room is needed for the vacuum vessel, first wall, and coil
casing. In a reactor, additional room is needed for the blanket and neutron shielding.
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The specific formulation of these objective functions under several coil models is discussed in
Sections 13.4.4 and 13.4.5.

13.4 Coil optimization
In the two-stage optimization approach, electromagnetic coils are optimized as a second step,
given a target outer boundary of the plasma, ∂Ω, as well as the magnetic field due to the plasma
current in Ω, both obtained from the first step. The confinement region then refers to the volume
bounded by the plasma boundary. Coils are a set of electromagnets, or currents, intended to be
placed outside of the confinement region in order to produce the desired confining magnetic field.
It is important to keep in mind that this magnetic field, in practice, is numerically computed from
an equilibrium model.

In order to produce the desired magnetic field, the primary goal is thus to find a set of cur-
rents, J coil, in the vacuum regions such that the corresponding total magnetic field—the sum
of the magnetic field due to J coil, Bcoil, and a given magnetic field, Bplasma, due to the plasma
currents—is tangent to ∂Ω:

B · n̂|∂Ω = 0, (13.13)

where n̂ denotes the exterior tangent on ∂Ω. Sometimes coil optimization is instead performed
given a prescribed normal field on a reference surface, but for simplicity, we will assume that
∂Ω is a magnetic surface. The following discussion would still hold if we replace (13.13) by a
boundary condition imposing a nontrivial value of B ·n̂|∂Ω on a reference surface. The magnetic
field due to the coils can be computed from the Biot–Savart law (A.9), while the magnetic field
due to the plasma current is an input for this step. We restrict our interest to a subset of coils, tak-
ing into account engineering-related constraints discussed in Section 13.3. We will assume that
there is a distance dc > 0 between the boundary of the plasma and the coils. We will also assume
that the coils are contained in a bounded volume. These two assumptions are summarized by the
definition of a volume Ωc, including the support of the current J coil. Therefore the coil design
problem can initially be expressed as follows: for a fixed plasma volume Ω, given Bplasma(r) on
the plasma boundary ∂Ω, find J coil(r′) for all r′ ∈ Ωc ⊂ R3\Ω such that

Bplasma(r) · n̂(r) = −µ0

4π

∫
Ωc

J coil(r′)× (r − r′) · n̂(r)
|r − r′|3

dr′ (13.14)

for all r ∈ ∂Ω.
Problems of the form (13.14) are generally ill-posed, as is discussed in Section 13.4.1. We

then discuss several regularization methods for such problems in Section 13.4.2. The material in
these two sections is independent of the following ones and is intended to provide a theoretical
view of the mathematical problem expressed in (13.14).

Instead, a common approach is to formulate a coil design optimization problem as presented
next in Section 13.4.3, combining an objective targeting the approximation of (13.14), together
with an additional engineering objective. Further common assumptions imposed on the coils
problem are discussed in the following sections, including assumptions on the support of the
currents along with desirable properties of coils.

While the unknown J coil was initially introduced with support in Ωc ⊂ R3\Ω, from the
experimental point of view, the currents will be supported by coils. Such stellarator coils have an
actual volume, referred to as their finite build, consisting of several layers, each with several turns
of the conducting material. As a first approximation, the finite build of coils is often not taken into
account during the design process: the support of the unknown function J coil is limited to having
no volume. There are two most common ways to model such coils: assuming that all currents in
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(a) (b)

Figure 13.4: (a) The outer boundary of the NCSX LI383 equilibrium [322] is shown (blue) along
with a winding surface (red) that is chosen to be uniformly offset from the plasma boundary. (b)
Coils (red) computed from REGCOIL using the winding surface and target plasma boundary are
shown for one period of the device.

the region Ωc are restricted to a toroidal surface, as discussed in Section 13.4.4, or assuming that
the currents are restricted to a finite number of filamentary lines, as discussed in Section 13.4.5.
In the latter case, the curves will define the shapes of the physical coils, while in the former
case, the coil shapes will be chosen in a postprocessing step following some streamlines of the
computed current. An illustration is provided in Figure 13.4.

13.4.1 Ill-posedness of first-kind integral equations

This section is dedicated to showing that the coil design problem is ill-posed in the following
sense. In the mathematical community, a problem is said to be well-posed in the sense of Hada-
mard [97] if

1. it has a unique solution;

2. small changes in prescribed data result in small changes in the solution.

Otherwise, the problem is said to be ill-posed.
The integral problem (13.14) is in the form of a Fredholm integral equation of the first kind.

Given functions K and g, such a problem has the general form

Find f such that g(t) =
∫
K(t, s)f(s) ds. (13.15)

The function K is called the kernel of the integral term. Each of the functions f and g can
be defined in any dimension d ∈ N, their domains of definition can be bounded or not, and
they may be vector-valued. For instance, the integral problem (13.14) involves a vector-valued
unknown J coil, the integral is taken over a 3D bounded set Ωc, and the Green’s function kernel
is vector-valued. More details on the domain of definition of the unknown J coil will be subject
to discussion in the following sections. We will now infer that integral equations of the first kind
are ill-posed in the following sense:

• there does not necessarily exist a solution for any given function g,
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• in some cases, the solution is not unique,

• small changes in prescribed data g do not, in general, control the corresponding change in
the solution f .

The theory of integral operators and integral equations has been widely developed in the
literature. Standard applications include scattering theory and inverse problems [45] or linear
flow problems [243]. The discussion in this section is based on [104, 168, 306]. Here, to present
the mathematical challenges associated with Fredholm integral equations of the first kind, we
will consider the following setting:

• two domains, Ω1 ⊂ Rd1 on which the equation holds, and the domain of integration
Ω2 ⊂ Rd2 , not necessarily bounded;

• two real Hilbert spaces,H1 = L2(Ω1,Rn1) andH2 = L2(Ω2,Rn2), the Lebesgue spaces
of functions G : Ωi → Rni such that

∫
Ωi
G(t) ·G(t) dt <∞, equipped with the standard

inner product

⟨G,H⟩ =
∫
Ωi

G(t) ·H(t) dt ∀G,H ∈ Hi for i = 1, 2;

these are also called spaces of measurable square-integrable functions, either scalar-valued
if ni = 1 or vector-valued if ni > 1;

• square-integrable kernels K : Ω1 × Ω2 → Rn1×n2 in the sense∫ ∫
Ω1×Ω2

∥K(t, s)∥2Rn1×n2 dtds <∞,

where ∥ · ∥Rn1×n2 is the matrix norm induced by the Euclidean vector norms, that is to say,
∥A∥Rn1×n2 = sup{∥Ax∥Rn1 : x ∈ Rn2 , ∥x∥Rn2 = 1}.

For instance, for the integral problem (13.14), the data is prescribed on the surface defining the
plasma boundary, Ω1 = ∂Ω ∈ R3, so d1 = 3, the volume outside of which the current vanishes is
Ω2 = Ωc ∈ R3, so d2 = 3, the data is scalar-valued, n1 = 1, the unknown J coil is vector-valued,
n2 = 3, and the kernel is square integrable as it is bounded on the bounded domain ∂Ω× Ωc.

For all the following arguments, we will consider K to be square integrable. Given f ∈ H2,
the function defined on Ω1 by

t 7→
∫
Ω2

K(t, s)f(s) ds

is an element ofH1, since as K and f are both square integrable∫
Ω1

(∫
Ω2

K(t, s)f(s) ds

)
·
(∫

Ω2

K(t, s)f(s) ds

)
dt

≤
∫
Ω1

(∫
Ω2

∥K(t, s)∥2Rn1×n2 ds

)(∫
Ω2

f(s) · f(s) ds
)
dt <∞.

Hence, we can define a linear operator FK : H2 → H1 as the mapping

f 7→
∫
Ω2

K(·, s)f(s) ds. (13.16)

The problem at stake can then be posed abstractly as

Assume g ∈ H1 and K are given.
Find f ∈ H2 such that FK [f ] = g.

(13.17)
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Square-integrable kernels give rise to integral operators belonging to a class known as com-
pact operators. Compact operators share many properties with operators in finite-dimensional
spaces. However, due to the infinite dimensionality of the spaces involved, they are very sensi-
tive to variations in problem data. In a metric space, a compact operator can be characterized by
the fact that the image of any bounded sequence by the operator contains a converging subse-
quence. See, for instance, Chapter 22 in [191]. The key property leading to the ill-posedness of
the integral problem (13.14) is that the associated operator FK is compact.

The operator FK has an adjoint operator, F ∗
K , defined by

⟨FK [G], H⟩ = ⟨G,F ∗
K [H]⟩ ∀(G,H) ∈ H2 ×H1,

and this adjoint is also compact. The composition F ∗
KFK is self-adjoint, since

∀G,H ∈ H2, ⟨F ∗
KFK [G], H⟩ = ⟨FK [G], FK [H]⟩

= ⟨G,F ∗
KFK [H]⟩.

The set of eigenvalues of a self-adjoint operator is countable. For F ∗
KFK they will be denoted

{αi}i∈N, repeated according to their multiplicity, while the set of associated eigenfunctions
{φi}i∈N forms a basis of H2. It can be shown that {αi}i∈N are nonnegative, and they form
either a finite set or a countably infinite set with αi → 0 [168]. Therefore, we can number the
eigenvalues {αi} in decreasing order such that α1 ≥ α2 ≥ · · · ≥ 0. We define NF to be the
largest integer such that αNF

> 0 and αi = 0 for all i > NF if there is a finite number of
eigenvalues, or NF =∞ if there is a countable infinite set of eigenvalues.

The singular values of FK are then defined as µi :=
√
αi for i from 1 to NF while the

associated singular functions are defined for i from 1 to NF by ui = φi ∈ H2,

vi =
FK [ui]

µi
∈ H1,

that satisfy, for i from 1 to NF , {
FK [ui] = µivi,
F ∗
K [vi] = µiui.

(13.18)

Furthermore, from the orthonormality of the {φi} basis, the singular functions satisfy the fol-
lowing orthonormality conditions: {

⟨ui, uj⟩ = δi,j ,
⟨vi, vj⟩ = δi,j .

(13.19)

Finally, if NF < ∞, we can conveniently set µi = 0 for all i > NF , define a basis of the
null space of FK by {ui = φi, i > NF }, and let {vi, i > NF } be any orthonormal basis of
H1\ Span{vi, i ≤ NF }. As a result, independently of the value of NF , the sets {ui, i ∈ N} and
{vi, i ∈ N} form orthonormal bases of H2 and H1. Then (13.18) still holds for {ui} and {vi}
with i ∈ N, since for all i > NF we have

FK [ui] = 0 = µivi,

F ∗
K [vi] =

∞∑
j=1

uj⟨, F ∗
K [vi], uj⟩ =

NF∑
j=1

uj⟨vi, FK [uj ]⟩ = µiui.
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From (13.18) and (13.19), the image of the operator FK can then be described in terms of
singular functions as

∀f ∈ H2, FK [f ] =
∞∑
i=1

vi⟨FK [f ], vi⟩

=
∞∑
i=1

viµi⟨f, ui⟩,

hence

∀f ∈ H2, FK [f ] =

NF∑
i=1

viµi⟨f, ui⟩. (13.20)

We can now turn back to the problem (13.17), now reformulated as follows. For a given square-
integrable kernel K, there exists an associated singular value decomposition (SVD) of the cor-
responding compact integral operator FK . The SVD provides singular values and functions
{(µj , uj , vj), j ∈ N}. Any g ∈ H1 is uniquely defined by its coordinates in the {vi}i basis,

g =
∞∑
i=1

⟨vi, g⟩vi,

so the problem reads as follows:

Assume g =

∞∑
i=1

⟨vi, g⟩vi ∈ H1 is given.

Find f ∈ H2 such that
NF∑
i=1

viµi⟨f, ui⟩ = g.

(13.21)

We first consider the case in which NF < +∞. In this case, problem (13.21) has no unique
solution, as the linear operator (13.16) has a nontrivial null space. To demonstrate this, suppose
that f̂(s) satisfies (13.21). Then for any n > NF , f := f̂ + un will also be a solution since un
is in the null space of FK . Thus, the problem is not well-posed.

In this case, the image of H2 by the operator FK is included in H1, but here it is smaller
than H1. Indeed, from (13.20) then FK [H2] = Span{vi, 1 ≤ i ≤ NF }, so FK [H2] ̸= H1. As a
result, although a solution may not exist for all functions g in H1, there exists a solution as long
as g belongs to the image FK [H2],

g ∈ FK [H2]⇔ ⟨vi, g⟩ = 0 ∀i > NF .

Under this condition, then g can be expressed in terms of vi singular functions as

g =

NF∑
i=1

⟨vi, g⟩vi,

and one particular (nonunique) solution to (13.21) can be written as

f =

NF∑
i=1

ui⟨vi, g⟩
µi

,

while any solution is given, for any set of coefficients {ci ∈ R, i ≥ NF + 1}, by

f =

NF∑
i=1

ui⟨vi, g⟩
µi

+

∞∑
i=NF+1

ciφi(s).
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We now consider the case NF = ∞, so that µi > 0 for all i with µi → 0 as i → ∞. Then
g ∈ H1 can be expressed in the singular function basis as

g =
∞∑
i=1

⟨vi, g⟩vi.

So, from (13.20), if a function f ∈ Span{ui, i ∈ N} is a solution to (13.21), it necessarily reads

f =
∞∑
i=1

⟨vi, g⟩
µi

ui. (13.22)

Note that since µi → 0 as i→∞, this shows that f is less smooth than g, and FK is sometimes
described as a smoothing operator. Thus, for a square-integrable solution to exist, we must have

⟨f, f⟩ <∞⇔
∞∑
i=1

(
⟨vi, g⟩
µi

)2

<∞. (13.23)

The above condition effectively sets a constraint on the allowable g ∈ H1 that can be prescribed
such that (13.21) has a solution in H2. However, under this condition, the solution is unique.
Note that the constraint on g is stronger than that required for square-integrability, namely

⟨g, g⟩ <∞⇔
∞∑
i=1

⟨vi, g⟩2 <∞,

since the µi → 0. Therefore, again the image FK [H2] is a subspace of H1 that is smaller than
H1. Thus, the problem, as stated in (13.21), is ill-posed, as a solution does not exist unless
additional constraints are placed on the prescribed data K and g.

We have now considered both cases of NF finite and NF = +∞. In both cases, we find
that the problem stated as (13.21) does not have a solution unless an additional constraint is
placed on g. Thus, the general problem (13.17) is ill-posed, as a square-integrable solution does
not exist for every g ∈ H1. In other words, the compact linear operator FK defined on the
infinite-dimensional Hilbert spaceH2 does not have a continuous inverse.

Next, suppose that we consider g such that (13.23) is satisfied and a square-integrable solution
exists. Now, we consider the second condition for a well-posed problem by evaluating the result
of perturbation in the prescribed data. Consider a perturbation of the data by g → g + δg. For
the coils problem, this could come from any numerical error in the computed normal magnetic
field from the equilibrium. In particular, we consider a perturbation δg = ∆vi0 for a scalar ∆
and particular singular vector vi0 . This will result in a perturbation of the solution by

δf =
ui0∆

µi0
,

which follows from (13.22). The condition for square-integrability of δf now becomes

∞∑
i=1

⟨vi, δg⟩2

µ2
i

=
∆2

µ2
i0

<∞.

The above condition does not hold for an arbitrary perturbation of the data, as the µi → 0 as
i → ∞, and a nonzero perturbation δg can be made in the direction vi0 for i0 → ∞. Thus, the
perturbation of the data may result in an arbitrarily large perturbation of the solution, and the
problem is generally ill-posed. In this way, solving an integral equation of the first kind tends to
amplify noise.
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In general, a numerical approximation of a given equation may be viewed as the solution to
the same equation with perturbed data, so the ill-posed nature of the problem has consequences
for the numerical approximation of a solution. Despite the possible ill-posedness of the problem,
there is considerable interest in methods for a stable numerical approximation of a solution when
a solution exists. Computing a numerical approximation of the solution can be more or less
challenging depending on further properties of the kernel K, and it is more challenging when
the kernel is smooth [320]. In the particular case of (13.14), since the equation is evaluated at r,
away from the domain of integration Ωc, the kernel is smooth, therefore the coil design problem
is numerically challenging.

We will now turn to classical methods for the numerical treatment of integral equations of
the first kind for a general kernel K that have been leveraged in the plasma physics literature.

13.4.2 Regularization

In order to be able to compute accurately and efficiently a numerical approximation to a solution
of a challenging ill-posed problem, the problem can first be reformulated as a well-posed prob-
lem to be solved approximately by a numerical method. In the context of ill-posed problems,
regularization methods refer to stable numerical methods to compute an approximate solution to
the initial problem. Such methods usually rely on a modified well-posed problem, the so-called
regularized problem. This one, unlike the original problem, is well-posed, so it can be solved
thanks to a stable numerical method. This process introduces an error due to the approximation
of the problem, and accuracy has to be balanced with stability. We limit our discussion here to
two standard methods, truncated SVD and Tikhonov regularization, while more details can be
found in [168].

The main results from this section can be summarized as follows. Given the singular vectors
{vi} and {ui} and singular values {µi} of the integral operator FK , for a parameter k, the
truncated SVD problem reads as follows:

Given gk =

k∑
i=1

⟨vi, g⟩vi ∈ H1,

find fk ∈ H2 such that
k∑
i=1

viµi⟨fk, ui⟩ = gk.

(13.24)

The Tikhonov regularized problem reads as follows:

Find W ∈ H2 such that GK [W ] = F ∗
K [g],

where the operator GK : H2 → H2 is defined as GK = F ∗
KFK + λI , I being the identity

operator onH2 and λ > 0 is a parameter to be fixed. The Tikhonov problem can be equivalently
formulated as the optimization problem,

min
W∈H2

χ2(W ) where χ2(W ) := ⟨g − FK [W ], g − FK [W ]⟩+ λ ⟨W,W ⟩ .

For both regularization methods,

• a unique, square-integrable solution exists;

• a square-integrable change to the data g yields a square-integrable change to the solution
f ;

• the regularization parameter, k or λ, balances the stability of the solution with the accuracy
of the integral equation.

These statements are explained in the following.
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The truncated SVD problem (13.24) naturally has a unique solution given by

fk =
k∑
i=1

ui⟨g, vi⟩
µi

. (13.25)

By construction, fk is square integrable as it is a finite sum: the effect of the small singular values
as i→∞ are not retained in comparison with the solution of the ill-posed problem (13.22). The
application of this truncation also improves the stability of the solution with respect to noise
in the prescribed data. Indeed, consider a perturbation of the data g → g + δg, resulting in a
perturbation of the solution

δfk =
k∑
i=1

ui
µi
⟨δg, vi⟩. (13.26)

Thanks to the truncation, the noise associated with large i is removed; thus, δfk is square-
integrable. If ⟨g, vi⟩/µi decays sufficiently fast as i → ∞, then fk will yield a good approx-
imation for f as k → ∞. In this way, the regularized problem (13.24) is well-posed according
to the definition presented in Section 13.4.1.

This then provides a natural approach to construct a numerical method to approximate a
solution of (13.17) by solving numerically the well-posed regularized problem (13.24). It is,
however, important to understand the role of the regularization parameter k. For the regularized
solution (13.25), we can compute the residual R[fk] := g − FK [fk] for the initial problem,

R[fk] =

∞∑
i=k+1

vi⟨vi, g⟩.

As the regularization parameter k goes to infinity, the residual R[fk] goes to zero since it con-
tains fewer nonzero components, while the numerical stability decreases. Indeed, although δfk
will remain square integrable as long as k is finite, a given perturbation of the data, δg, in the
direction of one of the singular vectors, vi, will result in a larger perturbation of the solution as in
(13.26) due to its multiplication by 1/µi. On the other hand, for k → 1, the numerical stability
increases while the residual R[fk]→ g, so fk is a poor approximation to the initial problem. As
a consequence, the role of the regularization parameter k is to balance the accuracy and stability
of the regularized problem.

As the mere definition of the regularized problem relies here on the singular values of the
operator FK , it is crucial to keep in mind that any numerical method relying on the truncated
SVD regularization will require some approximation of these singular values. The truncated
SVD technique has been applied to compute approximate solutions of (13.14) in several stel-
larator coil design codes [242, 180]. In these two references, both the right-hand side g and the
unknown f are supported on toroidal surfaces. The problem is then naturally approximated in
terms of truncated Fourier series, and the approximated truncated SVD is computed as the SVD
of the discretized linear integral operator. The minimum approximated singular value retained
in the SVD computation must be chosen carefully in order to improve numerical stability while
maintaining accuracy. Another application of a similar truncated SVD technique to stellarator
design can be found in [171].

A second common regularization method is Tikhonov regularization [290], introducing ad-
ditional information about the nature of the solution in the regularized problem. The first-kind
integral problem (13.17) can be formulated as an optimization problem by seeking W , that min-
imizes the residual g − FK [W ]. In the Tikhonov approach, one seeks to minimize the sum of
the residual, g − FK [W ], and a regularization term. The residual term is also called a penalty
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term. The additional term can be chosen appropriately depending on the desired or expected
features of the solution, the most classical choice being related to the norm of the solution. The
corresponding regularized problem then reads

min
W∈H2

χ2(W ) where χ2(W ) := ⟨g − FK [W ], g − FK [W ]⟩+ λ ⟨W,W ⟩,

where λ is a parameter to be fixed. We will now show that this regularized problem is well-posed
for λ > 0. The above functional, χ2, is strongly convex (see Chapter 3 in [27]) as its second
variation with respect to W is positive definite,

δ2χ2(W ; δW, δW ) = 2 ⟨δW, (F ∗
KFK + λ) δW ⟩ > 0 ∀δW ∈ H2,

for any λ > 0, as F ∗
KFK is a symmetric positive semidefinite operator. Thus, χ2 has a unique

global minimum. The functional reaches its minimum value at its unique stationary point Wm,
defined by

δχ2(Wm; δW ) = 0, ∀δW ∈ H2,
⇔ 2 ⟨δW,F ∗

K (FKWm − g) + λWm⟩ = 0, ∀δW ∈ H2,
⇔ (F ∗

KFK + λ)Wm = F ∗
K [g].

Solving the regularized problem is, therefore, equivalent to solving the following linear problem:

Find W ∈ H2 such that GK [W ] = F ∗
K [g], (13.27)

where the operator GK : H2 → H2 is defined as GK = F ∗
KFK + λI , I being the identity

operator onH2. Due to the strong convexity of χ2, a unique solution to GK [W ] = F ∗
K [g] exists.

Since it is equivalent to the regularized problem, then the regularized problem itself has a unique
solution. As the equation is linear, uniqueness can also be proved as follows: the uniqueness
of the solution is equivalent to the null space of the operator GK being trivial. This can be
proved for λ > 0. Indeed, for any W such that GK [W ] = 0, then ⟨GK [W ],W ⟩ = 0, hence
λ⟨W,W ⟩+ ⟨FK [W ], FK [W ]⟩ = 0, implying that W = 0 if (and only if) λ > 0.

To underscore the benefit of Tikhonov regularization, we consider the eigenspectrum of GK .
We note that the eigenfunctions of F ∗

KFK , denoted by {φi}i∈N, will also be eigenfunctions of
GK with corresponding eigenvalues {αi+λ}i∈N, where {αi}i∈N are the eigenvalues of F ∗

KFK .
The image of the operator GK can then be expressed in terms of its eigenspectrum as

∀W ∈ H2, GK [W ] = GK

[ ∞∑
i=1

φi⟨W,φi⟩

]
=

∞∑
i=1

GK [φi]⟨W,φi⟩

=
∞∑
i=1

(αi + λ)φi⟨W,φi⟩.

Thanks to the properties of the singular functions (13.18), the quantity F ∗
K [g] can be expanded

in the basis of the singular functions of FK as

F ∗
K [g] =

∞∑
i=1

⟨ui, F ∗
K [g]⟩ui =

∞∑
i=1

⟨FK [ui], g⟩ui =
∞∑
i=1

µi⟨vi, g⟩ui.

This shows again that the problem (13.27) has a unique solution given by

Wm =
∞∑
i=1

ui
µi

µ2
i + λ

⟨vi, g⟩, (13.28)
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and it is the unique solution to the regularized problem. Indeed, we can easily verify that this
function is square integrable for any λ > 0 and g ∈ H1, as

⟨Wm,Wm⟩ =
∞∑
i=1

µ2
i

(µ2
i + λ)2

⟨vi, g⟩2 ≤
1

4λ

∞∑
i=1

⟨vi, g⟩2 =
1

4λ
⟨g, g⟩ <∞. (13.29)

The above holds due to the inequality of arithmetic and geometric means, x+ y ≥ 2
√
xy for all

nonnegative x and y. We can now show that Tikhonov regularization improves the stability of the
solution to perturbation of the data. Consider a perturbation g → g + δg; from (13.28)–(13.29)
it results in a perturbation of the solution given by

δWm =

∞∑
i=1

ui
µi

µ2
i + λ

⟨vi, δg⟩ with ⟨δWm, δWm⟩ ≤
⟨δg, δg⟩

4λ
. (13.30)

Thus, a square-integrable change in the prescribed data, δg, will result in a square-integrable
change to the solution, δWm, and the norm of the change in the solution is controlled by the
norm of the change in the data. In this way, the regularized problem (13.27) is well-posed
according to the definition presented in Section 13.4.1. The solution of the regularized problem
now depends continuously on the prescribed data, g, for any λ > 0.

This provides another natural approach to construct a numerical method for approximate
solutions of (13.17), by solving numerically the well-posed regularized problem (13.27). It is,
however, important to understand the role of the regularization parameter λ. For the regularized
solution (13.28), we can compute the residual R[Wm] := g − FK [Wm] for the initial problem,

R[Wm] =

∞∑
i=1

λ

µ2
i + λ

⟨vi, g⟩vi.

So for λ → ∞, that is, for a large regularization term, the constant in the stability estimate
(13.30) is 1/(4λ) → 0, while the residual R[Wm] → g, so Wm is a poor approximation to the
initial problem. Large values of λ are associated with low accuracy. In contrast, for λ → 0,
that is, for a small regularization term, the residual R[Wm] → 0 independently of the data g,
while the constant in the stability estimate (13.30) is 1/(4λ) → ∞, so the solution becomes
more sensitive to noise in the data. Small values of λ are associated with poor stability. As a
consequence, again, the role of the regularization parameter λ is to balance the accuracy and
stability of the regularized problem.

To summarize, the first regularization method relies on a well-posed finite-dimensional prob-
lem while the second method relies on a well-posed optimization problem in infinite dimensions.
Following this discussion on integral equations of the first kind, including their ill-posedness
and methods for regularization, we return to the practical formulation of the coil design prob-
lem. The construction of an approximated solution to the first-kind integral equation (13.14)
combined with other constraints via the numerical treatment of optimization problems will be
addressed next after additional assumptions guided by practical considerations lead to a simpli-
fied problem.

13.4.3 Overview of the coil design problem

The ill-posedness of the integral equation (13.14) can be seen as beneficial, as the existence of
many possible solutions reproducing the desired plasma boundary within a given tolerance allows
some flexibility. Given this freedom inherent to the coil design process, desirable properties of
coils, as introduced in Section 13.3, can be taken into account in formulating an optimization
problem for the numerical approximation of coils.

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



13.4. Coil optimization 199

In order to find approximate solutions that minimize the error in the integral equation (13.14),
the additional desired coil properties are introduced under the form of a regularization term in
the hope of defining a well-posed discrete problem. Given a current, the total objective function,
usually denoted by χ2, is commonly defined as

χ2
(
J coil) = χ2

B

(
J coil)+ λχ2

coil

(
J coil) , (13.31)

including a contribution for equilibrium properties, χ2
B , and one for engineering properties of

coils, χ2
coil.

The primary goal, accounted for by the first term, is to find a current consistent with the
desired equilibrium. While other equilibrium properties can also be taken into account, the stan-
dard objective function simply targets the normal field error. More precisely, given Bplasma(r)
on the plasma boundary ∂Ω, the total field depending on the current J coil is defined as

B
[
J coil] (r) = Bplasma(r) +

µ0

4π

∫
Ωc

J coil(r′)× (r − r′)

|r − r′|3
dr′.

Then, the normal field error at the plasma boundary can be expressed as

χ2
B

(
J coil) = ∫

∂Ω

(
B
[
J coil] (r) · n̂(r))2 d2r, (13.32)

where the domain of integration is the plasma boundary ∂Ω, even though the value of the total
field there depends on the values of the current supported away from this plasma boundary.

The specific expression of objectives for the additional desired coil properties in χ2
coils de-

pends on further assumptions on the support of the current J coil. Thus, we will discuss sepa-
rately the specifics of these regularization terms for each of the two models for current support:
the toroidal surface and the set of curves.

13.4.4 Winding surface model

The first stellarator coil optimization tools were based on a winding surface approximation.
Rather than seeking a current supported in a volume Ωc, as in (13.14), the support of the unknown
current is assumed to be restricted to a given surface called the winding surface. Furthermore, the
current must be tangent to this surface. Leveraging the periodicity along the genus one winding
surface, as well as the divergence-free condition, leads to a considerably simplified optimization
problem. The individual coil shapes that are to be built in the experiment are obtained later as
a postprocessing step. Compared to the individual coils, this winding surface approximation is
often thought of as a limit of a very large number of individual coils.

As the coil optimization objective (13.31) is a function of the coil current J coil, it is then
natural to leverage hypotheses on this current, namely its surface support and its divergence-free
property, in order to define convenient minimization variables.

In terms of a mathematical model, a genus one surface Scoil will support an unknown surface
current K. The surface Scoil is assumed to be given, parameterized by a poloidal angle θ and
toroidal angle ζ, and the plasma boundary ∂Ω is nested inside Scoil. This is illustrated in Fig-
ure 13.4. The corresponding 3D current JK supported by and tangent to Scoil is then expressed
as

JK(r) =

{
K(θ(r), ζ(r)), r ∈ Scoil,
0 otherwise,

where n̂ ·K = 0 on the surface. Moreover, while a smooth current density is divergence-free
given Ampère’s law, the equivalent condition for a current density supported on a surface is the
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vanishing of the surface divergence,∇Scoil ·K = 0. The derivation of this condition can be found
in Appendix C.3, using the local coordinate system

(
b, θ̃, ζ̃

)
introduced in Appendix C.1. Given

the definition of the surface divergence, this can be stated equivalently as

1
√
g

[
∂
(√
gK · ∇θ

)
∂θ

+
∂
(√
gK · ∇ζ

)
∂ζ

]
= 0.

Remark 13.1. The previous equation is of the form (6.1). Considering the coordinates (θ, ζ)
as well as F1 =

√
gK · ∇θ and F2 =

√
gK · ∇ζ, we can thus apply the results discussed in

Section 6.1.

According to Remark 13.1, for the surface divergence–free field K, there exists one function
Φp periodic in (θ, ζ) and two constants, G and I , satisfying, for

Φ(θ, ζ) = Φp(θ, ζ) +
Gθ

2π
+
Iζ

2π
, (13.33)

the following relations: 
K · ∇θ = 1

√
g

∂Φ

∂ζ
,

K · ∇ζ = − 1
√
g

∂Φ

∂θ
.

Remark 13.2. It follows that the vector field K can then be expressed in terms of the current
potential Φ as

K = n̂×∇Φ. (13.34)

As a result of (13.34), K · ∇Φ = 0, or current streamlines flow along contours of the current
potential. Thus, in postprocessing the winding surface current, filamentary coils can be chosen
conveniently as a subset of contours of the current potential.

As a consequence, the nonperiodic contributions to Φ can then be related to the current on
the surface. Indeed, on the one hand,∫

Scoil
(K · ∇ζ)(r) d2r =

∫ 2π

0

∫ 2π

0

√
g(θ, ζ)K(θ, ζ) · ∇ζ

(
R(0, θ, ζ)

)
dθdζ

= −
∫ 2π

0

∫ 2π

0

∂Φ(θ, ζ)

∂θ
dθdζ

= −
∫ 2π

0

∫ 2π

0

(
∂Φp(θ, ζ)

∂θ
+
G

2π

)
dθdζ

= −2πG by periodicity of Φp,

and on the other hand∫
Scoil

(K · ∇θ)(r) d2r =
∫ 2π

0

∫ 2π

0

√
g(θ, ζ)K(θ, ζ) · ∇θ(R(0, θ, ζ)) dθdζ

=

∫ 2π

0

∫ 2π

0

(
∂Φ(θ, ζ)

∂ζ

)
dθdζ

=

∫ 2π

0

∫ 2π

0

∂Φp(θ, ζ)

∂ζ
+

I

2π
dθdζ

= 2πI by periodicity of Φp.
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In other words,G is the net current linking the winding surface toroidally, and I is the net current
linking the winding surface poloidally:

2πG = −
∫
Scoil

(K · ∇ζ)(r) d2r,

2πI =

∫
Scoil

(K · ∇θ)(r) d2r.
(13.35)

Yet these two constants relate to the coils and the magnetic field in different ways.

• The constant I can be derived from known properties of the target equilibrium as follows.
Consider the outer plasma surface, ∂Ω, parameterized by two angles, θp and ζp. The
integral form of Ampère’s law applied to any surface SP enclosed by a curve at constant
θp on ∂Ω, by ∂SP , as represented in Figure 9.2, reads∮

∂SP

B(R(0, θp, ζp)) ·
∂R(0, θp, ζp)

∂ζp
dζp = µ0

∫
SP

(J · n̂)(r) d2r,

where J is the total current, including both the plasma current and the external current
supported on Scoil. While the left-hand side is fixed by the desired equilibrium, since the
domain of integration lies on the plasma boundary, the right-hand side only has contribu-
tions due to the current potential since the domain of integration lies outside the plasma
boundary. Therefore, Ampère’s law can be rewritten as∮

∂SP

B(R(0, θp, ζp)) ·
∂R(0, θp, ζp)

∂ζp
dζp = µ0

∫
SP

(JK · n̂)(r) d2r. (13.36)

The right-hand side can now be expressed in terms of the current potential. Indeed, using
the dual relations between covariant and contravariant basis vectors from Table 5.1, for a
tangential surface vector field, we see that

µ0

∫
SP

(JK · n̂)(r) d2r

= µ0

∫ b+

b−

∫ 2π

0

[
JK · ∇θ̃
|∇θ̃|

]
(R(0, θp, ζp))

∣∣∣∣∂R
∂ζ̃
× ∂R

∂b

∣∣∣∣(0, θp, ζp) dζ̃db.
We will use the dual relation

∇θ̃ = 1
√
g

(
∂R

∂b
× ∂R

∂ζ̃

)
,

combined with the fact that the Jacobian in the coordinate system
(
b, θ̃, ζ̃

)
is expressed in

terms of covariant vectors as
√
g = ∂R/∂ζ̃ × ∂R/∂θ̃ · ∂R/∂b, where ∂R/∂b|SP

= n̂

so that |√g| = |∂R/∂ζ̃ × ∂R/∂θ̃|. Moreover, as a reminder, the coordinate system is
such that θ̃|Scoil = θ, ζ̃|Scoil = ζ, while ∂R/∂θ̃|Scoil = ∂R/∂θ, ∂R/∂ζ̃|Scoil = ∂R/∂ζ, and
∇θ̃|Scoil = ∇θ. Hence we get

µ0

∫
SP

(JK · n̂)(r) d2r

= µ0

∫ 2π

0

K(θp, ζp) · [∇θ]
(
R(0, θp, ζp)

)∣∣∣∣∂R∂θ × ∂R

∂ζ

∣∣∣∣(0, θp, ζp) dζ.
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Finally, according to (13.35), the right-hand side in (13.36) can be related to the constant
I as follows:

µ0

∫
SP

(JK · n̂)(r) d2r = µ0I.

Although, according to (13.35), I is defined in terms of an integral over both θ and ζ, it can
equivalently be expressed in terms of an integral over only ζ since only periodicity with
respect to ζ is exploited. So, the constant can be computed from the desired equilibrium
as

I =
1

µ0

∮
∂SP

B
(
R(0, θp, ζp)

)
· ∂R(0, θp, ζp)

∂ζp
dζp. (13.37)

• Similarly, the integral form of Ampère’s law applied to a surface ST enclosed by a curve
at constant ζp on ∂Ω, ∂ST , as represented in Figure 9.1, reads∮

ST

B
(
R(0, θp, ζp)

)
· ∂R(0, θp, ζp)

∂θp
dθp = µ0

∫
ST

(JK · n̂)(r) d2r.

However, the current density on the right-hand side has no contribution from the currents
on the winding surface, as it is an integral over a toroidal cross-section of the plasma. As a
consequence, this identity is not related to G, and therefore, unlike I , the constant G is not
fixed by the equilibrium. By contrast, we can choose the value of G regarding the desired
properties of the coils, in particular regarding their topology. For instance, as discussed in
Remark 13.2, a set of streamlines of the current density, or contours of the current potential,
can be chosen to provide the coils. In order to ensure that these streamlines are closed with
a given helicity on average, we can assume that the ratio G/I takes a given rational value.
In this case, consider any closed streamline CΦ0 corresponding to a particular value of
the current potential, Φ0, and parameterized by (θ0(l), ζ0(l)), where l is a coordinate that
measures length along the streamline. Along the surface Scoil, the numbers of poloidal and
toroidal turns of the streamline are

M(Φ0) =
1

2π

∮
CΦ0

dθ0(ℓ)

dℓ
dℓ,

N(Φ0) =
1

2π

∮
CΦ0

dζ0(ℓ)

dℓ
dℓ.

Moreover, by definition of a streamline, the derivatives along the streamline are
dθ0(ℓ)

dℓ
=

[
K

|K|

] (
θ0(ℓ), ζ0(ℓ)

)
· [∇θ]

(
R(0, θ0(ℓ), ζ0(ℓ))

)
,

dζ0(ℓ)

dℓ
=

[
K

|K|

] (
θ0(ℓ), ζ0(ℓ)

)
· [∇ζ]

(
R(0, θ0(ℓ), ζ0(ℓ))

)
.

Averaging over all possible streamlines by integrating over Φ gives
∫
M(Φ) dΦ =

1

2π

∫ ∮
CΦ

[
K

|K|

] (
θ0(ℓ), ζ0(ℓ)

)
· [∇θ]

(
R(0, θ0(ℓ), ζ0(ℓ))

)
dℓdΦ,∫

N(Φ) dΦ =
1

2π

∫ ∮
CΦ

[
K

|K|

] (
θ0(ℓ), ζ0(ℓ)

)
· [∇ζ]

(
R(0, θ0(ℓ), ζ0(ℓ))

)
dℓdΦ.
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Since

dℓdΦ = dθdζ|K|
∣∣∣∣∂R∂θ × ∂R

∂ζ

∣∣∣∣ ,
this yields 

∫
M(Φ) dΦ =

1

2π

∫
Scoil

(JK · ∇θ)(r) d2r,∫
N(Φ) dΦ =

1

2π

∫
Scoil

(JK · ∇ζ)(r) d2r.

Using (13.35), we then conclude that
∫
M(Φ) dΦ = I and

∫
N(Φ) dΦ = −G. In this way,

G quantifies the average winding of streamlines of the current density in the toroidal di-
rection, while I quantifies the average winding of the streamlines in the poloidal direction.
In particular, the ratio of I/G is analogous to the rotational transform (7.3).

If coils are chosen as streamlines of the current density, following Remark 13.2, the value
of G restricts the topology of the coil set. If one desires modular coils, linking the plasma
poloidally but not toroidally, then G = 0 is chosen. If one desires helical coils, linking
the plasma both poloidally and toroidally, then G is chosen based on the desired relative
number of toroidal turns of the coils. Saddle coils, linking the plasma neither toroidally
nor poloidally, might also be of interest. However, such coils, if they are streamlines of
the current density, would correspond to I = 0 and G = 0. Therefore, such a coil set
alone cannot be consistent with the equilibrium according to (13.37). Nevertheless, this
condition can be satisfied with the addition of currents linking the plasma poloidally.

The last of the three terms contributing to (13.33) is the periodic function Φp. If the plasma
boundary is assumed to be stellarator symmetric as in (13.11), the current density must also
be stellarator symmetric, and K must be even with respect to θ and ζ. Hence, leveraging its
periodicity, it can be represented as a sine Fourier series:

Φp(θ, ζ) =
∑

(m,n)∈D

Φm,n sin(mθ − nζ),

whereD := (N×Z)∪({0}×N). The Fourier harmonics are then natural parameters to minimize
a certain objective function of the current as introduced in (13.31). So the set of parameters

{Φm,n ∈ R, (m,n) ∈ D}

uniquely defines the current density. In practice, a finite number of these modes are retained.
Assuming that the maximum poloidal and toroidal mode numbers are fixed and denoted respec-
tively by M and N , the set DM,N of indices is defined as

DM,N := {(m,n) ∈ D,m ≤M,n ≤ N}.

The corresponding set of 2NM +M +N parameters

RM,N := {Φm,n ∈ R, (m,n) ∈ DM,N}

is the set of minimization variables for the coil optimization. If the current density is described
for fixed maximum poloidal and toroidal mode numbers, respectively denoted M and N , by a
set of 2MN +M +N coefficientsRM,N , then J coil(RM,N ) denotes the corresponding surface
current for K defined by (13.34).
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As a conclusion, under the winding surface assumption, a coil optimization problem can be
summarized as follows:

1. Compute I from the field B according to (13.37).

2. Choose G according to the desired topology of the coils.

3. Solve

min
RM,N

χ2
(
J coil(RM,N )

)
where χ2

(
J coil) := χ2

B

(
J coil)+ λχ2

coil

(
J coil) . (13.38)

The first term is given by (13.32), while the regularization term is most often chosen such that
(13.38) is a convex optimization problem. Under the winding surface assumption, the most
common convex optimization problem is obtained by quantifying coil complexity as

χ2
K =

∫
Scoil

|JK |2(r) d2r. (13.39)

Larger values of |JK |2 indicate that contours of the current potential are closer to each other,
implying a smaller coil-coil distance. This feature is difficult to engineer and makes experimental
access difficult as previously discussed in Section 13.3.

We can consider the formulation in (13.38) to be a form of Tikhonov regularization. As
discussed in Section 13.4.2, there is a unique global minimum of χ2 due to its strict convexity.
Thus, for a given winding surface and target plasma boundary, the global minimum of χ2 can
be found efficiently by solving a single linear least-squares system for {Φm,n}. According to
Remark 13.2, once the current potential is obtained, a set of filamentary coils can be taken to
be a set of the contours of the current potential. However, the winding surface assumption is
very limiting. Indeed, certain coil topologies, such as interlinked coils, cannot be treated with
this method, and effects due to the cross-sectional area of filamentary coils are not included.
Nonetheless, the winding surface approach remains an important tool in the stellarator design
community, as it can provide a reasonable initial guess for filamentary methods described in the
following section.

The first implementation of this method was the NESCOIL code [213], that solves the prob-
lem without regularization such that λ = 0, or χ2 = χ2

B . In order to tackle ill-posedness, a
truncated SVD approach was implemented during the NCSX design [242]. Tikhonov regulariza-
tion was introduced with the REGCOIL code [175] by adding the second term (13.39) to (13.38).
An example REGCOIL calculation for the NCSX equilibrium is shown in Figure 13.5.

The calculations described in this section have assumed a fixed winding surface. Often,
this surface is taken to be a surface uniformly offset from ∂Ω. However, the surface Scoil itself
can be optimized [237] to improve the properties of the resulting coils. For example, such an
optimization was performed during the design of the W7-X coils [96]. Table 13.2 summarizes
common figures of merit to quantify the complexity of the current potential within winding
surface optimization.

13.4.5 Filamentary model

Modern stellarator coil optimization tools are often based on filamentary coil optimization.
Rather than seeking a current supported in a volume Ωc, as in (13.14), or supported on a given
winding surface, as in (13.38), the support of the unknown current is assumed to be restricted to
a set of closed curves, whose shapes and positions are also degrees of freedom.

In terms of a mathematical model, a set of N unknown closed curves, {Ck}1≤k≤N , will
support the current, each curve supporting a scalar current Ik. Each Ck can be represented as a
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Figure 13.5: The normalized current potential solution computed with REGCOIL in (θ, ζ) space.
The fixed winding and plasma surfaces and the six contours corresponding to the coil shapes are
respectively represented in three dimensions in Figures 13.4a and 13.4b.

Table 13.2: Properties of the continuous current, K(θ, ζ), on a winding surface, Scoil. Here
RP (θp, ζp) denotes the position on the fixed plasma boundary ∂Ω while RW (θ, ζ) denotes the
position on the winding surface. To define the curvature κ, a streamline of the current potential
is expressed as a curve parameterized by the length, rC(ℓ), and κ(ℓ) = |r′′C(ℓ)|. These metrics
are described in [175, 237, 60].

RMS current density ||K||2 =
√∫

Scoil
|K|2 d2r/

∫
Scoil

d2r

Maximum current density Kmax = maxθ,ζ |K(θ, ζ)|

Harmonic content H =
∑
m,nΦ

2
m,n(m

2 + n2)

Curvature fκ =
∫
Scoil

κ2|K|2 d2r

Coil-plasma spacing minθ,ζ,θp,ζp dist
(
RP (θ, ζ),RW (θp, ζp)

)
parameterized curve, Rk, under the form of a Fourier series:

Rk(s) = Rk,c
0 +

∑
m∈N

Rk,c
m cos(ms) +Rk,s

m sin(ms).

Here s ∈ [0, 2π) parameterizes the length along the curve. The Fourier harmonics are then nat-
ural parameters to minimize a certain objective function of the current as introduced in (13.31).
So the set of parameters{

Rk,c
0 , (Rk,c

m ,Rk,s
m ) ∈ R2,m ∈ N, 1 ≤ k ≤ N

}
together with the current values {Ik, 1 ≤ k ≤ N} uniquely define the current. In practice, a
finite number of Fourier modes are retained. Assuming that the maximum mode number is fixed,
and denoted by M , the corresponding set of 2NM + 2N parameters

SM,N :=
{
Ik,R

k,c
0 , (Rk,c

m ,Rk,s
m ) ∈ R2, 1 ≤ m ≤M, 1 ≤ k ≤ N

}
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Table 13.3: Properties of a set of filamentary curves, {Ck}1≤k≤N , parameterized by Rk as a
function of the length along the curve ℓ. Here R(θp, ζp) denotes the position on the desired
plasma boundary, ∂Ω, parameterized by angles (θp, ζp). These metrics are discussed in [327,
60, 144].

Length Lk =
∮
Ck
dℓk

Curvature κ(ℓ) = |R′′
k(ℓ)|

Torsion τk(ℓ) =

∣∣R′
k(ℓ) ·

(
R′′
k(ℓ)×R′′′

k (ℓ)
)∣∣

|R′′
k(ℓ)|2

Coil-coil separation mini̸=j,ℓ dist
(
Ri(ℓ),Rj(ℓ)

)
Coil-plasma separation mink,θp,ζp,ℓ dist

(
Rk(ℓ),R(θp, ζp)

)

is the set of minimization variables for the coil optimization. If the current is described for fixed
maximum mode number M , by a set of 2MN + 2N coefficients SM,N , then J coil denotes the
corresponding current. In this context, a coil optimization problem can be expressed as follows:

min
SM,N

χ2
(
J coil(SM,N )

)
where χ2

(
J coil) := χ2

B

(
J coil)+ λχ2

coil

(
J coil) .

In the context of filamentary methods, there are many choices for the objective function.
It is common to include the coil length as a form of regularization. Other objectives include
penalties on the curvature of coils, minimum distance between coils, and coil-plasma separation.
Filamentary coil optimization software includes ONSET [58], COILOPT [278], FOCUS [327],
and SIMSOPT [183]. Table 13.3 provides a summary of common metrics employed during
filamentary coil optimization, motivated by the discussion in Section 13.3.

The choice of the number of coils, N , and the coil shape may be constrained by the NFP -
symmetry and stellarator symmetry described in Section 12.3. For example, if the coils link
the plasma poloidally as in Figure 13.4b, then only half of one field period of coils needs to be
determined, with the rest of the coil set obtained by applying rotations and translations. For this
case, the number of degrees of freedom is reduced by 2NFP .

There are other possible choices for filamentary curve parameterization. For example, the set
of filamentary coils can be modeled by a set of closed curves on a winding surface, the surface
itself being allowed to evolve throughout the optimization [58, 278]. The winding surface could
then be constrained to lie within two bounding toroidal surfaces.

While for the winding surface methods, the objective function can be chosen to lead to a
convex optimization problem that can be solved with a linear least-squares method, the filamen-
tary methods require the solution of a nonconvex, nonlinear optimization problem. Therefore,
several local minima may exist, and the result of a configuration optimization will generally de-
pend on the initial guess. In practice, the output of a winding surface calculation can, therefore,
provide a reasonable initial solution for such nonlinear optimization methods. On the other hand,
filamentary methods provide results that more closely approximate coils that can be constructed
since the winding surface method is based on the assumption of a large number of coils. For this
reason, filamentary methods are more amenable to the incorporation of engineering constraints.
In addition, filamentary methods can also be used for coil topologies such as interlinked coils,
which cannot be treated with the winding surface method.
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Figure 13.6: A diagram of the Princeton Model A stellarator based on Lyman Spitzer’s figure-
eight design. Figure reproduced from [305]. Courtesy of the Department of Energy Office of
Scientific and Technical Information.

13.5 Examples of optimized configurations
Following this discussion on numerical methods and challenges associated with stellarator de-
sign, we provide a brief history of some optimized stellarators. While early stellarator exper-
iments were not optimized, we also present an overview of these efforts to provide historical
context in Section 13.5.1.

13.5.1 Early stellarator experiments

As discussed in Section 7.3, rotational transform can be produced with three physical mecha-
nisms: by current in the plasma, twisting ellipticity of magnetic flux surfaces, and nonplanarity
or torsion of the magnetic axis. The first stellarators, based on Lyman Spitzer’s so-called figure-
eight design [271], used torsion of the magnetic axis to produce rotational transform. Such a
configuration is known as a heliac, a stellarator whose rotational transform is provided by a set
of planar toroidal field coils arranged such that their centers follow a toroidal helix, producing
a helical magnetic axis. The confinement was provided by a set of circular, planar toroidal field
coils, and the plasma was contained in a twisted glass tube of circular cross-section. The corre-
sponding geometry is illustrated in Figure 13.6. The figure-eight design was the basis for several
early stellarator experiments at Princeton, in particular the Model A and B devices.

While the figure-eight design provided rotational transform, Spitzer discovered that stability
properties could be improved by introducing magnetic shear, a nonzero derivative in the rota-
tional transform, ι′(ψ). This shear was introduced experimentally in the Model C stellarator
with helical coils, linking the plasma both poloidally and toroidally [275]. Such a configuration
is known as a heliotron.26 While the Model C team was able to experimentally demonstrate the
existence of magnetic surfaces [265], the device was plagued by poor particle confinement [319].
These early stellarator experiments at Princeton operated until the late 1960s, when promising
results from the Soviet T-3 tokamak became available, and it was decided that the Model C would
be converted to a tokamak [245].

26Sometimes a distinction is made between a heliotron and a similar configuration known as a torsatron. We will
instead use the term heliotron to refer to a stellarator with any helical coil.
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Figure 13.7: A schematic diagram of the Wendelstein I (WI) experiment, with the racetrack
design and helical coils of the Princeton Model C device. Reprinted with permission from IAEA.
“Wendelstein stellarators”, Nucl. Fusion 25, No. 9, 1231 (1985), by G. Grieger et al.

Meanwhile, the Wendelstein line of stellarators was active at IPP Garching, initially adopting
designs similar to Princeton’s Model C with the WI-A and WI-B devices. The corresponding
geometry is illustrated in Figure 13.7. Experiments on WII-A, operating from 1968 to 1974,
provided insight into the benefits of low magnetic shear and accurate construction of the coil
system for avoiding magnetic islands [17]. The performance continued, however, to be limited
by poor transport properties and low equilibrium beta limits due to the Shafranov shift [128], an
outward shift of the magnetic axis.

13.5.2 Wendelstein 7-Advanced Stellarator (W7-AS)

The first experiment designed using optimization techniques was the Wendelstein 7-Advanced
Stellarator (W7-AS). The principal objective of the design was the minimization of equilibrium
Pfirsch–Schlüter currents discussed in Section 13.1.1; see [133]. As discussed in Section 13.1.2,
this particular type of current gives rise to a Shafranov shift, hence limiting the maximum pres-
sure at which good flux surfaces exist. Thus, a reduction of these parallel currents can increase
the maximum achievable plasma beta.

In comparison with the unoptimized W7-A configuration, represented in Figure 13.8,
W7-AS achieved a reduction of the parallel currents by about a factor of two. In addition to
reducing the plasma current, the optimization resulted in reduced neoclassical transport in the
higher collisionality plateau and Pfirsch–Schlüter regimes and improved guiding center confine-
ment [128]. The magnetic field was produced by modular coils, linking the plasma poloidally,
rather than helical coils, linking the plasma both poloidally and toroidally. This coil topology is
represented in Figure 13.9. Modular coils are thought to make the careful design of the magnetic
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Figure 13.8: The coil system of the Wendelstein 7-A stellarator, a classical stellarator whose
confinement is provided by a set of helical and planar toroidal field coils. Figure reproduced
from [296]. Stellarators and optimised stellarators, F. Wagner, Fusion Technology, 33 (1998),
pp. 67–83, reprinted by permission of Taylor & Francis Ltd.

Figure 13.9: The modular field coils, planar toroidal field coils, and flux surface of W7-AS.
Figure reproduced from [128]. Used with permission of IOP Publishing, Ltd, from “Major re-
sults from the stellarator Wendelstein 7-AS,” M. Hirsch, J. Baldzuhn, C. Beidler, R. Brakel, R.
Burhenn, A. Dinklage, H. Ehmler, M. Endler, V. Erckmann, Y. Feng, 50, 5, 2008; permission
conveyed through Copyright Clearance Center, Inc.
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Figure 13.10: Modular field coils (silver), toroidal field coils (bronze), and magnetic surfaces of
the W7-X stellarator. Figure reproduced from [283]. T. Sunn Pedersen, A. Dinklage, Y. Turkin, R.
Wolf, S. Bozhenkov, J. Geiger, G. Fuchert, H.-S. Bosch, K. Rahbarnia, H. Thomsen, et al., “Key
results from the first plasma operation phase and outlook for future performance in Wendel-
stein 7-X,” Physics of Plasmas, 24 (2017), 055503, distributed under CC BY 4.0 DEED License
(https://creativecommons.org/licenses/by/4.0/).

field more tractable and reduce electromagnetic forces between interlinked coils that were present
in early stellarator devices. The coils of W7-AS were designed using a current potential method
similar to that described in Section 13.4.4, with the desired plasma configuration defined by an
analytic solution of Laplace’s equation, known as Dommaschk potentials [57]. W7-AS, operat-
ing from 1988 to 2002, demonstrated the success of the stellarator optimization technique, in-
cluding experimental verification of a reduction of neoclassical transport in higher collisionality
regimes and improved stability properties [133]. The W7-AS experiment was able to demon-
strate that modular coils could provide a large volume of good magnetic surfaces, with a few
islands that are sufficiently small to not inhibit confinement properties.

13.5.3 Wendelstein 7-X (W7-X)

The resounding scientific success of W7-AS served as validation of the fixed-boundary optimiza-
tion technique, wherein plasma properties are first optimized with the requisite coils subsequently
determined. Experimental verification of neoclassical theory was also performed on W7-AS
[69, 29], providing confidence in optimization of the bootstrap current and neoclassical trans-
port for the later design of W7-X. There were also significant theoretical developments after the
design of W7-AS, in particular, the discovery of quasisymmetry by Boozer in 1983 [22]. Soon
after, in Garching, Nührenberg and Zille demonstrated that quasisymmetric configurations could
be obtained through equilibrium optimization [232]. The W7-X configuration was designed us-
ing these equilibrium optimization techniques to achieve additional objectives: nested magnetic
surfaces, fast-particle confinement, reduced parallel currents, minimal neoclassical transport at
low collisionality, and MHD stability up to an average beta of 5% [13]. The resulting configura-
tion was quasi-isodynamic, a quasiomnigeneous magnetic field with poloidally closed contours
of the magnetic field strength [230, 119].

As can be seen in Figure 13.10, the device’s coils are geometrically complex, with significant
nonplanarity. The construction of W7-X took more than 10 years, and the project faced numerous
challenges associated with quality assurance and limitations in engineering capacity, resulting in
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Figure 13.11: The plasma (pink) and coils of the LHD. Figure reproduced from [158]. Reprinted
from Magnetic Fusion Energy, O. Kaneko, 15 - Large helical device, 469–491, 2016, with per-
mission from Elsevier.

delays and significant project recovery efforts. These issues have been attributed to insufficient
design tolerances and very strict margins and clearances, which considerably impacted project
delivery [159]. Due to tight tolerances, the construction of the 50 modular coils alone took
106 man-hours [26]. Nonetheless, W7-X was ultimately completed successfully, and the first
experimental campaign began in 2015.

Experiments from the initial campaigns of W7-X have demonstrated the success of the stel-
larator equilibrium optimization concept, confirming the desired magnetic geometry to within a
tolerance of 10−5 [284]. Because of its neoclassical optimization, W7-X has been able to achieve
record values of the fusion triple product for stellarators [308, 14]. The triple product parameter
must be sufficiently large in order for the fusion reaction to be self-sustaining as described in
Section 1.3.

13.5.4 Large Helical Device (LHD)

The success of the W7-A experiment and other early stellarators [281], demonstrating energy
confinement comparable to some tokamak operating regimes, inspired physicists at the National
Institute for Fusion Studies in Japan to probe the performance of stellarators at a larger size and
higher plasma temperature. As opposed to W7-AS and W7-X, which were designed with mod-
ular coil systems, LHD was designed with a helical coil system. This coil type may provide
certain advantages, including the presence of large magnetic shear at the edge, improving stabil-
ity and equilibrium properties, as well as a simplified divertor system [315]. The design of LHD
aimed to achieve β = 5%, maximal confinement properties, and sufficient distance between
coils and plasma to enable simple installation. Rather than performing equilibrium optimization,
the winding of the helical coil was chosen based on simplified scaling relations of physics and
engineering properties on coil parameters. These models were constructed from a database of
simulations, empirical scalings based on experimental measurements, and theoretical scalings
of confinement [315]. In particular, the device parameters were chosen to maximize the triple
product as defined in Section 1.3. The resulting design is shown in Figure 13.11.
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Figure 13.12: Modular field coils (red), vacuum vessel with box ports (grey), and plasma (blue)
of the HSX stellarator. Figure courtesy of the HSX Team. Distributed under CC BY 4.0 DEED
License (https://creativecommons.org/licenses/by/4.0/).

The LHD experiment enables great flexibility in the magnetic configuration space by adjust-
ing the coil currents. The standard configuration features good MHD stability properties but
relatively poor neoclassical confinement properties. Another configuration is also available with
an inward shift of the magnetic axis. In this inward-shifted configuration, the MHD stability
properties are predicted to deteriorate, but the neoclassical diffusion is reduced by about a fac-
tor of 10 [219]. Therefore, although LHD was not designed based on equilibrium optimization
studies as W7-AS and W7-X were, the inward-shifted configuration is sometimes considered to
be an optimized configuration, and improved energetic particle confinement [220] and energy
confinement [313] have been confirmed in comparison with the standard configuration.

13.5.5 Helically Symmetric eXperiment (HSX)

The Helically Symmetric Experiment (HSX) was the first experimental validation of the qua-
sisymmetry concept. The design of the device was based on the equilibrium optimization concept
pioneered by Garching scientists [230]. The magnetic equilibrium was designed to have quasihe-
lical symmetry, Mercier stability, and low magnetic shear [5] using the equilibrium optimization
tools developed by the Wendelstein team [4]. The coils were then designed using a current po-
tential method, as described in Section 13.4.4. The resulting design is shown in Figure 13.12.
HSX has demonstrated a reduction of electron heat transport [37] and a reduction of flow damp-
ing in the symmetry direction [86], both of which are predicted to occur in quasisymmetric
devices.

13.5.6 National Compact Stellarator eXperiment (NCSX)

Following the completion of the construction of the HSX, a team based at the Princeton Plasma
Physics Laboratory (PPPL) began the design of a quasiaxisymmetric stellarator, the National
Compact Stellarator eXperiment (NCSX). NCSX was designed using the fixed-boundary
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Figure 13.13: The NCSX modular coils were obtained through integrated coil-plasma optimiza-
tion. Figure reproduced from [146]. Reprinted with permission from the International Atomic
Energy Agency. Strickler, D.J. “Integrated Plasma and Coil Optimization for Compact Stellara-
tors,” Fusion Energy Conference (Proc. 19th Int. Conf. Lyon, 2002, Paper No. CN-94/FT/P2-06),
IAEA, Vienna (2003).

equilibrium optimization technique to achieve several physics objectives: demonstration of MHD
stability at β = 4.5%, a monotonically increasing ι profile predicted to reduce island widths and
provide stabilizing properties [317], good flux surface quality, and good confinement properties
provided by a quasiaxisymmetric magnetic field. The STELLOPT code [274, 249] was devel-
oped for the design of the NCSX equilibrium. The coils were then designed using the COILOPT
code [278], modeling the currents as filamentary lines discussed in Section 13.4.5. In the final
stages of the NCSX design, the coils and plasma were optimized simultaneously in a single-stage
approach [142, 146]. This enabled the NCSX team to obtain a set of coils, represented in Figure
13.13, simultaneously meeting the physics objectives and coil engineering requirements, such as
increased coil-coil spacing, increased coil-plasma spacing, sufficient access for neutral beams,
and a sufficiently large curvature radius.

The construction of NCSX began in 2004. Like W7-X, the NCSX project faced significant
implementation challenges due to the complexity of the device design. The inability to meet
the stringent tolerances led to a redesign of critical components after construction of the device
was already underway. The revisions resulted in a 50% increase in the projected final cost and a
four-year delay in expected completion. It ultimately resulted in the cancellation of the project
by the funding body in 2008 [63]. An analysis of the project indicated that the majority of
the cost growth arose due to the tight tolerances required on the modular coil assembly [280], as
calculations of the sensitivity of the magnetic island width indicated that an engineering tolerance
of≈1.5 mm on coil positions was required [32]. Lessons learned from both the W7-X and NCSX
projects emphasize the importance of coil optimization accounting for practical constraints, most
importantly including reasonably achievable tolerances and clearances.

13.5.7 Summary of major stellarator experiments

In Table 13.4, we provide a summary of major stellarator experiments, indicating the rough cate-
gorization of each experiment. Here heliotron indicates a device whose confinement is provided
by a helically wound coil. A heliac is a stellarator for which rotational transform is provided by a
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Table 13.4: A summary (as of 2023) of some major stellarator devices [19], approximately in
chronological order. Here NP is the number of field periods defined in Section 12.3.1, R is
the average major radius, a is the average minor radius, and B is the maximum magnetic field
strength. All of the above devices were constructed and conducted experiments except for NCSX,
whose construction was terminated before its completion. *IL refers to interlocking.

Device Location Type NP R [m] a [m] B [T] Status
Heliotron E [297] Kyoto heliotron 19 2.2 0.2 1.9 1980–1997

ATF [289] Oak Ridge heliotron 12 2.1 0.27 2 1988–1994
W7-AS [128] Garching optimized 5 2.0 0.18 3 1988–2002

CHS [228] Nagoya/Toki heliotron 8 1.0 0.2 2 1989–2006
H1 [100] Canberra heliac 3 1.0 0.2 0.5 1992–2017

TJ-II [126] Madrid heliac 4 1.5 0.2 1 1998–running
LHD [147] Toki heliotron 10 3.9 0.6 3 1998–running

HSX [3] Madison QH, optimized 4 1.2 0.15 1.4 1999–running
Heliotron J [261] Kyoto heliotron 4 1.2 0.2 1.5 2000–running

CNT [30] Columbia IL∗, optimized 2 0.30 0.15 0.2 2004–2017
CTH [107] Auburn heliotron 2 0.75 0.29 0.7 2007–running

NCSX [322] Princeton QA, optimized 3 1.4 0.33 1.7 terminated
W7-X [310, 308] Greifswald optimized 5 5.5 0.53 3 2015–running

CFQS [148] Chengdu QA, optimized 2 1 0.25 1 under construction

helical magnetic axis produced by circular toroidal field coils centered around a helical axis. The
confinement of CNT is provided by two coils that are linked together, denoted by an interlocking
type stellarator, while QH indicates quasihelical symmetry, QA indicates quasiaxisymmetry, and
optimized indicates a device that was designed using equilibrium optimization techniques.
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Chapter 14

Further topics in
stellarator design

The goal of the material presented in previous chapters was to provide an understanding of the
stellarator concept, the necessity of optimization, and the principles of stellarator design. Beyond
this material, there are many aspects of stellarator theory and design that have not been covered in
this book. This chapter provide brief highlights about some of these additional topics, presented
in alphabetical order.

14.1 Advances in numerical optimization
The design of modern stellarators requires numerical optimization tools; thus, further incor-
poration of modern optimization techniques can improve the navigation of the stellarator de-
sign space. Traditionally, stellarator optimization has largely proceeded with methods based
on finite-difference approximations of the gradient. Choosing the finite-difference step size to
limit the effect of the corresponding error is challenging in practice. Furthermore, the finite-
difference calculation requires many function evaluations, significantly augmenting the compu-
tational time [64].

An alternative approach is the application of adjoint methods [237, 235, 88], with analytic
gradient information computed efficiently by solving a supplementary set of differential equa-
tions. Gradient information can also be obtained through automatic differentiation tools, auto-
matically computing the derivative of an arbitrary function defined by a computer program. This
approach has been applied to the optimization of coil shapes [208] and fixed-boundary optimiza-
tion for quasisymmetry [65].

Another example of the incorporation of modern optimization tools is the application of sto-
chastic techniques for the design of stellarator coils. Rather than optimize a single set of stellara-
tor coils, it is possible to instead optimize a distribution of possible stellarator coils, accounting
for possible deviations of the design variables due to manufacturing or positioning errors. In
this case, one can optimize the expected value of an objective function by performing a sample
average over the distribution. Stochastic techniques can improve the robustness of the optimum
by avoiding small local minima. In this way, the solutions have reduced risk of performance
degradation due to errors. This technique has proven effective for the optimization of coil shapes
with increased tolerances [199, 198, 299].

14.2 Direct construction of equilibria
The MHD equilibrium equations may not have analytic solutions in general. In order to make
analytical progress, additional assumptions are typically necessary, such as the assumption of a
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domain close to the magnetic axis. However, when such solutions can be found, direct construc-
tion techniques provide intuition about the relationship between physical quantities of interest,
such as quasisymmetry, and geometric parameters, such as the magnetic axis shape.

As an alternative to optimizing the plasma boundary or a set of coils to obtain an omnige-
neous or quasisymmetric equilibrium, a configuration can be constructed directly by obtaining
analytical solutions to the MHD equilibrium equations upon an asymptotic expansion. For ex-
ample, one approach is to perform a power series expansion of the equilibrium magnetic field
equations near the magnetic axis as introduced in Section 11.2. In particular, this approach
has been used to construct quasisymmetric [185, 186, 176, 155] and quasiomnigeneous [241]
configurations near the magnetic axis. This method is several orders of magnitude more com-
putationally efficient than the equilibrium optimization approach. Similar approaches are based
on an asymptotic expansion in the distance from axisymmetry [240, 239] or in the distance from
a magnetic surface [112]. Given that the expressions for the equilibrium field can be evaluated
efficiently from closed-form solutions, direct construction techniques have also been used within
the context of numerical optimization of the magnetic field. Specifically, they can provide good
initial guesses for numerical optimization, or optimization can be carried out in the space of
constructed solutions [154, 179].

14.3 Engineering metrics for coil design
Given that coil complexity can be a large driver of cost in stellarator devices [280], engineering
criteria have been further incorporated into the coil design process. As was mentioned in Section
13.4, electromagnetic coils have traditionally been optimized with simplifying assumptions by
approximating them as a sheet current or filamentary lines of current. More realistic modeling
of coils has been performed with codes that take into account their cross-sectional build [266].
This requires optimization over not only the curve defining the center of the winding pack but
also the orientation of the rectangular winding pack with respect to a fixed axis. In addition
to modeling of the finite-build structure within optimization codes, constraints related to new
magnet technology have been implemented. High-temperature superconducting (HTS) magnets
enable access to high magnetic field strengths at higher temperatures. This reduces the cost and
engineering complexity of cooling the conductor in comparison to low-temperature supercon-
ductors. Since confinement scales very strongly with the magnetic field strength in a magnetic
confinement device, HTS enables access to improved performance in a more compact device.
While the application of HTS is attractive for confinement in a stellarator, there are additional
complexities introduced in building nonplanar HTS magnets due to anisotropic strains on the
conductor. Techniques have been developed to optimize HTS coil parameters for reduced strain
[238], and HTS cables have been wound into a nonplanar shape similar to the HSX modular coil
shape [253].

14.4 Integrated coil design
As described in Section 13.4, stellarator design has traditionally decoupled coil optimization
from optimization of the MHD equilibrium. However, such a decoupling may result in an equi-
librium that can only be produced with overly complex coils. As the cost of constructing a
stellarator experiment is closely related to coil complexity, it is important to consider how to
couple coil design with equilibrium optimization. There are several approaches to address this
issue.

One option is to directly optimize coils based on free-boundary solutions of the MHD equilib-
rium equations, eliminating the need to design coils as a second step. For example, this approach
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was used in the final stages of the NCSX design [142, 146]. The direct optimization approach is
somewhat more challenging for several reasons. Free-boundary equilibrium calculations tend to
be more expensive than fixed-boundary calculations, as they require iterations between an equi-
librium solution and vacuum field calculations. This iterative scheme will not always converge
in practice, hence the historical use of the more robust fixed-boundary method. It has also been
suggested that fixed-boundary optimization may yield better equilibrium properties, as the model
assumes the existence of at least one magnetic surface.

An alternative approach is to perform fixed-boundary equilibrium optimization in tandem
with the optimization of a set of coils to be consistent with the fixed-boundary [144, 153]. In a
vacuum magnetic field, the equilibrium calculation can be eliminated entirely since the field is
known from the Biot–Savart law. In this case, the properties of the magnetic field can be inferred
from postprocessing of the field, such as by evaluating approximate magnetic surfaces [88].

14.5 Nonlinear MHD stability
As discussed in Section 13.1.6, if an equilibrium is unstable to macroscopic MHD modes, the
plasma can undergo large-scale changes, potentially degrading confinement and damaging device
components.

Historically, criteria for linear MHD stability in stellarator optimization have been based on
reduced models localized to individual flux surfaces under the assumption of the existence of
continuously nested flux surfaces discussed in Remark 4.4. For example, two common crite-
ria are the magnetic well criterion and the Mercier criterion mentioned in Section 13.1.6. The
corresponding reduced models involve local curvature and pressure gradients on individual flux
surfaces that can drive or stabilize some MHD instabilities.

However, potentially important effects associated with nonlinearity or resistivity are not de-
scribed in these reduced models. It has been suggested that targeting linear, ideal MHD stability
in the optimization of quasiaxisymmetric configurations leads to coils with undesirable char-
acteristics [72]. Moreover, as highlighted in Section 13.1.6, experimental evidence from LHD
suggests that stellarators may be able to operate above linear stability thresholds without signifi-
cantly degrading performance [162, 303]. Consequently, optimizing for nonlinear MHD stability
is an important area of work [82]. Computational advances have enabled tools capable of model-
ing the nonlinear MHD time evolution of strongly shaped stellarator plasmas [325, 227, 268], al-
lowing testing and continuing development of strategies to directly optimize for nonlinear MHD
stability [12, 78].

14.6 Permanent magnets
There have been efforts to design permanent magnets rather than electromagnetic coils to confine
stellarator plasmas. While toroidal field coils are necessary to provide the required toroidal flux,
permanent magnets can provide the required shaping field and reduce the toroidal field coil com-
plexity. Numerical simulations indicate that permanent magnets can be combined with simple
planar toroidal field coils to confine stellarator equilibria. In comparison to nonplanar modular
coil systems, permanent magnet solutions can also improve experimental access to the plasma
chamber [326]. Several numerical methods have been developed to optimize the distribution
and orientation of permanent magnets: some of these are based on a current potential solu-
tion [118, 328], while others require nonlinear optimization techniques [326, 102]. The concept
of permanent magnet stellarators has been explored in both design studies [103] and experi-
ments. MUSE, a small permanent magnetic quasiaxisymmetric stellarator, has been designed at
the Princeton Plasma Physics Laboratory, and construction began in 2022 [246]. For the target
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equilibrium, MUSE demonstrated that permanent magnets can produce improved neoclassical
optimization of the field compared to nonplanar modular coils. In contrast to electromagnetic
coils, however, it is more difficult to tune the magnetic field produced by permanent magnets.
Consequently, different approaches for reducing magnetic field error may be necessary [258].

14.7 Theoretical understanding of quasisymmetry
While several decades have passed since the discovery of quasisymmetry [22], there continues
to be activity in the theoretical understanding of quasisymmetry. This includes a reformulation
of the conditions required for quasisymmetry without assumptions of ideal MHD equilibrium
[35, 256] and the derivation of a Grad–Shafranov equation for quasisymmetric magnetic fields
[35]. There remain open problems in this area. For example, the near-axis expansion of qua-
sisymmetric MHD equilibria results in an overdetermined system of equations at sufficiently
high order [81]. However, if MHD force balance is not enforced, it is possible to obtain qua-
sisymmetric solutions to all orders [257]. Some results suggest that exact quasisymmetry cannot
be achieved globally, but only on a single flux surface [81, 240, 262]. While numerical optimiza-
tion results indicate that quasisymmetric MHD equilibria exist to a very high precision [184], it
remains to be seen from fundamental theory if it is possible to circumvent the overdetermined
nature of exact quasisymmetry with MHD force balance.

14.8 Turbulent transport
The transport of particles and heat in magnetically confined plasmas arises due to several mecha-
nisms. Often, the two most important mechanisms are neoclassical transport, describing guiding
center trajectories and collisions, and turbulent transport, caused by small-scale fluctuations of
electric and magnetic fields described by gyrokinetic theory.

Experiments such as W7-X and HSX have demonstrated the ability to reduce neoclassical
transport, arising due to unconfined trajectories and collisions, with equilibrium optimization
methods. In fact, experiments on W7-X indicate that with neoclassical transport effectively
reduced with optimization, turbulence is the dominant transport mechanism [83]. Thus, an im-
portant aspect of the design of stellarators is the optimization of the magnetic field to reduce
turbulent transport.

While stellarators have historically been designed for stability with respect to large-scale
MHD modes, optimization for microstability is much more challenging due to the computational
expense of running nonlinear gyrokinetic simulations. There have been efforts to construct proxy
functions that accurately capture the turbulent transport properties of stellarator configurations
[254, 203], such as reducing the overlap between bad curvature and trapping regions [312, 85]
or increasing nonlinear energy transfer between unstable and damped modes [115]. Properties
of the parallel adiabatic invariant J∥ can be targeted to improve microstability. For example,
maximum-J configurations, for which J∥ is a monotonic decreasing function of flux, have sta-
bilizing effects on trapped-particle modes [1]. Some aspects of turbulence optimization have
been verified experimentally. As an example, W7-X is a maximum-J configuration. As a result,
W7-X has demonstrated improved performance in experiments with a large density gradient, for
which the resulting microturbulence is dominated by trapped-particle modes [188].
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Appendix A

Brief review of Maxwell’s
equations for electric
and magnetic fields

We discuss Maxwell’s equations that model the electric and magnetic fields, respectively de-
noted E and B. In this appendix, the plasma density ρ and current density J are considered to
be prescribed by another model, and the electromagnetic fields consistent with these sources are
the unknowns in the equations. The full set of Maxwell’s equations is presented in Section A.1.
In the following sections, we will discuss several limits of Maxwell’s equations: the electro-
static limit in Section A.2.1, the magnetostatic limit in Section A.2.2, and the vacuum limit in
Section A.3. Here, we consider Maxwell’s equations in differential form, assuming the fields are
smooth.

A.1 Electromagnetics
Maxwell’s equations describe how the electric and magnetic fields, E and B, propagate and
interact together, as well as with currents and charges. Maxwell’s equations refer to the following
four equations.

Gauss’s law is

∇ ·E =
ρ

ϵ0
, (A.1)

Ampère’s law is

∇×B = µ0J +
1

c2
∂E

∂t
, (A.2)

Faraday’s law is

∇×E = −∂B
∂t

, (A.3)

and magnetic fields must be divergence-free,

∇ ·B = 0. (A.4)

Here µ0 = 1.256× 10−6 NA−2 is the permeability of free space, ϵ0 = 8.854× 10−12 Fm−1 is
the permittivity of free space, and c = 3× 108 ms−1 is the speed of light in vacuum. This set of
PDEs describes the response of the electric and magnetic fields to charge density ρ and current
density J as functions of time and space. Under further assumptions on time scales of interest,
Maxwell’s equations can be reduced, as we will see in the following sections.
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Often, the electric and magnetic fields are expressed in terms of scalar and vector potentials.

• As B is divergence-free, according to (A.4), it can always be written in terms of a vector
potential A,

B = ∇×A. (A.5)

We note that there is some nonuniqueness in the choice of the vector potential, as the
gradient of any scalar function can be added to A without altering the magnetic field. In
the physics literature, this nonuniqueness is referred to as gauge freedom.

• Inserting (A.5) into Faraday’s law (A.3), E can be written as −∂A/∂t with the addition
of a curl-free vector field,

E = −∇Φ− ∂A

∂t
. (A.6)

Often Φ is referred to as the scalar potential.

Remark A.1. The vector potential can be made unique using an appropriate choice of gauge,
depending on the application of interest. One common choice is the Coulomb gauge defined by
∇·A = 0. As we will see, the vector potential sometimes appears explicitly in physical quantities
of interest, for instance, Sections 7.2 and 11.4, making it important to consider the impact of the
choice of gauge.

A.2 Static limit
A static system refers to a system in which all quantities are assumed to be time-independent. In
the static case, ∂/∂t = 0, the equations satisfied by E and B decouple. The set of equations
separately satisfied by the electric and magnetic fields, in this case, are referred to as electrostatics
and magnetostatics, respectively.

A.2.1 Electrostatics

The electrostatics model describes a static electric field. Under the static assumption, the electric
field satisfies ∇ × E = 0. If, moreover, E is assumed to be continuously differentiable on a
simply connected domain, then the electric field can be written in terms of only a scalar potential
as

E = −∇Φ.

From Gauss’s law (A.1) the electrostatic potential satisfies Poisson’s equation,

∆Φ = − ρ

ϵ0
.

Gauss’s law can be written in an equivalent integral form by integrating over a generic volume
Ω,

for all volume Ω ⊂ R3,

∫
∂Ω

E · n̂ d2r = 1

ϵ0

∫
Ω

ρ d3r,

where n̂ is the outward unit vector normal to the boundary ∂Ω of the volume Ω.
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A.2.2 Magnetostatics

The magnetostatics model describes a static magnetic field. Under the static assumption, Am-
père’s law becomes

∇×B = µ0J . (A.7)

Remark A.2. If fields B and J satisfy this equation, then necessarily∇ · J = 0.

Under the magnetostatic assumption, Ampère’s law can be written in an equivalent integral
form,

for all surface S ⊂ R3,

∮
∂S

B · dl = µ0

∫
S

J · n̂ d2r, (A.8)

where for an open surface, the line integral is taken along a closed curve forming the boundary
of the surface S and dl is oriented counterclockwise with respect to the orientation induced by
the normal n̂, while for a closed surface, the left-hand side is zero. Another integral form that is
consistent with the magnetostatic equations is the Biot–Savart law,

B(r) =
µ0

4π

∫
R3

J(r′)× (r − r′)

|r − r′|3
d3r′. (A.9)

This can be seen as an application of a Green’s function approach to (A.7). For example, in a
magnetic confinement fusion device, the integral can be taken throughout the plasma volume and
along the electromagnetic coils.

Remark A.3. Often, the displacement current term, ∂E/∂t in (A.2), can be neglected if the
typical velocities of a system, v, are nonrelativistic so that v/c ≪ 1. This is the assumption
that the model does not include light waves, associated with very short time scales. Therefore,
Ampère’s law in the form (A.7) may still be applicable even if the system is not completely static.

A.3 Vacuum magnetic fields
The term vacuum magnetic field is used to describe the magnetic field in a region Ωvac without
currents under the magnetostatics assumptions. In magnetic confinement fusion, this could be
the region outside the plasma, not including the electromagnetic coils. In this case, we have
∇×B = 0, so a scalar potential, ΦB , can be used to describe the magnetic field,

B = ∇ΦB in Ωvac. (A.10)

The magnetic field must also satisfy the divergence-free condition (A.4), so the scalar potential
must satisfy Laplace’s equation,

∆ΦB = 0 in Ωvac. (A.11)

The solution of this equation in a toroidal domain, combined with adequate boundary conditions,
will be discussed in Section 11.6.

Instead of solving Laplace’s equation, the magnetic field in a vacuum region denoted Ωvac
can also be determined using the Biot–Savart law (A.9), integrating over all currents outside of
the vacuum region,

∀r ∈ Ωvac, B(r) =
µ0

4π

∫
R3\Ωvac

J(r′)× (r − r′)

|r − r′|3
d3r′.
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A.4 Summary
Here, we described Maxwell’s equations in the presence of some charge density ρ and current
density J . A realistic model would include coupling to a set of equations modeling the evolution
of the charge and current density. Under various sets of hypotheses, Maxwell’s equations can
be reduced to simpler models. Common reduced models are gathered in Table A.1. For each
reduced model, the table provides the hypotheses (Hyp.), the PDE model, a different formulation
of the model, and the model data. Computational domains, as well as boundary conditions, are
addressed in Section 11.6.
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Appendix B

Brief review of classical
mechanics for charged
particle motion

Classical mechanics refers to the study of phenomena occurring at velocities much smaller than
the speed of light and at length scales much larger than the atomic size. Here, we briefly review
classical mechanics concepts necessary to describe charged particle motion in plasmas.

We begin in Section B.1 with Newton’s law, taking the form of a set of ODEs. We will then
show that these ODEs can be obtained from two variational principles involving the Lagrangian
and Hamiltonian functionals, respectively in Sections B.2 and B.3. An alternative Lagrangian
framework, known as the phase-space Lagrangian, is summarized in Section B.4.

B.1 Newton’s law
Newton’s law is a set of ODEs describing a relationship between the acceleration of an object
and the net force F acting on this object. In dimension N ∈ N, if the force depends on the
position and the velocity of the object and the object is of mass m, then Newton’s law can be
expressed as an equation for the trajectory of a particle, qT as a function of t, as

m
d2qT (t)

dt2
= F

(
qT (t),

dqT (t)

dt
, t

)
, (B.1)

where the first-order derivative of qT is the velocity and its second-order derivative is the ac-
celeration. In words, Newton’s law simply states that the force is equal to the acceleration of a
particle multiplied by its mass. While some physical situations may introduce nonsmoothness in
the dynamics, such as in collisions between particles, in the context of our discussion of classical
mechanics, we assume smooth trajectories.

A foundational example is the study of single-particle motion in given electric and magnetic
fields, respectively denoted E and B. In this context, we take N = 3. The force acting on the
particle depends on the particle charge q, on the position q, on time t through B and E, and
explicitly on the velocity q̇. It is called the Lorentz force and is defined, for given vector fields
B and E given as functions from R3 × R to R3, as follows:

F (q, q̇, t) = q(q̇ ×B(q, t) +E(q, t)). (B.2)

For some simple enough vector fields B and E, Newton’s law can be solved explicitly to obtain
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the trajectory of a particle, qT as a function of t, given initial conditions at some time tinit:qT (tinit) = qinit,
dqT (tinit)

dt
= q̇init,

for given constants (qinit, q̇init).
In Section 4.1, we study trajectories within a uniform, straight magnetic field using the ODEs

defined by (B.1)–(B.2).

B.2 Lagrangian formulation
The Lagrangian formulation is an equivalent formulation relying on a variational approach:
the trajectories of a system minimize the so-called action of this system. This is known as the
principle of stationary or least action. The action is defined in terms of a functional called the La-
grangian in a variational formalism. The Lagrangian is a real-valued functional describing the
energies of the system, potential energy, and kinetic energy, rather than the forces. For further
reading on Lagrangian mechanics, consider [293] and Chapter 2 in [90].

An important relation exists between the Newtonian and Lagrangian approaches: it can be
shown that trajectories that are stationary points of the action correspond to those that satisfy
Newton’s law. Yet, calculations may be simplified when manipulating the scalar Lagrangian
as opposed to the vector equations of motion like (B.1). Moreover, the Lagrangian formalism
provides insight into certain conserved quantities.

B.2.1 Euler–Lagrange equations

To describe a physical system, in dimension N ∈ N, the Lagrangian L may depend on the
position, q ∈ RN , the velocity, q̇ ∈ RN , and time t ∈ R. It is crucial that q and q̇ are independent
variables in the definition of the Lagrangian, although the Lagrangian can be evaluated along
trajectories, qT : R → RN parameterized by t. Along these curves, the velocity is dqT (t)/dt.
These variables are also referred to as the generalized coordinate, q, and generalized momentum,
q̇, of the system. If the Lagrangian L describes a given system, the definition of the action
integral, referring to the action of this system during a time interval [tinit, tfinal] along a curve, is

∀qT : R→ RN , S[qT ] :=

∫ tfinal

tinit

L

(
qT (t),

dqT (t)

dt
, t

)
dt. (B.3)

For compactness, the velocity is often denoted q̇T , but it is important to keep in mind that this
always means q̇T = dqT (t)/dt. Since the trajectories of a system minimize this action integral,
they are the stationary points.

In order to identify the stationary points of S, we then compute the first variation of S with
respect to qT , keeping the endpoints of the curve fixed. Hence we consider a perturbation to
the curve, denoted δqT , defining a vector field, together with the initial and final conditions
δqT (tinit) = 0 and δqT (tfinal) = 0. The resulting perturbation of S is then

δS[qT ; δqT ]

=

∫ tfinal

tinit

(
∂L(qT (t), q̇T (t), t)

∂q
· δqT (t) +

∂L(qT (t), q̇T (t), t)

∂q̇
· δq̇T (t)

)
dt,

where δq̇T (t) = d(δqT (t))/dt, and ∂L/∂q and ∂L/∂q̇ respectively denote vectors of dimension
N whose jth entries are the derivative with respect to the jth component of q and q̇. The
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second term on the right-hand side can be integrated by parts, then thanks to the initial and final
conditions for δqT , it yields

δS[qT ; δqT ] =

∫ tfinal

tinit

(
∂L(qT (t), q̇T (t), t)

∂q
− d

dt

(
∂L(qT (t), q̇T (t), t)

∂q̇

))
· δqT (t) dt.

In order for a curve qT to be a stationary point of the action S, it is necessary for the perturbed ac-
tion δS[qT ; δqT ] to vanish for all δqT ; thus, the integrand above must vanish for all perturbation
δqT . This condition on the curve reads

d

dt

(
∂L(qT (t), q̇T (t), t)

∂q̇

)
=
∂L(qT (t), q̇T (t), t)

∂q
. (B.4)

Any curve qT satisfying this equation is then called a trajectory and parameterizes the motion
of a particle in the physical system described by the Lagrangian L. Along any trajectory, the
particle’s position and velocity are related through q̇T (t) = dqT (t)/dt.

B.2.2 Properties of Lagrangian systems

In this formalism, an important relation exists between continuous symmetry and conserved
quantities, referring to quantities that remain constant along any trajectory. The former refers
to the invariance of a system under a continuous transformation. For example, the system is
independent of a position coordinate, and the corresponding Lagrangian is then independent
of this coordinate. The latter refers to quantities that are constant along each trajectory of the
system. From the Euler–Lagrange equations, it is straightforward to see that if the Lagrangian
is independent of a coordinate, denoted qj , then the derivative of the Lagrangian with respect to
the conjugate component of the velocity, namely q̇j , is a constant of the motion. Indeed, along a
trajectory, qT : R→ RN , we have

d

dt

(
∂L(qT (t), q̇T (t), t)

∂q̇j

)
= 0.

Such components can be called ignorable coordinates. The existence of an ignorable coordinate,
therefore, implies the existence of a conserved quantity, as long as it is not a trivial quantity.
As a result, an adequate choice of symmetries expressed in an adequate coordinate system then
implies the existence of conserved quantities. This result is generalized by Noether’s theorem
[90] introduced in Remark 7.2.

B.2.3 Charged particle motion

We now consider charged particle motion in given electromagnetic fields and will illustrate how
the Euler–Lagrange equations for the Lagrangian described below indeed correspond to New-
ton’s law (B.1). Here, we restrict our attention to the 3D case, N = 3. In this context, subscripts
j on vector fields indicate Cartesian components. To proceed, consider the standard expressions
of the given electric and magnetic fields, B and E, in terms of vector and scalar potentials:

∀(q, t) ∈ R3 × R,

B(q, t) = ∇×A(q, t),

E(q, t) = −∇Φ(q, t)− ∂A(q, t)

∂t
.

(B.5)

Then, to describe the motion of a particle of charge q and mass m in these fields, consider the
Lagrangian defined by

∀(q, q̇, t) ∈ R3 × R3 × R, L(q, q̇, t) =
m|q̇|2

2
+ q
(
A(q, t) · q̇ − Φ(q, t)

)
. (B.6)

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



230 Appendix B. Brief review of classical mechanics for charged particle motion

Directly from the definition of the Lagrangian, we obtain

∀(q, q̇, t) ∈ R3 × R3 × R,


∂L(q, q̇, t)

∂q
= q

(
∂
(
A(q, t) · q̇

)
∂q

− ∂Φ(q, t)

∂q

)
,

∂L(q, q̇, t)

∂q̇
= mq̇ + qA(q, t).

For the sake of compactness, we will now use the notation ∇ = ∂/∂q. In order to express
explicitly all terms above, we use the subscript j to refer to the jth component of a vector and
get

∇
(
A(q, t) · q̇

)
= ∇

 3∑
j=1

Aj(q, t)q̇j


=

3∑
j=1

(
∇Aj(q, t)

)
q̇j .

Besides, along a trajectory, qT : R→ R3, we have

d

dt

(
∂L(qT (t), q̇T (t), t)

∂q̇

)
=

d

dt
(mq̇T (t) + qA(qT (t), t))

= m
d2qT (t)

dt2
+ q

 3∑
j=1

∂A(qT (t), t)

∂qj
(q̇T (t))j +

∂A(qT (t), t)

∂t

 .

Finally, it is straightforward to verify that

∀(q, q̇, t) ∈ R3 × R3 × R,
3∑
j=1

(
∇Aj(q, t)

)
q̇j −

3∑
j=1

∂A(q, t)

∂qj
q̇j = q̇ ×

(
∇×A(q, t)

)
.

As a consequence, the Euler–Lagrange equations read

m
d2qT (t)

dt2
= qq̇T (t)× (∇×A(qT (t), t))− q∇Φ(qT (t), t)− q

∂A(qT (t), t)

∂t
.

Recognizing the expressions for the electromagnetic fields in terms of vector and scalar potentials
(B.5), we identify the familiar Lorentz force (B.2):

m
d2qT (t)

dt2
= qq̇T (t)×B(qT (t), t) + qE(qT (t), t). (B.7)

As expected, we conclude that the Euler–Lagrange equations for the Lagrangian (B.6) reduce
to Newton’s law (B.1) with the Lorentz force (B.2). This demonstrates that (B.6) is indeed the
correct Lagrangian to describe single-particle motion in electromagnetic fields.

The Lagrangian approach will provide several advantages as we consider reduced models in
the limit of a strong magnetic field in Section 4.2. In Sections 4.3.1 and 4.3.2, we will leverage
the Lagrangian formalism to obtain conserved quantities.

B.3 Hamiltonian formulation
The Hamiltonian formulation also relies on a variational approach and is introduced as a refor-
mulation of the Lagrangian formulation. Rather than treating the position q and velocity q̇ as
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independent coordinates, in the Hamiltonian formalism, we take as independent coordinates the
position, denoted q, and the canonical momentum, denoted p. The Hamiltonian H is a scalar-
valued functional defined in terms of the Lagrangian. Calculations may also be simplified when
manipulating the scalar Hamiltonian as opposed to the vector equations of motion. Moreover,
the Hamiltonian formalism provides insight into certain geometric aspects of trajectories. For
further reading on Hamiltonian mechanics, consider [292] and Chapter 8 of [90].

B.3.1 Hamilton’s equations

Given a system described by a Lagrangian L, the Hamiltonian formulation can be introduced
as follows. To describe the physical system characterized by L, in dimension N ∈ N, the
Hamiltonian H may depend on the position, q ∈ RN , the canonical momentum, p ∈ RN , and
time t ∈ R. These variables are also referred to, respectively, as the canonical coordinates and
canonical momenta, and the space {(q,p) ∈ RN × RN} is then referred to as the phase space.
Their relation to the position and velocity, respectively q ∈ RN and q̇ ∈ RN , can be defined as
a mapping from the Lagrangian coordinates (q, q̇) to the Hamiltonian coordinates (q,p) at any
given t: q = q,

p =
∂L(q, q̇, t)

∂q̇
,

(B.8)

where ∂/∂q̇ are vectors of dimension N whose jth entries are the derivative with respect to the
jth component of q̇. We will similarly write ∂/∂q and ∂/∂p. The second relation is assumed
to be invertible with respect to q̇ so that it can be expressed as a function of the position and
momentum: q̇(q,p). The Hamiltonian is then defined as

H(q,p, t) = p · q̇(q,p)− L(q, q̇(q,p), t). (B.9)

It is beyond the scope of this book, but L and H are Legendre transforms of each other.
To describe the system, each conjugate pair (qi, pi) corresponds to one degree of freedom

of the system. Hence, N is referred to as the number of degrees of freedom or the dimension
of the system. An autonomous Hamiltonian system refers to a system defined by a Hamiltonian
H independent of the time variable, that is, ∂H/∂t = 0, while a nonautonomous Hamiltonian
system refers to a system defined by a Hamiltonian H depending explicitly on time. In the
literature, the dimension of an N -dimensional nonautonomous Hamiltonian system is said to be
N + 1

2 . This is a way to distinguish between the time degree of freedom and the other degrees
of freedom.

We will now apply the action integral, defined in terms of the Lagrangian (B.3), to the Hamil-
tonian, defined in terms of the Lagrangian through (B.9). By finding stationary points of the ac-
tion integral, we will obtain equations of motion, known as Hamilton’s equations. We will show
the equivalence between the Euler–Lagrange equations and Hamilton’s equation for the case of
particle motion in electromagnetic fields in Section B.3.3.

The definition of the action integral, referring to the action of the system during a time interval
[tinit, tfinal] along any phase-space curve (qT ,pT ) : R→ RN × RN is then given by

W[qT ,pT ] :=

∫ tfinal

tinit

(
pT (t) ·

dqT (t)

dt
−H

(
qT (t),pT (t), t

))
dt. (B.10)

We will again consistently write (q,p) to denote the independent variables of the Hamiltonian,
as opposed to (qT ,pT ) : R → RN × RN to denote a curve in phase space parameterized by
time t.
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In order to define the stationary points ofW , we then compute the first variation ofW with
respect to (qT ,pT ), keeping the endpoints of the curve fixed. Hence we consider a perturbation
of the curve, denoted (δqT , δpT ), defining a vector field in phase space, together with the initial
and final conditions δpT (tinit) = 0, δqT (tinit) = 0, δpT (tfinal) = 0, and δqT (tfinal) = 0. The
resulting perturbation ofW is then

δW[qT ,pT ; δqT , δpT ]

=

∫ tfinal

tinit

(
δpT (t) ·

dqT (t)

dt
+ pT (t) ·

dδqT (t)

dt
−
∂H
(
qT (t),pT (t), t

)
∂q

· δqT (t)

−
∂H
(
qT (t),pT (t), t

)
∂p

· δpT (t)

)
dt.

Upon integration by parts with respect to t, we obtain

δW[qT ,pT ; δqT , δpT ]

=

∫ tfinal

tinit

(
δpT (t) ·

dqT (t)

dt
− dpT (t)

dt
· δqT (t)−

∂H
(
qT (t),pT (t), t

)
∂q

· δqT (t)

−
∂H
(
qT (t),pT (t), t

)
∂p

· δpT (t)

)
dt.

In order for a curve (qT ,pT ) : R → RN × RN to be a stationary point of the action W ,
it is necessary for the perturbed action δW[qT ,pT ; δqT , δpT ] to vanish for all perturbations.
Thus, the integrand above must vanish for all perturbations (δqT , δpT ). This condition is called
Hamilton’s equations, namely

dqT (t)

dt
=
∂H
(
qT (t),pT (t), t

)
∂p

,

dpT (t)

dt
= −

∂H
(
qT (t),pT (t), t

)
∂q

.

(B.11)

Any curve (qT ,pT ) satisfying these equations is then called a trajectory and parameterizes the
motion of a particle in the phase-space system described by the Hamiltonian H , or equivalently
by the Lagrangian L related to H through (B.9).

While the Euler–Lagrange equations provide N second-order ODEs, Hamilton’s equations
provide a set of 2N first-order ODEs. For some problems, it is more natural to work in the
Hamiltonian formalism than the Lagrangian formalism, as for example in Section 10.1.

B.3.2 Properties of Hamiltonian systems

Autonomous Hamiltonians H have a particular property: H is a constant of the motion. In order
to show this, first consider the total time derivative of a general Hamiltonian along the trajectory
(qT ,pT ) : R→ RN × RN is given by

dH
(
qT (t),pT (t), t

)
dt

=
∂H
(
qT (t),pT (t), t

)
∂t

+
∂H
(
qT (t),pT (t), t

)
∂q

· dqT (t)
dt

+
∂H
(
qT (t),pT (t), t

)
∂p

· dpT (t)
dt

.

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



B.3. Hamiltonian formulation 233

Hence, according to (B.11), this gives

dH
(
qT (t),pT (t), t

)
dt

=
∂H
(
qT (t),pT (t), t

)
∂t

. (B.12)

As a direct consequence, if H is autonomous, then H is a constant of the motion, also referred
to as a conserved quantity: it is conserved along any trajectory. In many physical systems, H
corresponds to total energy. Thus, a physical system that can be described by an autonomous
Hamiltonian conserves energy.

More generally, in this formalism, there exists a close relationship between the geometry of
trajectories and conserved quantities. The theoretical derivation of this relationship is beyond the
scope of this book but described in [7], for example. It relies on the geometry, in phase space,
of level sets of any conserved quantity, together with the fact that any trajectory is necessarily
confined to such a level set. Here, we simply cite some fundamental consequences.

As a first illustration, for N = 1, a 1D system having one constant of motion, the surfaces
in the 2D phase space defined by level sets of the constant of motion can be shown to have the
topology of circles. Thus, any trajectory is confined to lie on one of these circles. Such a system
is said to be integrable.

In higher dimensions, the formal definition of integrability relies on the notion of independent
conserved quantities. In order to state the definition itself, we first introduce the notion of Poisson
brackets. This notion is necessary to, in turn, introduce independent conserved quantities.

Consider any scalar function I of (q,p,t). Along any trajectory (qT ,pT ) : R → RN × RN ,
the total time derivative of I is given by

d[I(qT (t),pT (t), t)]

dt
=

N∑
i=1

(
∂I(qT (t),pT (t), t)

∂qi

d (qT (t))i
dt

+
∂I(qT (t),pT (t), t)

∂pi

d (pT (t))i
dt

)
+
∂I(qT (t),pT (t), t)

∂t
, (B.13)

where dqT (t)/dt and dpT (t)/dt are the total time derivatives. According to Hamilton’s equa-
tions (B.11), this can be rewritten as

d[I(qT (t),pT (t), t)]

dt
=

N∑
i=1

(
∂I(qT (t),pT (t), t)

∂qi

∂H(qT (t),pT (t), t)

∂pi

−∂I(qT (t),pT (t), t)
∂pi

∂H(qT (t),pT (t), t)

∂qi

)
+
∂I(qT (t),pT (t), t)

∂t
.

The terms involving products of derivatives of I and derivatives of H can then naturally be ex-
pressed more compactly thanks to the definition of the Poisson bracket. The Poisson bracket
{., .} with respect to the variables (q,p) is defined for two functions f and g, while other vari-
ables are treated as parameters, as

{f, g} =
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (B.14)

The Poisson bracket satisfies several algebraic properties, discussed in detail in [164]. Then
along any trajectory (qT ,pT ) : R → RN × RN , the total time derivative of any function I is
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given by

d[I(qT (t),pT (t), t)]

dt
= {I,H}(qT (t),pT (t), t) +

∂I(qT (t),pT (t), t)

∂t
.

The function I is said to be a constant of the motion, or equivalently a conserved quantity,
if dI(qT (t),pT (t), t)/dt = 0 along any trajectory (qT ,pT ) : R → RN × RN . A set of n
constants of motion, {Ii,∀i from 1 to n}, are said to be independent, or in involution, if the
following condition is satisfied:

{Ii, Ij} = 0, ∀i, j from 1 to n, with i ̸= j.

An N -dimensional autonomous Hamiltonian system is integrable if and only if there exist N
independent constants of the motion. A nonautonomous Hamiltonian system can be equivalently
expressed as anN+1-dimensional autonomous Hamiltonian system [6, 195], and its integrability
is equivalent to the integrability of this higher-dimensional autonomous system. Thus, an N -
dimensional nonautonomous Hamiltonian system is integrable if and only if there exist N + 1
independent constants of the motion in the N + 1-dimensional phase space.

We will denote by M ⊂ RN ×RN the set of all trajectory points in phase space, also defined
as {(qT (t),pT (t)), for all t, for all trajectories (qT ,pT ) : R → RN × RN}. Any point on a
trajectory of an integrable system lies in phase space at the intersection ofN hypersurfaces, each
one being a level set of one of the independent conserved quantities. The intersection of these N
level sets is itself anN -dimensional hypersurface in RN×RN . The trajectory is then confined to
such hypersurfaces, and M can only be a union of subsets of hypersurfaces. Integrable systems
are said to exhibit regular motion. It can be shown that the hypersurfaces supporting trajectories
are higher-dimensional analogues of a torus, known as N -tori, under the assumption that M is
compact and connected [7]. Thus, they are often referred to as invariant tori. These invariant tori
foliate the phase space: they continuously fill the volume of M . In contrast, if a system is not
integrable, trajectories are not confined to hypersurfaces. They may exhibit irregular or ergodic
motion, meaning they may eventually fill out a volume of phase space.

In practice, finding conserved quantities to determine if a system is integrable may be chal-
lenging, but an example of the Hamilton–Jacobi method presented in Section 10.2 is one way to
do so.

B.3.3 Charged particle motion

We turn again to the study of charged particle motion in electromagnetic fields, here restricting
our attention to the 3D case, N = 3. In this context, subscripts j on vector fields indicate
Cartesian components. We will show that the Hamiltonian and Lagrangian variational principles
lead to the same equations of motion as those produced by Newton’s law. Consider, as in the
previous section, the standard expression of the given electric and magnetic fields, B and E, in
terms of vector and scalar potentials:

∀(q, t) ∈ R3 × R,

B(q, t) = ∇×A(q, t),

E(q, t) = −∇Φ(q, t)− ∂A(q, t)

∂t
.

Given the Lagrangian (B.6) and according to the change of coordinates (B.8), the canonical
momentum can be expressed as

p = mq̇ + qA(q, t). (B.15)
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As assumed in the general case, this relation can be inverted with respect to q̇, in order to obtain
q̇ = (p − qA(q, t))/m. So in this case, starting from the definition (B.9), the Hamiltonian can
be written as

H(q,p, t) =
|p− qA(q, t)|2

2m
+ qΦ(q, t) (B.16)

=
1

2m

3∑
j=1

(pj − qAj(q, t))2 + qΦ(q, t).

As a consequence, the partial derivatives of the Hamiltonian are given by
∂H(q,p, t)

∂p
=

1

m

(
p− qA(q, t)

)
,

∂H(q,p, t)

∂q
= − q

m

3∑
j=1

∂Aj(q, t)

∂q

(
pj − qAj(q, t)

)
+ q

∂Φ(q, t)

∂q
.

We will then use the notation∇ = ∂/∂q. As a result, here Hamilton’s equations read
dqT (t)

dt
=

pT (t)− qA
(
qT (t), t

)
m

,

dpT (t)

dt
=

q

m

3∑
j=1

∇Aj(qT (t), t)
(
pT (t)− qA(qT (t), t)

)
j
− q∇Φ(qT (t), t).

(B.17)

In order to obtain an equation describing trajectories in physical space, we are seeking for the
second derivative of qT an expression independent of pT . To proceed, we will make use of the
fact that along a trajectory, pT (t) − qA(qT (t), t) = mdqT (t)/dt, according to the change of
coordinates (B.8). We first take the derivative of the first equation:

m
d2qT (t)

dt2
=
dpT (t)

dt
− q

3∑
j=1

∂A
(
qT (t), t

)
∂qj

(
dqT (t)

dt

)
j

− q
∂A
(
qT (t), t

)
∂t

.

Next, by identifying in the right-hand side the dqT (t)/dt term, we rewrite the second equation
as

dpT (t)

dt
= q

3∑
j=1

∇Aj(qT (t), t)
(
dqT (t)

dt

)
j

− q∇Φ(qT (t), t).

Combining the last two equations, we can now get rid of all the pT terms,

m
d2qT (t)

dt2
= q

3∑
j=1

∇Aj(qT (t), t)
(
dqT (t)

dt

)
j

− q∇Φ(qT (t), t)

− q
3∑
j=1

∂A
(
qT (t), t

)
∂qj

(
dqT (t)

dt

)
j

− q
∂A
(
qT (t), t

)
∂t

,

or equivalently

m
d2qT (t)

dt2
= q

3∑
j=1

(
∇Aj(qT (t), t)−

∂A
(
qT (t), t

)
∂qj

)(
dqT (t)

dt

)
j

− q

(
∇Φ(qT (t), t) +

∂A
(
qT (t), t

)
∂t

)
.
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The last step consists in noting that

3∑
j=1

(
∇Aj(qT (t), t)−

∂A
(
qT (t), t

)
∂qj

)(
dqT (t)

dt

)
j

=
dqT (t)

dt
×
(
∇×A(qT (t), t)

)
.

As a consequence, here Hamilton’s equations read

m
d2qT (t)

dt2
= q

dqT (t)

dt
× (∇×A(qT (t), t))− q∇Φ(qT (t), t)− q

∂A(qT (t), t)

∂t
.

Recognizing the expressions for the electromagnetic fields in terms of vector and scalar poten-
tials, we identify the familiar Lorentz force (B.2):

m
d2qT (t)

dt2
= q

dqT (t)

dt
×B(qT (t), t) + qE(qT (t), t).

As expected, we conclude that Hamilton’s equations for the Hamiltonian (B.16) reduce to New-
ton’s law (B.1) with the Lorentz force (B.2), and equivalently to the corresponding Euler–
Lagrange equations (B.7).

The Hamiltonian approach will be leveraged in the study of equilibrium magnetic fields in
Chapter 10, in particular in relation to the geometry of magnetic field lines.

B.4 The phase-space Lagrangian
Given the relation between the Lagrangian and the Hamiltonian (B.9), we can express the La-
grangian as

L(q, q̇, t) = p(q, q̇) · q̇ −H(q,p(q, q̇), t),

where p is given by the relation between Lagrangian and Hamiltonian coordinates (B.8). While
the Lagrangian is typically defined as a function of only time, the position, and its derivative, we
can also define a function of the phase-space variables,

Lph(q, q̇,p, ṗ, t) = p · q̇ −H(q,p, t), (B.18)

referred to as the phase-space Lagrangian [173]. As we will see in Section 4.2, it is sometimes
more convenient to study motion in this expanded phase space, providing more freedom in coor-
dinate transformations.

B.4.1 Euler–Lagrange equations

Unlike for Sections B.2 and B.3, here we do not use an action integral to derive equations of
motion. Instead, we leverage the Euler–Lagrange equations (B.4) and Hamilton’s equations
(B.11).

We now study the implications of the Euler–Lagrange equations (B.4) on the phase-space
Lagrangian. To do so, we use the chain rule to evaluate the partial derivatives of L:

∂L(q, q̇, t)

∂q
= −∂H(q,p, t)

∂q
+

N∑
j=1

∂p(q, q̇)

∂qj

(
q̇j −

∂H(q,p, t)

∂pj

)
,

∂L(q, q̇, t)

∂q̇
= p+

N∑
j=1

∂p(q, q̇)

∂q̇j

(
q̇j −

∂H(q,p, t)

∂pj

)
.

(B.19)
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We similarly compute the partial derivatives of Lph:
∂Lph(q, q̇,p, ṗ, t)

∂q
= −∂H(q,p, t)

∂q
,

∂Lph(q, q̇,p, ṗ, t)

∂q̇
= p.

(B.20)

If (qT ,pT ) are such that the pair is a phase-space trajectory, satisfying Hamilton’s equations
(B.11), and qT is a trajectory, satisfying the Euler–Lagrange equations (B.4), then evaluating
(B.19) along the phase-space trajectory (qT (t),pT (t)) yields

∂L(qT (t), q̇T (t), t)

∂q
= −∂H(qT (t),pT (t), t)

∂q
,

∂L(qT (t), q̇T (t), t)

∂q̇
= pT (t),

(B.21)

and similarly evaluating (B.20) along the same phase-space trajectory (qT ,pT ) yields
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q
= −∂H(qT (t),pT (t), t)

∂q
,

∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q̇
= pT (t).

(B.22)

Comparing the right-hand side of (B.21) and (B.22), it is then clear that
∂L(qT (t), q̇T (t), t)

∂q
=
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q
,

∂L(qT (t), q̇T (t), t)

∂q̇
=
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q̇
.

(B.23)

In words, the partial derivatives of L evaluated along a trajectory qT , satisfying the Euler–
Lagrange equations (B.4), are equal to the partial derivatives of Lph evaluated along the cor-
responding phase-space trajectory (qT ,pT ). Therefore, the Euler–Lagrange equations for the
standard Lagrangian (B.4) can be written in exactly the same form in terms of the phase-space
Lagrangian Lph using (B.23):

d

dt

[
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q̇

]
=
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q
. (B.24)

We also would like to derive a relation between the derivatives of Lph with respect to p and ṗ
in the same Euler–Lagrange form as (B.4). We then compute, from the definition of Lph (B.18),
its partial derivatives with respect to the canonical momentum,

∂Lph(q, q̇,p, ṗ, t)

∂ṗ
= 0,

∂Lph(q, q̇,p, ṗ, t)

∂p
= q̇ − ∂H(q,p, t)

∂p
.

As a result, if (qT ,pT ) are such that the pair is a phase-space trajectory, satisfying Hamilton’s
equations (B.11), and qT is a trajectory, satisfying the Euler–Lagrange equations (B.4), then

∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂p
= 0.
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In particular, along such trajectories, the following equation holds:

d

dt

[
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂ṗ

]
=
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂p
.

This has the same form as the Euler–Lagrange equation (B.4).
As a summary, equations for the derivatives with respect to position and canonical momen-

tum can be written in the standard Euler–Lagrange form:
d

dt

[
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q̇

]
=
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q
,

d

dt

[
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂ṗ

]
=
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂p
.

(B.25)

We will refer to these as the combined Euler–Lagrange equations for the phase-space Lagrangian.
An important property of the phase-space Lagrangian is the preservation of the form of the Euler–
Lagrange equations (B.25) under coordinate transformations for q and p [90]. This property will
be used in Section 4.2 to study guiding center motion.

B.4.2 Charged particle motion

We turn one more time to the study of charged particle motion in magnetic fields. Again, here
we restrict our attention to the 3D case, N = 3, with subscripts j on vector fields indicating
Cartesian components. We use the general Hamiltonian for charged particle motion as introduced
in Section B.3 to obtain the phase-space Lagrangian,

Lph(q, q̇,p, ṗ, t) = p · q̇ − |p− qA(q, t)|2

2m
− qΦ(q, t), (B.26)

or equivalently

Lph(q, q̇,p, ṗ, t) =
3∑
j=1

pj q̇j −
1

2m

3∑
j=1

(pj − qAj(q, t))2 − qΦ(q, t).

To derive the equations of motion, we compute the partial derivatives of Lph:

∂Lph

∂q
=

q

m

3∑
j=1

(pj − qAj(q, t))
∂Aj(q, t)

∂q
− q ∂Φ(q, t)

∂q
,

∂Lph

∂q̇
= p,

∂Lph

∂p
= q̇ − p− qA(q, t)

m
,

∂Lph

∂ṗ
= 0,

and apply the Euler–Lagrange equations (B.25) along a phase-space trajectory (qT ,pT ):
dpT (t)

dt
=

q

m

3∑
j=1

(pT (t)− qA(qT (t), t))j∇Aj(qT (t), t)− q∇Φ(qT (t), t),

0 =
dqT (t)

dt
− pT (t)− qA(qT (t), t)

m
,
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where we use the notation∇ = ∂/∂q. These are the same equations of motion as those obtained
from Hamilton’s equations applied to the charged particle Hamiltonian (B.17).

B.5 Summary
We now summarize the Newtonian, Lagrangian, Hamiltonian, and phase-space Lagrangian ap-
proaches to classical mechanics in the Tables B.1–B.4.

Table B.1: Summary of the Newtonian framework for classical mechanics. The equations of
motion, unknown quantities, and given quantities are provided along with the form of the force
for charged particle motion. Further details can be found in Section B.1.

Equations of motion mq̈T (t) = F (qT (t), q̇T (t), t)

Unknowns qT

Given m, F

Charged particle F (q, q̇, t) = q (q̇ ×B(q, t) +E(q, t))

Table B.2: Summary of the Lagrangian framework for classical mechanics. The equations of
motion, unknown quantities, and given quantities are provided along with the form of the La-
grangian for charged particle motion. Further details can be found in Section B.2.

Equations of motion
d

dt

(
∂L (qT (t), q̇T (t), t)

∂q̇

)
=
∂L(qT (t), q̇T (t), t)

∂q

Unknowns qT

Given L(q, q̇, t)

Charged particle L(q, q̇, t) =
m|q̇|2

2
+ q (A(q, t) · q̇ − Φ(q, t))
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Table B.3: Summary of the Hamiltonian framework for classical mechanics. The equations
of motion, unknown quantities, and given quantities are provided along with the form of the
Hamiltonian for charged particle motion. Further details can be found in Section B.3.

Equations of q̇T (t) =
∂H(qT (t),pT (t), t)

∂p

motion ṗT (t) = −
∂H(qT (t),pT (t), t)

∂q

Unknowns qT , pT

Given H(q, p, t)

Charged particle H(q,p, t) =
m|p− qA (q, t) |2

2
+ qΦ(q, t)

Table B.4: Summary of the phase-space Lagrangian framework for classical mechanics. The
equations of motion, unknown quantities, and given quantities are provided along with the form
of the phase-space Lagrangian for charged particle motion. Further details can be found in
Section B.4.

d

dt

(
∂Lph (qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q̇

)
Equations of =

∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂q

motion
d

dt

(
∂Lph (qT (t), q̇T (t),pT (t), ṗT (t), t)

∂ṗ

)
=
∂Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

∂p

Unknowns qT , pT

Given Lph(qT (t), q̇T (t),pT (t), ṗT (t), t)

Charged

particle
L(q, q̇,p, ṗ, t) = p · q̇ − |p− qA(q, t)|2

2m
− qΦ(q, t)
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Appendix C

Fields in the
neighborhood of a
surface current

In this appendix, we explore the properties of surface currents, also referred to as current sheets,
in terms of the current density and divergence-free magnetic field related by Ampère’s law. We
assume that a current density is supported on a smooth surface denoted SK : the surface SK is
assumed to be toroidal27 and the current density JK is supported on and tangent to SK . As JK
is supported on SK , we express it as

JK(r) =

{
K(r) ∀r ∈ SK ,
0 otherwise, (C.1)

where K is a function defined from SK to R3. According to the discussion presented in Section
5.1, equivalently K can be seen as a function of two coordinates on the surface. This will, in
particular, be the case in the expression of the surface divergence in Section C.3.

Without loss of generality, the unit normal denoted n̂(r) to any surface is assumed to point
in the outward direction if the surface is closed, while it is arbitrarily assumed to point to the
same side of the surface for all r on the surface if the surface is open.

As JK is not smooth but assumed to be integrable, the magnetic field B arising due to
Ampère’s law is also assumed to be integrable. Moreover, the magnetic field is assumed to
be bounded. The divergence-free condition satisfied by JK and B can be expressed under its
integral form rather than its differential form,∫

S

B(r) · n̂(r) d2r = 0 for any closed surface S ∈ R3, (C.2)

and Ampère’s law,∫
∂S

B(r) · dl(r)
µ0

=

∫
S

JK(r) · n̂(r) d2r for any surface S ∈ R3, (C.3)

where ∂S is the boundary of the surface if the surface is open, while it is the empty set if the
surface is closed. Hence, for any closed surface, the left-hand side of the above vanishes. As a

27However, the arguments in this appendix hold for any smooth surface without a boundary.
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result, for any closed surface S the current density JK satisfies the condition∫
S

JK(r) · n̂(r) d2r = 0 for any closed surface ∈ R3. (C.4)

We will consider the case in which the surface is closed in order to derive the divergence-free
condition for both the magnetic field and current density under its surface divergence formu-
lation. We will then consider the case in which the surface S is open to compute the relation
between K and B in the neighborhood of the current sheet.

C.1 Local coordinate system
As we are interested in the context of currents supported on toroidal surfaces SK , we will con-
struct a local toroidal coordinate system to describe the neighborhood of SK . This coordinate
system will be used to parameterize various open and closed surfaces S in the following sections.
For more on the geometry of surfaces, we refer to [298].

Starting from the volume VK enclosed by a surface SK , we define the signed distance func-
tion to the surface, b : R3 → R, defined by

b(r) :=

 dist(r, SK), r ∈ R3 \ V K ,
0, r ∈ SK ,
−dist(r, SK), r ∈ VK ,

where dist(r, SK) is the minimum distance from r to any point on SK . An important property
of the signed distance function is that its gradient restricted to the surface SK is the unit normal
on the surface:

∇b(r) = n̂(r) ∀r ∈ SK . (C.5)

Therefore, ∇b is an extension of the normal vector in a neighborhood of SK , and b will be the
first coordinate of the local toroidal coordinate system. Recall that the b = 0 surface is the
toroidal surface SK . Then, in a sufficiently small neighborhood of SK , level sets of b will be
nested toroidal surfaces.

The other two coordinates will be defined starting from a surface parameterization. The
position on SK is parameterized as Rs(θ, ζ), assuming that the parameterization is well-defined;
therefore,

gSK
(Rs(θ, ζ)) =

∣∣∣∣∂Rs(θ, ζ)

∂θ
× ∂Rs(θ, ζ)

∂ζ

∣∣∣∣2 ̸= 0,

where √gSK
is the area element on SK . Using the projection from R3 onto the surface SK

along the ∇b direction, namely any point r ∈ R3 is projected to r − b(r)∇b(r), we also define
extensions (θ̃, ζ̃) of the angles (θ, ζ) away from SK , for all r such that∇b(r):{

θ̃(r) = θ(r − b(r)∇b(r)),
ζ̃(r) = ζ(r − b(r)∇b(r)).

(C.6)

The triplet
(
b, θ̃, ζ̃

)
is defined in a neighborhood of SK . In order to determine if it indeed

forms a local coordinate system, the next goal is to prove that the quantity ∇b × ∇θ̃ · ∇ζ̃ is
not zero in a neighborhood of the surface SK . To do so, since this quantity is continuous in a
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neighborhood of the surface, it is sufficient to prove that it is nonzero on the surface itself. This
will now be performed by relating∇b×∇θ̃ · ∇ζ̃ to a corresponding surface quantity.

Given the definition of the extensions (C.6), we note that ∇b · ∇θ̃|SK
= ∇b · ∇ζ̃|SK

= 0,
since θ̃ and ζ̃ are constant along the ∇b direction. Hence according to (C.5) ∇θ̃|SK

and ∇ζ̃|SK

are tangential to SK . We can then leverage properties of the surface gradient to relate ∇θ̃ and
∇ζ̃ to the surface gradients of θ and ζ.

The surface gradient of a function f defined on a surface SK can be defined in terms of its
smooth extension f̃ in a neighborhood of SK as the projection of the 3D gradient of f̃ onto the
surface:

∇SK
f =

[
∇f̃ −

(
n̂ · ∇f̃

)
n̂
] ∣∣∣∣
SK

. (C.7)

In the literature, the surface gradient operator is often written as ∇Γ if Γ is the surface. Note
that the surface gradient is defined in terms of an extension but is independent of the choice
of extension. Then the surface gradient of the quantity f can be expressed thanks to a surface
parameterization Rs(θ, ζ), in terms of fc defined by fc(θ, ζ) = f (Rs(θ, ζ)), as follows:

∇SK
f (Rs(θ, ζ)) =

gζζ
gSK

(Rs(θ, ζ))
∂fc (θ, ζ)

∂θ

∂Rs(θ, ζ)

∂θ

− gθζ
gSK

(Rs(θ, ζ))

(
∂fc (θ, ζ)

∂θ

∂Rs(θ, ζ)

∂ζ
+
∂fc (θ, ζ)

∂ζ

∂Rs(θ, ζ)

∂θ

)
+
gθθ
gSK

(Rs(θ, ζ))
∂fc (θ, ζ)

∂ζ

∂Rs(θ, ζ)

∂ζ
, (C.8)

where gij (Rs(θ, ζ)) = [∂Rs/∂x
i · ∂Rs/∂x

j ](θ, ζ) with xi, xj ∈ {θ, ζ} defining the entries
of the surface metric tensor, and satisfy gsK = gθθgζζ − (gθζ)

2. According to the discussion
presented in Section 5.1, we will now use a single symbol, for any function f , to refer to either
fc or f . For instance, some symbol gij may refer both to a function of the coordinates (θ, ζ) and
to a function of the position r. Further details on the tangential gradient can be found in Chapter
4 of [298]. Since ∇θ̃|SK

and ∇ζ̃|SK
are tangential to SK , then the projection operator does not

modify these vectors. Therefore∇SK
θ = ∇θ̃|SK

and∇SK
ζ = ∇ζ̃|SK

.
This leads to a convenient expression of ∇b × ∇θ̃ · ∇ζ̃ in terms of ∇SK

θ̃ and ∇SK
ζ̃ valid

on the surface SK :

∀r ∈ SK ,
[
∇b×∇θ̃ · ∇ζ̃

]
(r) = [n̂×∇SK

θ · ∇SK
ζ] (r).

Moreover, according to the definition (C.8), the surface gradients are
∇SK

θ (Rs(θ, ζ)) =
gζζ
gSK

(Rs(θ, ζ))
∂Rs(θ, ζ)

∂θ
− gθζ
gSK

(Rs(θ, ζ))
∂Rs(θ, ζ)

∂ζ
,

∇SK
ζ (Rs(θ, ζ)) =

gθθ
gSK

(Rs(θ, ζ))
∂Rs(θ, ζ)

∂ζ
− gθζ
gSK

(Rs(θ, ζ))
∂Rs(θ, ζ)

∂θ
.

As a result for all r = Rs(θ, ζ) ∈ SK[
∇b×∇θ̃ · ∇ζ̃

]
(Rs(θ, ζ)) =

1

gSk
(Rs(θ, ζ))

(
∂Rs(θ, ζ)

∂θ
× ∂Rs(θ, ζ)

∂ζ

)
· n̂(θ, ζ). (C.9)
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Besides, since ∂Rs/∂θ and ∂Rs/∂ζ are both tangential vector fields at any point of the surface
SK , then ∂Rs/∂θ × ∂Rs/∂ζ ∝ n̂. They are also not aligned since the parameterization of the
surface is well-defined, so ∂Rs/∂θ × ∂Rs/∂ζ ̸= 0. Hence, ∇b × ∇θ̃ · ∇ζ̃ ̸= 0 at any point
on the surface. To conclude, as expected, the triplet (b, θ̃, ζ̃) defines a coordinate system in the
neighborhood N of SK .

As a result, the surface SK itself is parameterized by Rs defining the position on SK as a
function of (θ, ζ). The neighborhood N of the surface can then be parameterized by a volume
parameterization RN , an extension of Rs defining the position in N as a function of (b, θ̃, ζ̃),
so that at any point RN (0, θ, ζ) = Rs (θ, ζ) on the surface SK the surface Jacobian and the
volume Jacobian are related by

√
g (RN (0, θ, ζ)) =

√
gSK

(Rs (θ, ζ)). (C.10)

C.2 Normal magnetic field continuity
We will now consider the behavior of the normal magnetic field along the smooth toroidal sur-
face SK supporting the current sheet.28 In particular, around any point r0 on the surface, we
will use the local coordinate system defined in the previous section to build a small volume in-
tersecting SK . Taking the limit as this volume becomes small, we evaluate the integral form of
the divergence-free condition (C.2) over the surface bounding this volume. Doing so, we show
that although the current density is not smooth, the normal magnetic field is continuous across
SK . In this section, it is convenient to write all functions as functions of the position r.

Around any point r0 = RN (0, θ0, ζ0) ∈ SK , we consider a specific closed volume V0, so
r0 ∈ V0. Precisely, there exist ∆b > 0, ∆θ > 0, and ∆ζ > 0 such that the volume intersecting
SK ,

V0 =
{(
b, θ̃, ζ̃

)
∈ R3; |b| ≤ ∆b,

∣∣∣θ0 − θ̃∣∣∣ ≤ ∆θ,
∣∣∣ζ0 − ζ̃∣∣∣ ≤ ∆ζ

}
, (C.11)

is included in N : V0 ⊂ N . The surface S, defining the boundary of V0, is the union of six faces
that can be defined explicitly as



{
RN

(
−∆b, θ̃, ζ̃

)
∈ R3;

∣∣∣θ0 − θ̃∣∣∣ ≤ ∆θ,
∣∣∣ζ0 − ζ̃∣∣∣ ≤ ∆ζ

}
,{

RN

(
+∆b, θ̃, ζ̃

)
∈ R3;

∣∣∣θ0 − θ̃∣∣∣ ≤ ∆θ,
∣∣∣ζ0 − ζ̃∣∣∣ ≤ ∆ζ

}
,{

RN

(
b, θ0 −∆θ, ζ̃

)
∈ R3; |b| ≤ ∆b,

∣∣∣ζ0 − ζ̃∣∣∣ ≤ ∆ζ

}
,{

RN

(
b, θ0 +∆θ, ζ̃

)
∈ R3; |b| ≤ ∆b,

∣∣∣ζ0 − ζ̃∣∣∣ ≤ ∆ζ

}
,{

RN

(
b, θ̃, ζ0 −∆ζ

)
∈ R3; |b| ≤ ∆b,

∣∣∣θ0 − θ̃∣∣∣ ≤ ∆θ

}
,{

RN

(
b, θ̃, ζ0 +∆ζ

)
∈ R3; |b| ≤ ∆b,

∣∣∣θ0 − θ̃∣∣∣ ≤ ∆θ

}
.

(C.12)

The curve C defines the intersection of S with SK : C = S ∩ SK . In the
(
b, θ̃, ζ̃

)
coordinate

system, V0 is a cube centered at r0, and its boundary S as well as C are represented in Figure C.1.
The point (0, θ0, ζ0) lies at the center of V0 and at the center of the subset of SK bounded by C.

28Again, the following arguments hold for any smooth surface without boundaries
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Figure C.1: Given a surface SK , represented in blue, and a point r0 on the surface SK defined
as r0 = RN (0, θ0, ζ0) ∈ SK and parameters ∆b > 0, ∆θ > 0 and ∆ζ > 0, we consider the

volume V0 defined by
{
RN

(
b, θ̃, ζ̃

)
∈ R3; |b| ≤ ∆b,

∣∣∣θ0 − θ̃ ∣∣∣ ≤ ∆θ,
∣∣∣ζ0 − ζ̃ ∣∣∣ ≤ ∆ζ

}
. The

boundary of V0, denoted S and defined explicitly in (C.12), is represented in red. The intersection
of S with the surface SK is the curve C, represented in green. Both S and C are used to evaluate
the integral form of the divergence-free condition (C.2) and Ampère’s law (C.3).

We now compute the integral appearing in the divergence-free condition (C.2) over this sur-
face S as follows:∫

S

[B · n̂] (r) d2r =
∫ θ0+∆θ

θ0−∆θ

∫ ζ0+∆ζ

ζ0−∆ζ

[
√
gB · ∇b]

(
RN

(
∆b, θ̃, ζ̃

))
dζ̃dθ̃

−
∫ θ0+∆θ

θ0−∆θ

∫ ζ0+∆ζ

ζ0−∆ζ

[
√
gB · ∇b]

(
RN

(
−∆b, θ̃, ζ̃

))
dζ̃dθ̃

+

∫ +∆b

−∆b

∫ ζ0+∆ζ

ζ0−∆ζ

[√
gB · ∇θ̃

] (
RN

(
b, θ0 +∆θ, ζ̃

))
dζ̃db

−
∫ +∆b

−∆b

∫ ζ0+∆ζ

ζ0−∆ζ

[√
gB · ∇θ̃

] (
RN

(
b, θ0 −∆θ, ζ̃

))
dζ̃db

+

∫ +∆b

−∆b

∫ θ0+∆θ

θ0−∆θ

[√
gB · ∇ζ̃

] (
RN

(
b, θ̃, ζ0 +∆ζ

))
dθ̃db

−
∫ +∆b

−∆b

∫ θ0+∆θ

θ0−∆θ

[√
gB · ∇ζ̃

] (
RN

(
b, θ̃, ζ0 −∆ζ

))
dθ̃db. (C.13)
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246 Appendix C. Fields in the neighborhood of a surface current

The left-hand side is equal to zero from the divergence-free condition (C.2) because S is closed.
On the right-hand side, we now are interested in the limit of the volume V0 reducing to the single
point r0. We first turn to the limit ∆b → 0.

• The first two integrals of the right-hand side in (C.13) are defined at fixed b = ±∆b, so in
the limit they converge respectively to

lim
∆b→0

±
∫ θ0+∆θ

θ0−∆θ

∫ ζ0+∆ζ

ζ0−∆ζ

[B · ∇b√g]
(
RN

(
±∆b, θ̃, ζ̃

))
dζ̃dθ̃.

• Since the last four integrals of the right-hand side in (C.13) are, in particular, integrated
with respect to b from −∆b to ∆b and the integrands are integrable, then these four inte-
grals converge to zero in the limit ∆b → 0.

Hence taking the limit ∆b → 0 in (C.13) we obtain for all ∆θ > 0 and all ∆ζ > 0

lim
∆b→0

∫ θ0+∆θ

θ0−∆θ

∫ ζ0+∆ζ

ζ0−∆ζ

[B · ∇b√g]
(
RN

(
∆b, θ̃, ζ̃

))
dζ̃dθ̃

= lim
∆b→0

∫ θ0+∆θ

θ0−∆θ

∫ ζ0+∆ζ

ζ0−∆ζ

[B · ∇b√g]
(
RN

(
−∆b, θ̃, ζ̃

))
dζ̃dθ̃.

We can then turn to the limit ∆θ → 0, ∆ζ → 0 to obtain

lim
∆b→0

lim
∆θ→0

lim
∆ζ→0

∫ θ0+∆θ

θ0−∆θ

∫ ζ0+∆ζ

ζ0−∆ζ

[B · ∇b√g]
(
RN

(
∆b, θ̃, ζ̃

))
dζ̃dθ̃

= lim
∆b→0

lim
∆θ→0

lim
∆ζ→0

∫ θ0+∆θ

θ0−∆θ

∫ ζ0+∆ζ

ζ0−∆ζ

[B · ∇b√g]
(
RN

(
−∆b, θ̃, ζ̃

))
dζ̃dθ̃.

Because the magnetic field is assumed to be bounded, then the integrands are bounded. There-
fore, since ∇b|SK

= n̂, we obtain that the limits of the normal component of the field at the
point r0 = RN (0, θ0, ζ0) approached from the two sides of the surface are equal.

In conclusion, at any point of the current sheet SK , the normal component of the field, B · n̂,
is continuous across SK . In the literature, this is sometimes written as

[[B]]SK
· n̂ = 0,

where [[...]]SK
represents the jump across the surface SK .

C.3 Divergence-free condition
For a smooth magnetic field B and current density J , we can use the differential form of Am-
père’s law

∇×B

µ0
= J

to conclude that ∇ · J = 0. Here, we derive a similar condition for a current density supported
on a surface. In this section, it is again convenient to write all functions as functions of the
position r.
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The divergence of any integrable vector field F at a point r can be defined as the limit of the
ratio between the flux of F through the boundary of any closed volume V (r) enclosing r to the
area of ∂V (r), as V shrinks to zero at r:

[∇ · F ] (r) := lim
V (r)→0

∫
∂V (r)

F (r′) · n̂(r′) d2r′∫
∂V (r)

d2r′
. (C.14)

It can be shown that the limit is independent of how the volume goes to zero for both smooth and
nonsmooth vector fields. In the case of a smooth vector field, the divergence can equivalently
be defined in nonorthogonal coordinates as in Table 5.1. However, that formula does not apply
to a vector field supported on a surface, as such a field is not differentiable. We now return to
the surface SK parameterized by two angles (θ, ζ) and the tangential vector field supported on
SK , expressed as JK defined in terms of a function K of two variables in (C.1). Assuming that
K is continuously differentiable along the surface, we will now derive the differential formula
defining the surface divergence operator, denoted (∇SK

·).
The differential definition of the surface divergence will be obtained from the definition of

the divergence (C.14), for a particular choice of volume previously defined in (C.11), taking the
limit V0 → 0. The boundary of V0 introduced in (C.12) is the surface S. Then, integrating the
flux of any vector field F over this surface S, we can easily see that

∫
S

[F · n̂] (r) d2r =
∫ θ0+∆θ

θ0−∆θ

∫ ζ0+∆ζ

ζ0−∆ζ

[F · ∇b√g]
(
RN

(
b, θ̃, ζ̃

))
dζ̃dθ̃

∣∣∣∣b=+∆b

b=−∆b

+

∫ +∆b

−∆b

∫ ζ0+∆ζ

ζ0−∆ζ

[
F · ∇θ̃√g

] (
RN

(
b, θ̃, ζ̃

))
dζ̃db

∣∣∣∣θ̃=θ0+∆θ

θ̃=θ0−∆θ

+

∫ +∆b

−∆b

∫ θ0+∆θ

θ0−∆θ

[
F · ∇ζ̃√g

] (
RN

(
b, θ̃, ζ̃

))
dθ̃db

∣∣∣∣ζ̃=ζ0+∆ζ

ζ̃=ζ0−∆ζ

, (C.15)

where the Jacobian in the coordinate system (b, θ̃, ζ̃) is expressed in terms of contravariant vec-
tors as

√
g−1 = ∇b × ∇θ̃ · ∇ζ̃. In the particular case of the vector field JK supported on

SK , as expressed in (C.1), it is clear that JK
(
RN

(
± ∆b, θ̃, ζ̃

))
= 0, and that more gener-

ally JK

(
RN

(
b, θ̃, ζ̃

))
= 0 unless b = 0. Hence the contribution to

∫
S
[JK · n̂] (r) d2r from

the first term on the right-hand side of (C.15) vanishes while the last two contributions on the
right-hand side reduce to line integrals∫

S

[JK · n̂] (r) d2r =
∫ ζ0+∆ζ

ζ0−∆ζ

[√
gSK

K · ∇SK
θ
]
(Rs (θ, ζ)) dζ

∣∣∣∣θ=θ0+∆θ

θ=θ0−∆θ

+

∫ θ0+∆θ

θ0−∆θ

[√
gSK

K · ∇SK
ζ
]
(Rs (θ, ζ)) dθ

∣∣∣∣ζ=ζ0+∆ζ

ζ=ζ0−∆ζ

=

∫ θ0+∆θ

θ0−∆θ

∫ ζ0+∆ζ

ζ0−∆ζ

[
∂
([√

gSK
K · ∇SK

θ
]
(Rs(θ, ζ))

)
∂θ

+
∂
([√

gSK
K · ∇SK

ζ
]
(Rs(θ, ζ))

)
∂ζ

]
dζdθ,

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



248 Appendix C. Fields in the neighborhood of a surface current

which follows from (C.1), (C.7), and (C.10). Now, in order to evaluate (C.14), we take the ratio
with the surface area and take the limit when ∆θ → 0 and ∆ζ → 0:

lim
∆ζ→0,∆θ→0

∫
S
[JK · n̂] (r) d2r∫

S
d2r

= lim
∆ζ→0,∆θ→0

1∫ θ0+∆θ

θ0−∆θ

∫ ζ0+∆ζ

ζ0−∆ζ

√
gSK

(Rs(θ, ζ)) dζdθ

×
∫ θ0+∆θ

θ0−∆θ

∫ ζ0+∆ζ

ζ0−∆ζ

[
∂
([√

gSK
K · ∇SK

θ
]
(Rs(θ, ζ))

)
∂θ

+
∂
([√

gSK
K · ∇SK

ζ
]
(Rs(θ, ζ))

)
∂ζ

]
dζdθ.

Since K was assumed to have continuous derivatives, then the numerator’s integrand is bounded.
The denominator’s integrand is bounded and bounded away from zero. Therefore, as a result, the
limit is the ratio

1
√
gSK

(Rs(θ, ζ))

(
∂
([√

gSK
K · ∇SK

θ
]
(Rs(θ, ζ))

)
∂θ

+
∂
([√

gSK
K · ∇SK

ζ
]
(Rs(θ, ζ))

)
∂ζ

)
evaluated at the point Rs(θ0, ζ0). This holds at any point of the current sheet SK . According to
the discussion presented in Section 5.1, the quantities involved in this equation can equivalently
be considered as functions of two coordinates on the surface rather than functions of r ∈ SK .

In conclusion, the surface divergence of K, as a function of two coordinates on the surface,
is defined as

∇SK
·K :=

1
√
gSK

[
∂
(√
gSK

K · ∇SK
θ
)

∂θ
+
∂
(√
gSK

K · ∇SK
ζ
)

∂ζ

]
.

See Chapter 4 of [298] for more on the surface divergence.
The zero-divergence condition for a current supported on the surface SK can finally be ex-

pressed in a differential form by

∇SK
·K = 0.

This is similar to the zero-divergence condition of the magnetic field in flux coordinates (9.1)
since B is a tangential vector field on magnetic surfaces. See [8] for more details.

C.4 Tangential field discontinuity
Any magnetic field satisfying Ampère’s law for a given current supported on a surface has a
discontinuity across this surface. Here, we will leverage the coordinate system

(
b, θ̃, ζ̃

)
defined

in the neighborhood N of SK to express this tangential discontinuity in terms of the surface
current. To do so, we apply the integral form of Ampère’s law (C.3) to an open surface S defined
around a point r0 = RN (0, θ0, ζ0) ∈ SK by{

RN

(
b, θ0, ζ̃

)
; |b| ≤ ∆b,

∣∣∣ζ0 − ζ̃∣∣∣ ≤ ∆ζ

}
for ∆b > 0 and ∆ζ > 0. This is illustrated in Figure C.2.

In this section, it is sometimes more convenient to write functions as functions of the coordi-
nates rather than functions of the position. In particular, as discussed in Section 5.1, the covariant
basis vectors will always be written as functions of the coordinates

(
b, θ̃, ζ̃

)
.
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C.4. Tangential field discontinuity 249

Figure C.2: Given a surface SK , represented in blue, a point r0 on the surface SK defined as
r0 = RN (0, θ0, ζ0) ∈ SK , and parameters ∆b > 0 and ∆ζ > 0, we consider the surface S,

represented in red, defined by
{
RN

(
b, θ0, ζ̃

)
; |b| ≤ ∆b,

∣∣∣ζ0 − ζ̃ ∣∣∣ ≤ ∆ζ

}
. The intersection of

S with the surface SK is the curve C, represented in green. Both S and C are used to evaluate
the integral form Ampère’s law (C.3) to obtain the relation between the current density and the
tangential discontinuity of the magnetic field across SK .

Integrating any vector field F over this surface S leads to∫
S

[F · n̂] (r) d2r =
∫ ∆b

−∆b

∫ ζ0+∆ζ

ζ0−∆ζ

[√
gF · ∇θ̃

] (
RN

(
b, θ0, ζ̃

))
dζ̃db.

In the particular case of the vector field JK supported on SK , as expressed in (C.1), it is clear
that JK(b, θ̃, ζ̃) = 0 unless b = 0. Hence, according to (C.7) and (C.10), the above reduces to a
line integral on SK :∫

S

(JK · n̂)(r) d2r =
∫ ζ0+∆ζ

ζ0−∆ζ

[√
gSK

K · ∇SK
θ
]
(Rs (θ0, ζ)) dζ.

We now focus on the left-hand side of the integral form of Ampère’s law (C.3). Integrating
any bounded vector field F over the boundary of this surface leads to

∫
∂S

F (r) · dl(r) =
∫ ζ0+∆ζ

ζ0−∆ζ

F
(
RN

(
−∆b, θ0, ζ̃

))
·
∂RN

(
−∆b, θ0, ζ̃

)
∂ζ̃

dζ̃

−
∫ ζ0+∆ζ

ζ0−∆ζ

F
(
RN

(
∆b, θ0, ζ̃

))
·
∂RN

(
∆b, θ0, ζ̃

)
∂ζ̃

dζ̃

+

∫ +∆b

−∆b

F (RN (b, θ0, ζ0 +∆ζ)) · ∂RN (b, θ0, ζ0 +∆ζ)

∂b
db

−
∫ +∆b

−∆b

F (RN (b, θ0, ζ0 −∆ζ)) · ∂RN (b, θ0, ζ0 −∆ζ)

∂b
db.
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250 Appendix C. Fields in the neighborhood of a surface current

Let us turn to the limit ∆b→ 0. Since the integrands are bounded, in the limit, the last two terms
on the right-hand side vanish, while the first two terms reduce to the integral of the limit. Hence,
we obtain

lim
∆b→0

∫
∂S

F (r) · dl(r) = −
∫ ζ0+∆ζ

ζ0−∆ζ

[[F ]]SK

(
RN

(
0, θ̃0, ζ̃

))
·
∂RN

(
0, θ̃0, ζ̃

)
∂ζ̃

dζ̃,

where again [[...]]SK
represents the jump across the surface SK in the normal direction. The

integral form of Ampère’s law then reads

− 1

µ0

∫ ζ0+∆ζ

ζ0−∆ζ

[[B]]SK
(RN (0, θ0, ζ)) ·

∂Rs(θ0, ζ)

∂ζ
dζ

=

∫ ζ0+∆ζ

ζ0−∆ζ

[√
gSK

K · ∇SK
θ
]
(Rs (θ0, ζ)) dζ.

We can now take the limit ∆ζ → 0 on both sides to obtain the relation

− 1

µ0
[[B]]SK

(RN (0, θ0, ζ0)) ·
∂Rs(θ0, ζ0)

∂ζ
=
[√
gSK

K · ∇SK
θ
]
(Rs (θ0, ζ0)) .

This holds for any point r0 = Rs(θ0, ζ0) on SK . Recalling dual relations between covariant and
contravariant bases, the fact that∇θ̃|SK = ∇SK

θ, and (C.10), we get

∂Rs

∂ζ
=
∂RN

∂ζ̃

∣∣∣∣
SK

=
√
g∇b×∇θ̃

∣∣∣∣
SK

=
√
gSK

n̂×∇SK
θ,

so we can conclude that

∀r ∈ SK , [K · ∇SK
θ] (r) = µ−1

0

[
n̂× [[B]]SK

· ∇SK
θ
]
(r). (C.16)

A similar analysis for an open surface is given by{
RN

(
b, θ̃, ζ0

)
; |b| ≤ ∆b,

∣∣∣θ0 − θ̃∣∣∣ ≤ ∆θ

}
for ∆θ > 0 leads to the conclusion that

∀r ∈ SK , [K · ∇SK
ζ] (r) = µ−1

0

[
n̂× [[B]]SK

· ∇SK
ζ
]
(r). (C.17)

Since K · n̂ = 0, we can summarize (C.16) and (C.17) as

K = µ−1
0 n̂× [[B]]SK

.

This expression, as expected, relates the discontinuity in the tangential magnetic field to the
tangential current density.
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Appendix D

Solutions to the
Hahm–Kulsrud–Taylor
model

The Hahm–Kulsrud–Taylor model provides a simple equilibrium for analyzing the impact of a
perturbation on a rational surface. The assumptions of the model are described in Section 10.3.4.
This appendix simply contains the details of the computations involved in constructing and ana-
lyzing a family of equilibria.

In Section D.1, in order to construct approximate solutions to the problem (10.33) for B,
namely  ∇× ((∇×B)×B) = 0 in Ωd,

∇ ·B = 0 in Ωd,
B · n̂ = 0 on Γd,

(D.1)

we construct solutions for the corresponding flux ψ defined through (10.35), namely

B(x, y) = BT ẑ + ẑ ×∇ψ(x, y),

by proposing a zeroth-order term ψ0 and solving a reformulated BVP for the first-order term ψ1.
This will result in a closed formula for a first-order approximation of ψ.

Section D.2 focuses on two particular solutions for ψ of physical interest and studies in detail
all their critical points to provide a full description of the topology of constant ψ surfaces.

For the sake of clarity, we recall here some details about the model described in Section
10.3.4. The function ψ of (x, y) satisfies

Bx(x, y) = −
∂ψ(x, y)

∂y
,

By(x, y) =
∂ψ(x, y)

∂x
.

(D.2)

As a perturbation series with respect to d, the first terms of the function ψ are

ψ(x, y) = ψ0(x) + dψ1(x, y) +O
(
d2
)
, (D.3)

and similarly, the first terms of the magnetic field are

B(x, y) = B0(x, y) + dB1(x, y) +O
(
d2
)
. (D.4)

These satisfy, respectively,

B0 = BT ẑ + ẑ ×∇ψ0(x) (D.5)

and
B1 = ẑ ×∇ψ1(x, y). (D.6)
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252 Appendix D. Solutions to the Hahm–Kulsrud–Taylor model

D.1 Constructing a family of solutions
Let us start with the choice of ψ0. Since ψ0(x) is independent of y, the corresponding field B0

given by (D.5) trivially satisfies the governing PDE and the divergence condition in (D.1). More-
over, since ψ0 only depends on x, then B0 · x̂ = 0 everywhere, thus the reference equilibrium
has continuously nested magnetic surfaces. Since surfaces of constant x are magnetic surfaces,
the boundary condition in (D.1) is trivially satisfied by B0 on the reference domain. Hence, a
reference field B0 given by (D.5) for any ψ0 depending only on x automatically satisfies the
whole boundary value problem (D.1).

We now motivate a specific choice for ψ0(x), in relation to the rotational transform, de-
fined here as ι(x) = B0(x) · ŷ/B0(x) · ẑ. From the discussion of the magnetic differential
equation under the assumption of continuously nested flux surfaces discussed in Remark 4.4,
the δ-function and 1/x terms in the general Fourier solution (10.30) arise for mode numbers
(m,n) ∈ Z2\{(0, 0)} such that mι − n = 0. Since here the problem is independent of z, then
only Fourier harmonics with n = 0 are present in the solution, and the mode numbers satisfying
the above condition correspond to m ̸= 0 when ι = 0. As the reference equilibrium B0 is
independent of y, only the (0, 0) mode is present, so there is no δ-function or 1/x contribution
to the solution. However, when a perturbation to the boundary is applied, introducing m ̸= 0
harmonics, then a rotational transform profile that passes through zero allows for δ-function or
1/x terms in the perturbed solution. Specifically, we choose

ψ0(x) =
B0x

2

2a
(D.7)

such that B0 · ẑ = BT , B0 · ŷ = B0x/a, and ι = B0x/(aBT ). Indeed, in this case, ι passes
through zero at x = 0. Note that this choice satisfies the assumed reflection symmetry property
that ψ0(−x) = ψ0(x).

Let us then derive a PDE governing ψ1. In order to derive an equation for ψ1, the expan-
sion of the magnetic field (D.4) can be substituted into the PDE in (D.1). The vector identity
∇ × (A×B) = A (∇ ·B) − B (∇ ·A) + (B · ∇)A − (A · ∇)B is used to simplify the
expressions. Using the relations between B0/B1 and ψ0/ψ1 given in (D.5) and (D.6), respec-
tively, it is clear that both ∇ × B0 and ∇ × B1 are in the ẑ direction. So it follows that
((∇×B1) ·∇)B0 = 0 and ((∇×B0) ·∇)B1 = 0, while (B1 ·∇) (∇×B0) = 0 since∇×B0

is a constant. Hence the governing equation in (D.1) to O(d) reads

(B0 · ∇) (∇×B1) = 0.

In terms of the ψ1, this is equivalent to

ψ′
0(x)

∂

∂y
(∆ψ1(x, y)) = 0,

and as explained earlier, it is sufficient to restrict this study to the upper-half domain Ω+
0 . More-

over, as ψ′
0(x) > 0 in Ω+

0 , the equation of interest reads

∂

∂y
(∆ψ1(x, y)) = 0 on Ω+

0 . (D.8)

Let us now consider the boundary condition for ψ1 on Ω+
δ . As the problem is independent of

z, since B ·∇ψ = 0 by (D.2), the boundary condition for the magnetic field B, namely B ·n̂ = 0
(D.1), is equivalent to ψ being constant along the boundary Γ+

d . We choose this constant such
that the flux at the boundary is preserved by the perturbation, ψ(x+d(y), y) = ψ0(a) for all
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y ∈ [0, 2π), thus preserving the integrated poloidal field in the domain. At O(d), the flux along
the boundary Γ+

d can be Taylor expanded with respect to d≪ 1,

ψ(x+d(y), y) = ψ(a, y)− da
∂ψ(x, y)

∂x

∣∣∣∣
x=a

cos(ky) +O(d2).

Now substituting in the right-hand side the expansion for ψ (D.3), while applying the boundary
condition ψ(x+d(y), y) = ψ0(a) to the left-hand side, we obtain

ψ0(a) = ψ0(a) + dψ1(a, y)− daψ′
0(a) cos(ky) +O(d2).

At O(d), because ψ′
0(a) = B0, we find

ψ1(a, y) = aB0 cos(ky). (D.9)

Note that this condition is imposed on the reference boundary since x = a. By construction,
imposing this condition for ψ1 on the reference boundary ensures that the boundary condition in
(D.1) for B1 on the perturbed boundary is satisfied to O(d).

Let us now turn to the solution of the BVP for ψ1. Combined, the equation (D.8) and bound-
ary condition (D.9) form a boundary value problem for ψ1 that we consider on the upper-half
domain Ω+

0 according to the symmetry assumption:

∂

∂y
∆ψ1(x, y) = 0 on Ω+

0 , (D.10a)

ψ1(a, y) = aB0 cos(ky) on Γ+
0 , (D.10b)

where as a reminder, k was introduced in the perturbation of the domain boundary. This problem
does not have a unique solution, and we will now construct a family of solutions depending on a
parameter.

Since ψ1(x, y) is 2π-periodic with respect to y on Ω+
0 and the boundary condition is even

with respect to y, we choose to expand ψ1(x, y) as a cosine Fourier series in y:

ψ1(x, y) = Ψ0(x) +
∞∑
l=1

Ψl(x) cos(ly). (D.11)

Plugging the Fourier expansion (D.11) into the equation (D.10a) yields

∞∑
l=1

l

[
d2Ψl(x)

dx2
− l2Ψl(x)

]
sin(ly) = 0. (D.12)

The function Ψ0(x) is unconstrained by (D.10), and for simplicity, we choose to set it to zero
and focus on the l ̸= 0 terms. In order to satisfy the governing equation (D.12), each mode l ̸= 0
must have the form Ψl(x) = al cosh(lx) + bl sinh(lx) for some constants al = Ψl(0) and bl.
Then (D.10b) can be satisfied by retaining only the l = k mode of (D.11), and the corresponding
solution to the BVP (D.10) reads

ψ1(x, y) =
(
Ψk(0) cosh(kx) + bk sinh(kx)

)
cos(ky)

with aB0 = Ψk(0) cosh(ka) + bk sinh(ka).

Hence, we obtain a parameterized family of solutions through the value of Ψk(0):

ψ1(x, y) =

(
Ψk(0) cosh(kx) +

aB0 −Ψk(0) cosh(ka)

sinh(ka)
sinh(kx)

)
cos(ky). (D.13)

Copyright © Society for Industrial and Applied Mathematics 
An Introduction to Stellarators: From Magnetic Fields to Symmetries and Optimization – Imbert-Gérard et al (9781611978216) 



254 Appendix D. Solutions to the Hahm–Kulsrud–Taylor model

As a summary, together (D.7) and (D.13) yield an approximate solution for ψ given the
parameters B0, k, a, and d defined on the domain Ω+

0 by

ψ(x, y) =
B0

2a
x2 + d

(
Ψk(0) cosh(kx) + (aB0 −Ψk(0) cosh(ka))

sinh(kx)

sinh(ka)

)
cos(ky).

The solution on the full domain Ω0 is then constructed by symmetry: for all x in Ω+
0 , we define

ψ(−x, y) = ψ(x, y).

D.2 Critical points for two particular solutions
We are interested here in the function ψ defined for real parameters B0, a, k, d, and Ψk(0) on
R2 by
∀x ≥ 0,

ψ(x, y) =
B0

2a
x2 + d

(
Ψk(0) cosh(kx) + (aB0 −Ψk(0) cosh(ka))

sinh(kx)

sinh(ka)

)
cos(ky),

∀x < 0, ψ(x, y) = ψ(−x, y).
(D.14)

Considering B0, a, and k fixed, we now study the critical points of the function in two particular
cases corresponding to Ψk(0) equal to 0 or aB0/ cosh(ka). We classify the critical points as
local minima, maxima, and saddle points, which has implications for the topology of the level
sets of ψ(x, y) of interest in Section 10.3.4.

Since the function ψ is smooth for x > 0, then for all x > 0 the first- and second-order
derivatives read

∂ψ(x, y)

∂x
=
B0x

a
+ dk

(
Ψk(0) sinh(kx) + (aB0 −Ψk(0) cosh(ka))

cosh(kx)

sinh(ka)

)
cos(ky),

∂ψ(x, y)

∂y
= −dk

(
Ψk(0) cosh(kx) + (aB0 −Ψk(0) cosh(ka))

sinh(kx)

sinh(ka)

)
sin(ky),

∂2ψ(x, y)

∂x2
=
B0

a
+ dk2

(
Ψk(0) cosh(kx) + (aB0 −Ψk(0) cosh(ka))

sinh(kx)

sinh(ka)

)
cos(ky),

∂2ψ(x, y)

∂x∂y
= −dk2

(
Ψk(0) sinh(kx) + (aB0 −Ψk(0) cosh(ka))

cosh(kx)

sinh(ka)

)
sin(ky),

∂2ψ(x, y)

∂y2
= −dk2

(
Ψk(0) cosh(kx) + (aB0 −Ψk(0) cosh(ka))

sinh(kx)

sinh(ka)

)
cos(ky).

D.2.1 Nonsmooth case

We treat here the case Ψk(0) = 0, for which the corresponding magnetic field exhibits a flux
surface and a current sheet on the x = 0 axis. In this case, for x ≥ 0 we have

ψ(x, y) =
B0

2a
x2 + daB0

sinh(kx)

sinh(ka)
cos(ky),

and, thanks to the symmetry property, we will first study ψ for x ≥ 0 and then interpret these
properties on the full domain.

• We first identify critical points based on the following formulas for x > 0:
∂ψ(x, y)

∂x
=
B0x

a
+ dkaB0

cosh(kx)

sinh(ka)
cos(ky),

∂ψ(x, y)

∂y
= −dkaB0

sinh(kx)

sinh(ka)
sin(ky).
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1. Starting with the y derivative, we obtain

∂ψ(x, y)

∂y
= 0⇔ sin ky = 0⇔ ky = 0[π].

Hence, a necessary condition for any point (x, y) to be critical is ky = 0[π].

2. We consider next the x derivative, and it depends on y only through the factor cos ky.
Under the necessary condition ky = 0[π], two separate cases arise, corresponding
respectively to cos ky = 1 and cos ky = −1.

(a) If yN is such that kyN = 0[2π] then cos kyN = 1, hence

∂ψ(x, yN )

∂x
=
B0x

a
+ dkaB0

cosh(kx)

sinh(ka)
> 0,

therefore (x, yN ) cannot be a critical point.
(b) If yS is such that kyS = π[2π] then cos kyS = −1, hence

∂ψ(x, yS)

∂x
=
B0x

a
− dkaB0

cosh(kx)

sinh(ka)
.

So, the existence of a critical point depends on the parameters a,d, k: the exis-
tence of a critical point is equivalent to the existence of xS such that

sinh(ka)

dka2
xS = cosh(kxS). (D.15)

Values of sinh(ka)/(dka2) such that there exists such an xS correspond to
slopes of straight lines going through the origin intersecting the curve of the
function f defined by f(x) = cosh(kx). The situation is illustrated in Fig-
ure D.1, and the existence of xS depends on the value of sinh(ka)/(dka2) com-
pared to the slope of the only tangent to the curve of f that goes through the
origin. First, we identify the single point xL such that the tangent to the curve of
f at xL is a straight line going through the origin. At any point x0 > 0 the tan-
gent to the curve of the function f defined by f(x) = cosh kx has the following
equation:

y = f(x0) + f ′(x0)(x− x0)⇔ y = cosh kx0 + k sinh kx0(x− x0).

Since the limit case xL is the value of x0 for which the tangent goes through the
origin, then xL must satisfy

0 = cosh kxL + k sinh kxL(0− xL)⇔ kxL =
1

tanh(kxL)
.

As illustrated in Figure D.2, the function g defined by g(x) = 1/tanhx has
a single positive fixed point xF , approximately equal to 1.1997, independently
of any parameter. Hence there exists a single xL, namely xL = xF /k, such
that kxL = 1/tanh(kxL), and the possible cases for the existence of critical
points depend on comparing the values of sinh ka/(dk2a2) with sinh kxL. So,
defining

L :=
sinh(ka)

k2a2 sinh(kxL)
,
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x

y

y = f ′(xL)x where f ′(xL) = k sinh(kxL)

y = αx with slope α < f ′(xL)

y = βx with slope β > f ′(xL)

y = f(x) where f(x) = cosh(kx)

xLx1 x2

Figure D.1: Illustration of the question of the existence of a solution to the equation (D.15) for
x > 0. We consider the function f defined by f(x) = cosh(kx) and any straight line going
through the origin. A single point xL exists such that the tangent to the curve of f at xL is a
straight line going through the origin. For any other straight line going through the origin, there
are two alternatives: if its slope is smaller than f ′(xL), then the line does not intersect the curve
of f , while if the slope is larger than f ′(xL) then the line intersects the curve of f at two points
(x1, f(x1)) and (x2, f(x2)) with x1 < xL < x2. These alternatives are illustrated respectively
by the yellow line with slope α < f ′(xL) and the red line with slope β > f ′(xL).

the cases are as follows:
– if a, d, k are such that sinh(ka)/(dk2a2) < sinh kxL ⇔ L < d then there

is no critical point;
– if a, d, k are such that sinh(ka)/(dk2a2) = sinh kxL ⇔ L = d then there

is one critical point for each given value of yS ;
– if a, d, k are such that sinh(ka)/(dk2a2) > sinh kxL ⇔ L > d then for

each given value of yS there are two critical points (xS , yS) for the two
solutions xS = x1 and xS = x2 to the nonlinear equation (D.15) with
x1 < xL < x2.

As a result, critical points (xS , yS) with kyS = π[2π] may exist depending on the param-
eters: there are two sets of critical points for d < L with xS = x1 and xS = x2, there is
one set of critical points for d = L with xS = xL, or there are no critical points for d > L.
As a reminder, for the physical interpretation, we are only interested in the regime d≪ 1,
so we will only search for extrema in the case d < L.

• We then identify extrema via the second derivative test in the case d < L, based on the
following formulas for x > 0:

∂2ψ(x, y)

∂x2
=
B0

a
+ dk2aB0

sinh(kx)

sinh(ka)
cos(ky),

∂2ψ(x, y)

∂x∂y
= −dk2aB0

cosh(kx)

sinh(ka)
sin(ky),

∂2ψ(x, y)

∂y2
= −dk2aB0

sinh(kx)

sinh(ka)
cos(ky).
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x

y

y = x

y = g(x) where g(x) =
1

tanh(x)

xF

Figure D.2: Unique fixed point xF of the function g defined by g(x) = 1/ tanhx for x > 0.

Note that since kyS = π[2π], we have for any x > 0
∂2ψ(x, yS)

∂x∂y
= 0 since kyS = π[2π],

∂2ψ(x, yS)

∂y2
= dk2aB0

sinh(kx)

sinh(ka)
> 0.

Since we focus on the case d < L, the two sets of critical points to study are (x1, yS) and
(x2, yS) for any yS satisfying kyS = π[2π], remembering that x1 < xL < x2.

– Considering any point (x1, yS), we get

∂2ψ(x1, yS)

∂x2
=
B0

a

(
1− dk2a2

sinh(kx1)

sinh(ka)

)
.

So ∂2ψ(x1, yS)/∂x2 > 0 because sinh(kx1) < sinh(kxL) < sinh(ka)/(dk2a2).
Therefore, the second derivative test shows that any point (x1, yS) is a local minimum
of ψ.

– Considering any point (x2, yS), we get

∂2ψ(x2, yS)

∂x2
=
B0

a

(
1− dk2a2

sinh(kx2)

sinh(ka)

)
.

So ∂2ψ(x1, yS)/∂x2 < 0 because the function x 7→ ∂2ψ(x, yS)/∂x
2 is decreasing,

it is equal to 0 at xL, and x2 > xL. Therefore, the second derivative test shows that
any point (x2, yS) is not an extremum of ψ but a saddle point.

As a result, in the case d < L, given the two solutions x1 and x2 to the nonlinear equation
(D.15), illustrated in Figure D.1 for reference, the critical points of ψ can be described as
follows. Local minima exist at any points (x1, yS) with kyS = π[2π], while any points
(x2, yS) with kyS = π[2π] are saddle points.
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Figure D.3: Graph of the function ψ in the case Ψk(0) = 0 in the neighborhood of points
(0, y) with ky = π/2[π]. The x = 0 axis is highlighted in red, and the two views illustrate the
nonsmooth saddle point surface.

• We now identify local extrema along the x = 0 axis. By symmetry, we have
lim

x→0,x>0

∂ψ(x, y)

∂x
= dkaB0

1

sinh(ka)
cos(ky),

lim
x→0,x<0

∂ψ(x, y)

∂x
= − lim

x→0,x>0

∂ψ(x, y)

∂x
,

while the function y 7→ ψ(0, y) is constant. Hence (i) for all y such that ky ̸= π/2[π] then
(0, y) is a local maximum or minimum but is not isolated (not a strict extrema), (ii) for all
y such that ky = π/2[π] then (0, y) is not a local extremum, as illustrated in Figure D.3.

As a conclusion, if the parameters are such that d < sinh(ka)/(k2a2 sinh kxL) then the
function defined in (D.14), on the period R × [0, 2π/k], and similarly on any other period, has
two minima at (±x1, π/k), two smooth saddle points (±x2, π/k), two nonsmooth saddle points
(0, π/(2k)) and (0, π/(2k)+π), as well as local minima along {0}× (π/(2k), π/(2k)+π), and
maxima along {0}×(0, π/(2k)) and {0}×(π/(2k)+π, 2π/k). This is illustrated in Figure D.4,
where by convention, the function is represented in the y-x plane in order to have the radius-like
variable in the vertical direction.

D.2.2 Smooth case

We treat here the case Ψk(0) = aB0/ cosh(ka), for which the function ψ is smooth and can be
defined for all x as

ψ(x, y) =
B0

2a
x2 + dΨk(0) cosh(kx) cos(ky).

• We first identify critical points, based on the following formulas:
∂ψ(x, y)

∂x
=
B0x

a
+ dkaB0

sinh(kx)

cosh(ka)
cos(ky),

∂ψ(x, y)

∂y
= −dkaB0

cosh(kx)

cosh(ka)
sin(ky).

1. Starting with the y derivative, we obtain

∂ψ(x, y)

∂y
= 0⇔ sin ky = 0⇔ ky = 0[π].

Hence, a necessary condition for any point (x, y) to be critical is ky = 0[π].
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Figure D.4: Level sets of the function ψ over one period in the y-x plane for Ψk(0) = 0 with
B0 = 1, a = 1, for three values of d < sinh(ka)/(k2a2 sinh kxL): d = 0.75 (top, for which if
k = 1 x1 ≈ 0.9450 and x2 ≈ 1.4964), d = 0.6 (bottom, for which if k = 1 x1 ≈ 0.6078 and
x2 ≈ 2.0847), as well as the intermediate case d ≈ 0.6491 (middle, if ka = 1). The level set of
level zero is highlighted in the thick green line. The function has minima at points (±x1, π/k),
represented with red stars, smooth saddle points at points (±x2, π/k), represented with blue
crosses, and nonsmooth saddle points at points (0, π/(2k)) and (0, 3π/(2k)), represented with
green circles.
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2. We consider next the x derivative, and it depends on y only through the factor cos ky.
Under the necessary condition ky = 0[π], two separate cases arise, corresponding
respectively to cos ky = 1 and cos ky = −1.
(a) If yN is such that kyN = 0[2π] then cos kyN = 1, hence

∂ψ(x, yN )

∂x
=
B0x

a
+ dkaB0

sinh(kx)

cosh(ka)
,

which is positive for x > 0, negative for x < 0, while

∂ψ(x, yN )

∂x
= 0⇔ x = 0.

Therefore, there is one critical point for each given value of yN , namely (0, yN ).
(b) If yS is such that kyS = π[2π] then cos kyS = −1, hence

∂ψ(x, yS)

∂x
=
B0x

a
− dkaB0

sinh(kx)

cosh(ka)
.

So the existence of a critical point depends on the parameters a,d, k: the exis-
tence of a critical point is equivalent to the existence of xS such that

cosh(ka)

dka2
xS = sinh(kxS). (D.16)

Again values of cosh(ka)/(dka2) such that there exists such an xS correspond
to slopes of straight lines going through the origin intersecting the curve of
the function f defined by f(x) = sinh(kx). The situation is illustrated in
Figure D.5, and the number of values xS depends on the value of the ratio
cosh(ka)/(dka2) compared to the slope of the only tangent to the curve of f
that goes through the origin, namely f ′(0) = k. The possible cases depend on
comparing the values of cosh(ka)/(dka2) and k. So, defining

LN :=
cosh ka

k2a2
,

the cases are as follows:
– if a,d, k are such that cosh(ka)/(dk2a2) ≤ 1 ⇔ LN ≤ d then there is a

single critical point for each given value of yS , namely (0, yS);
– if a, d, k are such that cosh(ka)/(dk2a2) > 1 ⇔ LN > d then there are

three critical points for each given value of yS , namely (xS , yS), (−xS , yS)
and (0, yS).

As a result, there is one set of critical points of the form (0, yN ) with kyN = 0[2π], while
the number of critical points (xS , yS) with kyS = π[2π] depends on the parameters: there
is one set of critical points for d ≥ LN while there are three sets of critical points for
d < LN . Again here, as a reminder, for the physical interpretation, we are only interested
in the regime d≪ 1, so we will only search for extrema in the case d < LN .

• We then identify extrema via the second derivative test in the case d < LN , based on the
following formulas:

∂2ψ(x, y)

∂x2
=
B0

a
+ dk2aB0

cosh(kx)

cosh(ka)
cos(ky),

∂2ψ(x, y)

∂x∂y
= −dk2aB0

sinh(kx)

cosh(ka)
sin(ky),

∂2ψ(x, y)

∂y2
= −dk2aB0

cosh(kx)

cosh(ka)
cos(ky).
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x

y

y = f ′(0)x tangent at the origin

y = αx with slope α < f ′(0)

y = βx with slope β > f ′(0)

y = f(x) where f(x) = sinh(kx)

xS

−xS

Figure D.5: Illustration of the solution(s) to the equation (D.16) for x in R. We consider the
function f defined by f(x) = sinh(kx) and any straight line going through the origin. For any
straight line going through the origin, there are two alternatives: if its slope is at most equal to
f ′(0) = k, then the line intersects the curve of f only at the origin, while if the slope is larger
than f ′(0) = k, then the line intersects the curve of f at three different points, (xS , f(xS)),
(−xS ,−f(xS)), and at the origin. These alternatives are illustrated respectively by the yellow
line with slope α < f ′(0) and the red line with slope β > f ′(0).

Note that, since kyN = 0[2π], we have

∂2ψ(0, yN )

∂x2
=
B0

a
+

dk2aB0

cosh(ka)
> 0,

∂2ψ(0, yN )

∂x∂y
= 0,

∂2ψ(0, yN )

∂y2
= − dk2aB0

cosh(ka)
< 0.

Therefore, the second derivative test shows that any point (0, yN ) is a saddle point.
Moreover note that, since kyS = π[2π], we have

∂2ψ(x, yS)

∂x2
=
B0

a

(
1− dk2a2

cosh(kx)

cosh(ka)

)
,

∂2ψ(x, yS)

∂x∂y
= 0,

∂2ψ(x, yS)

∂y2
= dk2aB0

cosh(kx)

cosh(ka)
.

Since we focus on the case d < LN , the critical points to study are (0, yS), (xS , yS), and
(−xS , yS).
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1. Considering any point (0, yS), we get
∂2ψ(0, yS)

∂x2
=
B0

a

(
1− dk2a2

cosh(ka)

)
> 0 since d < LN ,

∂2ψ(0, yS)

∂y2
=

dk2aB0

cosh(ka)
> 0.

Hence, the second derivative test shows that any critical point (0, yS) is a minimum.

2. Considering any point (xS , yS), then ∂2ψ(x, yS)/∂y2 > 0. Moreover, remembering
that cosh(ka)/(dka2)xS = sinh(kxS), and since tanh(kxS) ̸= 0 we can write

∂2ψ(xS , yS)

∂x2
=

B0

a tanh(kxS)

(
tanh(kxS)− kxS

)
.

So ∂2ψ(xS , yS)/∂x2 < 0 since on the one hand B0/(a tanh(kxS)) > 0 and on the
other hand the function x 7→ tanh(kx)− kx is decreasing, it is equal to 0 at x = 0,
and xS > 0. Hence, the second derivative test shows that any critical point (xS , yS)
is a saddle point.

3. By symmetry any critical point (−xS , yS) is also a saddle point.

As a result, in the case d < LN , given the positive solution xS to the nonlinear equation
(D.16), illustrated in Figure D.5 for reference, the critical points of ψ can be described
as follows. Local minima exist at any point (0, yS) with kyS = π[2π], while any point
(±xS , yS) with kyS = π[2π] is a saddle point. Moreover, there is one set of saddle points
of the form (0, yN ) with kyN = 0[2π],

In conclusion, if the parameters are such that d < cosh ka/(k2a2) then the function defined in
(D.14), on the period R×[0, 2π/k], and similarly on any other period, has a minimum at (0, π/k)
and saddle points at (0, 0) (and by periodicity at (0, 2π/k)) and at (±xS , π/k). This is illustrated
in Figure D.6, where by convention, the function is represented in the y-x plane in order to have
the radius-like variable in the vertical direction.
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Figure D.6: Level sets of the function ψ for Ψk(0) = aB0/ cosh(ka) over one period in the y-x
plane withB0 = 1, a = 1, and d = 1 (top, for which xS ≈ 1.6823 if k = 1), d = 0.3 (bottom, for
which xS ≈ 3.6174 if k = 1), as well as the intermediate case d ≈ 0.6778 (middle, if ka = 1).
In the intermediate case, the level set separating closed from open level sets is highlighted in the
thick green line. The function has a minimum at (0, π/k), represented with a red star, and saddle
points at (0, 0), (0, 2π/k), and (±xS , π/k), represented with blue crosses.
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