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1.1 Le contexte

Ce travail a été initié dans le cadre du développement au sein du laboratoire Jacques-
Louis Lions d’un intérêt pour la fusion magnétique. Plus généralement cet intérêt s’inscrit
dans le projet mondial ITER [Org] (International Thermonuclear Experimental Reactor),
qui vise à démontrer la faisabilité scientifique et technologique de l’énergie de fusion. Le
projet est officiellement porté par la Chine, l’Union Européenne, le Japon, la Corée, le
Russie et les Etats-Unis, et mobilise par ailleurs des équipes de recherches dans le monde
entier. La construction du réacteur de fusion, représenté en figure 1.1, a lieu en ce moment
à Cadarache, dans les Bouches-du-Rhône, et a pour but d’obtenir un gain net d’énergie.
L’ordre de grandeur envisagé est un facteur 10 entre l’énergie apportée et l’énergie générée
par ITER.

La fusion est une réaction nucléaire au cours de laquelle deux noyaux atomiques légers
se combinent en un noyau unique. Cette réaction très énergétique se produit au sein d’un
plasma, un état de la matière parfois comparé à un gaz à très haute température dans
lequel électrons et ions sont dissociés. Il existe plusieurs procédés pour confiner la matière
à l’état de plasma. La fusion par confinement magnétique, qui est le procédé mis en œuvre
dans le cadre du projet ITER, est basée sur l’utilisation de puissants champs magnétiques.
L’étude des ondes dans les plasmas est donc un sujet fondamental, voir [Swa03, Bra98].

Les mécanismes de transport turbulent qui apparaissent dans les plasmas causent d’im-
portantes pertes d’énergie. Les turbulences sont donc non souhaitables dans les réacteurs
de fusion nucléaire, puisqu’ils ont pour but de produire de l’énergie. Afin de mieux com-
prendre la structure de ces turbulences pour un jour pouvoir les contrôler, il est crucial
d’étudier la distribution de densité des particules chargées au sein du plasma. Cependant
les conditions extrêmes dans lesquelles ont lieu la réaction interdisent tout forme de mesure
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Figure 1.1 – Haut de près de trente mètres, lourd de 23 000 tonnes, le tokamak ITER est
une machine très complexe. La silhouette du personnage en bleu au pied de la machine
nous donne une idée de sa taille. On estime à un million le nombre de composants du
tokamak ITER.

intrusive : il n’est envisageable d’introduire aucune sonde à l’intérieur de la chambre ma-
gnétique. Ce sont donc des méthodes dites non intrusives qui sont utilisées pour mesurer
des caractéristiques des turbulences et de leur dynamique.

Le thème de la réflectométrie pour les plasmas de fusion magnétique intéresse la com-
munauté des physiciens [LDMS96, KGH09, HdSG+11], alors qu’il est encore mal connu
par les mathématiciens. Cette méthode de détection de la densité est déjà utilisée en pra-
tique pour sonder les plasmas de fusion. Le réacteur ASDEX (Garching en Allemagne) est
par exemple équipé d’un système de réflectométrie micro-onde [MSK+98]. Une onde est
envoyée depuis une antenne située sur un mur du réacteur vers le plasma. Comme présenté
sur la figure 1.2 elle se propage jusqu’à une certaine profondeur dans le plasma, puis est
réfléchie pour une certaine valeur de la densité électronique, dite densité de coupure. Le
signal qui est renvoyé vers l’antenne est alors mesuré puis analysé pour calculer la densité
à la coupure. Différentes fréquences de l’onde permettent de sonder plusieurs profondeurs,
et ainsi de cartographier la densité dans le plasma.

La simulation numérique de la réflectométrie fait l’objet d’une attention particulière,
car c’est un problème inverse qu’il faut résoudre afin d’avoir accès à la densité. Il est
donc nécessaire de mettre en œuvre des outils de calcul stables, puissants et robustes pour
espérer obtenir des résultats pertinents à un prix raisonnable.

Le but de cette thèse était d’étudier certains aspects mathématiques et numériques
des équations aux dérivées partielles susceptibles de modéliser la réflectométrie pour les
plasmas de fusion, équations qui peuvent également modéliser le chauffage du plasma.
Les aspects théoriques liés à l’existence de solutions singulières présentent une complexité
surprenante : la mise en place d’un cadre théorique adapté à ces singularités a occupé une
place importante dans ce travail de recherche.
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Figure 1.2 – Schéma de principe de la réflectométrie. Coupe du tomkamak. Le plasma
qui est représenté en rose est sondé par une onde qui provient de la droite. Fourni par S.
Heuraux.

1.2 Le modèle mathématique

L’étude des ondes dans les plasmas est un domaine bien établi, qui se divise principa-
lement en deux grands types de modèles. Les modèles fluides voient les particules chargées
comme un écoulement fluide de densié ρ(t, x) tandis que les modèles cinétiques regardent
ces particules grâce à leur distribution f(t, x, v).

Dans les deux cas des séries de simplifications sont proposées, mais même avec ces
simplifications des modèles établis de longue date ont montré leur pertinence par exemple
dans le cadre du chauffage du plasma ou de la génération de courant (current drive).
Ces modèles linéarisés considèrent des champs électromagétiques à l’équilibre, perturbés
par les ondes. Cela correspond à l’étude d’ondes d’amplitude modérée. La relation entre
le courant j et le champ électrique E est décrite par une conductivité matricielle σ, de
sorte que localement j = σE, si on ne tient compte d’aucune dispersion ni spatiale ni
temporelle. Ce tenseur de conductivité éventuellement anisotrope modélise les propriétés
électro-magnétiques du milieu.

1.2.1 Le modèle du plasma froid

Les phénomènes physiques prépondérant dans la réflectométrie peuvent être modélisés
par un couplage entre les phénomènes électromagnétiques et l’écoulement des particules
chargées (c’est un modèle fluide). Dans ce travail les seules particules considérées sont les
électrons dont la charge est notée e < 0, les ions étant alors considérés comme immobiles
en raison de leur forte masse relativement à celle des électrons. Le modèle du plasma froid
peut être dérivé avec plusieurs types de particules, voir notamment [Fre07, CW74], mais
cette généralization n’entre pas dans le cadre de ce travail.

En électromagnétisme, le champ d’induction électrique D représente la façon dont
le champ électrique E influe sur l’organisation des charges électriques dans un matériau
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donné, notamment le déplacement des charges et la réorientation des dipôles électriques.
D’une manière générale, dans un milieu non homogène comme un plasma cette dépendance
varie suivant la position dans le matériau, la fréquence du champ appliqué, la tempéra-
ture, et d’autres paramètres. Dans un matériau non linéaire, elle peut impliquer le champ
électrique.

Le tenseur de conductivité

L’équation fluide qui décrit la conservation de la masse des électrons est la loi de = en
dimension 3. On néglige les collisions ainsi que les mouvements des ions. On note ne(

−→x ) la
densité des électrons, me leur masse, ue(

−→x , t) leur vitesse, e leur charge ; E(−→x , t) désigne
le champ électrique. La loi de Newton s’écrit alors :

me ne

(
∂ue
∂t

+ (ue.∇) ue

)
= −e ne (E + ue ∧B) .

On linéarise autour d’un état d’équilibre :




ue = 0 +u,
E = 0 +E,
B = B0 +B̃,

où B0 est le champ magnétique porteur, en supposant |B̃|/|B0| << 1. D’où en régime
harmonique pour une fréquence ω et en négligeant les termes quadratiques :

−iωmeu = −e (E + u ∧B0) .

En considérant B0 = B0ez et en introduisant




E± =
1√
2

(Ex ± iEy)

(ue)± =
1√
2

((ue)x ± i(ue)y)
,

ainsi que les pulsations plasma et cyclotron

ω2
p =

e2ne(x)
ε0me

and ωc =
e|B0|
me

un calcul classique donne

σ = iε0ω
2
p




1/(ω + ωc) 0 0
0 1/(ω − ωc) 0
0 0 1/ω




dans la base ((ex + iey)/
√

2, (ex − iey)/
√

2, ez). Dans cette base le tenseur de permittivité
ε = ε0(I + i/ωσ) s’écrit :

ε = ε0



L 0 0
0 R 0
0 0 P


 (1.1)

avec 



R = 1− ω2
p

ω(ω − ωc)
L = 1− ω2

p

ω(ω + ωc)

P = 1− ω2
p

ω2
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La permittivité est donc diagonale dans cette base, pourtant ses vecteurs propres y sont
complexes. Exprimés ainsi ils n’ont pas de sens physique. On revient donc à la base initiale
(ex, ey, ez) dans laquelle on a

σ(x) = iε0
ω2
pω

ω2 − ω2
c




1 iωcω 0
−iωcω 1 0

0 0 1− ω2
c
ω2




et on retrouve la formule bien connue par la communauté physique :

ε = ε0



S −iD 0
iD S 0
0 0 P


 (1.2)

avec 



S =
1
2

(R + L) = 1− ω2
p

ω2 − ω2
c

,

D =
1
2

(R − L) = −ω
2
p

ω

ωc
ω2 − ω2

c

On remarque que ε∗ = ε.
L’étude de la limite ω → ωc, appelée résonance cyclotron haute si ω > ωc et basse si

ω < ωc, n’est pas le but de ce travail. On considérera donc systématiquement ω 6= ωc.

Une particularité du problème mathématique

Les valeurs propres du tenseur de permittivité diélectrique (1.2) ou (1.1) sont :




λ0 = 1− ω2
p

ω2

λ− = 1− ω2
p

ω2 − ω2
c

(
1− ωc

ω

)
,

λ+ = 1− ω2
p

ω2 − ω2
c

(
1 +

ωc
ω

)
.

Ces trois valeurs dépendent de la variable d’espace à travers leur dépendance en ωp. De fa-
çon générale, on envoie une onde de pulsation ω fixée, supérieure à ωc. Dans ces conditions,
les valeurs propres sont positives si ωp est petit, ce que l’on suppose vrai près du bord du
tokamak, là où l’on place l’antenne. Chacune devient négative lorsque ωp dépasse une cer-
taine valeur particulière, ce qui se produit au cours de la pénétration au cœur du plasma.
Cette transition s’effectue de façon continue, c’est là qu’apparaît la difficulté mathéma-
tique : les équations étudiées changent de nature continuement. C’est pour ces valeurs
particulières de la pulsation plasma que se produit un phénomène physique fondamental
pour cette étude : la coupure.

Un rapide calcul permet de déterminer que les zones de coupure correspondent aux
densités telles que : 




ωp = ω ⇔ λ0 = 0,

ωp = ω
√

1 + ωc
ω ⇔ λ− = 0,

ωp = ω
√

1− ωcω ⇔ λ+ = 0.

Un balayage en fréquence permet donc bien de déplacer les zones de coupure pour diffé-
rentes valeurs de la densité. C’est le principe même de la réflectométrie qui est ainsi mis
en évidence.
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Equation d’onde, relation de dispersion, coupure et résonance

Les équations de Maxwell se combinent pour donner l’équation d’onde suivante :

∇∧∇ ∧E − ω2

c2
εE = 0.

L’étude de la relation de dispersion consiste alors à identifier les types d’ondes planes
solutions de cette équation : soit ei

−→κ−→x−→E0 une solution de l’équation d’onde, alors néces-
sairement

−→κ ∧ −→κ ∧ −→E0 −
ω2

c2
ε
−→
E0 = M−→κ

−→
E0 = 0.

Une solution non triviale correspond donc nécessairement à un vecteur d’onde −→κ vérifiant
det(M−→κ ) = 0 et cette relation, dénommée relation de dispersion, contient la physique du
problème de la propagation des ondes planes pour le modèle du plasma froid. Pour cette
raison on s’intéresse à la relation

det

(
κiκj − ‖−→κ ‖2δij −

ω2

c2
εij

)
= 0.

Si l’on s’intéresse aux ondes qui se propagent dans le plan (ex, ez), on peut écrire −→κ =
(n sin θ, 0, n cos θ) et ainsi réécrire la relation de dispersion comme une équation du second
degré sur n2 :

(S sin2 θ + P cos2 θ)n4 −
(
ω

c

)2

(RL sin2 θ + PS(1 + cos2 θ))n2 +
(
ω

c

)4

PRL = 0. (1.3)

On peut tout de suite remarquer que dans le cas ωp = 0, puisqu’alors S = P = 1 la
relation de dispersion est de nature elliptique : quelle que soit la valeur de θ l’équation
est du second degré en n2 et ses racines n2

± sont donc bornées. En revanche dans le cas
ωp 6= 0 il est possible que que le coefficient dominant S sin2 θ + P cos2 θ s’annule et que
l’équation dégénère en une équation du premier degré pour certaines valeurs de θ. Dans
ce cas il est possible que n2 parte à l’infini pour certaines valeurs de θ. Cela correspond à
une structure hyperbolique de la relation de dispersion.

L’équation de dispersion a pour discriminant

(
ω

c

)4 (
(RL− PS)2 sin4 θ + 4P 2D2 cos2 θ

)
> 0.

Par conséquent il existe deux racines n2
+ et n2

− du polynôme (1.3), qui se factorise sous la
forme :

P (n2) = (S sin2 θ + P cos2 θ)(n2 − n2
+)(n2 − n2

−).

In fine cela montre que deux types d’ondes planes peuvent exister dans un plasma froid :
dans un régime propagatif si n2 = n2

± > 0, et dans un régime evanescent si n2 = n2
± < 0.

Le cas de transition n2 = 0 est appelé une coupure : localement le nombre d’onde tend
vers zéro. L’autre cas de transition, qui s’effectue pour n → ∞, est appelé résonance :
localement le nombre d’onde tend vers l’infini. Ces deux phénomènes, illustrés en figure
1.3, sont spécifiques à l’étude de la propagation des ondes dans les plasmas, c’est leur
exploitation qui est à la base du principe de réflectométrie. En effet ces zones de transition
interagissent avec les ondes qui proviennent d’une zone propagative. A la résonance l’onde
peut transmettre de l’énergie au plasma pour le chauffer, à la coupure l’onde est réfléchie.



1.2. Le modèle mathématique 19

n
2

x

x0 x1

Figure 1.3 – Résonance en x = x0 et coupure en x = x1 dans un même plasma.

C’est ce signal réfléchi qui, mesuré depuis le mur du réacteur, renseigne sur la densité au
niveau de la transition.

Coupures et résonances sont bien connues dans la communauté des physiciens dans un
cadre plus général que celui de le réflectométrie, et néanmoins peu étudiées par la com-
munauté mathématique. Une vaste littérature sur la physique des plasmas détaille l’étude
de cette relation de dispersion, voir [Bra98, Sti92, Swa03]. Dans ce travail on s’intéresse à
l’étude des solutions mathématiques dans un régime avec résonance ou coupure, ainsi qu’à
la construction d’une classe de méthodes de précision élevée pour la simulation numérique.

Compte tenu de la taille immense du réacteur de fusion ITER, qui mesurera environ six
mètres de diamètre interne, dix-neuf mètres de large et onze mètres de haut, les méthodes
numériques utilisées aujourd’hui pour la réflectométrie, telles que les différences finies,
sont très coûteuses. Elles requièrent en effet un maillage uniforme par essence, or la finesse
du maillage est imposée par la taille de l’antenne. Signalons qu’il existe des méthodes
d’éléments finis développées par Simon Labrunie [Lab]. Dans le cadre de ce problème
modèle on considèrera une autre famille de méthodes numériques.

1.2.2 Modes de propagation

Pour simplifier les notations, dans tout ce document on considérera

∇∧∇ ∧ E − εE = 0, (1.4)

ε(x) =




α iγ 0
−iγ α 0

0 0 −β


 . (1.5)

Comme le tenseur ε a une structure diagonale par bloc, l’équation peut se décliner sous
forme de deux équations appelées modes de propagation.

Le mode dit ordinaire ou mode O correspond au bloc de taille 1 du coefficient. L’équa-
tion associée est une équation de Helmholtz, qui est un modèle simple de propagation
d’onde dans le cas β < 0 :

−∆Ez + βEz = 0.
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Ce mode de propagation présente une coupure associée à la valeur propre λ0 de ε, c’est-
à-dire à la densité telle que ωp = ω. Le coefficient β qui est régulier s’annule donc conti-
nuement. L’équation de Helmholtz devient localement une fonction d’Airy. Il conviendra
donc de prêter une attention particulière à cette zone de coupure.

Le mode dit extraordinaire ou mode X correspond au bloc 2×2 du coefficient. L’équa-
tion associée est beaucoup moins commune. Pour E = (Ex, Ey) elle s’écrit

−→∇ ∧∇ ∧ E − ε⊥E = 0,

où le rotationnel en dimension deux est défini par

−→∇∧ =

(
∂y
−∂x

)
et ∇∧ =

(
∂x
∂y

)
∧ .

En d’autres termes le champ électrique vérifie
{

∂y(∂xEy − ∂yEx) −αEx −iγEy = 0,
−∂x(∂xEy − ∂yEx) +iγEx −αEy = 0.

Ce mode de propagation présente quant à lui deux coupures qui correspondent aux va-
leurs propres de ε⊥ : une coupure apparaîtra lorsque α = ±γ. La seconde particularité
correspond au phénomène de résonance décrit plus haut, et c’est elle qui nécessitera dans
ce cas une attention particulière. Elle a lieu lorsque α = 0 6= γ. Elle est appelée résonance
hybride et peut en théorie participer au chauffage des plasmas magnétiques.

1.3 Structure du document

Le point liant de ce travail est ainsi l’étude de l’équation de Maxwell (1.4) pour un
tenseur ε défini par (1.5), qui dépend continuement de l’espace.

1.3.1 Principaux résultats obtenus

Avant de s’intéresser à la simulation numérique de problèmes de réflectométrie, il
convient de s’assurer que le problème considéré a bien une unique solution. Si le caractère
bien posé du problème en mode O résulte d’une décomposition de Fredholm classique, il
n’en est rien pour celui du problème en mode X. L’existence de solutions singulières, dites
résonantes, est un fait établi pour la communauté physique.

Par un principe d’absorption limite, il a été possible pour la première fois de caracté-
riser une solution singulière dans le cas de coefficients ne dépendant que d’une variable
d’espace. La solution limite de l’équation de Maxwell en mode X se compose d’une masse
de Dirac sur la composante Ex plus un champ régulier. Ce résultat obtenu en collaboration
avec Ricardo Weder et Bruno Després a donné lieu à un article actuellement en cours
d’examen. Il est énoncé dans le théoreme 4.1.1.

La mise en place d’une méthode numérique pour des problèmes de réflectométrie re-
quiert comme on l’a vu la prise en charge de coefficients continus. La méthode proposée
dans ce travail est basée sur la méthode en ondes planes appelée Ultra-Weak Variational
Formulation (UWVF) qui s’appuie sur des ondes planes solutions de l’équation adjointe
homogène pour des coefficients constants par morceaux, et qui peut être rapprochée des
méthodes de Galerkin discontinues. Adapter cette méthode aux coefficients variables né-
cessite donc la mise en place de fonctions de base d’un type nouveau, construites sur
mesure pour le problème.
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Dans le cadre de ce mémoire j’ai proposé, justifié théoriquement et validé numérique-
ment une nouvelle procédure d’approximation en ondes planes généralisées. La procédure
explicite présentée ici pour l’équation en mode O dépend d’un paramètre q qui pilote l’ordre
de convergence global de la méthode. On obtient donc une méthode d’ordre élevé.

J’ai commencé à aborder l’extension de la méthode pour le mode X. La formule de
construction des fonctions de base est établie comme un premier pas vers l’obtention d’une
méthode dédiée spécifiquement au mode X. Les premiers calculs avec la méthode UWVF
sont présentés à la fin de ce document.

La p convergence qui a été abordée dans la littérature pour la UWVF apparaît dans
le résultat d’interpolation obtenu en dimension deux pour les nouvelles fonctions de base.

J’ai développé un code pour la méthode UWVF avec les nouvelles fonctions de base :
il permet de calculer une solution approchée pour des problèmes en dimension deux. En
mode O le code permet de traiter comme convenu un coefficient qui s’annule : on obtient
une approximation satisfaisante d’une onde réfléchie par une coupure, sur un domaine
carré pour une cinquantaine de longueurs d’onde. En mode X les premiers résultats numé-
riques sont validés en présence d’une coupure ainsi qu’en présence d’une résonance pour
l’approximation d’une solution régulière. Cette validation est faite dans un cas simple qui
correspond aux hypothèses de la partie théorique.

En parallèle, j’ai participé à différents projets au Cemracs ainsi que lors de semaines
maths-entreprises qui ont donné lieu à des comptes rendus, [DDF+11, WJIG11], mais ne
seront pas exposés dans ce mémoire. Les projets math-industrie ont été proposés par A.
Fuser de GDF et par P. Saadé de Picviz labs [Saa]. Je me suis également penchée sur
quelques problèmes d’estimation numérique de paramètres pour des modèles statisques,
principalement pour le modèle de Merton et des extensions modélisant des sauts de loi
normale ou double exponentielle.

1.3.2 Plan

Pour plus de clarté le manuscript est divisé en deux parties, la première contenant
l’étude mathématique tandis que la seconde comprend l’étude numérique.

Avant de se lancer dans l’étude des équations dissociées en mode O et X, il est inté-
ressant de citer un résultat d’existence et d’unicité pour les équations de Maxwell. C’est
l’objet du premier chapitre, qui reprend un résultat classique sous l’hypothèse (plus gé-
nérale que celle exposée à l’origine) ℜ(λε) > 0 pour toute valeur propre λε du tenseur de
permittivité.

Le second chapitre se focalise sur l’équation en mode X. Un exemple liminaire exhibe
une solution singulière, justifiant la mise en place du procédé de régularisation qui permet
de se placer dans le cadre classique des espaces de Lebesgue. Une première phase vise à
expliciter la solution du problème régularisé en fonction d’une double normalisation, la
première au niveau de la résonance et la seconde à l’infini. Suit alors une phase fonda-
mentale d’établissement d’estimations a priori sur la solution du problème régularisé. Ces
estimations se veulent uniformes par rapport au paramètre de régularisation afin de rester
valables dans la limite µ → 0. Cette phase se décline en plusieurs étapes : établir des
estimations de part et d’autre de la résonance, pour finir par une estimation incluant la
zone de résonance.

Le troisième chapitre concerne la méthode numérique. Il en présente le cadre théo-
rique et explicite la procédure de construction des nouvelles fonctions de base, à la fois
en dimension un et en dimension deux, pour un paramètre d’approximation q, pour le
mode O. Une analyse de convergence est proposée en dimension un. Elle aboutit a une
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estimation explicite de l’ordre de convergence en fonction du paramètre q : on prévoit théo-
riquement une convergence d’ordre q− 3/2. La construction des fonctions de base devrait
donc permettre d’atteindre l’ordre élevé désiré. Une étude des propriétés d’interpolation
des nouvelles fonctions de base est présentée en dimension deux.

Les résultats numériques sont regroupés dans un dernier chapitre. Pour le mode O les
ordres théoriques de convergence pour les propriétés d’interpolation sont retrouvés numé-
riquement de façon très satisfaisante. Le code pour la UWVF avec les nouvelles fonctions
de base est validé par une série de tests, et appliqué à un premier cas de réflectométrie.
Pour le mode X le code est validé dans le cas de l’approximation d’une solution régulìre
par le problème régularisé.
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2.1 Background

This work initiated with the development of a specific interest for magnetic fusion
at Laboratoire Jacques-Louis Lions. It is linked with the worldwide project ITER [Org]
(International Thermonuclear Experimental Reactor), that aims at harnessing the energy
produced by the fusion reaction. The official project includes China, the European Union,
India, Japan, Korea, Russia and the United States. Several research teams around the
world are involved as well. The reactor presented in Figure 2.1 is being built in the South
of France at Cadarache, and is expected to deliver ten times the power it consumes.

Fusion is a nuclear reaction where hydrogen nuclei collide to form a unique atom.
The quantity of released energy is huge. This reaction occurs in a plasma which is a
hot electrically charged gas. Several processes can be used to confine plasma. Magnetic
confinement fusion, which is based on magnetic forces, is the process chosen for ITER. For
this reason studying waves in plasmas is a crucial topic, see [Swa03, Bra98].

Turbulences in the plasma flow are the cause of severe energy loss. So they are not
desirable in fusion reactor which aim at producing energy. In order to understand the
turbulences, and some day control them, it is important to study the density of charged
particles inside the plasma. However because of the high temperature of the plasma it
is impossible to probe the plasma from the inside : no probing device could stand the
temperature inside the magnetic chamber. The methods used to measure turbulences
characteristics and evolution have to be non intrusive.

Reflectometry for magnetic fusion plasmas is a popular field of study within the Physics
community [LDMS96, KGH09, HdSG+11], whereas it is hardly known in the Mathematics
community. In fact, the density probing method is already used to probe fusion plasma.
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Figure 2.1 – The incredibly complex ITER Tokamak will be nearly 30 meters tall, and
weigh 23,000 tons. The very small man dressed in blue (bottom right) gives some idea of
the machine’s scale. The ITER Tokamak is made up of an estimated one million parts. An
updated cut-away of the ITER Tokamak, produced by the ITER Design Office in January
2013 [Org].

For instance the reactor ASDEX (Garching, Germany) is equipped with microwave Re-
flectometry devices [MSK+98]. The principle is the following. A wave is sent toward the
plasma from an antenna on the wall of the reactor, see Figure 2.2. It propagates until the
electronic density reaches a specific value, called cut-off density. There the signal bounces
back toward the antenna where it is measured and analyzed to compute the density at the
cut-off. Different frequencies probe the plasma at different depths, providing a map of the
plasma density.

Since an inverse problem has to be solved to get the density, efficient numerical simula-
tion methods are required for reflectometry. Specific tools have to be developed and must
be stable and powerful enough to get relevant results at a reasonable price.

The goal of this work is then to study some of the mathematical and numerical as-
pects of the partial differential equations which model reflectometry for fusion plasmas.
These equations also model plasma heating. Theoretical aspects concerning existence of
singular solutions are surprisingly complex : setting a theoretical framework adapted to
these singularities took up a considerable part of this research work.

2.2 The mathematical model

The topic of waves in plasmas is divided into two main types of models. Fluid mo-
dels consider charged particles as a fluid flow with density ρ(t, x) whereas kinetic models
consider their distribution f(t, x, v).

Both types of models rely on a series of simplifications, but some of the models are well
known for being relevant for simulating plasma heating or current drive. These linearized
models study waves as perturbations of equilibrium electromagnetic fields. This hypothesis
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Figure 2.2 – Reflectometry principle. Cut-away of the tokamak. A wave sent from the
right is probing the plasma, represented in pink. Courtesy of S. Heuraux.

corresponds to reduced amplitude waves. The expression of the current density j with
respect to the electric field E is described by a conductivity matrix σ, j = σE in which
there is no space or time dispersion. The conductivity tensor models the electromagnetic
properties of the media.

2.2.1 The cold plasma model

The dominating effects in reflectometry can be modeled by a coupling of electroma-
gnetism and charged particles flow. It is a fluid model. In this work the only particles
considered are electrons with charge e < 0, ions are considered as motionless because of
their mass with respect to the electrons mass. The cold plasma model can include several
particles, see [Fre07, CW74], but this is not within the scope of this work.

In electromagnetism, the electric induction D represents the way in which the electric
field E affects the organization of electric particles in a given media. More generally, in a
non homogeneous media such as a plasma it depends on the position, the frequency of the
electromagnetic field, the temperature and other parameters.

Conductivity tensor

The fluid equation describing the conservation of electrons mass is Newton’s law in
dimension 3. Collisions as well as ion motion are neglected. The electrons have a density
ne(
−→x ), a mass me, a velocity ue(

−→x , t) and a charge e ; E(−→x , t) refers to the electric field.
Newton’s law then reads :

me ne

(
∂ue
∂t

+ (ue.∇) ue

)
= −e ne (E + ue ∧B) . (2.1)
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The equilibrium is described by :




ue = 0 +u,
E = 0 +E,
B = B0 +B̃,

(2.2)

where B0 is the confining magnetic field, and satisfies |B̃|/|B0| << 1. Neglecting the
quadratic terms it yields in the time-harmonic domain, with ω denoting the frequency :

− iωmeu = −e (E + u ∧B0) . (2.3)

The confining magnetic field is such that B0 = B0ez. Defining




E± =
1√
2

(Ex ± iEy),

(ue)± =
1√
2

((ue)x ± i(ue)y),

and the plasma and cyclotron frequencies

ω2
p =

e2ne(x)
ε0me

and ωc =
e|B0|
me

.

a classical calculation shows that

σ = iε0ω
2
p




1/(ω + ωc) 0 0
0 1/(ω − ωc) 0
0 0 1/ω




in the basis ((ex + iey)/
√

2, (ex − iey)/
√

2, ez). In this basis the dielectric tensor ε =
ε0(I + i/ωσ) reads :

ε = ε0



L 0 0
0 R 0
0 0 P


 (2.4)

with 



R = 1− ω2
p

ω(ω − ωc)
L = 1− ω2

p

ω(ω + ωc)

P = 1− ω2
p

ω2

The dielectric tensor is diagonal in this basis, nevertheless its eigenvectors there are not
real. They have no physical meaning. Going back to the initial basis (ex, ey, ez) one gets

σ(x) = iε0

ω2
pω

ω2 − ω2
c




1 iωcω 0
−iωcω 1 0

0 0 1− ω2
c
ω2




which gives the well known formula :

ε = ε0



S −iD 0
iD S 0
0 0 P


 (2.5)
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where 



S =
1
2

(R + L) = 1− ω2
p

ω2 − ω2
c

,

D =
1
2

(R − L) = −ω
2
p

ω

ωc
ω2 − ω2

c

Notice that ε∗ = ε.
The behavior at ω → ωc is called cyclotron resonance. If ω < ωc the case is called a

low hybrid resonance. The other case ω > ωc is referred to as the upper hybrid resonance.
The assumption ω 6= ωc holds in th whole of this work.

A specificity of the mathematical problem

Eigenvalues of the dielectric tensor (2.5) or (2.4) are :




λ0 = 1− ω2
p

ω2

λ− = 1− ω2
p

ω2 − ω2
c

(
1− ωc

ω

)
,

λ+ = 1− ω2
p

ω2 − ω2
c

(
1 +

ωc
ω

)
.

These three quantities depend on the space variable through ωp. Generally speaking, a
wave is sent with a given frequency ω, higher than ωc. In these conditions the eigenvalues
are positive for small ωp which holds close to the wall where the antenna stands and
each of the eigenvalues decreases and becomes negative when ωp passes a threshold. These
transitions occur continuously, and this is what gives rise to the mathematical challenge :
the type of the equations changes continusouly. The threshold values account for a major
physical phenomenon in this study : the cut-off.

A simple calculation shows that the cut-off zones correspond to the densities such that :




ωp = ω ⇔ λ0 = 0,

ωp = ω
√

1 + ωc
ω ⇔ λ− = 0,

ωp = ω
√

1− ωcω ⇔ λ+ = 0.

This illustrates the fact that sweeping through the frequency range moves these zones to
different densities and the principle of reflectometry becomes evident.

Wave equation, dispersion relation, cut-off and resonance

Maxwell’s equations turn into the following wave equation :

∇∧∇ ∧E − ω2

c2
εE = 0.

A plane wave ei
−→κ−→x−→E0 solution to the wave equation has to satisfy

−→κ ∧ −→κ ∧ −→E0 −
ω2

c2
ε
−→
E0 = M−→κ

−→
E0 = 0.

So a non trivial solution corresponds to −→κ satisfying det(M−→κ ) = 0 which is called disper-
sion relation and describes the physical problem of wave propagation for the cold plasma
model :

det

(
κiκj − ‖−→κ ‖2δij −

ω2

c2
εij

)
= 0.
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n
2

x

x0 x1

Figure 2.3 – Simultaneous resonance at x = x0 and cut-off at x = x1 in a plasma.

Looking for waves propagating in the plane (ex, ez), in the form −→κ = (n sin θ, 0, n cos θ),
the dispersion relation turns into a quadratic function with respect to n2 :

(S sin2 θ + P cos2 θ)n4 −
(
ω

c

)2

(RL sin2 θ + PS(1 + cos2 θ))n2 +
(
ω

c

)4

PRL = 0. (2.6)

In the case ωp = 0, it is clear that the dispersion relation is elliptic since S = P = 1 : the
leading term coefficient does not vanish for any value of θ, so that the roots n2 are bounded.
In the case ωp 6= 0 on the other hand it is possible that this coefficient S sin2 θ + P cos2 θ
vanishes so that the equation turns into a linear function : so for some values of θ, n2

might go to infinity. This corresponds to a hyperbolic structure in the dispersion relation.
The discriminant of the dispersion relation is

(
ω

c

)4 (
(RL− PS)2 sin4 θ + 4P 2D2 cos2 θ

)
> 0.

As a result the polynomial (2.6) has two roots n2
+ et n2

− and reads :

P (n2) = (S sin2 θ + P cos2 θ)(n2 − n2
+)(n2 − n2

−).

This shows that two kind of waves can be found : a propagative wave with n2 = n2
± > 0

and an evanescent wave with n2 = n2
± < 0.

The transition that occurs at n2 = 0 is called a cut-off : the wave number locally goes
to zero. The other possible transition, which occurs at n2 → ∞, is called a resonance :
the wave number locally goes to infinity. These two cases are illustrated in Figure 2.3
and are typical of the study of wave propagation in plasmas. They are actually the basis
for reflectometry. The wave coming from a propagating zone interacts with the transition
zones. At the resonance the wave can drop energy in the plasma to heat it, at the cut-off
the wave is reflected. When this reflected signal is measured at the wall of the reactor it
provides information about the density along the cut-off.

Cut-off and resonance are well-known in the Physics community in a wider frame-
work than the one of reflectometry. They are nevertheless not studied that much in the
Mathematics community. Several books study the dispersion relation, see for instance
[Bra98, Sti92, Swa03]. This work is concerned with the study of mathematical solutions
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in a domain containing either a resonance or a cut-off, together with the construction of
a new type of numerical methods achieving high precision for numerical simulation.

Because of the huge size of ITER’s reactor, that will be around eleven meters high
and nineteen meters long, the numerical methods that are currently used - such as finite
differences - are very expensive. Indeed, they require a uniform mesh and the size of the
mesh must be small enough with respect to the antenna size. Let us note that some finite
element methods are developed by Simon Labrunie [Lab]. In the scope of this work another
type of numerical methods will be considered.

2.2.2 Propagation modes

For the sake of simplicity, the following notation will hold in the whole document :

∇∧∇ ∧ E − εE = 0, (2.7)

ε(x) =




α iγ 0
−iγ α 0

0 0 −β


 . (2.8)

As the tensor ε has a block diagonal structure, the equation can be split into two propa-
gation modes.

The Ordinary mode (O mode) corresponds to the block of size 1 × 1. The associated
equation is a Helmholtz equation, which is a basic model for wave propagation is the case
β < 0 :

−∆Ez + βEz = 0.

This propagation mode presents a cut-off associated with the eigenvalue λ0 of ε. The cut-
off occurs at a density such that ωp = ω. The smooth coefficient β vanishes continuously,
and the Helmholtz equation turns locally into an Airy equation. The cut-off zone has to
be carefully considered.

The eXtraordinary mode (X mode) corresponds to the block of size 2×2. The associated
equation is not as common. For E = (Ex, Ey) it reads

−→∇ ∧∇ ∧ E − ε⊥E = 0,

where the two dimension curl operator is defined by

−→∇∧ =

(
∂y
−∂x

)
and ∇∧ =

(
∂x
∂y

)
∧ .

It means that the electric field satisfies
{

∂y(∂xEy − ∂yEx) −αEx −iγEy = 0,
−∂x(∂xEy − ∂yEx) +iγEx −αEy = 0.

(2.9)

As for this propagation mode, it presents two cut-offs that correspond to the eigenvalues of
the matrix ε⊥. A cut-off will occur when α = ±γ. The second specificity is the resonance
previously mentioned, and it requires careful consideration in this case. It happens when
α = 0 6= γ. It is referred to as hybrid resonance and can theoretically take part in the
heating mechanism of magnetic plasmas.
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2.3 Structure of the document

The topic of this work is the study of Maxwell’s equation (2.7) for a dielectric tensor
ε defined in (2.8), which is a smooth function of the space variable.

2.3.1 Major contributions

Before focusing on the numerical simulation for reflectometry problems, it is important
to ensure that the problem considered does have a unique solution. The well-posedness
for the O mode results from a classical Fredholm decomposition. The X mode problem is
more intricate. The existence of singular solutions, called resonant solutions, is accepted
in the Physics community.

A limit absorption principle made possible for the first time the definition of a singular
solution for a coefficient depending on only one space variable. The limit solution of the K
mode Maxwell’s equation is the sum of a Dirac mass on the Ex component plus a smooth
term. This result was obtained in collaboration with Ricardo Weder and Bruno Després, it
led to an article which is actually being reviewed. It is stated in Theorem 4.1.1.

The setting of a numerical method for reflectometry requires as already mentioned the
consideration of smooth coefficients. The method proposed in this work is based on the
plane wave method called Ultra Weak Variational Formulation (UWVF), which is - in
the case of piecewise coefficients - based on plane waves that are solution to the adjoint
homogeneous equation, and can be linked with Discontinuous Galerkin (DG) methods.
As a result adapting this method to varying coefficients requires the design of new basis
functions, tailored to the problem.

In this thesis, I propose, justify theoretically and validate numerically a new approxi-
mation procedure based on generalized plane waves. The explicit procedure presented here
for the O mode equation depends on a parameter q that steers the global convergence rate
of the numerical method. High order convergence is achieved.

I started considering the X mode extension of the method. The design process for the
basis function is established, and represents a first step toward a specific method for the X
mode problem. The first UWVF computations are displayed at the end of the manuscript.

Some p convergence results can be found in the UWVF literature. I developed a p
convergence result regarding the interpolation properties of the new basis functions.

I implemented a code dedicated to the UWVF coupled with the new basis functions :
it computes an approximate solution for two dimensional problems. In O mode the code
computes as expected a solution in the case of a smooth vanishing coefficient : a satisfying
approximation of a wave reflected by a cut-off, on a domain that is fifty wavelengths long.
In X mode the first numerical results are validated with a smooth reference solution with
a cut-off as well as with a resonance. This validation is performed on a simple case that
fits the one considered in the theoretical part.

At the same time, I contributed to several projects at the Cemracs and at the French
math-industry weeks, some material is available [DDF+11, WJIG11] but it will not be
detailed here. The math-industry projects were proposed by A. Fuser from the French gas
company GDF and by P. Saadé from Picviz labs [Saa]. I also worked on a couple of
problems aimed at estimating parameters for statistical models, mainly for the Merton
model and extended jump models.
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2.3.2 Outline

For the sake of clarity, the thesis is divided into two parts, a mathematical study
followed by a numerical study.

Before splitting the initial equation into O and X modes, it is interesting to cite an
existence and uniqueness result on Maxwell’s equation. This is the aim of the first chapter,
that describes a classical result under the assumption that ℜ(λε) > 0 for all eigenvalue λε
of the dielectric tensor, that is more general than the original assumption.

The second chapter focuses on the X mode equation. A singular solution is exhibited
to justify the need for a regularization process to go back to the classical Lebesgue spaces
context. First the solutions of the regularized problem are explicitly built, using a double
normalization at the resonance and at infinity. Then comes the crucial stage of establishing
a priori estimates on the solution of the regularized problem. These have to be uniform
with respect to the regularization parameter µ in order to hold at the limit µ → 0. It is
made of different steps, starting with estimates on each side of the resonance to end with
an estimate including the resonance zone.

The third chapter concerns the numerical method. It presents the theoretical setting
and explicits the basis functions’ design procedure, in dimension one and two, for an
approximation parameter q and for the O mode. A convergence analysis is proposed in
dimension one. It is concluded by the proof of a theoretical order of convergence explicit
with respect to q : the order of convergence is proved to be at least q−3/2. For this reason
the basis functions design should lead to the desired high order convergence. A study of
interpolation properties of the new basis functions in dimension two follows.

The numerical results are gathered in the last chapter. For the O mode the numerical
convergence rates fit the theoretical estimates in a very satisfying way. The UWVF code
with the new basis functions is validated on a series of benchmark cases, and applied to a
first reflectometry test case. For the X mode the code is validated for the approximation
of a regular solution by the regularized problem.
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This chapter is inspired by Chapter 4 Variational theory for the cavity problem from
Monk [Mon03]. In the introduction of the first chapter there is a remark concerning ani-
sotropic materials : Although the methods in this book can be applied to anisotropic media,
we will not analyze the methods with matrix-valued coefficients. This is mainly due to the
difficulty of verifying uniqueness of the solution of Maxwell’s equations in this case.

In the following, we adapt the analysis in the case of a matrix-valued dielectric tensor
ε, as presented in (2.5). The analysis of the coercivity of the problem is set on a domain
Ω without cavity. The uniqueness result will not be considered, since it is not in the scope
of this work, see [Oka02] and the reference given by Monk in [Mon03], namely [Vog91].

The main restriction in this chapter is that the dielectric tensor which must be positive
to obtain the coercivity. In some sense it shows that the standard theoretical framework
presented here is not adapted to the problem with the cold plasma tensor (2.5).

3.1 Introduction

Consider a Lipschitz domain Ω ∈ R
3, and the following problem

{
∇∧∇ ∧E − εE = F (Ω),
(∇∧ E) ∧ ν − iσET = g (∂Ω),

(3.1)

where ET is defined, for ν the outward normal, by

ET = (ν ∧ E)|∂Ω ∧ ν.

Define the classical curl space

H(curl; Ω) =
{
v ∈

(
L2(Ω)

)3
,∇ ∧ v ∈

(
L2(Ω)

)3
}
.
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A classical variational formulation reads : for all φ ∈ H(curl; Ω)
∫

Ω

[
∇∧E · ∇ ∧ φ− εE · φ

]
dV − i

∫

∂Ω
σET · φTdA =

∫

Ω
F · φdV +

∫

∂Ω
g · φTdA.

In order to give a meaning to the different terms appearing in this formulation, a convenient
space is

X =
{
u ∈ H(curl; Ω), uT ∈

(
L2(∂Ω)

)3
}
. (3.2)

The parenthesis (·, ·) denote the scalar product on
(
L2(Ω)

)3 and the brackets 〈·, ·〉 denote
the scalar product on

(
L2(∂Ω)

)3. The variational problem is then : find E ∈ X such that

(∇∧ E,∇ ∧ φ)− (εE, φ) − i〈σET , φT 〉 = (F, φ) + 〈g, φT 〉, (3.3)

for all φ ∈ X. The bilinear form a is defined on X ×X as

a(u, v) = (∇u,∇v)− (εu, v) − i〈σuT , vT 〉.

3.2 Assumptions on the coefficients

The domain Ω is bounded, simply connected and Lipschitz. The parameters of the
problem satisfy :

• ε ∈ (L∞(Ω))(3×3),

• ε is a hermitian matrix which eigenvalues are uniformly strictly positive and uni-
formly bounded,

• σ ≥ cσ > 0 and σ ∈ L∞(∂Ω),

• F ∈ (L2(Ω)
)3 and g ∈ (L2

t (∂Ω)
)3.

The space of tangential traces is

L2
t (∂Ω) =

{
u ∈

(
L2
t (∂Ω)

)3
, ν · u = 0 a.e. on ∂Ω

}
.

The condition on ε is the matrix generalization of the hypothesis ℜ(ε̃) ≥ c > 0 for a
dielectric tensor ε = ε̃Id with ε̃ ∈ R. This hypothesis is essential to prove some coercivity.

3.3 The space X and the null space of the curl operator

This section states classical properties of the X space and the null space of the curl.
Only the sketch of the proofs are given for simplicity. All details are to be found in [Mon03].
See also [BBCD97].

Definition 1. The bilinear form (·, ·)X is defined by : for each (u, v) ∈ X2

(u, v)X = (u, v) + (∇∧ u,∇∧ v) + 〈uT , vT 〉. (3.4)

Theorem 3.3.1. The space X defined in (3.2) when equipped with the inner product
(·, ·)X is a Hilbert space. The following space is dense in X :

X =
{
u|u = ω|Ω for a ω ∈ C∞

(
R

3
)}

.
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Note that this result holds for any bounded Lipschitz domain in R
3. Proof. First X is

well-defined since the tangential trace makes sense for elements of H(curl; Ω), so that uT
is well-defined.

Then the completeness of X equipped with the inner product (3.4) stems from the
study of a Cauchy sequence and the continuity of the trace operator on H(curl; Ω).

Last the density property is based on two preliminary density results. One of them

concerns the space H0(curl; Ω) which is defined as the closure of
(
C∞0

(
Ω
))3

in H(curl; Ω).

The other one concerns a space adapted to the impedance boundary condition Himp(curl; Ω)
defined by

Himp(curl; Ω) =
{
u ∈ H(curl; Ω), u ∧ ν ∈ L2

t (∂Ω)
}
.

The following result characterizes the elements of X with vanishing curl, that will be
of major interest for the Helmholtz decomposition in the next section.

Theorem 3.3.2. Suppose Ω is a simply connected Lipschitz domain and has a boundary
consisting of a single connected component. In addition suppose that u ∈ X is such that
uT = 0 on ∂Ω and ∇∧u = 0 in Ω. Then there is a scalar potential p ∈ S such that u = ∇p,
where S is defined by

S =
{
p ∈ H1(Ω), p = 0 on ∂Ω

}
.

Proof. It relies on a more general result for an (L2(Ω))3 function on a bounded simply
connected Lipschitz domain, that states the equivalence between having a vanishing curl
in Ω and being the gradient of an H1(Ω) potential. Such a potential is unique up to an
additive constant.

3.4 The Helmholtz decomposition

The version of the Helmholtz decomposition proposed in this section is adapted to the
anisotropic case. Its proof relies on the assumption on ε stated in subsection 3.2.

The decomposition itself relies on the coercivity and continuity of a convenient ses-
quilinear form, identifying a candidate for the (X0)⊥ component of the decomposition via
Lax-Milgram theorem. The compactness properties of X0 strongly use the decomposition
itself.

Lemma 3.1. The space ∇S is a closed subset of X and one may write

X = X0 ⊕∇S,

where

X0 = {w ∈ X, (εw,∇ξ) = 0 ∀ξ ∈ S} .

Proof. The space ∇S is closed in X since S is closed in H1(Ω).
To define the decomposition, note ã : X ×X → C defined by

ã(u, v) = (∇ ∧ u,∇ ∧ v) + (ǫu, v) + 〈uT , vT 〉, ∀u, v ∈ X.

Thanks to the assumptions on ε the sesquilinear form is coercive and continuous, that is
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• There exists a constant c > 0 independent of u such that

|ã(u, u) ≥ c‖u‖2X ∀u ∈ X.

This comes from the hypothesis on the eigenvalues of ε since one has

(εu, u) ≥
(

min
λ∈Sp(ε)

|λ|
)

(u, u) ∀u ∈ X.

• There exists a constant C > 0 independent of u and v such that

|ã(u, v) ≤ C‖u‖X‖v‖X ∀u, v ∈ X.

This comes from the boundedness of the diagonalizable matrix ε since one has

(εu, u) ≤
(

max
λ∈Sp(ε)

|λ|
)

(u, u) ∀u ∈ X.

As a consequence, from Lax-Milgram theorem, for each u ∈ X there exists a unique
function Pu ∈ ∇S such that

ã(Pu, v) = (εu, v) ∀v ∈ ∇S.

Then P is a bounded projection from X to ∇S since Pu = u for u ∈ ∇S. As a result, for
each u ∈ X, u = Pu+ (I − P )u and (I − P )u ∈ X0 since for any ξ ∈ S

(ε(I − P )u,∇ξ) = ã(Pu,∇ξ)− ã(P 2u,∇ξ).

It is zero since Pu ∈ ∇S.

3.4.1 Compactness properties of X0

Theorem 3.4.1. Suppose Ω and ε satisfy the conditions given in Section 3.2. Then X0

is compactly embedded in
(
L2(Ω)

)3.

The proof of this result relies on the Helmholtz decomposition for ε = 1 with

X
(1)
0 = {w ∈ X, (w,∇ξ) = 0 ∀ξ ∈ S} ,

and on the compact embedding of X(1)
0 in

(
L2(Ω)

)3. This embedding permits to extract

a convergent subsequence in X
(1)
0 , which limit will then be decomposed with the non

constant ε version of the Helmholtz decomposition. Proof. Consider a bounded sequence
in X0, {wn}∞n=1. As announced, each element of the sequence can be decomposed as wn =

w
(1)
n + ∇p(1)

n where w(1)
n ∈ X(1)

0 and p
(1)
n ∈ S. Testing this identity against p(1)

n one gets

‖∇p(1)
n ‖X ≤ ‖wn‖X and as a consequence ‖w(1)

n ‖X ≤ ‖wn‖X . Thanks to the compact

embedding of X(1)
0 in

(
L2(Ω)

)3, there is a subsequence still denoted {wn}∞n=1 and an

element w(1) ∈ X(1)
0 such that

wn → w(1) strongly in
(
L2(Ω)

)3
. (3.5)
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Using the Helmholtz decomposition given in lemma 3.1 one gets w(1) = w(ε) +∇p(ε) for
some w(ε) ∈ X0 and p(ε) ∈ S. The last step is to show that wn → w(ε) in

(
L2(Ω)

)3. Since
each wn and w(ε) are in X0 then one has

(
ε(w(ε) − wn), w(ε) − wn

)
=
(
ε(w(ε) − wn), w(ε) +∇p(ε) − wn +∇p(1)

n

)

=
(
ε(w(ε) − wn), w(1) − w(1)

n

)
.

Hence (minλ∈Sp(ε) |λ|)‖w(ε) − wn‖(L2(Ω))3 ≤ ‖w(1) − w(1)
n ‖(L2(Ω))3, which right hand side

tends to zero from (3.5). It completes the proof thanks to the assumption on the eigenvalues
of ε. The following result guarantees the coercivity of the curl-curl bilinear form.

Corollary 3.2. Suppose that Ω is a bounded simply connected Lipschitz domain with a
connected boundary. In addition suppose that ε satisfies the conditions given in section
3.2. Then there is a constant C such that for every u ∈ X0

‖u‖(L2(Ω))3 ≤ ‖∇ ∧ u‖(L2(Ω))3 + ‖ν ∧ u‖(L2(∂Ω))3 .

Proof. Because of the compact embedding of X0 in
(
L2(∂Ω)

)3 and of the continuity of
the trace on H(curl; Ω), it only requires to verify that if u ∈ X0 satisfies

‖∇ ∧ u‖(L2(Ω))3 + ‖ν ∧ u‖(L2(∂Ω))3 = 0,

then u = 0. From Theorem 3.3.2, since ∇ ∧ u = 0, ν ∧ u and u ∈ X0, then u = ∇p for
some p ∈ S. Thus u ∈ (∇S) ∩ (∇S)⊥ and so u = 0.

3.5 The variational problem as an operator equation

The whole point of this section is to evidence a Fredholm alternative after splitting
the problem thanks to the Helmholtz decomposition.

The decomposition X = X0 ⊕ ∇S allows to split the initial problem (3.3) into two
parts. Any solution of the variational problem (3.3) can be written E = E0 +∇p for some
E0 ∈ X0 and p ∈ S. Since ∇∧∇p = 0 and (∇p) ∧ ν = 0 on ∂Ω, then

(∇ ∧ E0,∇∧ φ)− (ε(E0 +∇p), φ)− i〈σE0,T , φT 〉 = (F, φ) + 〈g, φT 〉.

Choosing φ = ∇ξ one has φ ∈ H0(curl; Ω) and since E0 ∈ X0 then p ∈ S satisfies

− (ε∇p,∇ξ) = (F,∇ξ), for all ξ ∈ S. (3.6)

The solution of this first subproblem is given by the following lemma.

Lemma 3.3. Assume that ε satisfies the conditions given in Section 3.2. Then there exists
a unique solution ∈ S to (3.6) and there is a constant C independent of F such that

‖∇p‖(L2(Ω))3 ≤ C‖F‖(L2(Ω))3.

Proof. Define b̃ : S × S → C by b̃(p, ξ) = −(ε∇p,∇ξ). The sesquilinear form b̃ is
bounded and coercive from the hypothesis on ε, so that the result stems from Lax-Milgram
theorem.

So considering p ∈ S is now known, the next problem is to determine E0 ∈ X0 such
that

(∇∧ E0,∇ ∧ φ)− (εE0, φ)− i〈σE0,T , φT 〉 = (F, φ) + 〈g, φT 〉+ (ε∇p, φ), (3.7)
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for all φ ∈ X0. Define the sesquilinear form a+ : X ×X → C by

a+(u, v) = (∇ ∧ u,∇ ∧ v) + (εu, v) − i〈σuT , vT 〉

for all u, v ∈ X. The next lemma shows this sesquilinear form is coercive.

Lemma 3.4. Assume ε and σ satisfy the conditions given in Section 3.2. There is a
constant c > 0 depending on ε and σ such that

|a+(u, u)| ≥ c‖u‖2X for all u ∈ X.

Proof. From the assumptions on ε one can define the square root of the matrix, ε1/2.
From the definition of a+ one has

|a+(u, u)|2 =
∣∣∣‖∇ ∧ u‖2

(L2(Ω))3 + ‖ε1/2u‖2
(L2(Ω))3

∣∣∣
2

+
∣∣∣‖
√
σuT ‖2(L2(∂Ω))3

∣∣∣
2
,

so that

|a+(u, u)|2 ≥ ‖∇ ∧ u‖4
(L2(Ω))3 +

(
min
λ∈Sp(ε)

|λ|
)
‖u‖4

(L2(Ω))3 +
√
cσ‖uT ‖4(L2(∂Ω))3 ,

which in turns leads to the desired inequality.
Define the operator K :

(
L2(Ω)

)3 → (
L2(Ω)

)3 by K : f 7→ Kf that satisfies

a+(Kf, φ) = −2
∫

Ω
εf · φdV for all φ ∈ X0.

Theorem 3.5.1. Assume that ε and σ satisfy the conditions given in Section 3.2. The
operator K is a bounded and compact map from

(
L2(Ω)

)3 into
(
L2(Ω)

)3. In addition

‖Kf‖X ≤ ‖f‖(L2(Ω))3 .

Proof. Using the Cauchy-Schwarz inequality together with the hypothesis on the coef-
ficients, one gets

|a+(u, v)| ≤ ‖∇ ∧ u‖(L2(Ω))3‖∇ ∧ v‖(L2(Ω))3

+

(
max
λ∈Sp(ε)

|λ|
)
‖u‖(L2(Ω))3‖v‖(L2(Ω))3

+ ‖σ‖∞‖uT ‖(L2(∂Ω))3‖vT ‖(L2(∂Ω))3 .

Hence |a+(u, v)| ≤ C‖u‖X‖v‖X . Considering the coercivity proved in Lemma 3.4, it shows
that a+ satisfies the conditions of the Lax-Milgram theorem. As a consequence K is well-
defined and ‖Kf‖X ≤ C‖f‖(L2(Ω))3 .

The compactness of K directly stems from the above inequality together with the
compact embedding of X0 in

(
L2(Ω)

)3 proved in Theorem 3.4.1. A last step leads to
a Fredholm alternative.

Applying again Lax-Milgram theorem, one can define F ∈ X0 such that

a+(F , φ) = (F, φ) + 〈g, φT 〉+ (ε∇p, φ) for all φ ∈ X0,

and see that

‖F‖X ≤ C
(
‖F‖(L2(Ω))3 + ‖g‖(L2(∂Ω))3 + ‖∇p‖(L2(∂Ω))3

)
,
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which from Lemma 3.3 gives

‖F‖X ≤ C
(
‖F‖(L2(Ω))3 + ‖g‖(L2(∂Ω))3

)
.

As a consequence the problem (3.7) is equivalent to finding E0 ∈
(
L2(Ω)

)3 such that

(I +K)E0 = F , (3.8)

and thanks the Fredholm alternative - because K is compact - it is then enough to prove
the uniqueness to get the existence. At this point the aim of this section is reached.

Remark that if E0 stands for a solution of (3.8), then one has

‖E0‖(L2(Ω))3 ≤ C‖F‖(L2(Ω))3. (3.9)

But since E0 = F −KE0, one also has that E0 ∈ X0 and thus

‖E0‖X ≤ C
(
‖F‖X + ‖E0‖(L2(Ω))3

)
,

which in turns thanks to (3.9) provides an estimate on E0 in X0 with respect to the data
of the initial problem

‖E0‖X ≤ C
(
‖F‖(L2(Ω))3 + ‖g‖(L2(∂Ω))3

)
.

Remark 1. In the case ε(−→x ) ≤ −c < 0 for a constant c > 0 the problem is also well-posed
in H(curl). There is no such theory for changing sign ε. See [BCC12] where a different
approach, named the T -coercivity, addresses the case of changing sign is the transition is
discontinuous.
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4.1 Introduction

In this chapter, we introduce an approach which is different from the previous chapter,
and is inspired by the physics of the problem. Indeed, it is known in plasma physics that
Maxwell’s equations in the context of a strong background magnetic field may develop
singular solutions even for smooth coefficients. This is related to what is called the hybrid
resonance [CW74, Fre07, Bra98]. To our knowledge the mathematical analysis of such a
phenomenon can not be found in the applied mathematics literature.

Hybrid resonance appears in reflectometry experiments [DHM06, HGP10] and hea-
ting devices for fusion plasma [DPS05]. The energy deposit may exceed by far the energy
exchange which occurs in Landau damping [Fre07, MV11]. Hybrid resonance is a non dam-
ping dissipative phenomenon : a singularity of the solution makes it stronger in some sense
than the Landau damping. Indeed Landau damping appears in kinetic models, whereas
hybrid resonance appears in a simpler model coupling a fluid with the non-electrostatic
part of Maxwell’s equations.

Since the mathematical solution is not square integrable, hybrid resonance is also a
paradoxical and non standard phenomenon in the context of the mathematical theory
of Maxwell’s equations, additional references are [DL85, Ces96a, Mon03, Wed91]. The
situation can be compared with the mathematical theory of metametarials. In [Wed08a,
Wed08b] the electric dielectric and magnetic susceptibility tensors are degenerate -i.e.
they have zero eigenvalues- in surfaces, but they remain positive definite. In this case,
the solutions are singular, but the problem remains coercive. In [BCZ08, BCC12] the
coefficient changes in a discontinuous way from being positive to negative. In this situation
coerciveness is lost, but as the absolute value of the coefficient is bounded from below by
a positive constant, the solutions are regular. In the case considered here, both difficulties
occur at the same time. As the coefficient α (see below) continuously goes from positive
to negative values, its absolute value is zero at a point, and as a consequence the problem
is not coercive and there are singular solutions.

Our purpose in this chapter is to construct in Theorem 4.1.1 a mathematical solution
with a hybrid resonance in planar geometry. It will be done with a limit absorption principle
to give a meaning to relevant solutions, and with an extensive use of sharp estimates for
singular integral equations. See [JW10] for a recent use of such a method for a completely
different problem. An original singular integral equation is attached to the Fourier solution.
Introduced in the seminal work of Hilbert [Hil53] and Picard [Pic11], this type of integral
equation is referred to as integral equation of the third kind, supplementing the more
classical distinction between equations of the first and second kind, see [Vol10, Tri85]. Some
references about this type of equations may be found in [BW73, Shu97] for a mathematical
analysis, and [Van55, Cas59, FW63] for a theory of particles or plasma physics. The results
in this chapter are reminiscent of those of Bart and Warnock [BW73], even if the considered
kernel does not satisfy exactly the same hypothesis since it is more singular. Their work
stresses the fact that non uniqueness is the rule for such equations. However here the
unique solution is obtained thanks to the limit absorption principle which is a physically
based selection principle. It is explicitly described as the sum of a singular part plus a
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regular part.
One originality of this work lies in the analysis of the properties of this singular equa-

tion, since there is no equivalent to it in the classical literature [AS72, Bat53, BM96].

4.1.1 The mathematical model

Introducing the vorticity W , the X mode problem stated in the introduction is expres-
sed as a first order system of three equations





W +∂yEx −∂xEy = 0,
∂yW −αEx −iγEy = 0,
−∂xW +iγEx −αEy = 0.

(4.1)

x
Antenna

x=−L

reflected wave

incident wave

Figure 4.1 – X-mode in planar geometry : the domain. In a real physical device an antenna
is on the wall on the left and sends an incident electromagnetic wave through a medium
which is assumed infinite for simplicity. The incident wave generates a reflected wave. The
antenna will be modeled by the non homogeneous boundary condition (4.2). The medium
is filled with a plasma with dielectric tensor given by (2.8).

x

B
0

x=−L

N
e

Figure 4.2 – X-mode equations in planar geometry : the physical parameters. The elec-
tronic density x 7→ Ne(x) is low at the boundary, and increases towards a plateau. The
background magnetic field B0 is taken as constant for simplicity.
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The simplified 2D domain considered is for some L > 0 :

Ω =
{

(x, y) ∈ R
2, −L ≤ x, y ∈ R

}
,

see Figure 4.1. The X-mode equations (4.1) are combined with a non homogeneous boun-
dary condition

W + iσnxEy = g on the left boundary x = −L, σ > 0, (4.2)

which models a given source, typically a radiating antenna meant to heat or to probe the
plasma.

4.1.2 Technical hypothesis

Planar geometry will be considered for the sake of simplicity, that is to say the coeffi-
cients α and γ only depend on the x variable,

∂yα = ∂yγ = 0.

Other assumptions which correspond to the physical context of idealized reflectometry or
heating devices are the following. The diagonal part of the dielectric tensor is dominated
by the extra-diagonal part at a finite number o points, that is

α(xi) = 0, α′(xi) 6= 0 and δ(xi) 6= 0, xi ∈ R, i = 1, . . . , N.

For the sake of simplicity suppose here that N = 1 and that x1 = 0. Assume that

γ ∈ C1([−L,∞[), γ(0) 6= 0. (4.3)

The coefficient α satisfies

α ∈ C2([−L,∞[), α(0) = 0, α′(0) < 0, (H1)

and

α− ≤ α(x) ≤ α+, ∀x ∈ [−L,∞[, and 0 < r ≤
∣∣∣∣
α(x)
x

∣∣∣∣ , ∀x ∈ [−L,H] (H2)

where H > 0. Assume that the coefficients are constant at large scale : there exists γ∞
and α∞ so that

γ(x) = γ∞ and α(x) = α∞ ∀x ∈ R s.t. H ≤ x <∞. (H3)

Assume that the problem is coercive from H to infinity

α2
∞ − γ2

∞ > 0. (H4)

These last two assumptions are justified since the electromagnetic wave is strongly absor-
bed for x ≥ H.

The coefficients α and γ could be only piecewise smooth and all the theoretical re-
sults would remain the same. This justifies the choice of piecewise C∞ coefficients for the
numerical test cases, see Chapter 6.

An additional condition is defined by

4‖γ‖2∞H < r. (H5)

It expresses the fact that the length of the transition zone between x = 0 and x = H is
small with respect to the other parameters of the problem. One can refer to Figures 4.2
and 4.3 for a graphical representation. This hypothesis is physically very reasonable, and
will be discussed in Section 4.9.
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x = −L x = H

x

α(x)

slope −r

γ(x)

Figure 4.3 – X-mode equations in planar geometry : parameters of the dielectric tensor
deduced from the value of the physical parameters described in figure 4.2, assuming that
ω > ωc. The coefficient α decreases from positive to negative values. It crosses the axis
with a slope bounded from below by r. The coefficient γ is positive and bounded, and the
two coefficients are constant for x > H.

4.1.3 Statement of the main result

Assuming (H1)-(H4), it is known in the Physics community that the problem is highly
singular at the origin. The main result of this chapter can be summarized as follows.
Denote by ĝ the Fourier transform of g,

ĝ(θ) :=
∫

R

g(y) e−iθy dy.

The uniform transversality assumption (H6) is needed, it is a generalization of assumption
(H5). See Section 4.8.

Theorem 4.1.1. Assuming (H1)-(H6), for every g ∈ L2(R) with ĝ of compact support
there exists a solution in the sense of distributions of (4.1) with boundary condition
(4.2) that goes to zero at infinity. Moreover, unless the source term g is identically zero,
the x component of this solution Ex does not belong to L1

loc((−L,∞) × R). The other
components Ey and W are more regular, they belong to L2((−L,∞)× R).

The result relies on a limit absorption principle combined with a specific original
integral representation of the solution. The loss of regularity of the electric field is counter
intuitive with respect to the standard theory of existence and uniqueness for solutions of
time harmonic Maxwell’s equations [DL85, Ces96a, Mon03, Wed91]. The essential part of
the proof consists in identifying the singularity appearing in the Fourier transform Êx.
Moreover, the condition (H5) simplifies some parts of the mathematical analysis. The
solution is a priori not unique since the limit absorption principle generates two solutions
depending on the sign of the regularization.

The singular part of the solution will be presented as the sum of the principal value of
the inverse of α, plus a Dirac function, plus a smooth term.

Note that the heating of the plasma (4.90) is directly related to the singular part of
the solution.
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4.1.4 A wave description of the problem : Phase velocity

The phase velocity measures the velocity of individual Fourier modes. Focus on the
dispersion relation in dimension two. A plane wave (Ex, Ey) = ei

−→κ ·−→x−→E0, where
−→
E0 ∈ C

2,
is a solution of X-mode equations (4.1) if and only if

[(
κ2

2 −κ1 κ2

−κ1 κ2 κ2
1

)
−
(

α iγ
−iγ α

)]
−→
E0 = 0, = (κ1, κ2) ∈ R

2.

Set −→κ = n2(cos θ, sin θ), θ denoting the direction of the wave. The phase velocity vϕ = ω
|n2|

is solution of the eigenvalue problem
(

sin θ2 − v2
ϕα − cos θ sin θ − iv2

ϕγ

− cos θ sin θ + iv2
ϕγ cos θ2 − v2

ϕα

)
R = 0.

The determinant of the matrix is

D = v4
ϕ

(
α2 − γ2

)
− v2
ϕα.

Setting D = 0 the phase velocity reads

v2
ϕ =

α

α2 − γ2
.

Constant coefficients

Consider first that α and γ are constant at least locally. Then the phase velocity vϕ
itself is constant as well.

Non constant coefficients

Assume for example that α = −x and that γ = 1 which is locally compatible with the
general assumptions, see Figure 4.3. Figure 4.4 shows the phase velocity as a function of
the horizontal space coordinate. When the phase velocity is real we are in a propagating
region, and when the phase velocity is pure imaginary the region is non-propagating. One
distinguishes two cutoffs where the local phase velocity is infinite

Cutoff : α(x) = ±γ(x)

and one resonance where the phase velocity is null

Resonance : α(x) = 0.

This structure is characteristic of the hybrid resonance.

4.1.5 Outline

This chapter is organized as follows. Section 4.2 provides an analytic singular solution,
that justifies the need for a specific analysis of the problem. The technical tools that are set
up to establish this analysis are presented in Section 4.3. In order to display the solutions
of the regularized problem, Section 4.4 details a convenient basis of the function space of
these solutions, and some continuity estimates are presented in Section 4.5. These estimates
are uniform with respect to the regularization process, so that they will still hold at the
limit. The process of passing to the limit is described in Section 4.6. A basic numerical
validation is then proposed in Section 4.7. The main theorem is proved in Section 4.8. At
last the hypothesis (H5) is discussed in Section 4.9.
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Figure 4.4 – Sign of the square of the phase velocity. In this example α = −x and γ = 1,
so that v2

ϕ = x
1−x2 .

4.2 An example of a singular solution

The aim of this small section is to construct an explicit singular solution.
If the solution is independent of y, which corresponds to normal incidence for plane

waves, the system (4.1) is called the Budden problem [CW74]




W − E′y = 0,
−αEx − iγEy = 0,
−W ′ + iγEx − αEy = 0.

After elimination of Ex and W , the y component of the electric field satisfies

−E′′y +

(
γ2

α
− α

)
Ey = 0.

This equation can be solved analytically in some cases which gives a better understanding
of the singularity of the general problem. As pointed out by Olivier Lafitte, a more general
theory which refers to this problem as turning points is to be found in [CL55].

Consider that α = −x and γ is solution of γ
2

x − x = 1
4 − 1

x . The positive solution is

γ(x) =
√
x2 − x

4
+ 1 > 0.

The y-component of the electric field is then solution of

E′′y +
(
−1

4
+

1
x

)
Ey = 0. (4.4)

This equation is of Whittaker type [AS72, Bat53]. It is a particular case of the confluent
hypergeometric equation, and can also be written in the Kummer form. The general theory
shows that the first fundamental solution is regular

v(x) = e−
x
2 x.

Indeed v′(x) = e−
x
2
(
1− x2

)
and v′′(x) = e−

x
2
(−1 + x

4

)
, so that this function v satisfies

v′′ +
(
−1

4
+

1
x

)
v = 0.
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In order to build a singular solution : consider a second solution w with linear independence
with respect to the first one. The linear independence can be imposed by setting the
normalized Wronskian relation

v(x)w′(x)− v′(x)w(x) = 1.

Seeking for a representation w = vz, one gets that

v2z′ = 1⇒ z =
∫
dx

v2
⇒ w = v

∫
dx

v2
= x e−x/2

∫
ex

x2
.

Moreover, from formulas 8.212 of [GR65],
∫
ex

x2
= −e

x

x
+
∫
ex

x
= −e

x

x
+ Ei(x),

where Ei(x) is the Exponential-integral function. It follows that

w(x) = −ex/2 + x e−x/2 Ei(x).

Furthermore, from formulas 8.214 of [GR65],

Ei(x) = ln |x|+
∞∑

j=1

xj

j · j! ,

and as a consequence

w(x) = −1 + Cx+ x ln |x|+O(|x|), |x| → 0.

This second function w is bounded, but however non regular at origin. It shows the subtle-
ties associated with the singular Whittaker equation (4.4). Nevertheless the general form
of the y-component of the electric field in the case of the Budden problem is bounded

Ey = av + bw ⇒ Ey ∈ L∞(]− ǫ, ǫ[) ∀ǫ > 0,

but the x-component of the electric field is more singular. It is a linear combination of two
functions, the first one which is regular and bounded

Evx(x) = i

√
x2 − x4 + 1

x
v(x) = ie−

x
2

√
x2 − x

4
+ 1,

and the second one which is singular at the origin since w(0) = −1

Ewx (x) = i

√
x2 − x4 + 1

x
w(x).

Since for this second solution Ewx 6∈ L2(]− ǫ, ǫ[), the electric field is not a square integrable
function in general.

For that reason, it is necessary to develop a different approach to study the general
solution of the problem.

4.3 Theoretical tools

This section describes the regularized system that will be studied in order to define
a solution to the initial system (4.1), together with a convenient integral representation.
Some basic properties of the integral representation follow.
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4.3.1 Limit absorption principle and Fourier transform

In order to give a rigorous meaning to the solution at all incidences, a regularized ap-
proach is developed. It is based on the limit absorption principle, a standard mathematical
principle to give a meaning to ill-posed problems. It can be understood adding a term to
the initial Newton law modeling the friction of the electrons on the ions, see [Des] : µ
would then be a small collision frequency. Consider a parameter µ 6= 0 (the precise sign
will be justified later) and the regularized problem with unknown (Eµx , E

µ
y ,W

µ)




W µ +∂yEµx −∂xEµy = 0,
∂yW

µ −(α(x) + iµ)Eµx −iγ(x)Eµy = 0,
−∂xW µ +iγ(x)Eµx −(α(x) + iµ)Eµy = 0.

(4.5)

Such a system is well-posed thanks to the result of Chapter 3.
A further simplification consists in Fourier reduction. Since the coefficients do not

depend on the y variable, one can perform the usual one dimension reduction. The next
system is obtained by applying the Fourier transform to the regularized system (4.5).
Denoting the unknowns (U, V,W ) it yields





W +iθU −V ′ = 0,
iθW −(α(x) + iµ)U −iγ(x)V = 0,
−W ′ +iγ(x)U −(α(x) + iµ)V = 0.

(4.6)

Here the notation ′ refers to the derivative with respect to the x variable.
Note that this last system (4.6) is then a first order system of three equations depending

on only one space space variable. Since no derivative of the U component appears, this
component is likely to be more singular. Indeed, as was stated in Theorem 4.1.1, the
singularity of the solution only concerns the Ex component of the electric field.

4.3.2 A general integral representation

A historical presentation of integral equations was taught by Volterra at the beginning
of the twentiest century, see [Vol10]. A more modern and more classical presentation is to
be found in [Tri85].

Some definitions are useful to set clearly the next Proposition 4.1.

Definition 2. Denote by (Aµ, Bµ) the two fundamental solutions of the modified equation

− u′′ − (α(x) + iµ)u = 0, (4.7)

with the usual normalization

Aµ(0) = 1, A′µ(0) = 0 and Bµ(0) = 0, B′µ(0) = 1. (4.8)

The associated kernel kµ is defined by

kµ(x, z) = Bµ(z)Aµ(x)−Bµ(x)Aµ(z). (4.9)

Various continuity estimates of Aµ and Bµ are derived in appendix A.1 for the sake of
the completeness of this work.

Any couple of independent solutions could be considered in the sequel. However, this
choice of normalization at the resonance point will be convenient with respect to the
fore coming integral representation properties. Moreover, since it does not depend on the
parameter µ it is convenient considering the limit µ → 0 : the functions Aµ=0 and Bµ=0

are independent solutions of the limit equation −u′′ − α(x)u = 0.



52 Chapter 4. Hybrid resonance in planar geometry

Definition 3. The operator Dθz is iθ∂z − iγ(z)Id applied to any function h, that is

Dθzh = iθ∂zh− iγ(z)h. (4.10)

Definition 4. For some point G ∈ R, the kernel function is defined by

Kθ,µ1 (x, z;G) =





DθxDθzkµ(x, z)
α(x) + iµ

, for G ≤ z ≤ x or x ≤ z ≤ G,
0, in all other cases.

(4.11)

Then the kernel sequence is defined by

Kθ,µn+1(x, z;G) =
∫ x

G

DθxDθzkµ(x, t)
α(x) + iµ

Kθ,µn (t, z;G)dt. (4.12)

The sum is denoted

Kθ,µ(x, z;G) =
∞∑

n=0

Kθ,µn+1(x, z;G) (4.13)

and define the resolvent kernel.

The integration domain is centered on G, that is

supp
(
Kθ,µ1 (·, ·;G)

)
⊂
{

(x, y) ∈ R
2; G ≤ z ≤ x or x ≤ z ≤ G

}
≡ DG, (4.14)

which yields as well
supp

(
Kθ,µ(·, ·;G)

)
⊂ DG.

Proposition 4.1. Any triplet (U, V,W ) solution of the regularized system (4.6) admits
the following integral representation.
• Set first an arbitrary reference point G ∈ [−L,∞[.
• The x component of the electric field is solution of the integral equation

U(x)−
∫ x

G

DθxDθzkµ(x, z)
α(x) + iµ

U(z)dz =
F θ,µG (x)
α(x) + iµ

, (4.15)

where the right hand side is defined by

F θ,µG (x) = aGDθxAµ(x) + bGDθxBµ(x) (4.16)

and the kernel is defined thanks to (4.9-4.10). The solution of this kind of integral
equation is naturally provided by the resolvent integral formula

U(x) =
F θ,µG (x)
α(x) + iµ

+
∫ x

G
Kθ,µ(x, z;G)

F θ,µG (z)
α(z) + iµ

dz (4.17)

where the resolvent kernel was defined in (4.12).
• The y component of the electric field is recovered as

V (x) = aGAµ(x) + bGBµ(x) +
∫ x

G
Dθzkµ(x, z)U(z)dz, (4.18)

and the vorticity is recovered as

W (x) = aGA
′
µ(x) + bGB

′
µ(x) +

∫ x

G
∂xDθzkµ(x, z)U(z)dz. (4.19)
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• The two complex numbers (aG, bG) solve the linear system

{
aGAµ(G) + bGBµ(G) = V (G),
aGA

′
µ(G) + bGB

′
µ(G) = W (G).

(4.20)

Proof. Eliminating W from the first and third equations of (4.6) gives

−V ′′ − (α+ iµ)V = f with f = −iθU ′ − iγU.

Since the Wronskian is constant, it follows from the normalization (4.8) that AµB′µ −
A′µBµ = 1. Then, from the variation of constants formula,

V (x) = afAµ(x) + bfBµ(x) +
∫ x

G
f(z)kµ(x, z)dz, ∀x ≥ −L, (4.21)

where af and bf are two integration constants. Now replace f by the corresponding function
of U and perform the integration by part

∫ x

G
U ′(z)kµ(x, z)dz = U(x)kµ(x, x)− U(G)kµ(x,G) −

∫ x

G
U(z)∂zk

µ(x, z)dz.

Since kµ(x, x) = 0 there is a simplification. Therefore (4.21) yields (4.18) with aG =
af + iθU(G)Bµ(G) and bG = bf − iθU(G)Aµ(G). Next eliminate W from the first and
second equations of (4.6) shows that

− iθV ′ − θ2U + (α+ iµ)U + iγV = 0. (4.22)

The derivative of (4.18) yields

V ′(x) = aGA
′
µ(x) + bGB

′
µ(x) +

∫ x

G
∂xDθzkµ(x, z)U(z)dz +Dθzkµ(x, x)U(x).

Since Dθzkµ(x, x) = iθ
(
AµB

′
µ −BµA′µ

)
(x) = iθ, one gets the identity

V ′(x) = aGA
′
µ(x) + bGB

′
µ(x) +

∫ x

G
∂xDθzkµ(x, z)U(z)dz + iθU(x).

The integral equation (4.15) then stems from plugging this expression in (4.22) and
performing all simplifications. Finally, one gets the last integral formula (4.19) from
W = −iθU + V ′. The linear system (4.20) is obvious from (4.18)-(4.19) at x = G.

Following [Pic11], the equation (4.15) is an integral equation of the third kind in the
case µ = 0. In this case the theory is rather incomplete regarding existence and uniqueness
[BW73]. However as long as µ 6= 0, the solution based on these integral equations is
uniquely defined. Then, the question is to determine the behavior of these solutions when
µ goes to 0. Moreover, different choices of G will give different kind of information. A
strategy to study of the limit solution µ→ 0 can be the following : Choose an optimal G,
so that a) the integration constants (aG, bG) are easy to determine, and b) the resolvent
kernel Kθ,µ(·, ·;G) admits a limit as µ→ 0.

Considering the form of the right hand side in (4.17), a convenient tool is the Plemelj-
Privalov Theorem [Mus92, Pri56]. Unfortunately, a fundamental singularity of the kernel
Kθ,µ(·, ·;G), topic of Subsection 4.3.3, prevents any simple limit procedure. A more conve-
nient technique will be proposed in Section 4.4.
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4.3.3 Singularity of the kernels

A fundamental tool in order to pass to the limit in singular integrals is the Plemelj-
Privalov Theorem [Mus92, Pri56]. As a reminder, it can be stated as follows.

Theorem 4.3.1. Let y 7→ ϕ(y) be a function of Holder class (0 < α < 1) on the closed
contour y ∈ C. Then the function

y 7→ sϕ(y) = lim
µ→0+

∫

C

ϕ(y)− ϕ(t)
y + iµ− t dt

is well defined and is also of Holder class (0 < α < 1).

More details are to be found in the appendix.
However, to apply this theorem to pass to the limit µ → 0 in equation (4.17) it is

necessary that the kernel Kθ,µ(x, z) be a Hölder continuous function of z for each fixed x.
Unfortunately, this regularity is not available in the case studied here.

To illustrate this phenomenon, we study only the first term of the series (4.12) that
defines Kθ,µ, namely

Kθ,µ1 (x, z) :=
DθxDθzkµ(x, z)
α(x) + iµ

. (4.23)

The study of the singularity depends on the choice of G to be zero or not.

First case : G 6= 0

In this case there exists (0, z) ∈ DG with z 6= 0. In the limit case µ = 0 one has that
Kθ,01 (x, z) admits the local expansion :

Kθ,01 (x, z) ≈ 1
x α′(0)

DθxDθz k0(x, z).

Therefore, Kθ,01 (x, z) blows up as x→ 0.

Second case : G = 0

Here is a preliminary result on the kernel kµ evaluated on the diagonal {(x, x) ∈
R

2 such that x ≥ −L}.
Proposition 4.2. One has

(DθxDθzkµ)(x, x) = 0 ∀x ≥ −L. (4.24)

Proof. Indeed by construction

(DθxDθzkµ)(x, x) = −γ(x)γ(x)kµ(x, x)

+θ γ(x) ((∂xk
µ)(x, x) + (∂zk

µ)(x, x)) − θ2(∂x∂zk
µ)(x, x).

Notice that by definition kµ(x, x) = 0 for all x so the first contribution vanishes in
(DθxDθzkµ)(x, x). One also has that

(∂xk
µ)(x, x) + (∂zk

µ)(x, x)

= Bµ(x)A′µ(x)−B′µ(x)Aµ(x) +B′µ(x)Aµ(x)−Bµ(x)A′µ(x) = 0,

so, the second contribution vanishes as well. Furthermore,

(∂x∂zk
µ)(x, x) = B′µ(x)A′µ(x)−B′µ(x)A′µ(x) = 0.

This completes the proof of identity (4.24).
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Proposition 4.3. The limit kernel

DθxDθzkµ=0(x, z)
α(x)

belongs to L∞
(
D0 ∩ {x ∈ [−L,H] \ {Â 0Â }}

)
.

Proof. A first order Taylor expansion of DθxDθzkµ around 0 yields

DθxDθzkµ(x, z) = αµx+ βµz +O(|x|2 + |z|2).

Notice that (4.24) implies βµ = −αµ. The coefficient αµ is easily computed using

(DθxDθzkµ)(x, 0) = DθxAµ(x)DθzBµ(0)−DθxBµ(x)DθzAµ(0)

and the definition (4.7-4.8). One gets that
{
DθxAµ(x) = −iγ(0) − iγ′(0)x + θµx+O(x2),
DθxBµ(x) = iθ − iγ(0)x+O(x2).

So
(DθxDθzkµ)(x, 0) =

(−iγ(0)− iγ′(0)x+ θµx+O(x2)
)
iθ

− (iθ − iγ(0)x +O(x2)
)

(−iγ(0))
=
(
γ(0)2 + θγ′(0) + iθ2µ

)
x+O(x2).

This coefficient αµ being constant, one obtains that

ϕx(z) :=
DθxDθzkµ=0(x, z)

α(x)
=

(
γ(0)2 + θγ′(0)

)
(x− z) +O(|x|2 + |z|2)
α(x)

. (4.25)

This expansion is valid for (x, z) ∈ D0,see (4.14) for its definition : in this case |x−z| ≤ |x|
and |z| ≤ |x|. Moreover, since α(x) = x(α′(0) +O(1)) we obtain that

|ϕx(z)| ≤
∣∣γ(0)2 + θγ′(0)

∣∣
√
α′(0)2

+O(|x|).

Since there is no such difficulty for x away from 0, this inequality ends the proof of the
proposition.

Remark 2. A similar property holds for the kernel Kθ,µ1 (x, z) = DθxDθzkµ(x,z)
α(x)+iµ which belongs

to L∞ (D0 ∩ {x ∈ [−L,H]}) for all θ and uniformly for µ ∈ [−1, 1] \ {0}, that is
∥∥∥∥∥
DθxDθzkµ(x, z)
α(x) + iµ

∥∥∥∥∥
L∞(D0∩{x∈[−L,H]})

≤ Cθ, ∀µ ∈ [−1, 1] \ {0}. (4.26)

Such an estimate is sufficient to control some L∞ bounds of the series that defines the
iterated kernel Kθ,µ(x, z; 0) :

∣∣∣Kθ,µn+1(x, z; 0)
∣∣∣ =

∣∣∣∣∣

∫ x

0

DθxDθzkµ(x, t)
α(x) + iµ

Kθ,µn (t, z; 0)dt

∣∣∣∣∣ ,

≤ Cn+1
θ

∫

0<x1<···<xn<x

∏

1≤i≤n
dxi

︸ ︷︷ ︸
xn

n!

,
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Figure 4.5 – Abstract of the Table of Contents from Volterra’s Leçons sur les équations
intégrales et les équations intégro-différentielles, [Vol10].

so that ∣∣∣Kθ,µ(x, z; 0)
∣∣∣ =

∣∣∣∣∣

∞∑

n=0

Kθ,µn+1(x, z; 0)

∣∣∣∣∣ ≤ Cθ
(
eCθH − 1.

)

However, L∞ bounds are not sufficient to show that Kθ,µ(x, z; 0) is of Hölder class in z
in the vicinity of x = 0 : that is, one cannot pass to the limit using the Plemelj-Privalov
Theorem for all values of the parameters involved in (4.12, 4.17). This is why another
approach is developed hereafter to give a meaning to the limit value.

Remark 3. Equation (4.15) is a classic second kind Volterra equation, that reads

f(x) = u(x) +
∫ x

0
K(x, ξ)u(ξ)dξ.

Volterra himself considered continuous kernels K, see his notes from 1910 [Vol10]. He
discussed the notion of functions that depend on other functions - see Figure 4.5 - and at
that time could only use Riemann integrals. But the classical framework for such integral
equations described for instance in [Tri85] is to consider L2 kernels and functions - see
Figure 4.6. A further result shows that if f belongs to Lp and K belongs to L∞, then
u belongs to Lp as well. An appropriate version of Gronwall’s inequality to be found in
[Bee69] indeed shows that

|u(x)| ≤ |f(x)|+
∫ x

0
|S(x, ξ)| |f(ξ)|dξ,

where S stands for the resolvent kernel ofK, then the result yields from Holder’s inequality.

4.4 The space X
θ,µ (µ 6= 0)

The solutions of the integral equations described in Proposition 4.1 belong to a vectorial
space of dimension two : see also (4.29). The aim of this section is to define a basis of
this vectorial space. To define the two convenient basis functions, two aspects will be
considered :
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Figure 4.6 – Abstract from Tricomi’s book Integral equations, [Tri85].
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• the behavior at infinity x =∞,

• the behavior at the origin x = 0.

For the sake of simplicity, the parameter µ is restricted to 0 < µ ≤ 1 without loss of
generality. The extension to negative values of µ will be considered in Section 4.6.4. Define
the vectorial space of all solutions of the X-mode equations

X
θ,µ = {x 7→ (U(x), V (x),W (x)) , for all solutions of the system (4.6)} . (4.27)

One may also use the notation

Uθ,µ = (U θ,µ, V θ,µ,W θ,µ) ∈ X
θ,µ.

The fact that dim X
θ,µ = 2 is also evident considering the right hand side of the

integral equation (4.15).

Definition 5. Define the matrix Aθ,µ by

Aθ,µ(x) =




θγ(x)
α(x)+iµ 1− θ2

α(x)+iµ
γ(x)2

α(x)+iµ − α(x)− iµ − θγ(x)
α(x)+iµ


. (4.28)

By elimination of U θ,µ in (4.6), one gets a system of two coupled ordinary differential
equations

d

dx

(
V θ,µ

W θ,µ

)
= Aθ,µ(x)

(
V θ,µ

W θ,µ

)
. (4.29)

In the case µ 6= 0 the matrix is non singular for all x, which gives a meaning to the
regularized problem. One notices the matrix is singular for µ = 0.

The Wronskian of two solutions will be used to ensure their linear independence.

Lemma 4.4. Take two solutions
(
V θ,µ,W θ,µ

)
and

(
Ṽ θ,µ, W̃ θ,µ

)
of (4.29). Define the

Wronskian

W(x) = V θ,µ(x)W̃ θ,µ(x)−W θ,µ(x)Ṽ θ,µ(x). (4.30)

Then the Wronskian is constant

W(x) =W(0), ∀x.

Proof. The system (4.29) main be rewritten as

d

dx

(
V
W

)
=

(
a b
c −a

)(
V
W

)
.

Therefore
d

dx
W =

d

dx

(
V (x)W̃ (x)−W (x)Ṽ (x)

)

= (aV + bW ) W̃ + V
(
cṼ − aW̃

)
− (cV − aW ) Ṽ −W

(
aṼ + bW̃

)
= 0

since all terms cancel each other.
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4.4.1 Behavior at infinity

Thanks to hypothesis (H3), for x ≥ H the model is simplified. In fact, it corresponds
to a system as in (4.29) with constant coefficients, which matrix will be denoted Aθ,µ∞ . As
a consequence the solution will be explicitly described for x ≥ H.

Proposition 4.5. The matrix Aθ,µ∞ has two distinct eigenvalues. The first eigenvalue λθ,µ

has a positive real part. The second eigenvalue is −λθ,µ.
Proof. The eigenvalues are solution to the characteristic equation

λ2 − tr(Aθ,µ∞ )λ+ det(Aθ,µ∞ ) = 0

where tr(Aθ,µ∞ ) = 0 and

det(Aθ,µ∞ ) = α∞ + iµ− θ2 − γ2
∞

α∞ + iµ
.

The real part is

real
(
det(Aθ,µ∞ )

)
= α∞ − θ2 − γ∞α∞

α2∞ + µ2
= α∞

(
1− γ2

∞
α2∞ + µ2

)
− θ2

and is therefore negative due to the coercivity assumption (H4). So the usual square root

λθ,µ =
√
−det(Aθ,µ∞ ) has a positive real part. The other one has a negative real part.

As a consequence any U ∈ X
θ,µ is at large scale a linear combination of an exponential

increasing function and an exponential decreasing function

U(x) = c+R+e
λθ,µx + c−R−e

−λθ,µx H ≤ x (4.31)

where R+ ∈ C
3 and R− ∈ C

3 are constant vectors and (c+, c−) ∈ C
2 are arbitrary

complex numbers. Regarding the structure of the matrix and using the second equation
of the system (4.6), one gets that R+ = (r1

+, r
2
+, r

3
+) with

r1
+ =

iθr3
+ − iγ(H)r2

+

α(H) + iµ
, r2

+ = 1− θ2

α(H) + iµ
, r3

+ =
√
−det(Aθ,µ∞ )− θγ(H)

α(H) + iµ
.

The other vector R− = (r1
−, r

2
−, r

3
−) is characterized by

r1
− =

iθr3
− − iγ(H)r2

−
α(H) + iµ

, r2
− = 1− θ2

α(H) + iµ
, r3
− = −

√
−det(Aθ,µ∞ )− θγ(H)

α(H) + iµ
.

One notices that R+ and R− are well defined for all µ ∈ R, in particular even for µ = 0.

4.4.2 The first basis function

The first basis function

Uθ,µ1 =
(
U θ,µ1 , V θ,µ1 ,W θ,µ1

)
∈ X

θ,µ (4.32)

is the natural one that vanishes at the origin : U θ,µ1 (0) = 0. For that reason G is chosen to
be the origin in this subsection, so that the corresponding integral equation has a bounded
right-hand side and a bounded kernel. It is naturally characterized by

V θ,µ1 (0) = iθ, and W θ,µ1 (0) = iγ(0) (6= 0). (4.33)
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Proposition 4.6. The basis function (4.32) is uniformly bounded with respect to µ : for
any θ ∈ [θ−, θ+] any interval, and any H ∈]L,∞[, there exists a constant C independent
of µ such that

∥∥∥U θ,µ1

∥∥∥
L∞(−L,H)

+
∥∥∥V θ,µ1

∥∥∥
L∞(−L,H)

+
∥∥∥W θ,µ1

∥∥∥
L∞(−L,H)

≤ C. (4.34)

Proof. The right hand side in the integral equation (4.15) is

gµ(x) =
hµ(x)

α(x) + iµ
with hµ(x) = iθDθxAµ(x) + iγ(0)DθxBµ(x).

With the choice (4.32) one has

hµ(0) = iθ(−iγ(0)) + iγ(0)(iθ) = 0 ∀µ.

Therefore the right hand side of the integral equation

gµ(x) =
hµ(x)− hµ(0)
α(x) + iµ

is bounded in L∞(−L,H)) uniformly with respect to µ. The solution U θ,µ1 (4.17) is also
bounded, since from Subsection 4.2 the kernel Kθ,µ(x, z, 0) is also uniformly bounded.
These bounds are uniform with respect to µ. The integral representation (4.18) of the V θ,µ1

yields that V θ,µ1 is also bounded. The boundedness of W θ,µ1 stems from similar arguments
and from the integral representation (4.19).

Proposition 4.7. The first basis function (4.32) is exponentially growing at large scale
(µ 6= 0).

Proof. For the sake of simplicity, denote Uθ,µ1 = (U1, V1,W1), dropping the θs and µs.
Then from system (4.6) one gets





W1 +iθU1 −V ′1 = 0,
iθW1 −(α+ iµ)U1 −iγV1 = 0,
−W ′1 +iγU1 −(α+ iµ)V1 = 0.

Multiplying the second equation by U1 and the third one by V1, the sum reads

iθW1U1 −W ′1V1 −
(
α|U1|2 + α|V1|2 + iγV1U1 − iγU1V1

)
− iµ

(
|U1|2 + |V1|2

)
= 0.

On the other hand an integration over the interval ]M,N [ yields

∫ N

M

(
iθW1U1 −W ′1V1

)
dx

=
∫ N

M

(
iθW1U1 +W1V1

′)
dx−W1(N)V1(N) +W1(M)V1(M)

=
∫ N

M
|W1|2dx−W1(N)V1(N) +W1(M)V1(M),

thanks to the first equation of the system. As a result

∫ N

M

(
|W1|2 − α|U1|2 − α|V1|2 − iγV1U1 + iγU1V1

)
dx− iµ

∫ N

M

(
|U1|2 + |V1|2

)
dx (4.35)
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= W1(N)V1(N)−W1(M)V1(M).

Splitting between the real and imaginary parts, one gets the important relation

µ

∫ N

M

(
|U1|2 + |V1|2

)
dx = Im

(
W1(M)V1(M)

)
− Im

(
W1(N)V1(N)

)
(4.36)

which holds in fact for any element (U, V,W ) in X
θ,µ and for any M < N .

For M = 0 it reads V1(0) = θ
γ(0)W1(0) and Im

(
W1(M)V1(M)

)
= 0. Therefore

µ

∫ N

M

(
|U1|2 + |V1|2

)
dx = −Im

(
W1(N)V1(N)

)
.

It shows that W1(N)V1(N) 6→ 0 for N →∞. In other words the first basis function does
not decrease exponentially at infinity. Considering (4.31) it means that this function is
exponentially increasing at infinity.

4.4.3 The second basis function

The eigenvalue −λθ,µ corresponds to the physical behavior of a wave absorbed in the
coercive zone x ≥ H. The second basis function is meant to combine the associated non
propagative behavior at infinity with a normalization at the origin that will ensure the
linear independence with the first basis function, uniformly with respect to µ.

As a consequence, the second basis function

Uθ,µ2 = (U θ,µ2 , V θ,µ2 ,W θ,µ2 ) ∈ X
θ,µ

is built with two requirements.
• It is exponentially decreasing at infinity, that is

Uθ,µ2 (x) = c−R−e−λ
θ,µx, H ≤ x, (4.37)

for some c− ∈ C.
• Its value at the origin is normalized with the requirement

iµUθ,µ2 (0) = 1. (4.38)

To ensure that these conditions are compatible, consider the third function

Uθ,µ3 = (U θ,µ3 , V θ,µ3 ,W θ,µ3 )(x) = R−e
−λθ,µx H ≤ x, (4.39)

where R− and λ− are defined in Section 4.4.1, smoothly extended so that Uθ,µ3 ∈ X
θ,µ.

The identity

µ

∫ N

M

(
|U θ,µ3 |2 + |V θ,µ3 |2

)
dx

= Im
(
W θ,µ3 (M)V θ,µ3 (M)

)
− Im

(
W θ,µ3 (N)V θ,µ3 (N)

)

with N →∞ and M = 0 shows that

µ

∫ ∞

0

(
|U θ,µ3 |2 + |V θ,µ3 |2

)
dx = Im

(
W θ,µ3 (0)V θ,µ3 (0)

)
.
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However, from (4.6), V θ,µ3 (0) = θ
γ(0)W3(0)− µ

γ(0)U
θ,µ
3 (0), so one gets

µ

∫ ∞

0

(
|U θ,µ3 |2 + |V θ,µ3 |2

)
dx = − µ

γ(0)
Im
(
W θ,µ3 (0)U θ,µ3 (0)

)
.

Since γ(0) 6= 0, it shows that U θ,µ3 (0) 6= 0. This is why it is always possible to consider a
renormalized function

Uθ,µ2 = c−Uθ,µ3 , c− =
1

iµUθ,µ3 (0)
(4.40)

so as to enforce (4.38).

Proposition 4.8. With the normalizations (4.33) and (4.37-4.38), the Wronskian relation
reads

V θ,µ1 (x)W θ,µ2 (x)−W θ,µ1 (x)V θ,µ2 (x) = 1 ∀x ≥ −L. (4.41)

Proof. It is sufficient to compute the Wronskian at the origin

V θ,µ1 (0)W θ,µ2 (0) −W θ,µ1 (0)V θ,µ2 (0) = iθW θ,µ2 (0)− iγ(0)V θ,µ2 (0)

= (α(0) + iµ)U θ,µ2 (0) = iµUθ,µ2 (0) = 1

using (4.6) and thanks to (4.38).

Remark 4. The value of the Wronskian (4.41) is independent of µ. It will be of major
interest in the limit regime µ→ 0.

The non zero Wronskian (4.41) shows that the two basis functions are indeed linearly
independent. So they span the whole space

X
θ,µ = Span

{
Uθ,µ1 ,Uθ,µ2

}
, µ > 0.

4.5 Singularity continuity estimates

The integral equation (4.15) is singular at the limit. By comparison with the standard
literature [Tri85, Mus92, Vek67b, DL85, Pic11, BW73, Shu97] no immediate convenient
mathematical tool to analyze its properties can be found. That is why the following new
continuity estimates with respect to the parameters of the problem are developed.

The careful analysis of the singularity that follows will be used in the next section to
show that one basis function - more precisely its U component - is the sum of a singular
part 1

α(x)+iµ plus a term which is bounded in Lp (1 ≤ p < ∞) uniformly with respect to
µ.

Consider a general solution U = (U, V,W ) ∈ X
θ,µ of the integral equation (4.15) with

prescribed data in H under the form

V (H) = aH and W (H) = bH .

Introduce the compact notation

‖H‖ = |aH |+ |bH | .

The underlying idea is to obtain some sharp continuity estimates on the solution U with
respect to ‖H‖. The main point is to bound the constants uniformly with respect to
0 < µ ≤ 1. The reference point can be different from H as well, but not equal to zero.
Once these continuity estimates are proved, they will provide enough information to define
the limit µ→ 0 of the second basis function.
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Proposition 4.9. There exists a constant Cθ continuously depending on θ such that

|U(x)| ≤ Cθ√
r2x2 + µ2

‖H‖, 0 < x ≤ H. (4.42)

Proof. Consider

γθ =

(
sup

0≤µ≤1
‖Aµ‖W 1,∞(0,H) + sup

0≤µ≤1
‖Bµ‖W 1,∞(0,H)

)
(‖γ‖∞ + |θ|).

The integral equation (4.15) with G = H implies that

|U(x)| ≤ γθ‖H‖√
r2x2 + µ2

+
∫ H

x

|DθxDθzk(x, z)|√
r2x2 + µ2

|U(z)|dz,

where (H2) is used. Since DθxDθzk(x, x) = 0 for all x, there exists a constant βθ such that

∥∥∥DθxDθzk(x, z)
∥∥∥
L∞]0,H[

≤ βθ|x− z| ≤ βθz for 0 ≤ x ≤ z.

So √
r2x2 + µ2|U(x)| ≤ γθ‖H‖+ βθ

∫ H

x
z|U(z)|dz

and

rx|U(x)| ≤ γθ‖H‖+ βθ

∫ H

x
z|U(z)|dz, 0 ≤ x ≤ H.

The Gronwall lemma is useful to study this inequality. Indeed set g(x) =
∫H
x |zU(z)|dz, so

that the previous inequality reads

−rg′(x) ≤ γθ‖H‖+ βθg(x).

Therefore 0 ≤ γθ‖H‖+ rg′(x) + βθg(x), that is

0 ≤ γθ‖H‖e
βθ
r
x + r

(
e
βθ
r
xg(x)

)′
.

Next an integration on the interval [x,H] together with the fact that g(H) = 0 by definition
yields

0 ≤ γθ‖H‖
e
βθ
r
H − e

βθ
r
x

βθ
r

− re
βθ
r
xg(x),

that is

g(x) ≤ e
βθ
r

(H−x) − 1
βθ

γθ‖H‖. (4.43)

Finally one checks that

√
r2x2 + µ2|U(x)| ≤ γθ‖H‖+ βθg(x) ≤ e

βθ
r

(H−x)γθ‖H‖,

which proves (4.42).
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4.5.1 A preliminary comment

Next define ‖0‖ = |V (0)|+ |W (0)|.

Proposition 4.10. There exists a constant Cθ with continuous dependence with respect
to θ such that

‖0‖ ≤ Cθ(1 + | lnµ|)‖H‖. (4.44)

Proof. The same notation as above are adopted. The integral expression of V (4.18)
with G = H yields the inequality

|V (0)| ≤ γθ ‖H‖+

∣∣∣∣∣

∫ H

0
Dθzk(0, z).U(0)

∣∣∣∣∣ dz

Notice that Dθzk(0, z) =
(
Dθzk(0, z) −Dθzk(0, 0)

)
+Dθzk(0, 0). Since

Dθzk(0, 0) = iθ∂zk(0, 0) − iγk(0, 0) = iθ

one gets ∣∣∣Dθzk(0, z) − iθ
∣∣∣ ≤ ηθ|z|

for some constant ηθ > 0. It gives

|V (0)| ≤ γθ ‖H‖+ ηθ

∫ H

0
z|U(z)|dz

︸ ︷︷ ︸
Q

+|θ|
∣∣∣∣∣

∫ H

0
U(z)dz

∣∣∣∣∣
︸ ︷︷ ︸

R

.

By (4.42) Q ≤ Cθ‖H‖, and moreover

R :=

∣∣∣∣∣

∫ H

0
U(z)dz

∣∣∣∣∣ ≤ Cθ‖H‖
∣∣∣∣∣

∫ H

0

1
r|x|+ µ

dz

∣∣∣∣∣ ≤ Cθ‖H‖| ln µ|.

This completes the proof for |V (0)|. The term |W (0)| is bounded with the same method
starting from the integral (4.19) and using the identity ∂xDθzkµ(x, x) = iγ(z)Aµ(z).

An interesting question is the following. Consider the integral equation (4.15) with
G = 0. That is the starting point of the integral is the singularity. One may wonder if a
direct use of the Gronwall lemma may yield valuable estimates, or not. It appears that a
pollution with log µ terms render the result of little interest.

Firstly consider for simplicity 0 ≤ x. Then (4.15) with G = 0 turns into

|U(x)| ≤ Cθ
‖0‖√

r2x2 + µ2
+ C

∫ x

0
|U(z)| dz, (4.45)

equation 4.26) providing a bound for the kernel. The constant Cθ > 0 is chosen large
enough. Set h(x) =

∫ x
0 |U(z)| dz so that

h′(x) ≤ Cθ
‖0‖√

r2x2 + µ2
+ Cθh(x).

Since h(0) = 0 the Gronwall lemma yields the inequality

h(x) ≤ C ′θ
∫ x

0

‖0‖
|z|+ |µ|dz
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that is after integration (0 ≤ x ≤ H) |h(x)| ≤ C ′′θ ‖0‖ (1 + | lnµ|) , for some constant
C ′′θ > 0 with continuous dependence with respect to θ. Considering the bound (4.44) and
the symmetry between 0 < x and x < 0 in the integral (4.15) (with G = 0) one obtains
the estimate ∣∣∣∣

∫ x

0
U(z)dz

∣∣∣∣ ≤ C ′′′θ ‖H‖ (1 + | lnµ|)2 , −L ≤ x ≤ H. (4.46)

Going back to (4.45) which is easily generalized to x < 0, one gets

|U(x)| ≤ Cθ
(

1√
r2x2 + µ2

+ 1 + | lnµ|
)

(1 + | lnµ|) ‖H‖, −L ≤ x ≤ H. (4.47)

By comparison of (4.42) and (4.47), it is clear that this technique generates spurious terms
of order log µ for positive x values. It spoils the possibility of having sharp estimates also
for negative x values. With this respect, the rest of this section is devoted to the obtaining
of various sharp inequalities which are free of such spurious terms.

4.5.2 Identifying the singularity

Define
Q(U) = V θ,µ1 (H)W (H)−W θ,µ1 (H)V (H). (4.48)

This quantity is the Wronskian of the current solution U against the first basis function.
Thanks to Lemma 4.4 it is then independent of the position H of the evaluation point.

Proposition 4.11. There exists a constant Cθ continuously depending on θ and a conti-
nuous function µ 7→ ǫ(µ) with ǫ(0) = 0 such that

∣∣∣∣∣ |µ| ‖U‖
2
L2(−L,H) −

∣∣∣∣∣
πQ(U)2

α′(0)

∣∣∣∣∣

∣∣∣∣∣ ≤ Cθǫ(µ)‖H‖2. (4.49)

Proof. Remark that the proof is easily adapted for negative µ.
Consider the integral equation (4.15) with G = 0. One gets

U(x) =
a0DθxA(x) + b0DθxB(x)

α(x) + iµ
+
∫ x

0

DθxDθzk(x, z)
α(x) + iµ

U(z)dz.

Here (a0, b0) are a priori different from (aH , bH). Due to Lemma 4.4 one has

Q(U) = V θ,µ1 (0)W (0) −W θ,µ1 (0)V (0)

and thanks to the normalization of U1, the second equation of system (4.6) together with
the integral representation of U with G = 0 then

Q(U) = iθW (0)− iγ(0)V (0) = iµU(0) = a0DθxA(0) + b0DθxB(0)

So the integral equation reads

U(x) =
Q(U)

α(x) + iµ︸ ︷︷ ︸
S1

(4.50)

+ a0
DθxA(x)−DθxA(0)

α(x) + iµ
+ b0
DθxB(x)−DθxB(0)

α(x) + iµ︸ ︷︷ ︸
S2

+
∫ x

0

DθxDθzk(x, z)
α(x) + iµ

U(z)dz
︸ ︷︷ ︸

S3

.
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• The L2 norm of the first term S1 depends upon the value of

Dµ =
∫ H

−L

µ

α(x)2 + µ2
dx.

The change of variable x = µw shows that Dµ =
∫ H
µ

−L
µ

1
bµ(w)2+1dw and bµ(w) = α(µw)

µ .

Using the hypothesis (H2) one has that |bµ(w)| ≥ rw, r > 0. Since
∫

R

dw

r2w2 + 1
=
π

r
<∞

and the point-wise limit of bµ(w) is α′(0)w, the Lebesgue dominated convergence
theorem states that lim0+ Dµ = π

|α′(0)| . Considering that

|Q(U)| ≤ C1
θ‖H‖ (4.51)

using (4.48), there exists a continuous function µ 7→ ǫ1(µ) with ǫ1(0) = 0 such that
∣∣∣∣∣µ‖S1‖2L2(−L−,H) −

∣∣∣∣∣
πQ(U)2

α′(0)

∣∣∣∣∣

∣∣∣∣∣ ≤ C
1
θ ǫ

1(µ)‖H‖2. (4.52)

• The functions D
θ
xAµ(x)−DθxAµ(0)
α(x)+iµ and D

θ
xBµ(x)−DθxBµ(0)
α(x)+iµ can bounded in L∞ uniformly

with respect to µ. So ∫ H

−L
|S2(z)|2dz ≤ c2

θ‖0‖2.

Estimate (4.44) yields

µ‖S2‖2L2(−L−,H) ≤ C2
θµ(1 + | lnµ|)2‖H‖2

for some constant C2
θ > 0.

• The last term S3 is

|S3(x)| =
∣∣∣∣∣

∫ x

0

DθxDθzkµ(x, z)
α(x) + iµ

U(z)dz

∣∣∣∣∣ ≤ c
θ
3

∣∣∣∣
∫ x

0
|U(z)|dz

∣∣∣∣

since the kernel is bounded (4.26) with respect to θ and uniformly for µ ∈ [0, 1].
Inequality (4.46) implies that |S3(x)| ≤ c3

θ (1 + | lnµ|)2 ‖H‖. Therefore this term is
bounded like

µ‖S3‖2L2(−L−,H) ≤ c4
θµ (1 + | lnµ|)4 ‖H‖2

for some constant c4
θ.

Adding these three inequalities completes the proof.
This result shows that the singularity will be linked to the quantity Q(U).

4.5.3 Estimate on (0, H)

The next step starts by writing the general form of the integral equation (4.15), showing
that the various singularities of the equation can be recombined under a more convenient
form. This intermediate result is essential to obtain all following results. Indeed the integral
equation for U (4.15) choosing G = 0 reads

(α(x) + iµ)U(x) = a0DθxAµ(x) + b0DθxBµ(x) +
∫ x

0
DθxDθzkµ(x, z)U(z)dz.
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Definition 6. Define the functions mθ,µ and nθ,µ such as

mθ,µ =
DθxAµ(x)−DθxAµ(0)

x
and nθ,µ =

DθxBµ(x)−DθxBµ(0)
x

.

Lemma 4.12. The integral representation of U (4.15) reads

(α(x) + iµ)U(x) = ãmθ,µ(x)x+ b̃nθ,µ(x)x+Q(U)−
∫ H

x
DθxDθzkµ(x, 0)U(z)dz (4.53)

+
∫ x

0

(
DθxDθzkµ(x, z) −DθxDθzkµ(x, 0)

)
U(z)dz, ∀x ∈ [−L,∞[.

Proof. Since by construction a0DθxAµ(0) + b0DθxBµ(0) = Q(U) one has

(α(x) + iµ)U(x) = a0

(
DθxAµ(x)−DθxAµ(0)

)
+ b0

(
DθxBµ(x)−DθxBµ(0)

)

+Q(U) +
∫ x

0
DθxDθzkµ(x, z)U(z)dz,

which has already been written in the previous proof. But one also has due to the integral
equation for V (4.18) choosing G = H

V (0) = a0 = aHAµ(0) + bHBµ(0)−
∫ H

0
Dθzkµ(0, z)U(z)dz.

Basic manipulations yield

a0 = aH −
∫ H

0

(
Dθzkµ(0, z) −Dθzkµ(0, 0)

)
U(z)dz − iθ

∫ H

0
U(z)dz

because Dθzkµ(0, 0) = iθ. Since the function Dθzkµ is continuous, there exists a constant
Cθ4 independent of µ such that

∣∣∣Dθzkµ(x, z) −Dθzkµ(x, x)
∣∣∣ ≤ Cθ4 (z − x) ≤ Cθ4z for 0 ≤ x ≤ z ≤ H.

Therefore the integral

∫ H

0

∣∣∣Dθzkµ(0, z) −Dθzkµ(0, 0)
∣∣∣ |U(z)|dz ≤ Cθ4

∫ H

0
z|U(z)|dz

is bounded uniformly with respect to µ thanks to the bound provided (4.42). It is sum-
marized as

a0 = ã− iθ
∫ H

0
U(z)dz (4.54)

where |ã| ≤ Cθ5‖H‖ is bounded uniformly with respect to µ. Similarly

b0 = bH −
∫ H

0
∂xDθzkµ(0, z)U(z)dz (4.55)

and since the function ∂xDθzkµ is continuous and ∂xDθz(0, 0) = iγ(0)

b0 = b̃− i
∫ H

0
γ(0)U θ,µ(z)dz (4.56)
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where b̃ is also bounded uniformly with respect to µ : |b̃| ≤ Cθ6‖H‖. The integral equation
then gives

(α(x) + iµ)U(x) = ã
(
DθxAµ(x)−DθxAµ(0)

)
+ b̃

(
DθxBµ(x)−DθxBµ(0)

)

+Q(U)−
∫ H

0
Q(x, z)U(z)dz +

∫ x

0
DθxDθzkµ(x, z)U(z)dz

where the new kernel is

Q(x, z) =
(
DθxAµ(x)−DθxAµ(0)

)
iθ +

(
DθxBµ(x)−DθxBµ(0)

)
iγ(0)

= DθxAµ(x)DθzBµ(0) −DθxBµ(x)DθzAµ(0) = DθxDθzkµ(x, 0)

after evident simplifications. It ends the proof.
A first property which shows that (4.53) is less singular that its initial form (4.15)

is the following lemma which uses the point wise estimate (4.42) on U (so an important
restriction is nevertheless that x > 0).

Lemma 4.13. The first component U of any element U ∈ X
θ,µ satisfies ∀x > 0

(α(x) + iµ)U(x) = pθ,µ(x)x+Q(U)−
∫ H

x
DθxDθzkµ(x, 0)U(z)dz (4.57)

where

‖pθ,µ‖L∞(0,H) ≤ Cθ‖H‖, ∀µ ∈ [0, 1]. (4.58)

Indeed, the limit µ → 0 of the term pθ,µ(x)x/(α(x) + iµ) is regular, so that the only
singularity remaining in the expression (4.57) is the one coming from Q(U) which actually
is the real singularity as suggested by Proposition 4.11.

Proof. Focus on the second integral in (4.53). Continuity properties with respect to the
second variable z imply that there exists a constant Cθ7 independent of µ such that

∣∣∣DθxDθzkµ(x, z)−DθxDθzkµ(x, 0)
∣∣∣ ≤ Cθ7z. (4.59)

So, for x ≥ 0,
∣∣∣∣
∫ x

0

(
DθxDθzkµ(x, z) −DθxDθzkµ(x, 0)

)
U(z)dz

∣∣∣∣ ≤ Cθ7
∫ x

0
z|U(z)|dz ≤ Cθ7Cθ‖H‖x

using estimate (4.42). Set

pθ,µ(x) = ãmθ,µ(x) + b̃nθ,µ(x) +
1
x

∫ x

0

(
DθxDθzkµ(x, z) −DθxDθzkµ(x, 0)

)
U(z)dz (4.60)

which satisfies by construction (4.58).
As a consequence one has the following estimate on (0,H).

Proposition 4.14. For all 1 ≤ p < ∞, there exists a constant Cθp independent of µ and
which depends continuously on θ such that

∥∥∥∥U −
Q(U)

α(·) + iµ

∥∥∥∥
Lp(0,H)

≤ Cθp‖H‖. (4.61)
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Proof. From Lemma 4.13 one has that

U(x)− Q(U)
α(x) + iµ

=
x

α(x) + iµ
pθ,µ(x)− D

θ
xDθzkµ(x, 0)
α(x) + iµ

∫ H

x
U(z)dz,

which turns into
(
U(x)− Q(U)

α(x) + iµ

)
+
DθxDθzkµ(x, 0)
α(x) + iµ

∫ H

x

(
U(z)− Q(U)

α(z) + iµ

)
dz

=
x

α(x) + iµ
pθ,µ(x)−Q(U)

DθxDθzkµ(x, 0)
α(x) + iµ

∫ H

x

1
α(z) + iµ

dz (4.62)

By virtue of (H2) notice that
∣∣∣∣∣

∫ H

x

1
α(z) + iµ

dz

∣∣∣∣∣ ≤
∫ H

x

1
|α(z)|dz ≤

1
r

log(H/x).

Since all powers of the function x 7→ ln |x| are integrable, the right-hand side (4.62) is
naturally bounded in any Lp, 1 ≤ p < ∞. Therefore the function Z(x) = U(x) − Q(U)

α(x)+iµ
is solution of an integral equation with a bounded kernel and a right hand side in Lp. The
form of this integral equation is

Z(x) + K̃θ,µ(x)
∫ H

x
Z(z)dz = bθ,µ(x)

with
∥∥∥K̃θ,µ(x)

∥∥∥
L∞(0,H)

≤ Cθ8 independently of µ. One also uses
∥∥∥bθ,µ

∥∥∥
Lp(0,H)

≤ cθp‖H‖ for

0 ≤ µ ≤ 1 : the key estimate is (4.58) which explains why the result is restricted to x > 0
. See Remark 3. Since this is a standard non-singular integral equation, see [Tri85], the
claim is proved.

4.5.4 Estimate on (−L,H)

The last result (4.61) shows that some singularities of the integral equation can be
blended in a less singular formulation, so that the leading part of U is 1

α(·)+iµ . An important
restriction of this technique, for the moment, is the need for a priori estimate (4.42) on
U . This explains why inequality (4.61) is restricted to x > 0. The goal of this section is to
extend the range of the estimates to the entire interval (−L,H).

By inspection of the structure of the algebra, it appears that one has the same kind
of inequalities on the entire interval by replacing U directly by the function 1

α(·)+iµ in the
integrals. A preliminary and fundamental result in this direction concerns the function

Dθ,µ(x) = −D
θ
xDθzkµ(x, 0)
α(x) + iµ

∫ H

0

1
α(z) + iµ

dz +
∫ x

0

DθxDθzkµ(x, z)
α(x) + iµ

1
α(z) + iµ

dz

which is nothing more than the integral part of (4.53), U being replaced by the function
1

α(·)+iµ .

Proposition 4.15. Let 1 ≤ p < ∞. One has
∥∥∥Dθ,µ

∥∥∥
Lp(−L,H)

≤ Cθp where the constant

depends continuously on θ and does not depend on µ.

Proof. Two cases occur.
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• Assume 0 ≤ x ≤ H. The analysis is similar to the one of Proposition 4.14. One has
the same kind of rearrangement (4.53), that is

Dθ,µ(x) = −D
θ
xDθzkµ(x, 0)
α(x) + iµ

∫ H

x

1
α(z) + iµ

dz

+
∫ x

0

DθxDθzkµ(x, z) −DθxDθzkµ(x, 0)
α(x) + iµ

1
α(z) + iµ

dz.

The first term is bounded like Cθ | log x|
r which is in all Lp, p <∞. The second term

is immediately bounded using (4.59) : indeed
∣∣∣∣∣

∫ x

0

DθxDθzkµ(x, z)−DθxDθzkµ(x, 0)
α(x) + iµ

1
α(z) + iµ

dz

∣∣∣∣∣

≤ Cθ7
1√

α(x)2 + µ2

∫ x

0

z√
α(z)2 + µ2

dz ≤ Cθ7
1
r2
.

• Assume −L ≤ x ≤ 0. The decomposition is slightly different and uses some cancel-
lations permitted by the symmetry properties of the kernels. One has

Dθ,µ(x) = −D
θ
xDθzkµ(x, 0)
α(x) + iµ

∫ H

−x

1
α(z) + iµ

dz

+
∫ x

0

DθxDθzkµ(x, z)
α(x) + iµ

1
α(z) + iµ

dz − D
θ
xDθzkµ(x, 0)
α(x) + iµ

∫ −x

0

1
α(z) + iµ

dz,

which emphasizes the importance of some symmetry properties of the kernels. Indeed

∫ −x

0

1
α(z) + iµ

dz = −
∫ x

0

1
α(−w) + iµ

dw

=
∫ x

0

1
α(w) + iµ

dw +
∫ x

0

(
1

−α(−w) − iµ −
1

α(w) + iµ

)
dw.

Notice that

1
−α(−w)− iµ −

1
α(w) + iµ

=
α(w) + α(−w) + 2iµ

(α(w) + iµ)(−α(−w) − iµ)
.

So, since α(0) = 0,

∣∣∣∣
1

−α(−w)− iµ −
1

α(w) + iµ

∣∣∣∣ ≤
2 ‖α‖W 2,∞(−L,H) w

2 + 2µ

r2w2 + µ2
,

because α ∈W 2,∞(−L,H). One can bound
∣∣∣∣
∫ x

0

1
−α(−w) − iµdw −

∫ x

0

1
α(w) + iµ

dw

∣∣∣∣

≤
‖α‖W 2,∞(−L,H)

r2
|x|+

∫ x

0

2µ
r2z2 + µ2

dz

≤
‖α‖W 2,∞(−L,H)

r2
max(L,H) +

∫ ∞

0

2µ
r2z2 + µ2

dz ≤
‖α‖W 2,∞(−L,H)

r2
max(L,H) +

π

r
.
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As a consequence Dθ,µ can be expressed as

Dθ,µ(x) = −D
θ
xDθzkµ(x, 0)
α(x) + iµ

∫ H

−x

1
α(z) + iµ

dz

+
∫ x

0

DθxDθzkµ(x, z) −DθxDθzkµ(x, 0)
α(x) + iµ

1
α(z) + iµ

dz +R(x)

with ‖R‖∞ (−L,H) ≤ Cθ10. The two integrals have the same structure as for the first
case. So the same result holds.

Proposition 4.16. For all 1 ≤ p <∞, there exists a constant Cθp independent of µ such
that ∥∥∥∥U −

Q(U)
α(·) + iµ

∥∥∥∥
Lp(−L,H)

≤ Cθp‖H‖. (4.63)

Proof. Equation (4.53) reads

U(x) =
Q(U)

α(x) + iµ
+

x

α(x) + iµ
p̃θ,µ(x)

−
∫ H

0

DθxDθzkµ(x, 0)
α(x) + iµ

U(z)dz +
∫ x

0

DθxDθzkµ(x, z)
α(x) + iµ

U(z)dz.

Here p̃θ,µ(x) = ãmθ,µ(x) + b̃nθ,µ(x), so that ‖p̃θ,µ‖L∞(−L,H) ≤ Cθ‖H‖ over the whole
interval (−L,H). Notice that p̃θ,µ is the first part of pθ,µ defined in (4.60). Setting u(x) =
U(x)− Q(U)

α(x)+iµ one gets

u(x)−
∫ x

0

DθxDθzkµ(x, z)
α(x) + iµ

u(z)dz

=
x

α(x) + iµ
p̃θ,µ(x)−Q(U)Dθ,µ(x)−

∫ H

0

DθxDθzkµ(x, 0)
α(x) + iµ

u(z)dz.

The left-hand side is a non singular integral operator of the second kind with and with a
bounded kernel thanks to the fundamental property (4.26). The right-hand side is bounded
in Lp with a continuous dependence with respect to ‖H‖, see Lemma 4.13, estimation
(4.51) and estimation (4.61).

4.6 Passing to the limit µ→ 0

An important result is that the first basis function admits a limit which is defined as a
continuous function in C0[−L,∞[ and is independent of the sign of µ. On the other hand
the second basis function admits a limit which is singular at x = 0. Moreover the limit
is different for µ → 0+ and for µ → 0−. The linear independence of these limits will be
establish with a transversality condition.

4.6.1 The first basis function

There is no difficulty for this case which is easily treated passing to the limit in the
integral equation (4.17), choosing G = 0. The limit basis function is referred to as

Uθ1 = (U θ1 , V
θ

1 ,W
θ
1 )
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Uθ1 is and will be called the regular solution by analogy with the terminology in scattering
on the half-line. It is defined as the solution of a limit version of (4.15), the V and W
component being defined by limit versions of (4.18) and (4.19) :





U θ1 (x)−
∫ x

0
K̄θ(x, z)U θ1 (z)dz = F̄ θ(x),

V θ1 (x) = iθA(x) + iγ(0)B(x) +
∫ x

0
Dθzk(x, z)U θ1 (z)dz,

W θ1 (x) = iθA′(x) + iγ(0)B′(x) +
∫ x

0
∂xDθzk(x, z)U θ1 (z)dz,

where

K̄θ(x, z) =





DθxDθzk(x, z)
α(x)

∀x 6= 0 and 0 ≤ z ≤ x or x ≤ z ≤ 0,

0 in all other cases,

is the limit kernel described in Proposition 4.3 and

F̄ θ(x) =





iθDθxA(x) + iγ(0)DθxB(x)
α(x)

∀x 6= 0,
(
iθDθxA+ iγ(0)DθxB

)′
(0)

α′(0)
otherwise.

The right hand side F̄ θ together with the kernel K̄θ considered in the integration domain
are continuous, because DθxA(0) = −iγ(0), DθxB(0) = iθ and see Proposition 4.3.

A preliminary pointwise convergence will be used to obtain an Lp convergence result.

Lemma 4.17. There is pointwise convergence of the first component
∥∥∥∥∥

(
U θ,µ1 (x)− F θ,µ(x)

α(x) + iµ

)
−
(
U θ1 − F̄ θ

)
(x)

∥∥∥∥∥
L∞(]−L,H[)

→ 0

which yields
∥∥∥U θ,µ1 − U θ1

∥∥∥
L∞

loc
(]−L,0[∪]0,H[)

→ 0.

As a result the other components satisfy
∥∥∥V θ,µ1 − V θ1

∥∥∥
L∞(]−L,H[)

→ 0, and
∥∥∥W θ,µ1 −W θ1

∥∥∥
L∞(]−L,H[)

→ 0.

Proof. Convergence away from zero
From the integral equations satisfied by U θ,µ1 and U θ1 one has for all x ∈ (−L,∞) and

all µ 6= 0 the following integral equation on U θ,µ1 − U θ1 :

(
U θ,µ1 − U θ1

)
(x)−

∫ x

0

DθxDθzkµ(x, z)
α(x) + iν

(
U θ,µ1 − U θ1

)
(z)dz

=
F θ,µ(x)
α(x) + iµ

− F̄ θ(x)
︸ ︷︷ ︸

T1

+
∫ x

0



DθxDθzkµ(x, z)
α(x) + iµ

− K̄(x, z)
︸ ︷︷ ︸

T2


U

θ
1 (z)dz.

(4.64)

Since the kernel of equation (4.64) is bounded, the resolvent kernel Kθ,µ is bounded, see
Remark 2.

Denote Fµ the right hand side of equation (4.64). Since F θ,µ(0) = 0 andDθxDθzkµ(0, 0) =
0, then Fµ is bounded on ]− L,H[.
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The T1 term converges pointwise to 0 at any x 6= 0 thanks to the definition of F̄ θ.
Since T2 pointwise converges to 0 and because it is bounded as indicated in Remark 2, the
dominated convergence theorem shows that the integral term in Fµ pointwise converges to
0 as long as x 6= 0 - note that it is obviously true for x = 0. Thus Fµ pointwise converges
to 0 as long as x 6= 0.

As a result, the dominated convergence theorem shows that

∣∣∣U θ,µ1 (x)− U θ1 (x)
∣∣∣ ≤ |Fµ(x)|+

∥∥∥Kθ,µ(x, z)
∥∥∥
L∞(D0∩{x∈]−L,H[})

∫ x

0
|Fµ(z)| dz

pointwise converges to zero as long as x 6= 0 as well.

Note that at x = 0, (4.64) reads U θ,µ1 (0) − U θ1 (0) = F θ,µ(0)
iµ − F̄ θ(0) = −F̄ θ(0). Then,

if F̄ θ(0) = γ′(0)θ + γ(0)2 6= 0 the pointwise convergence of U θ,µ1 − U θ1 at x = 0 does not
hold. Indeed, the term F̄ θ(0) does not depend on µ. However, if γ′(0)θ + γ(0)2 = 0 we
have pointwise convergence at x = 0 since in this case U θ,µ1 (0)− U θ1 (0) = 0 for all µ.

Convergence on ]− L,H[
Despite the last remark, a convergence in L∞(] − L,H[) can be obtained subtracting

the appropriate quantities to the first component and its limit. By (4.64)
∣∣∣∣∣

((
U θ,µ1 −

F θ,µ(x)
α(x) + iµ

)
−
(
U θ1

)
(x)− F̄ θ(x)

)∣∣∣∣∣

≤
∫ x

0

∣∣∣∣∣
DθxDθzkµ(x, z)
α(x) + iµ

∣∣∣∣∣
∣∣∣U θ,µ1 − U θ1

∣∣∣ (z)dz +
∫ x

0

∣∣∣∣∣
DθxDθzkµ(x, z)
α(x) + iµ

− K̄(x, z)

∣∣∣∣∣
∣∣∣U θ1 (z)

∣∣∣ dz

Then, by the dominated convergence theorem, the function
(
U θ,µ1 − F

θ,µ

α+iµ

)
−
(
U θ1 − F̄ θ

)

converges to zero in L∞(]− L,H[).
The convergence of V θ,µ1 andW θ,µ1 then stems from the dominated convergence theorem

again. Indeed, since





V θ,µ1 (x)− V θ1 (x) = iθ(Aµ −A)(x) + iγ(0)(Bµ −B)(x)

+
∫ x

0

(
Dθzkµ(x, z)U θ,µ1 (z)−Dθzk(x, z)U θ1 (z)

)
dz,

W θ,µ1 (x)−W θ1 (x) = iθ(Aµ −A)′(x) + iγ(0)(Bµ −B)′(x)

+
∫ x

0

(
∂xDθzkµ(x, z)U θ,µ1 − ∂xDθzk(x, z)U θ1 (z)

)
dz,

the L∞ convergence of both termsDθzkµ(x, z)U θ,µ1 (z)−Dθzk(x, z)U θ1 (z) and ∂xDθzkµ(x, z)U θ,µ1 −
∂xDθzk(x, z)U θ1 (z) on ] − L, 0[ and ]0,H[ ensures that the hypothesis of the dominated
convergence theorem are satisfied. The convergence then holds on ]−L,H[ since at x = 0
it is guaranteed by the convergence of Aµ and Bµ.

Proposition 4.18. The first basis functions satisfies for all p ∈ N
∗

∥∥∥Uθ,µ1 −Uθ1

∥∥∥
Lp(−L,H)

→ 0.

Proof. The L1 convergence is a consequence of the pointwise convergence obtained
in Lemma 4.17 thanks to the dominated convergence theorem. Moreover Proposition 4.6
yields an L∞ bound for Uθ,µ1 −Uθ1. The result is thus straightforward.

The next result establishes that Uθ1 is still - as its regularized approximation - expo-
nentially increasing at infinity with a technical condition.
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Proposition 4.19. Assume hypothesis (H5). Then Uθ=0
1 increases exponentially at infi-

nity.

Remark 5. The constant 4 in the condition (H5) is probably non optimal.

Proof. Drop the super-index ·θ=0 to simplify : that is (U1, V1,W1) stands for (U0
1 , V

0
1 ,W

0
1 ).

Consider the identity (4.35) which holds true at the limit µ = 0

∫ N

0

(
|W1|2 − α|U1|2 − α|V1|2 − iγV1U1 + iγU1V1

)
dx

= W1(N)V1(N)−W1(0)V1(0), 0 < N <∞.
Since θ = 0, then V1(0) = 0. Notice also that W1 = V ′1 , so the relation reads

∫ N

0

(
|V ′1 |2 − α|U1|2 − α|V1|2 − iγV1U1 + iγU1V1

)
dx = W1(N)V1(N).

Proceed by contradiction : assume that the function is exponentially decreasing at infinity.
It yields ∫ ∞

0

(
|V ′1 |2 − α|U1|2 − α|V1|2 − iγV1U1 + iγU1V1

)
dx = 0.

Notice that −α|U1|2 − α|V1|2 − iγV1U1 + iγU1V1 ≥ 0 for x ≥ H due to the coercivity
property (H4). Therefore it implies that

∫ H

0

(
|V ′1 |2 − α|U1|2 − α|V1|2 − iγV1U1 + iγU1V1

)
dx ≤ 0.

Next observe that U1 = −i γαV1, so that

∫ H

0

(
|V ′1 |2 +

γ2

α
|V1|2 − α|V1|2

)
dx ≤ 0.

Since V1(0) = 0 and α(x) ≈ α′(0)x with α′(0) < 0 (see hypothesis H1), it is convenient to
notice the proximity with the famous Hardy inequality that we recall,

∫ H

0

u(x)2

x2
< 4

∫ H

0
u′(x)2, u ∈ H1(0,H), u(0) = 0, u 6= 0.

Since, thanks to hypothesis (H2),

∫ H

0

γ2

|α| |V1|2 =
∫ H

0
γ2x

x

|α|
|V1|2
x2
≤ ‖γ‖

2
∞H
r

∫ H

0

|V1|2
x2

,

it yields the inequality

0 ≤
(

1− 4
‖γ‖2∞H

r

)∫ H

0
|V ′1 |2dx ≤

∫ H

0

(
|V ′1 |2 +

γ

α
|V1|2 − α|V1|2

)
dx ≤ 0,

where we used (H5). Therefore V1 vanishes on the interval [0,H]. So at that point U1

vanishes and W1 also vanishes on the interval which is not compatible with W1(0) =
iγ(0) 6= 0.

Proposition 4.20. Assume hypothesis (H5). Then Uθ1 increases exponentially at infinity.
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Denote by (U θ3 (H), V θ3 (H),W θ3 (H)) the solution to (4.6) for x > 0 that satisfies (4.39)
with µ = 0. Proof. Consider the function

η(θ) = V θ1 (H)W θ3 (H)−W θ1 (H)V θ3 (H) (4.65)

By definition

(V3(H),W3(H)) =


1− θ2

α∞
,−θγ∞

α∞
−
√

−α∞ + θ2 +
γ2∞
α∞


 e−
√
− detAθ,µ=0

∞ H .

This vector is real and always non zero. Therefore the function θ 7→ f(θ) is well defined.
This function naturally satisfies two properties :
• η(0) 6= 0 since (V 0

1 ,W
0
1 ) is exponentially increasing by virtue of the previous pro-

perty. Indeed η(0) = 0 if and only if the functions x 7→ (V 0
1 (x),W 0

1 (x)) and x 7→
(V 0

3 (x),W 0
3 (x)) are linearly dependent, which is not true.

• the function η is continuous since the first basis function is continuous wit respect
to θ.

Therefore there exists an interval around 0 in which η(θ) is non zero, which in turn yields
the fact that Uθ1 is linearly independent of Uθ3. Therefore Uθ1 is exponentially increasing.

4.6.2 The transversality condition

The transversality condition appears to be a sufficient condition of linear independence
for the limits of the two basis functions. In Section 4.9 some cases where this linear
independence is not true are studied.

Passing to the limit in the second basis function near the origin is more complicated.
Indeed the limit U θ2 is expected to satisfy U θ2 ≈ Cx for some local constant C. Therefore the
limit is singular and special care has to be provided to avoid any artifacts in the analysis.

Define the special Wronskian between the first and third basis functions

η(θ, µ) = V θ,µ1 (H)W θ,µ3 (H)−W θ,µ1 (H)V θ,µ3 (H).

It is the natural continuous extension with respect to µ of the function θ 7→ η(θ). Then
(4.40) reads

Uθ,µ2 = ξθ,µUθ,µ3 .

Plugging this relation in the Wronskian (4.41) one gets that

1 = ξθ,µη(θ, µ)

This function is continuous with respect to µ. Moreover the function defined in (4.65)
satisfies η(θ) = η(θ, 0). The transversality condition is defined as the condition

η(θ) 6= 0. (4.66)

If the transversality condition is not satisfied, that is η(θ) = 0, then by continuity |ξθ,µ| →
∞ for µ→ 0. If η(θ) = 0, then the first basis function and the third function are linearly
dependent at the limit µ = 0. It is of course possible to develop the theory in this direction,
but it is not the concern of this work. Therefore the transversality condition will always be
assumed from now on. As mentioned earlier some aspects of the case where is not satisfied
are postponed to Section 4.9.
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Proposition 4.21. Assume the transversality condition (4.66). Then for all ǫ > 0 one
has the limit ∥∥∥∥U

θ,µ
2 −

1
σ(θ)

Uθ3

∥∥∥∥
(L∞[ǫ,∞[)3

→ 0.

Proof. Evident.
In order to show that the second basis function admits a continuous limit for x < 0, the

strategy is to solve the integral equation (4.15) from G = H backward, and to show that
sharp estimates on the solution lead to information concerning the limit even for x < 0.

H
x

Condition at infinity

E
x

x=0

Figure 4.7 – Schematic representation of the real part of the limit electric field of the
second basis function U θ,µ2 , µ > 0. Here the transversality condition σ(θ) 6= 0 is satisfied,
which turns into a singular behavior at the limit µ→ 0.

4.6.3 The second basis function

The study of the second basis function for which Q(Uθ,µ2 ) = 1 will be based on conti-
nuity estimates from Section 4.5. The inequality (4.63) reads

∥∥∥∥U
θ,µ
2 −

1
α(·) + iµ

∥∥∥∥
Lp(−L,H)

≤ Cθp
(∣∣∣V θ,µ2 (H)

∣∣∣ +
∣∣∣W θ,µ2 (H)

∣∣∣
)
, (4.67)

for 1 ≤ p <∞.

Proposition 4.22. Assume the transversality condition (4.66). There exists a constant
Cθ independent of µ and continuous with respect to θ such that

∣∣∣V θ,µ2 (H)
∣∣∣+

∣∣∣W θ,µ2 (H)
∣∣∣ ≤ Cθ. (4.68)

Proof. Indeed, regarding relation (4.40), (4.41) the pair (v,w) = (V θ,µ2 (H),W θ,µ2 (H))
is solution of the linear system

{
−vW θ,µ1 (H) + wV θ,µ1 (H) = 1,
vW θ,µ3 (H)− wV θ,µ3 (H) = 0.
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The determinant of this linear system is equal to the value of the function −η(θ, µ). So
the transversality condition establishes that

det

(
−W θ,µ1 (H) V θ,µ1 (H)
W θ,µ3 (H) −V θ,µ3 (H)

)
= −η(θ, µ) 6= 0.

Therefore the solution of the linear system

v = −V
θ,µ

3 (H)
η(θ, µ)

, w = −W
θ,µ
3 (H)
η(θ, µ)

is bounded uniformly with respect to µ.

Theorem 4.6.1. Assume the same transversality condition. For any θ ∈ [θ−, θ+] any
interval, the second basis function satisfies the following estimates for some Cθp and Cθ

which are continuous with respect to θ
∥∥∥∥U
θ,µ
2 −

1
α(·) + iµ

∥∥∥∥
Lp(−L,H)

≤ Cθp , 1 ≤ p <∞, (4.69)

∥∥∥Uθ,µ2

∥∥∥
H1

loc
[−L,0)∪(0,H]

≤ Cθ. (4.70)

Proof. The first estimate is a straightforward consequence of (4.67) and (4.68). The
integral representations (4.18)-(4.19) yield

∥∥∥V θ,µ2

∥∥∥
L∞

loc
[−L,0)∪(0,H]

+
∥∥∥W θ,µ2

∥∥∥
L∞

loc
[−L,0)∪(0,H]

≤ Cθ (4.71)

for some Cθ. Then the second equation of (4.6) shows that one has the same bound for
U θ,µ2 ∥∥∥U θ,µ2

∥∥∥
L∞

loc
[−L,0)∪(0,H]

≤ Cθ. (4.72)

The bound on the derivatives follows from (4.6)

Remark 6. Set H ′ = −L. From (4.71) one gets that ‖H ′‖ is bounded uniformly as well,
therefore (4.42) can be generalized for x < 0 (resp. H ′) instead of x > 0 (resp. H). As a
summary one has for a constant Kθ that can be further specified

∣∣∣U θ,µ2 (x)
∣∣∣ ≤ Kθ

r2x2 + µ2
, x ∈ (−L,H).

Now one passes to the limit µ→ 0+.

Proposition 4.23. Assume the transversality condition. The second basis function admits
a limit in the sense of in the sense of distributions for µ = 0± as follows :

Uθ,µ2 → Uθ,±2 =
(
P.V.

1
α(x)

± iπ

α′(0)
δD + uθ,±2 , vθ,±2 , wθ,±2

)

where uθ,±2 , vθ,±2 , wθ,±2 ∈ L2(−L,∞) and δD is the Dirac function at the origin.

Remark 7. The limits Uθ,±2 are solutions of (4.6) in the sense of distributions. They will
be called the singular solutions.
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Proof. Consider the case µ ↓ 0. Some parts of the proof are already evident, essentially
for quantities which are regular enough, namely V θ,µ2 and W θ,µ2 , or for regions where all
functions are regular, typically x > 0. Therefore the whole point is to pass to the limit in
the singular part of the solution U θ,µ2 . The equivalence between the integral formulation
of Proposition 4.1 and the differential formulation (4.6) will be widely used.
• Passing to the weak limit : By continuity of the first basis function with respect

to µ, one can pass to the limit concerning (V θ,µ2 (H),W θ,µ2 (H)). One gets that (v,w) =(
V θ,0

+

2 (H),W θ,0
+

2 (H)
)

is the unique solution of the linear system

{
−vW θ1 (H) + wV θ1 (H) = 1,
vW θ3 (H)− wV θ3 (H) = 0,

(4.73)

where the coefficients are defined in terms of the first basis function for µ = 0. By continuity
away from the singularity at x = 0, one has that Uθ,µ2 → Uθ2 in L∞(ǫ,H) for all ǫ > 0.
Using (4.69) it is clear that U θ,µ− 1

α(·)+iµ is bounded in L2(−L,H) uniformly with respect

to µ. Therefore there exists a limit function denoted as uθ,O
+

2 such that for a subsequence

U θ,µ2 −
1

α(·) + iµ
→weak uθ,O

+

2 in L2(−L,H).

Moreover the first derivative of U θ,µ2 is bounded in L2(−L,−ǫ) by virtue of (4.70). Therefore

U θ,µ2 →strong
1
α(·) + uθ,O

+

2 in L2(−L,−ǫ)

at least for a subsequence. Considering the integral relations (4.18)-(4.19), these subse-
quences are such that

V θ,µ2 (x)→ vθ,O
+

2 (x), (4.74)

and
W θ,µ2 (x)→ wθ,O

+

2 (x), (4.75)

with uniform convergence on compact sets of (−L,H) \ {0}. Denote by ǫ > 0 a small
parameter such that α is invertible on ] − ǫ, ǫ[ and denote by β the function defined as
β(z) = 1/α′(α−1(z). Then

vθ,0
+

2 := aH A0(x) + bH B0(x) +
∫ x

H
Dθxk0(x, 0)uθ,+2 (z) + ṽ(x)

+
∫ x

H
Dθx(k0(x, z) − k0(x, 0))

(
1

α(z)
+ uθ,+2 (z)

)
,

with

ṽ(x) :=
∫ x

H
Dθxk0(x, 0)

1
α(z)

dz, forx > 0,

ṽ(x) := Dθxk0(x, 0)
[∫ −ǫ

x

1
α(z)

dz + lnα(ǫ)β(ǫ)−

lnα(−ǫ)β(−ǫ) +
∫ α(−ǫ)

α(ǫ)
ln(z)β′(z) dz

]
+
∫ H

ǫ
Dθxk0(x, 0)

1
α(z)

dz for, x < 0,

wθ,0
+

2 := aH A
′
0(x) + bH B

′
0(x) +

∫ x

H
∂xDθx(k0(x, z)− k0(x, 0))

(
1

α(z)
+ uθ,+2 (z)

)
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+
∫ x

H
∂xDθxk0(x, 0)uθ,+2 (z) + w̃(x),

with

w̃(x) :=
∫ x

H
∂xDθxk0(x, 0)

1
α(z)

dz, forx > 0,

w̃(x) := ∂xDθxk0(x, 0)
[∫ −ǫ

x

1
α(z)

dz + lnα(ǫ)β(ǫ)−

lnα(−ǫ)β(−ǫ) +
∫ α(−ǫ)

α(ǫ)
ln(z)β′(z) dz

]
+
∫ H

ǫ
∂xDθxk0(x, 0)

1
α(z)

dz for, x < 0.

The limits in (4.74), (4.75) also hold in the strong topology of L2(−L,H).
These weak or strong limits are naturally weak solution of the initial system (4.6) :

denoting for simplicity
(u2, v2, w2) = (uθ,0+

2 , vθ,0+
2 , wθ,0+

2 ),

these functions are solutions of




∫
w2ϕ1dx+ iθ P.V.

∫ (
1
α

+ u2

)
ϕ1dx−

θπ

α′(0)
ϕ1(0) +

∫
v2ϕ
′
1dx = 0,

iθ

∫
w2ϕ2dx−

∫
(αu2 + 1)ϕ2dx− i

∫
γv2ϕ2dx = 0,

∫
w2ϕ

′
3dx+ i P.V.

∫
γ

(
1
α

+ u2

)
ϕ3dx−

γ(0)π
α′(0)

ϕ3(0)

−
∫
αv2ϕ3dx = 0,

(4.76)

for any sufficiently smooth test functions with compact support, for example (ϕ1, ϕ2, ϕ3) ∈
C1

0(−L,H). Passing to the limit makes use of the fact that in the sense of distributions,
limµ→0+

1
α(x)+iµ = P.V 1

α(x) + iπ 1
α′(0)γD. The signs of − θπ

α′(0)ϕ1(0) and −γ(0)π
α′(0) ϕ3(0) are

compatible 1 with the fact the limit is for positive µ. The principal value is defined as :

P.V.

∫
1

α(x)
ϕ(x) dx := lim

ǫ↓0

(∫ ρ(−ǫ)

−L

1
α(x)

ϕ(x) +
∫ H

ρ(ǫ)

1
α(x)

ϕ(x)

)
dx,

where α(ρ(∓ǫ)) = ±ǫ.
• Uniqueness of the weak limit : If there is another triplet (ũ2, ṽ2, w̃2) solution of

the same weak formulation (4.76), then the difference

(û2, v̂2, ŵ2) = (ũ2 − u2, ṽ2 − v2, w̃2 −w2)

satisfies 



∫
ŵ2ϕ1dx+ iθ

∫
û2ϕ1dx+

∫
v̂2ϕ
′
1dx = 0,

iθ

∫
ŵ2ϕ2dx−

∫
αû2ϕ2dx− i

∫
γv̂2ϕ2dx = 0,

∫
ŵ2ϕ

′
3dx+ i

∫
γû2ϕ3dx−

∫
αv̂2ϕ3 dx = 0,

(4.77)

By construction (û2, v̂2, ŵ2) = (0, 0, 0) for x > 0. For x < 0, the fact that (û2, v̂2, ŵ2) is
a solution of the X-mode equations stems from (4.77). Therefore these functions can be

1. If one takes the limit µ ↑ 0, the signs of these terms are changed.
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expressed as a linear combination of the first and second basis functions for x < 0. Since
û2 ∈ L2(−L, 0) is non singular, only the first basis function is involved that is

(û2, v̂2, ŵ2) = λ
(
U θ1 , V

θ
1 ,W

θ
1

)
x < 0.

The system (4.77) yields for example

∫ 0

−L
ŵ2ϕ

′
3dx+ i

∫ 0

−L
γû2ϕ3dx−

∫ 0

−L
α(x)v̂2ϕ3 dx = 0

where ϕ3(−L) = 0 and ϕ3(0) is arbitrary. An integration by parts gives

∫ 0

−L

(−ŵ2
′ + iγû2 − αv̂2

)
ϕ3dx+ ω̂2(0)ϕ3(0) = 0.

Since (û2, v̂2, ŵ2) is a non singular solution of the X-mode equations, one has that −ŵ2
′+

iγû2 − αv̂2 = 0. Finally
ω̂2(0)ϕ3(0) = 0.

Choosing ϕ such that ϕ3(0) 6= 0, it follows that 0 = ω̂2(0) = λW θ1 (0). Considering the
normalization (4.33) one gets that λ = 0. Therefore (û2, v̂2, ŵ2) = (0, 0, 0). It means that
the weak limit is unique : the whole sequence tends to the same weak limit.
• Regularity : By Theorem 4.6.1 the limit belongs to H1 ([−L,−ǫ] ∪ [ǫ,∞))3.
• Limit µ ↑ 0 : The sign of the Dirac function is changed in the final result of the

proposition since limµ→0−
1

α(x)+iµ = P.V 1
α(x) − iπ 1

α′(0)δD.

4.6.4 The limit spaces Xθ,±

Here both cases µ ≤ 0 and µ ≥ 0 will be considered.

The space X
θ,+

Passing to the limit µ→ 0+, the limit space X
θ,+ is

X
θ,+
ε = Span

{
Uθ1,U

θ,+
2

}
⊂ H1

loc ((−L,∞) \ {0}) . (4.78)

The space X
θ,−

It is of course possible do all the analysis with negative µ < 0 and to study the limit
µ→ 0−. The first basis function is exactly the same. The second basis function is chosen
exponentially decreasing at infinity and such that

iµUθ,µ2 = 1 µ < 0.

The generalization of the preliminary result (4.69) is straightforward
∥∥∥∥U
θ,µ
2 −

1
α(·) + iµ

∥∥∥∥
Lp(−L,H)

≤ Cθp , −1 ≤ µ < 0. (4.79)

Passing to the limit µ→ 0−, it defines the limit space X
θ,−

X
θ,−
ε = Span

{
Uθ1,U

θ,−
2

}
⊂ H1

loc ((−L,∞) \ {0}) . (4.80)
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Observe of course that the first basis function belongs to X
θ,+
ε ∩ X

θ,−
ε . Since the limit

equation is the same, and the normalization at x = H is also the same we readily observe
that the second basis functions are identical for 0 < x

U θ,+2 (x) = U θ,−2 (x) 0 < x. (4.81)

The main point is to determine the difference between the limit of the two singular
functions for x < 0.

Proposition 4.24. One has

U θ,+2 (x)− U θ,−2 (x) =
−2iπ
α′(0)

U θ1 (x) x < 0. (4.82)

Proof. Notice that the Wronskian relations (4.41) are the same at the limit µ = 0±.
By subtraction

V θ1 (x)
(
W θ,+2 (x)−W θ,−2 (x)

)
−W θ1 (x)

(
V θ,µ2 (x)− V θ,−2 (x)

)
= 0.

It shows that the difference is proportional to the first basis function

U θ,+2 (x)− U θ,−2 (x) = ζUθ1 (x) x < 0. (4.83)

Determining ζ will complete the proof. It is already known that the limit µ→ 0+ can be
characterized by (4.76). The third equation writes

∫
w+

2 ϕ
′
3dx+ i P.V.

∫
γ

(
1
α

+ u+
2

)
ϕ3dx−

γ(0)π
α′(0)

ϕ3(0)−
∫
αv+

2 ϕ3dx = 0

where (u+
2 , v

+
2 , w

+
2 ) refers to the non singular part of the limit µ → 0+. The equivalent

equation for the non singular part (u−2 , v
−
2 , w

−
2 ) of the limit µ→ 0− is

∫
w−2 ϕ

′
3dx+ i P.V.

∫
γ

(
1
α

+ u−2

)
ϕ3dx+

γ(0)π
α′(0)

ϕ3(0) −
∫
αv−2 ϕ3dx = 0.

By subtraction, one gets
∫

(w+
2 − w−2 )ϕ′3dx+ i

∫
γ(u+

2 − u−2 )ϕ3dx

−2γ(0)π
α′(0)

ϕ3(0) −
∫
α(v+

2 − v−2 )ϕ3dx = 0.

Due to (4.81) these differences vanishes for x > 0. One gets
∫ 0

−L
(w+

2 − w−2 )ϕ′3dx+ i

∫ 0

−L
γ(u+

2 − u−2 )ϕ3dx

−2γ(0)π
α′(0)

ϕ3(0)−
∫ 0

−L
α(v+

2 − v−2 )ϕ3dx = 0

where ϕ3 is a smooth test function that vanishes at −L. Integration by part yields
∫ 0

−L

(
−(w+

2 − w−2 )′ + iγ(u+
2 − u−2 )− α(v+

2 − v−2 )
)
ϕ3dx

−2γ(0)π
α′(0)

ϕ3(0) + (w+
2 − w−2 )(0)ϕ3(0) = 0.

Due to (4.83) one has that

−(w+
2 − w−2 )′ + iγ(u+

2 − u−2 )− α(v+
2 − v−2 ) = 0 x < 0.

Since ϕ3(0) is arbitrary, it means that w+
2 (0) − w−2 (0) = 2γ(0)π

α′(0) . One obtains ζW θ1 (0) =
2γ(0)π
α′(0) , that is iγ(0)ζ = 2γ(0)π

α′(0) = 0. Therefore ζ = −2iπ
α′(0) . The claim is proved.
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4.7 Numerical validation

This section focuses on the discretization of the first order system on (V θ,µ,W θ,µ) given
in (4.29), with µ 6= 0. Note that because of the resonance at the origin, one has to use a
stiff solver since a classical Euler solver would not be accurate. The method used is based
on a modified Rosenbrock formula of order 2 proposed by Matlab as ode23s. The U θ,µ

component is then recovered thanks to the relation

iθW θ,µ − (α+ iµ)U θ,µ − iγV θ,µ = 0.

The following numerical results were obtained with the parameters
• H = 2 and D = 5,
• θ = 1 and µ = 10−2,
• α(x) = −x for x < H and α(x) = −2 elsewhere,
• γ(x) = 0.25.

4.7.1 The first basis function

The first basis function is computed starting from the origin, since

(V θ,µ1 ,W θ,µ1 ) = (iθ, iγ(0)). (4.84)

One can observe on Figures 4.8 and 4.9 the propagative behavior of the solution for
x < 0, and the exponential blow up for x > 0 described in Proposition 4.7 for the first basis
function. Each of them is obtained for a different value of θ. No 1/µ singularity appears
around the resonance point as the regularization parameter decreases toward zero.

Since the first basis function satisfies (4.84), (V θ,µ1 ,W θ,µ1 ) belongs to iR2 and does not
depend on µ. Moreover the imaginary part of system (4.29)’s matrix, namely (4.28), goes
to zero with µ. As a result, for all θ ∈ R, the real parts of (V θ,µ1 ,W θ,µ1 ) go to zero as µ
goes to zero as well. For this reason both real and imaginary parts of the solutions are
represented on Figures 4.8 and 4.9.

4.7.2 The second basis function

The second basis function is computed as suggested by the theory : it is actually the
third basis functions scaled to ensure the normalization at the origin iµUθ,µ2 = 1. The
third basis function is computed starting from x = D >> H, with the exact condition
(V θ,µ3 ,W θ,µ3 ).

One can observe on Figure 4.10 the singularity at the origin together with the ex-
ponential decrease for x > 0. The function x 7→ 1

α+iµ is plotted for comparison : the

functions U θ,µ2 obviously fit perfectly the singularity 1/(α+ iµ) at the origin as suggested
in Proposition 4.16. As the regularization parameter µ goes to zero the solution computed
converges to a singular solution.

Figure 4.11 evidences that the weak limit from Poposition 4.23 is actually a strong
limit everywhere but at the resonance point. It displays the same numerical results as
Figure 4.10, but with a fixed scaling.
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Figure 4.8 – First basis function of X
θ,µ computed for θ = 0 and µ = 10−2, µ = 10−3,

µ = 10−4. The real and imaginary parts of the three components (U θ,µ1 , V θ,µ1 ,W θ,µ1 ) are
represented. No significant change of behavior is observed as µ goes to zero.
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Figure 4.9 – First basis function of X
θ,µ computed for θ = 1 and µ = 10−2, µ = 10−3,

µ = 10−4. The real and imaginary parts of the three components (U θ,µ1 , V θ,µ1 ,W θ,µ1 ) are
represented. Again no significant change of behavior is observed as µ goes to zero.
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Figure 4.10 – Second basis function of X
θ,µ computed for θ = 1.5 and µ = 10−2, 10−3,

10−4. The real parts of the three component (U θ,µ2 , V θ,µ2 ,W θ,µ2 ) are represented. The real
part of (α + iµ)−1 is also represented, and evidences the blow up of the solution at the
resonance as µ goes to zero.
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Figure 4.11 – Second basis function of X
θ,µ computed for θ = 1.5 and µ = 10−2, 10−3,

10−4. The real parts of the three component (U θ,µ2 , V θ,µ2 ,W θ,µ2 ) are represented. Here the
scale is fixed to evidence the strong convergence observed on ]−L,D[\{0} : the convergence
observed is strong everywhere but at the resonance point x = 0.
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4.7.3 Difference between positive and negative value of µ

The second basis function can be computed for both positive and negative values of
µ in order to verify the result given in Proposition 4.24 for x < 0 and the equality of the
two functions for x > 0 given in (4.81).

Figures 4.12 and 4.13 illustrate these theoretical results for two different values of θ,
and show satisfying fit, for x > 0 and x < 0. Again the convergence with respect to the
regularization parameter µ is observed.

4.8 Proof of the main theorem

All the information about the first and second basis functions is now used to construct
the solution of the system (4.6) with the boundary condition (4.2). The function g de-
pends only of the vertical variable y. Under convenient condition g admits the Fourier
representation

g(y) =
1

2π

∫

R

ĝ(θ)eiθydθ. (4.85)

First consider a small but non zero regularization parameter µ > 0. For the sake of
simplicity assume that the transversality condition is satisfied for all θ in the support of ĝ

|η(θ)| ≥ c > 0 ∀θ ∈ supp (ĝ) . (H6)

It is just a convenient uniform version of the point-wise transversality condition (4.66).
Additional comments are to be found in Section 4.8.3.

4.8.1 One Fourier mode

For one Fourier mode, one needs to consider the solution of (4.6) with boundary condi-
tion

Ŵ µ(−L) + iσV̂ µ(−L) = ĝ.

Since the solution must decrease (exponentially) at x ≈ ∞ to guarantee that no energy
comes from infinity, the solution is proportional to the second basis function. That is there
is a coefficient γθ,µ such that Ûµ = γθ,µUθ,µ2 . The coefficient satisfies the equation

γθ,µ
(
W θ,µ2 (−L) + iσV θ,µ2 (−L)

)
= ĝ(θ)

that is

γθ,µ =
ĝ(θ)
τ θ,µ

from which it is clear that we must study the coefficient

τ θ,µ = W θ,µ2 (−L) + isgn(µ)σVθ,µ2 (−L). (4.86)

A last technical result concerns this coefficient τ θ,µ.

Proposition 4.25. Assume (H6). For every compact set S ⊂ R, there exists ǫ > 0, τ+

and τ− > 0 such that τ− ≤
∣∣∣τ θ,µ

∣∣∣ ≤ τ+ for 0 < µ ≤ ǫ and θ ∈ S.
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Figure 4.12 – Difference between the imaginary parts of the second basis function com-
puted for θ = 0 and µ = −10−2, µ = −10−3, µ = −10−4, compared to the real part of
U θ,µ1 .
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Figure 4.13 – Difference between the imaginary parts of the second basis function com-
puted for θ = 1 and µ = −10−2, µ = −10−3, µ = −10−4, compared to the real part of
U θ,µ1 .
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Proof. The upper bound is a direct consequence of (4.71). To prove the lower bound,
a useful result is the formula which comes from (4.36)

Im
(
W θ,µ2 (−L)V θ,ν2 (−L)

)
≥ µ

∫ ∞

−L

∣∣∣U θ,µ2 (x)
∣∣∣
2
dx

Combining with (4.49) and Q
(
Uθ,µ

)
= 1 (by construction), it yields

Im
(
W θ,µ2 (−L)V θ,ν2 (−L)

)
≥ τ− > 0.

Plugging the definition of τ θ,µ inside this inequality, one gets

Im
(
τ θ,µV θ,ν2 (−L)

)
≥ τ− + sgn(µ)σ

∣∣∣Vθ,µ(−L)
∣∣∣
2
≥ τ− > 0.

Therefore
∣∣∣V θ,µ2 (−L)

∣∣∣ × |τ(θ, µ)| ≥ τ−. The L∞ bounds (4.71) shows that there exists

C > 0 such that C |τ(θ, µ)| ≥ τ−.
By (4.74), (4.75),

τ θ,+ := W θ,0
+

2 (−L) + isgn(µ)σVθ,0
+

2 (−L) = lim
µ→0+

τ θ,µ. (4.87)

Proposition 4.26. For every compact set S ⊂ R, there exists τ+ and τ− > 0 such that

τ− ≤
∣∣∣τ θ,+

∣∣∣ ≤ τ+ for θ ∈ S.

Proof. This is immediate from Proposition 4.25 and (4.87).

4.8.2 Fourier representation of the solution

The solution of (4.5) with the boundary condition (4.2) is given by the inverse Fourier
formula 


Eµx
Eµy
W µ


 (x, y) =

1
2π

∫

R

ĝ(θ)
τ θ,µ

Uθ,µ2 (x)eiθydθ (4.88)

where it is assumed that g ∈ L2(R) and that ĝ has compact support. Passing to the limit
in (4.88) one gets




E+
x

E+
y

W+


 (x, y) =

1
2π

∫

R

ĝ(θ)
τ θ,+




P.V. 1
α(x) + iπ

α′(0)δD + uθ,+2

vθ,+2

wθ,+2


 e
iθydθ (4.89)

This formula has to be understood in the sense of distributions. Since by Theorem 4.6.1∥∥∥uθ,+
∥∥∥ ≤ Cθ2 ,

∥∥∥vθ,+
∥∥∥ ≤ Cθ2 ,

∥∥∥wθ,+
∥∥∥ ≤ Cθ2 with Cθ2 a continuous function of θ, and conside-

ring that τ θ,µ converges to τ θ,+ there is sufficient regularity to pass to the limit. The value
of the heating is

Q = ωε0 lim
µ→0+

µ

∫
|Eµx (x, y)|2dxdy =

ωε0

2

∫

R

|ĝ(θ)|2

|α′(0)|2 |τ θ,+|2
dθ. (4.90)

The result follows from ω = ε0 = 1.
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To our knowledge this is the first time that such a formula is written where all terms
are explicitly given. A similar but much less precise formula can be found in [CW74]
derived by means of analogies, see also [PT05]. All these integrals are convergent provided
ĝ decays sufficiently fast at infinity. Provided the transversality condition is satisfied, and
it is always the case in a neighborhood of θ = 0 under hypothesis (H5), the heating is
generically positive. This is of course related to the presence of the strong Dirac singularity
in the solution (4.89).

Remark 8. An essential consequence of this analysis is the physical heating Q which is
related to the singularity P.V. 1

α(x) ± iπ
α′(0)δD of the mathematical solution. The singularity

is not an artifact of the model. It is on the contrary a direct way to measure the amount
of heating provided to the plasma by the electromagnetic wave.

Remark 9. Observe that the singular solutions Uθ,±2 are the unique solutions of the
following initial value problem.

Find a triplet (uθ,±2 , vθ,±2 , wθ,±2 ) ∈ L2(−L,∞)3 which satisfies the constraints vθ,±2 (H) =
V θ,03 (H), wθ,±2 (H) = W θ,03 (H), and

wθ,±2 − d

dx
vθ,±2 + iθuθ,±2 = −iθP.V. 1

α
± θπ

α′(0)
δD,

iθwθ,±2 − αuθ,±2 − iγvθ,±2 = 1,

− d

dx
wθ,±2 + iγuθ,±2 − α(x)vθ,±2 = −iP.V. γ

α
± γ(0)π
α′(0)

δD.

This problem has an unique solution, it is proved by the argument given to prove the
uniqueness of the weak limits. For this purpose observe that

(
1

α(x)
+ uθ,±2 , vθ,±2 , wθ,±2

)
(x) =

(
U θ,03 , V θ,03 ,W θ,03

)
(x) for x > 0.

Observe then the similarity with the standard limit absorption principle in scattering
theory. In scattering theory the solutions obtained by the limit absorption principle are
characterized as the unique solutions that satisfy the radiation condition, i.e., they are
uniquely determined by the behavior at infinity. Here, the singular solutions are uniquely
determined by their behavior at +∞ and by their singular part P.V. 1

α(x) ± iπ
α′(0)δD. Note

that it is natural that to specify the singularity at x = 0 because the equations are de-
generate at x = 0. This principle could be used for practical computations. It is however
a little more subtle since a boundary condition at finite distance x = −L must be pres-
cribed. That is the singular part is itself dependent on the boundary condition where the
energy comes in the system. Mathematically it corresponds to the coefficient τ θ,+ in the
representation formula (4.89).

4.8.3 What happens if the transversality condition is not satisfied

An interesting question is to determine what happens if the transversality condition is
not satisfied. Some simple remarks follow. Firstly the point-wise transversality condition
(4.66) or the uniform one (H6) greatly simplify the analysis. They are satisfied at least for
θ close to zero provided the transition zone is small enough (H5). Secondly some technical
intermediate results may be wrong if these conditions are not satisfied : for example it is
not clear whether σ is still regular at points θ such that σ(θ) = 0.
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The purpose of this paragraph is not to answer to the questions raised by this pos-
sibilities, but only to give understanding of the physical situation hidden behind and to
explain what is the limit value of the heating (4.90). The analysis is as follows.

Physical picture : If σ(θ) = 0 then the first basis function Uθ1 is proportional to
Uθ3 (at least for x ≥ H). It means that it is also exponentially decaying at infinity. That
is the excitation provided by the boundary condition catches this non singular first basis
function which is also the physical one. We remark that no heating is provided by U1

because Q(U1) = 0 by definition. Therefore a shortcut is : if σ(θ) = 0, then physical
heating vanishes.

Mathematical picture : On the other hand it is also clear that the function τ θ,+

is upper bounded by virtue of the analysis provided in section 4.8.1. A consequence of
the transversality condition is the fact that V θ,µ2 is uniformly bounded, see (4.71). So if

σ(θ) = 0, it is possible that limµ→0

∣∣∣V θ,µ2

∣∣∣ = ∞. In this case |τ(θ)| = ∞ which yields in
turn once again that the associated heating vanishes in (4.90).

In summary it is possible to conjecture that (4.89) is still valid even if the transversality
condition is wrong : in this case the heating associated to the Fourier mode vanishes. The
limit of (4.88) may a priori be more singular. More research is nevertheless needed to
provide a rigorous basis to this analysis.

4.9 An eigenvalue problem

In the case θ = 0, it is possible to get an interpretation of the hypothesis (H5) as an
eigenvalue problem. Consider the simple case of the X mode equation for γ constant and

α(x, y) =

{
−x ∀x ≤ H,
−H ∀x > H,

so that a solution E of the corresponding X mode equation satisfies
{
−E′′y + ηEy = 0.

iγEy = αEx

with η = γ2

α − α.

Definition 7. A solution of the X mode equation will be called smooth at zero if there is
a constant C independent of µ such that ‖Ex‖∞ ≤ C.

A solution of the X mode equation will be called smooth at infinity if there is a constant
C independent of µ such that Ey = Ce−

√
ηx for all x > H.

Because of this definition, a solution smooth at zero satisfies Ey(0) = 0 whereas a
solution smooth at infinity satisfies E′y(H) +

√
ηEy(H) = 0.

It has been shown that the so-called first solution U1 is smooth at zero while the
second solution U2 is smooth at infinity, assuming that (H5) that reads here 4γH < 1.
The question at stake is whether it is possible to find a solution that would be at the same
time smooth at zero and at infinity. That would necessarily imply violating hypothesis
(H5).

Consider a solution u = Ey of the following problem on Ω =]0,H[




−u′′(x)− α(x)u(x) =
γ2

x
u(x)

u(0) = 0
u′(H) +

√
η(H)u(H) = 0

(4.91)
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Definition 8. Let X be the function space {v ∈ H1(Ω), v(0) = 0} equipped with the
norm ‖v‖2X =

∫H
0 |v′(x)|2dx and H be the Hilbert space

H =

{
v ∈ L2(Ω),

∫ H

0

|v|2
x
dx <∞

}
.

The classical variational formulation for (4.91) reads

∫ H

0
(u′v′ − αuv)dx+

√
η(H)u(H)v(H) = γ2

∫ H

0

uv

x
dx ∀v ∈ X ,

or
a(u, v) = γ2(u, v)H ∀v ∈ X .

where a is the sesquilinear form defined as the right hand side of the variational formulation
and (, )H is the natural weighted scalar product on H. This will now be considered as an
eigenvalue problem, γ2 playing the part of the eigenvalue.

Definition 9. The operator T is defined on H such that a(T (u), v) = (u, v)H. Its image
is included in X .

Lemma 4.27. The operator T is a self adjoint and compact operator from H to H.

Proof. Since there is a constant C such that for all v ∈ H
∫ H

0

|v|2
x
dx ≤ C

∫ H

0

|v|2
x2

dx,

Hardy inequality implies that X ⊂ H, so that T is indeed defined from H to H.
Since a is sesquilinear, one has for all (u, v) ∈ H2

(u, T (v))H = a(T (u), T (v)) = a(T (v), T (u)) = (v, T (u))H,

so that T is self adjoint.
Then consider a sequence vn in X such that there is a bound C such that for all n ∈ N :

‖vn‖ ≤ C. Because H1 is compactly embedded in L2 there is w ∈ H1 such that
{
vn → w weakly in H1,
vn → w strongly in L2.

Moreover for all ǫ > 0



‖vn − w‖H ≤ ǫ

∫ ǫ

0

|vn − w|2
x2

+
1
ǫ2
‖vn − w‖2L2 ,

≤ Cǫ+ 1
ǫ2‖vn − w‖2L2 .

For ǫ small enough the first term is as smaller than half any positive number, and thanks
to the strong convergence in L2 for n high enough the second is as smaller than half any
positive number as well. In other words vn converges strongly to w in H.

Proposition 4.28. There are a sequence ζn in R
∗
+ and a basis un of H such that ζn →∞

and for all n ∈ N un is solution of the eigenvalue problem (4.91) for γ2 = ζn.

Proof. This is the direct consequence of Lemma 4.27 that ensures the hypothesis of a
classical spectral decomposition theorem for self-adjoint operators, see [Bré83].

As a result, the hypothesis (H5) implies that 1/(4H) ≤ ζ1.
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4.9.1 Numerical approximation of the eigenvalues

It is interesting to confirm Proposition 4.28 with a numerical approximation of the
eigenvalues ζn. The procedure implemented here is the following. We solve the problem
(4.28)-(4.6) presented in Section 4.3.1 with the initial condition corresponding to the first
basis function (V1,W1). The coefficients of the equation are set as α(x) = −x and γ
constant. Then we vary γ in the interval [0, 8], and compute |V1(H)| as a function of γ :

φ(γ) = |V1(H)|.

We expect φ to be small for γ =
√
ζn since the exact solution of the eigenvalue problem

is exponentially decreasing for x ≥ H. This establishes an indicator of the position of the
eigenvalues

√
ζn. The results for three different values of the regularization parameter µ

are presented in Figure 4.14. The positions of the eigenvalues are observed at the minima
of φ, except γ = 0. Indeed in the case γ = 0 the method computes the trivial solution
V = 0 since the initial condition is (0, 0), see (4.84).

4.10 Comments

The technique developed in this chapter is limited to the cases of coefficients that do
not depend on the y variable since it starts with considering the Fourier transform of the
initial system with respect to the y variable.

Embracing another point of view, it is possible to analyze this problem as a linear
system with an isolated singularity, see [CL55]. The study of corresponding turning points
for systems described in [CW74] is a work in progress with Olivier Lafitte and Bruno
Després.

It is also important to emphasize that the singularity here is in the equation, unlike in
some cases where the singularity appears from a corner of the domain.

It is different as well from the T coercivity which is studied in [BCC12, Cia12, Che12],
where the singularity appears inside the domain.
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5.1 Introduction

Wave problems include a large range of topics, such as elastic, acoustic and electro-
magnetic waves, bounded and unbounded domains, boundary conditions, isotropic, ani-
sotropic, homogeneous and heterogeneous media, nonlinear waves, time and frequency
domain. The numerical simulation of wave propagation has long interested the Applied
Mathematics community. See for instance the book entitled Finite element methods for
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Maxwell’s equations by P. Monk, [Mon03]. Concerning reflectometry and heating applica-
tions, different numerical methods are already implemented, among which finite differences
are used by Stéphane Heuraux, see [KGH09, HdSG+11], and finite elements are used by
Simon Labrunie, see [Lab] and by Rémi Dumont, see [Dum09].

A pollution effect may appear when using the finite element method for the Helmholtz
equation, as evidenced by Babuska and Sauter in [BS97]. To overcome this numerical
pollution and diminish the numerical burden, one possibility is to incorporate information
about the problem in the basis functions, as in the so called Trefftz methods, see [PHVD07]
and [GHP09, HMP11]. The idea motivating these methods is to use the information given
by the equation to design basis functions that are solutions of the homogeneous equation. In
the case of Plane Wave methods, it aims at obtaining a more accurate approximation since
the basis functions of the trial space contain information about the oscillatory behavior
of the solution, information encoded in the wavenumber. A short bibliography of such
methods follows, in an attempt of chronology.

The Ultra Weak Variational Formulation was introduced and then developed by B.
Després and O. Cessenat starting from 1994 [Des94, CD98], for general linear problem.
More details are to be found in the introduction of Section 5.2. The Partition of Unity Me-
thod was introduced in 1996 by I. Babuska and J.M. Melenk [MB96]. It was presented as
a Finite Element Method based on conforming ansatz spaces, and offers a great flexibility
in the choice of the local approximation. It was later developed to address scattering pro-
blems in [OS01, LBA02, PDLBT04]. The Discontinuous Enrichment Method uses a set of
basis functions of polynomials enriched with Plane Waves. It was presented by C. Farhat,
I. Harari and L. Franca in 2001 [FHF01] and some applications to the Helmholtz problem
can be found in [FTWG04, TF06, ACR09]. The Plane Wave Discontinuous Galerkin me-
thod is a more general type of methods, that includes the UWVF. The analysis of its p
and h versions, together with error estimates can be found in [BM08, GHP09, HMP11].
Overviews of some of these methods are proposed in [GGH11, WTTF12].

5.1.1 Notation and hypothesis

This chapter focuses on a new numerical method for the numerical approximation of
the O-mode equation. The model problem is

{
−∆u+ βu = f, (Ω),
(∂ν + iσ) u = Q (−∂ν + iσ) u+ g, (Γ).

(5.1)

where β is a smooth function, vanishing on a hypersurface. Smooth is to be understood here
as Cr(Ω), but it has to be noted that the more general case of a piecewise Cr coefficient
- which would for instance model a lens in a propagative medium - would present no
mathematical complication. The parameter r has to satisfy r ≥ 1 for the theoretical
results. The σ function can be a variable physical parameter satisfying 0 < σm ≤ σ ≤ σM ,
but for the sake of simplicity we will consider it constant - and positive. The data g and f
are L2 functions respectively on the boundary and in the domain. Q is a piecewise constant
function allowing to fit the condition : if Q = −1 it gives a Dirichlet condition, if Q = 1 a
Neumann condition or if Q = 0 a Robin condition. However, the fact that |Q| < 1 on a non
empty part of the boundary is mandatory to ensure the well-posedness of the problem.

The new method relies on a local approximation of the coefficient β, described by a
parameter q. The procedure to design the basis functions requires that r ≥ q − 1.



5.1. Introduction 101

−15 −10 −5 0 5 10

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

 

 
Ai
Bi

Figure 5.1 – Physical illustration of the change of sign in the coefficient of equation (5.2) :
the first and second Airy functions.

5.1.2 A specificity

A classical wave propagation problem would correspond to β > 0. Yet the Ordinary
propagation mode presents a cut-off : when β is either negative or positive the nature of
the equation (5.1) is either elliptic coercive or elliptic propagative. Since the coefficient β
is a continuous function, the transition between the two regimes is a hyper surface : the
coefficient vanishes continuously in the domain at a point in dimension one, and along a
line in dimension two. As a consequence the local wave number goes to zero toward the
cut-off, and is equal to zero along the cut-off.

Such a continuous transition between elliptic coercive or elliptic propagative zones
is less common in the framework of numerical simulation than a constant coefficient. In
order to illustrate the specificity of the problem at stake, consider the further simplified
1D model

− d2

dx2
u+ xu = 0. (5.2)

The fundamental solutions are the two Airy functions Ai and Bi. The first Airy function
Ai represents the physical solution : this solution oscillates in the propagative zone β(x) =
x < 0, and is absorbed in the non propagative zone β(x) = x > 0. One can observe on
Figure 5.1 the cut-off point at x = 0 and the corresponding change of behavior.

Generally speaking, the most common model considered to approximate smooth coeffi-
cients is a piecewise constant approximation. Problems corresponding to wave transmission
at an interface in time-harmonic regime with piecewise constant coefficients are for instance
one main concern of A.-S. Bonnet-Bendhia, L. Chesnel, P. Ciarlet and X. Claeys, from the
French ANR project Metamath. See for instance the recent thesis of Lucas [Che12].

The originality of the present work is to propose a high order local approximation
of the coefficient. This approach gives an approximation tool not only in the vicinity of
the cut-off, but also in the non propagative zone, which is not the case of many classical
numerical methods adapted to wave propagation.

5.1.3 Plan

This chapter compiles two papers. The first one [IGD11] was a joint work with Bruno
Després, and contains the 1D analysis of the method. It has been accepted for publication



102 Chapter 5. Numerical approximation with generalized plane waves

in the IMA Journal of Numerical Analysis. The second one is in preparation and concerns
the 2D properties of the generalized plane waves. It follows a question of Peter Monk about
the interpolation properties of these new basis functions. The current work is an attempt
to put into perspective the different features of the new numerical method.

5.2 A numerical method adapted to the O-mode equation

The UWVF alluded to in the introduction is the initial numerical method studied
herein. A more detailed bibliography follows.

The UWVF was first introduced in a short note in 1994 by B. Després [Des94], as a me-
thod for generic linear problems with basis functions solutions of the homogeneous adjoint
equation. The first application appears in the thesis of O. Cessenat [Ces96b], including
Helmholtz problem in 2D and Maxwell’s problem in 3D with plane wave basis functions.
They also co-authored together a couple of papers on Helmholtz and acoustic problems,
addressing numerical and theoretical convergence [CD98, Ces96b]. P. Monk and T. Hut-
tunen starting from 2002 also co-authored, with different other collaborators, a series of
papers more oriented toward computational aspects of the UWVF with plane wave basis
functions, on Helmholtz’s problems [HMK02], elastic waves [HMCK04], perfectly matching
layers [HKM04], Maxwell’s problems [HMM07], fluid-solid interaction [HKM08]. More re-
cently they worked with T. Luostari on the use of Bessel basis functions [LHM12] and
on linear elasticity [LHM13]. P. Monk also published with E. Darrigrand on the coupling
of the UWVF with Fast Multipole methods [DM07, DM12] for integral representations.
A more general point of view, deriving the UWVF as a Discontinuous Galerkin method
was introduced by P. Monk and A. Buffa [BM08]. This perspective was followed by R.
Hiptmair and his co-authors [GHP09, HMP11], developing explicit estimates thanks to
Vekua theory.

Since explicit solutions of the homogeneous adjoint equation are not available for a
general varying coefficient, new basis functions will be designed to adapt the UWVF
for such a varying coefficient. Generalized plane wave basis functions are non-classical
alternative functions, tailored for the model problem (5.1) including the cutoff regions.

5.2.1 The classical Ultra Weak Variational Formulation

Consider the initial problem (5.1), defined by the Helmholtz equation with a smooth
coefficient β defined on a domain Ω ⊂ R

d, d = 1 or 2, together with a mixed boundary
condition on the Γ = ∂Ω.

The concern is not focused on the approximation of a smooth boundary by a refined
mesh. As a consequence, for d = 2 the domain Ω considered here is a rectilinear polygon.
This means first that it will be perfectly meshed. It also means that this domain has a
Lipschitz boundary, so that the classical results for Lipschitz domains will hold.

The numerical approximation of a curved domain have been studied for instance in
[CS12] to solve Dirichlet boundary-value problems for second-order elliptic equations, and
in [CSS12] to solve second-order elliptic equations in exterior domains subject to a Dirichlet
boundary condition on the interface of a scattering object.

Unlike a classical variational formulation, the UWVF requires the meshing of the
domain as a preliminary step. The mesh domain, denoted Th = {Ωk}k∈[[1,Nh]] where Nh is
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Figure 5.2 – An example of a simple domain meshed with Nh = 6 triangles. The outward
normals of an element Ωk are represented at the boundary of the domain Γk and at the
interface Σkj with a neighboring element Ωj .

the number of elements, is such that :

Ω = ∪Ωk,Ωk ∩ Ωj = ∅ ∀k 6= j,
Γk = Ωk ∩ Γ, oriented from Ωk toward the exterior of the domain,
Σkj = Ωk ∩ Ωj, oriented from Ωk to Ωj,
∂Ωk = (∪jΣkj) ∪ Γk.

See Figure 5.2 as an illustration.
The function space for the UWVF is defined on the boundary of the elements of the

mesh : in dimension one it is defined on the vertices of the elements, in dimension two it
is defined on the edges of the elements.

Definition 10. The function space is denoted by V and defined as

V =
∏

k∈[[1,Nh]]

L2(∂Ωk).

It is equipped with the an Hermitian product

(X,Y ) =
∑

k

∫

∂Ωk

1
σ
XkYk ∀(X,Y ) ∈ V,

and the corresponding norm :

‖X‖ =
√

(X,X) ∀X ∈ V.

The norm of an operator is

‖A‖ = sup
X 6=0

‖AX‖
‖X‖ ∀A ∈ L(V ).

Elements of V will be denoted by capital letters, whereas the corresponding functions
defined on ∪Ωk will be denoted by lowercase letters.

If Ω ⊂ R the dimension of V is finite. It will simplify radically the one dimensional
case. On the contrary, if Ω ⊂ R

d with d ≥ 2, the dimension of V is infinite.
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Elementary properties of the trace operators

Since the function space is defined on the boundary of the mesh elements, it is useful
to have in mind the definition of the traces in dimension one and two.

In dimension one, H1 functions are actually continuous, so that the trace operator is
trivially well-defined.

Theorem 5.2.1. Suppose Ω is a bounded interval in R. Then H1 is compactly embedded
in C(Ω).

In dimension d > 1 the smoothness of the boundary of the domain is crucial. The case
Ω bounded and ∂Ω C1 is the most common case. One can cite two main results in this
particular case. The Rellich Kondrachov compactness theorem only states the compact
embedding of W 1,p(Ω) in C(Ω) for p > d, see [Bré83] (p.169). The trace theorem of
[Eva10] (p.272) defines the trace as a bounded linear operator from W 1,p(Ω) to Lp(∂Ω)
for 1 ≤ p <∞.

Some results with less restrictive hypothesis on the domain are given in [Gri85] in
dimension d = 2. A precise result is stated therein in Theorem 1.5.2.3 (p.43) supposing Ω
is a bounded open set of R

2 whose boundary is a curvilinear polygon of class C1. But in the
scope of this work no hypothesis more restrictive than a Lipschitz boundary is necessary.
The following result states Theorem 1.5.1.3 (p.38) with d = 2 and p = 2.

Theorem 5.2.2. Let Ω be a bounded open set of R
2 with a Lipschitz boundary Γ. The

the trace mapping which is defined for u ∈ C0,1(Ω), has a unique continuous extension as
an operator from H1(Ω) onto H1/2(Γ).

Since all the functions u defined on a subset of R
d considered in this chapter are either

in H1(Ω) or in
∏
H1(Ωk), the trace operator is well-defined. However there is a restriction

to consider the quantities (±∂ν + iσ)u|∂Ω, because the derivatives might be less regular.
A specific hypothesis is then needed to state the UWVF, see Theorem 5.2.4.

A preliminary weak result

It is useful to give a meaning to a more general problem (5.3) in a weak sense on a
Lipschitz domain O, {

−∆u+ βu = f, (O),
(±∂ν + iζ)u = g̃, (∂O).

(5.3)

It will be used for two different purposes :

• Applied on the whole domain Ω with the boundary condition defined by

(∂ν + iζ)u = g̃, with ζ = σ
1−Q
1 +Q

and g̃ =
g

1 +Q
,

it proves the existence of a unique solution to the initial problem (5.1). This solution
is the one that is referred to in Theorem 5.2.4.

• Secondly, applied on each element on the mesh Ωk with the boundary condition
defined by

(−∂ν + iζ) u = g̃, with ζ = σ,

it provides a technical tool to define the UWVF. See Definition 12.

A classical result is :
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Theorem 5.2.3. Denote by O ⊂ Ω a bounded polygonal domain in R or R
2. To define

the boundary condition denote by f and g elements of L2(O) and L2(∂O). Suppose that
Q is a constant real number and |Q| < 1. Then there exists a unique solution u ∈ H1 to
the variational formulation corresponding to (5.3), i.e. such that

∫

O
∇u · ∇v +

∫

O
βuv ± iζ

∫

∂O
uv =

∫

O
fv ±

∫

∂O
g̃v,∀v ∈ H1. (5.4)

Moreover, there exists a constant C such that :

‖u‖L2(O) ≤ C
(
‖f‖L2(O) + ‖g̃‖L2(∂O)

)
. (5.5)

The functional analysis details concerning the regularity of the boundary in dimension
two are to be found in [Gri85], a book that focuses on non smooth domains.

Proof. This proof relies on classical methods for variational formulations. Let us intro-
duce an intermediate problem

{
−∆w + w = f̂ , (O),

(±∂ν + iζ)w = ĝ, (∂O).
(5.6)

Let a and l be the corresponding sesquilinear and anti linear forms, so that for any u and
v in H1(O)

a(u, v) =
∫

O
∇u · ∇v +

∫

O
uv ± iζ

∫

∂O
uv, (5.7)

b(v) =
∫

O
f̂v ±

∫

∂O
ĝv. (5.8)

As a is sesquilinear and continuous, b is antilinear continuous and Re(a(v, v)) is coercive,
there exists a unique u ∈ H1 such that

a(u, v) = l(v),∀v ∈ H1, (5.9)

for any couple (ĝ, f̂) ∈ L2(O) × L2(∂O). See [DL84] for this version of Lax-Milgram
theorem. Then let us define the linear operator A by

A : (f̂ , ĝ) ∈ L2(O)× L2(∂O) 7→ u ∈ L2(O), (5.10)

where u is the solution given by (5.9). Moreover, note that from a classical a priori estimate
one has

‖u‖H1 ≤ ‖f̂‖L2 + ‖ĝ‖L2(∂O). (5.11)

The operator A is compact since the injection of H1 in L2 is compact since Ω is bounded.
This compact injection holds regardless of the dimension d, see [Nec67], and for even
weaker hypothesis on the boundary, see [Ami78] (p.83). Remark that

u is solution of (5.1) ⇔ u = A ((id − β)u+ f, g̃) , (5.12)

⇔ [I −A((id − β)·, 0)] u = A (f, g̃) . (5.13)

Since β is bounded, the operator K := A((id− β)·, 0)) is also compact, and the Fredholm
alternative holds, see [Bré83]. So uniqueness is equivalent to existence of a solution for the
problem (5.4). Then suppose u ∈ L2, actually also in H1, is such that (I−K)u = 0, which
means ∫

O
∇u · ∇v +

∫

O
βuv ± iζ

∫

∂O
uv = 0,∀v ∈ H1. (5.14)
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Choosing v = u as test function, and considering the imaginary part of (5.14) one gets that
u = 0 on ∂O. As O in bounded and as β is C(O), the method of translations presented in
[Bré83] (p.182) and credited to L. Nirenberg can be adapted to prove that u ∈ H2. Then
an integration by part of the first term shows that ∂νu = 0 on ∂O since u is solution of the
homogeneous variational formulation (5.4). Here in dimension one the Cauchy-Lipschitz
theorem gives that u = 0 in O, but in dimension two a unique continuation theorem is
required. An appropriate version can be found in [Hor76]. As a result, in both cases the
solution is unique, and so, thanks to Fredholm alternative : there exists a unique solution
to (5.1).

Besides, as a consequence of the open mapping theorem, if (I −K)u = f there exists
a constant C such that ‖u‖L2 ≤ C‖f‖L2. So if u is solution of (5.1), then

‖u‖L2 ≤ C
∥∥∥∥A

(
f,

1
1 +Q

g

)∥∥∥∥
L2

, (5.15)

so that thanks to (5.11) it yields :

‖u‖L2(O) ≤ C
(
‖f‖L2(O) +

∥∥∥∥
1

1 +Q
g

∥∥∥∥
L2(∂O)

)
. (5.16)

A recent work presents a completely different method based on a coercive formulation
of the Helmholtz equation, see [MS]. Since it is restricted to constant coefficients, this
approach does not apply to the current problem.

The standard formulation

The UWVF is a reformulation of the initial problem that considers functions defined
on the boundary of the mesh elements, and couples the different contributions from the
different mesh elements through fluxes at the interfaces.

Note that the definition of the formulation itself does not require to explicit the shape
functions. Instead, as in the case of a classical variational formulation, the trial space has
a infinite dimension. However the trial space introduced to derive the UWVF is more
specific than the classical Sobolev spaces used to derive classical variational formulations.
It is indeed the function space of local solution of the homogeneous equation.

Definition 11. For all k ∈ N
∗ such that 1 ≤ k ≤ Nh define the local trial space

Hk(β) =

{
vk ∈ H1(Ωk),

∣∣∣∣∣
(−∆ + β)vk = 0 (Ωk),
((−∂ν + iσ)vk)|∂Ωk ∈ L

2(∂Ωk)

}
(5.17)

and the corresponding global trial space H =
Nh∏

k=1

Hk(β).

As a consequence, the derivation of the UWVF for the initial problem (5.1) is stated
as follows.

Theorem 5.2.4. Let u ∈ H1(Ω) be the unique solution of problem (5.1)such that ∂νku ∈
L2(∂Ωk) for any k. Let σ,Q > 0 be given real numbers. ThenX ∈ V defined byX|∂Ωk = Xk
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with Xk = ((−∂ν + iσ)u|Ωk)|∂Ωk satisfies

∑

k



∫

∂Ωk

1
σ
Xk(−∂ν + iσ)ek −

∑

j,j 6=k

∫

Σkj

1
σ
Xj(∂ν + iσ)ek




−
∑

k,Γk 6=∅

∫

Γk

Q

σ
Xk(∂ν + iσ)ek = −2i

∑

k

∫

Ωk

fe+
∑

k

∫

Γk

1
σ
g(∂ν + iσ)ek,

(5.18)

for any e = (ek)k∈[[1,Nh]] ∈ H. Conversely, if X ∈ V is solution of (5.18) then the function,
u defined locally by 




u|Ωk = uk ∈ H1(Ωk),
(−∆ + β)uk = f|Ωk ,
(−∂νk + iσ)uk = Xk,

(5.19)

is the unique solution of the problem (5.1).

This result is classical in the context of UWVF. For the reason quoted earlier, adapting
the proof to the case of a general smooth coefficient β regardless its sign is straightforward.

Proof. Consider e ∈ H and u ∈ H1(Ω) solution (5.1). A simple computation shows
that for a given k ∈ [[1, Nh]]

∫

∂Ωk

1
γ

(−∂ν + iσ)u · (−∂ν + iσ)ek −
∫

∂Ωk

1
γ

(∂ν + iσ)u · (∂ν + iσ)ek

= −2i
∫

∂Ωk

(u∂νek − ∂νuek). (5.20)

Moreover the definition of H, together with the initial problem (5.1), yields

{
(−∆ + β)u = f, (Ωk),
(−∆ + β)ek = 0, (Ωk).

(5.21)

Performing two integrations by part - justified on a Lipschitz bounded domain in [Gri85]
(p.52) - the following holds for all k ∈ [[1, Nh]]

{ ∫
Ωk
∇u · ∇ek +

∫
Ωk
βu · ek −

∫
∂Ωk

∂νu · ek =
∫

Ωk
f · ek,∫

Ωk
∇u · ∇ek +

∫
Ωk
βu · ek −

∫
∂Ωk

u · ∂νek = 0.

So using the boundary conditions together with the smoothness of the solution u, namely
for all k ∈ [[1, Nh]]

{
(∂ν + iσ)u|Σkj = (−∂ν + iσ)u|Σjk ,
(∂ν + iσ)u|Γk = Q(−∂ν + iσ)u|Γk + g,

(5.22)

from the identity (5.20) stems for all k ∈ [[1, Nh]]



∫

∂Ωk

1
σ
Xk(−∂ν + iσ)ek −

∑

j,j 6=k

∫

Σkj

1
σ
Xj(∂ν + iσ)ek




−1Γk 6=∅

∫

Γk

Q

σ
Xk(∂ν + iσ)ek

= −2i
∫

∂Ωk

fe+
∫

Γk

1
σ
g(∂ν + iσ)ek.
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Summing over k then gives the UWVF (5.18).
Conversely, let X be a solution of (5.18) and let u satisfy (5.19) on every Ωk. The

hypothesis on u and e, gives (5.21) and then for all k ∈ [[1, Nh]]
∫

∂Ωk

1
σ

(−∂ν + iσ)u · (−∂ν + iσ)ek −
∫

∂Ωk

1
σ

(∂ν + iσ)u · (∂ν + iσ)ek = −2i
∫

Ωk

fek.

Summing over k and combining the result with (5.18) satisfied by X one gets for all
e = (ek) ∈ H

∑

k,j 6=k

∫

Σkj

1
σ
Xk · (∂ν + iσ)ek +

∑

k,Γk 6=∅

∫

Γk

1
σ
Xk · (∂ν + iσ)ek

=
∑

k,j 6=k

∫

Σkj

1
σ
Xj · (∂ν + iσ)ek +

∑

k,Γk 6=∅

∫

Γk

1
σ

(QXk + g) · (∂ν + iσ)ek.

Therefore u satisfies (5.22). It shows that u is the unique smooth solution of (5.1) given
by Theorem 5.2.3.

In order to give a more compact formulation useful for further developments, some
definitions are required.

Definition 12. For any function f ∈ L2(Ω), let Ef be the extension mapping defined by :

Ef :

{
V → H,
Z 7→ e = (ek)k∈[[1,Nh]],

where e is defined ∀k ∈ [[1, Nh]] by the unique solution of the following problem :
{

(−∆ + β)ek = f (Ωk),
(−∂νk + iσ)ek = Zk (∂Ωk).

Also define E which is the homogeneous extension operator with vanishing right hand
side, namely E = E0.

Notice that Ef is well defined, see 5.2.1.

Remark 10. The operator E is the inverse of the trace operator defined on H ⊂ ∏H1(Ωk)
as u 7→ ((−∂νk+iσ)uk), into the subset of V defined by VH = {(−∂ν+iσ)(vk)|∂Ωk , vk ∈ Hk}.
This will provide a convenient tool for forthcoming computations : every basis function
can be considered either as a set of functions defined in the volumes Ωk, i.e. an element of
VH , or a set of functions defined on the boundaries ∂Ωk, i.e. an element on H. See figure
5.3, and the proof of Proposition 5.4 for an illustration.

Definition 13. Let F be the mapping defined by

F :

{
V → V,
Z 7→ (

(∂ν + iσ)E(z)|∂Ωk
)
k∈[[1,Nh]]

.

This operator F relates the outgoing and incoming traces on the boundaries ∂Ωk.

Definition 14. Let Π be the mapping defined by

Π :





V → V,
Z|Σkj 7→ Z|Σjk ,
Z|Γk 7→ QZ|Γk .
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H ⊂
∏

H1(Ωk) ↔ VH ⊂
∏

L2(∂Ωk)

Figure 5.3 – A correspondence between H and VH .

This operator Π changes the incoming trace at an interface Σkj to the outgoing trace
toward the corresponding neighbor Ωj.

Definition 15. If F ∗ denotes the adjoint operator of the operator F , let A be the operator
F ∗Π.

With this notation the problem (5.18) is equivalent [CD98] to

{
Find X ∈ V such that ∀Y ∈ V
(X,Y )− (ΠX,FY ) = (B,Y ),

(5.23)

where the right hand side B ∈ V is given by the Riesz theorem

(B,Y ) = −2i
∫

Ω
fE(Y ) +

∫

σ

1
σ
gF (Y ) ∀Y ∈ V.

More precisely
• If u is solution of the initial problem (5.1) such that

(
(−∂ν + iσ)u|∂Ωk

)
k∈[[1,Nh]]

∈ V,

then X =
(
(−∂ν + iσ)u|∂Ωk

)
k∈[[1,Nh]]

is solution in V of (5.23).

• Conversely if X is solution of (5.23) then u = Ef (X) is the unique solution of (5.18).
The problem (5.23) is equivalent to

{
For B ∈ V, find X ∈ V
(I −A)X = B.

(5.24)

Some basic properties of these operators follow. Again this is classic in the UWVF
literature.

Lemma 5.1. Assume the boundary coefficient is such that |Q| ≤ 1. The operator Π
satisfies ‖Π‖ ≤ 1.

Proof. This is obvious from the definition of Π.

Lemma 5.2. The operator F is an isometry.
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Proof. For any Y ∈ V , let e ∈ H be E(Y ). Then

‖FY ‖2 =
∑

k∈[[1,Nh]]

∫

∂Ωk

1
σ
|(∂ν + iσ)ek|2,

=
∑

k∈[[1,Nh]]

∫

∂Ωk

1
σ
|∂νek|2 + σ|ek|2 + 2ℑ(∂νek · ek),

‖Y ‖2 =
∑

k∈[[1,Nh]]

∫

∂Ωk

1
σ
|(−∂ν + iσ)ek|2,

=
∑

k∈[[1,Nh]]

∫

∂Ωk

1
σ
|∂νek|2 + σ|ek|2 − 2ℑ(∂νek · ek).

Integration by parts are justified because the domain has a Lipschitz boundary, see [Gri85]
(p.58). Since

∫
∂Ωk

∂νek · ek =
∫

Ωk
|∇ek|2 + β|ek|2 ∈ R, one gets that ‖FY ‖2 = ‖Y ‖2. This

implies the result.

Proposition 5.3. The operator A = F ∗Π satisfies ‖A‖ ≤ 1.

Proof. It is a direct consequence of Lemmas 5.1 and 5.2.
This operator also satisfies the following property.

Proposition 5.4. The operator I −A is injective.

Proof. Let X ∈ V such that (I − A)X = 0, which means X = F ∗ΠX. Define Z ∈ V
such that Z = ΠX, then F ∗Z = X so that ΠF ∗Z = Z. Then define u = (uk)1≤k≤Nh ∈ H
such that for all k ∈ [[1, Nh]]

{
−∆uk + βuk = 0, (Ωk),
(∂ν + iσ)uk = Z|∂Ωk , (∂Ωk).

(5.25)

In order to identify F ∗Z, define Y ∈ V such that

∀k ∈ [[1, Nh]], Yk = (−∂ν + iσ)uk.

It is known that for all W ∈ V , there exists w = (wk)1≤k≤Nh ∈ H such that w = E(W ),
which means w satisfies for all k ∈ N such that 1 ≤ k ≤ Nh

{
−∆wk + βwk = 0, (Ωk),
(−∂ν + iσ)wk = Wk, (∂Ωk).

(5.26)

Then

(Y,W ) =
∑

k∈[[1,Nh]]

∫

∂Ωk

1
σ

(−∂ν + iσ)uk · (−∂ν + iσ)wk,

=
∑

k∈[[1,Nh]]

∫

∂Ωk

1
σ
∂νuk · ∂νwk + σuk · wk + i∂νuk · wk − iu · ∂νwk,

(Z,FV ) =
∑

k∈[[1,Nh]]

∫

∂Ωk

1
σ

(∂ν + iσ)uk · (∂ν + iσ)wk,

=
∑

k∈[[1,Nh]]

∫

∂Ωk

1
σ
∂νuk · ∂νwk + σuk · wk − i∂νuk · wk + iuk · ∂νwk.
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On the other hand, from (5.25) and (5.26) for all k ∈ [[1, Nh]]
{ ∫
∂Ωk

∂νuk · wk =
∫

Ωk
∇uk · ∇wk +

∫
Ωk
βuk · wk,∫

∂Ωk
uk · ∂νwk =

∫
Ωk
∇uk · ∇wk +

∫
Ωk
βuk · wk,

so that
∫
∂Ωk
−∂νuk · wk + uk · ∂νwk = 0. As a consequence ∀W ∈ V, (Y,W ) = (Z,FW ),

which exactly means that Y = F ∗Z. Since ΠF ∗Z = Z, it leads to ΠY = Z.
To conclude let’s read this last equation in terms of the functions uk defined in (5.25).

∀(k, j) ∈ [[1, Nh]]
2,

{
(−∂ν + iσ) (uk)|Σjk = (∂ν + iσ) (uk)|Σkj ,
Q(−∂ν + iσ) (uk)|Γk = (∂ν + iσ) (uk)|Γk ,

so that both u and ∂νu are continuous along every interface Σkj, and now
{
−∆u+ βu = 0, (Ω),
(∂ν + iσ)u = Q(−∂ν + iσ)u, (σ).

Then u is the unique solution of the corresponding problem (5.1) provided by Theorem
5.2.3 : it is the 0 solution. Then Z = 0, and so X = 0. This ends the proof.

An abstract discretization procedure

The next step consists in the discretization of Equation (5.23). This could be treated
thanks to a standard Galerkin method : consider a subspace Vh ⊂ V with finite dimension,
and seek the discrete solution Xh ∈ Vh such that

∀Yh ∈ Vh, (Xh, Yh)− (ΠXh, FYh) = (b, Yh). (5.27)

Before describing in the next section a strategy to make such a Galerkin method
effective, this section shows that the Galerkin approach (5.27) yields a well posed discrete
problem. The following analysis of this well known fact is slightly different from what can
be found in the literature [Des94, CD98, GHP09, BM08, HMP11, HMP13].

Definition 16. Consider the operator A introduced in Definition 15. Define the norm
|||U ||| = ‖(I − A)U‖ for all U ∈ V , and the bilinear form of the formulation (5.23) :
a(X,Y ) = (X,Y )− (ΠX,FY ).

Since I − A is injective, ||| · ||| is indeed a norm. Two fundamental properties are
coercivity and bicontinuity.

Lemma 5.5. The bilinear form is coercive with respect to the norm ||| · |||

|||X|||2 ≤ 2ℜ (a(X,X)) ∀X ∈ V,

and is bicontinuous in the sense that

|a(X,Y )| ≤ |||X||| × ‖Y ‖ ∀X,Y ∈ V.

Proof.Consider X and Y in V . One has by definition |||X|||2 = ‖X‖2 + ‖AX‖2 −
2ℜ(X,AX). Since ‖A‖ ≤ 1 then

|||X|||2 ≤ 2
(
‖X‖2 −ℜ(X,AX)V

)
= 2ℜ ((I −A)X,X)V = 2ℜ (a(X,X)) .

The coercivity is proved. The skewed bicontinuity is evident from Cauchy-Schwarz inequa-
lity applied to a(X,Y ) = ((I −A)X,Y ).
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Figure 5.4 – Example of numerical orders of convergence with respect to p the local
number of basis functions per element, computed for two different norms. From Cessenat’s
thesis [Ces96b] paragraph I.3.2.3.

Proposition 5.6. Assume there exists X solution of the problem (5.24). Then any solution
Xh of the discrete problem (5.27) satisfies the inequality

|||X −Xh||| ≤ 2 inf
Zh∈Vh

‖X − Zh‖. (5.28)

Proof. By construction a(X −Xh, Yh) = 0 ∀Yh ∈ Vh. So

a(X −Xh,X −Xh) = a(X −Xh,X − Zh) with Zh = Yh − Zh.
It ends the proof with the coercivity and skewed bicontinuity of lemma 5.5.

Lemma 5.7. For all B ∈ V , the discrete solution Xh exists and is unique.

Proof. If Xh exists, it is solution of a linear system, the dimension of the system
being the dimension of the discrete subspace Vh. Therefore it is sufficient to check that if
a(Xh, Yh) = 0 for all Yh ∈ Vh, then Xh = 0. Apply the inequality (5.28) with the choice
X = B = 0. It yields ‖Xh‖ ≤ 2 infZh∈Vh ‖Zh‖ = 0.

Note that this property means that the discrete problem (5.27) is well-posed with
no restriction on the size of the mesh. As a direct application, one can think of the p
convergence of the method : instead of refining the mesh, convergence is achieved increasing
the number of basis functions on each element. This has been studied for instance in
[Ces96b] from the numerical point of view, see an example in Figure 5.4, and in [HMP11]
with a Discontinuous Galerkin approach.

5.2.2 A method adapted to vanishing coefficients

Until that point no significant difference has to be noted between the classical UWVF
for constant coefficients and the case of a general smooth coefficient. The discretization
procedure requires the explicit definition of a finite dimension trial space of homogeneous
solutions of the initial equation. For constant coefficients, such solutions have mainly been
chosen as classical plane waves in [CD98, HMK02], but generalized harmonic polynomials
are studied with the Vekua transform proposes in [HMP11] and more recently Bessel
basis functions have been considered in [LHM12]. However it turns out that none of the
corresponding trial spaces could be used in the case of an analytic vanishing coefficient. As
a result the definition of an adapted trial space is mandatory to obtain a new formulation.
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The adapted basis functions

The technical reason for the need of adapted test functions is the following. The de-
finition of the operator F is linked to the functional space H through the operator E.
Then in order to compute the (Π·, F ·) term in (5.27), some local solutions of the homoge-
neous equation would be needed. But such exact solutions are not available. A constructive
procedure to design the basis functions to generate the discrete trial space follows.

Shape functions ϕ are sought as solutions of the homogeneous equation

(−∆ + β)ϕ = 0, (5.29)

locally on Ωk. For a constant and negative coefficient β in the cell, it is sufficient to use
plane waves, that is

{
ϕ(x) = e

√
βx in dimension one,

ϕ(x, y) = e
√
β(κ1x+κ2y) in dimension two,

(5.30)

with κ2
1 + κ2

2 = 1. In dimension two, if the vector (κ1, κ2) is real, it simply specifies the
direction of the wave. This is the basic idea of all plane wave methods. If β = x is linear
with respect to the first variable, it is possible to construct ϕ from the Airy functions Ai
and Bi. But these are highly transcendental. However if β is non constant in the cell, then
no simple and general analytic formula holds for ϕ.

By comparison with the plane wave formula (5.30) it is natural to consider a generalized
plane wave such as ϕ = eP , P being a polynomial. One gets that ϕ is solution of (5.29) if
and only if

{
∂2
xP + (∂xP )2 = β(x) in dimension one,

∂2
xP + (∂xP )2 + ∂2

yP + (∂yP )2 = β(x, y) in dimension two.
(5.31)

However many attempts showed that such a representation is not sufficient. The explana-
tion is simple, and here is an illustration dimension two : as P can be expanded as a finite
series of monomial xiyj , the result is a finite series of term

∂2
x(x
iyj) +

(
∂x(x

iyj)
)2

+ ∂2
y(x
iyj) +

(
∂y(x

iyj)
)2

=
(
i(i− 1)xi−2 + ix2i−2

)
yj + xi

(
j(j − 1)yj−2 + j2y2j−2

)
. (5.32)

For example consider the case β(x, y) = x and look for a polynomial

P =
∑

i≤K

∑

j≤L
aijx

iyj, aKL 6= 0,

solution of (5.31). If either K ≥ 2 or L ≥ 2, the maximal degree of (5.32) cannot decrease
which is contradictory with the fact that β = x is a polynomial of degree one. SoK ≤ 1 and
L ≤ 1. In this case the degrees of (5.32) with respect to x and y are 0. In summary there
is no solution of the functional equation (5.31) in the general case, P being a polynomial.

Therefore a modification is needed. Since a polynomials cannot be an exact solution
of (5.31) in the general case, it could be a solution of a modified version of (5.31). Test
functions are sought as exact solutions of an approximated equation in which the coefficent
β is replaced by a local approximation. The parameter l will number the pk ∈ N basis
functions designed in the cell Ωk, so that 1 ≤ l ≤ pk. On Ωk the test function ϕlk satisfies

(
−∆ + βlk

)
ϕlk = 0 in Ωk
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where βlk is an approximation of β in Ωk such that (5.31) with right-hand side βlk has
polynomial solutions. As a consequence βlk itself is necessarily a polynomial. A priori
βlk 6= βl

′

k for l 6= l′.

Definition 17. Generalized plane waves A generalized plane wave will be understood
as any function of the form ϕ = eP where P is a polynomial solution on Ωk of

{
∂2
xP + (∂xP )2 = β̃(x) in dimension one,

∂2
xP + (∂xP )2 + ∂2

yP + (∂yP )2 = β̃(x, y) in dimension two.
(5.33)

and β̃ is a suitable approximation of β.

The meaning of suitable will be specified in the design procedure section.

Remark 11. Consider the vectorial space spanned by a set of generalized plane waves.
Denote by ϕ an element of this space. A priori this element will not be the solution of an
approximated equation since ϕ =

∑

k,l

ck,lϕ
l
k only implies that

−∆


∑

k,l

ck,lϕ
l
k


+

∑

k,l

ck,lβ
l
kϕ
l
k = 0.

The adapted formulation

Foreseeing the numerical application of the method, the basis functions of the finite
dimension test space are designed with support reduced to one element of the mesh : the
matrix resulting from the system (5.27) will have a sparse profile.

Definition 18. For all (k, l) ∈ N
2 such that 1 ≤ k ≤ Nh and 1 ≤ l ≤ pk, consider that

the generalized plane waves ϕlk have been constructed. The local discrete space is

Wk = Span
{

(−∂ν + iσ)ϕlk
}

1≤l≤pk
⊂ L2(∂Ωk).

The global discrete space V q ⊂ V is defined by :

V q =
∏

1≤k≤Nh
Wk.

From the local support of ϕlk, the corresponding shape function in V q defined from ϕlk
has support in ∂Ωk and vanishes in ∂Ωk′ for all k′ such that k′ 6= k. The trace Z lk ∈ V is

{
Z lk = (−∂ν + iσ)ϕlk on L2(∂Ωk),
Z lk = 0 on L2(∂Ωk′) k′ 6= k.

Since the generalized plane waves are C∞ in Ωk, the corresponding traces are actually
piecewise C∞loc on ∂Ωk.

An equivalent way to define Wk and V q could be

Wk = Span
(
Z lk

)
1≤l≤pk

and V q = Span
(
Z lk

)
1≤l≤pk, 1≤k≤Nh

.
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Definition 19. Let Eq ∈ L

V q,

Nh∏

k=1

H1(Ωk)


 be the discrete mapping defined for all

k ∈ [[1, Nh]] and for all l ∈ [[1, pk]] by
{
Eq(Z lk) = ϕlk on L2(∂Ωk),
Eq(Z lk) = 0 on L2(∂Ωk′) if k′ 6= k.

(5.34)

Similarly define F q ∈ L(V q, V ) for all k ∈ [[1, Nh]] and for all l ∈ [[1, pk ]], by
{
F q
(
Z lk

)
= (∂ν + iσ)(ϕlk) on L2(∂Ωk),

F q(Z lk) = 0 on L2(∂Ωk′) if k′ 6= k.

The extension mapping Eq is defined on V q ⊂ V .
• In dimension one dimV q = dim V = 2Nh so V q = V . As a result Eq is defined on

the whole space V .
• In dimension two dimV = ∞ so V q is included in, but different from V . As a

consequence, Definition 19 does not define Eq on the whole space V . However, since
V q is a linear subspace of V , there is a projector Ph from V to V q. So the operator
Eq can be extended as an operator on V in the following way : for all Y ∈ V

Eq(Y ) = Eq(PhY ) +E((I − Ph)Y ).

With this notation and definitions, the abstract UWVF with generalized plane waves
is defined as follows.

Definition 20. (UWVF method with generalized plane waves) Find Xh ∈ V q such
that

∀Yh ∈ V q, (Xh, Yh)V − (ΠXh, F
qYh)V = (Bq, Yh)V (5.35)

with the right hand side given by

(Bq, Yh)V = −2i
∫

Ω
fEq(Yh) +

∫

Γ

1
σ
gF q(Yh) ∀Yh ∈ V q. (5.36)

5.2.3 Explicit design procedure of a Generalized Plane Wave

The different axis of analysis that will follow this section strongly rely on the shape
function design. It is then necessary to precede any further analysis by an explicit procedure
to design the generalized plane waves.

In dimension one the design of the local set of basis functions is straightforward whereas
in dimension two the design of a shape function deserves closer attention.

To ensure the local approximation of the coefficient β by a coefficient β̃ mentioned
in the definition of generalized plane waves, namely Definition 17, one solution is to fit
the coefficients of the polynomial P to approximate the Taylor expansion of β at G ∈ R

d

with respect to the parameter h, that will later represent the size of the mesh. Then the
polynomial P will ensure that

β = β̃ +O(hq), (5.37)

which defines the desired meaning of the "suitable approximation" β̃. Here q is a new pa-
rameter, and is expected to affect the convergence rate of the new method. The parameter
q will denote the order of approximation of β, and is consider such as q ≥ 1.

The constant coefficient of P is not involved in equation (5.33), it is fixed to zero :
P (0) = 0, with no further comment. Since the procedure is based on Taylor expansions,
the function ϕ from now on will represent eP (·−G). This implies that the amplitude of the
corresponding shape function is normalized at G : ϕ(G) = e0 = 1.
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Remark 12. Focus on the non linear system provided by (5.33), which right hand side
is the Taylor expansion of β up to the order q. The unknowns of this system are the
coefficients of P . For a fixed value of q, increasing the global degree of P , noted dP ,
provides more degrees of freedom while the number of equations is given. There exists
a threshold beyond which the system is under determined. Then it is likely that a high
enough value of dP can provide an invertible system with additional unknowns to be fixed.
At the same time it is reasonable to choose dP as small as possible to minimize the amount
of computations. The main question is therefore to determine the optimal value of the dP
with respect to the approximation parameter q.

The paragraph concerning the case d = 1 is presented as a gradual tutorial about what
stems from the definition of generalized plane waves, and the next paragraph concerns
the case d = 2. Some properties of the basis functions are also provided in this section,
foreseeing Sections 5.3 and 5.4.

In dimension one

Only two basis functions per cell are needed. It is a common property of plane wave
methods in dimension one, since the number of elementary solutions of a second order
differential equation is two. The local basis functions will be denoted ϕ± = eP±(x−G).

Consider first a simple case. If β is locally constant, that is

β(x) = β(G) ∈ R, x ∈ [G− h/2, G + h/2],

then P±(x) = ±
√
β(G)x are two natural solutions which correspond to the two local plane

waves ϕ±(x) = eP±(x−G) in the case β(G) < 0.
Then if β is not constant, its local Taylor expansion reads

β =
q−1∑

i=0

diβ

dxi
(G) (x−G)i +O(hq), x ∈ [G − h/2, G + h/2].

Using the finite expansion P± =
∑

i≤dP

λ±i (x−G)i, one obtains

β± = P ′′± + (P ′±)2 =

(
dP∑

i=0

λ±i (x−G)i
)′′

+



(

dP∑

i=0

λ±i (x−G)i
)′


2

.

In order to satisfy (5.37) both the degree dP ∈ N and the coefficients (λ±i )0≤i≤dP of P
have to be defined such that
(

dP∑

i=0

λ±i (x−G)i
)′′

+



(

dP∑

i=0

λ±i (x−G)i
)′


2

=
q−1∑

i=0

diβ

dxi
(G) (x−G)i +O(hq). (5.38)

Identifying the coefficients in the polynomial part of the previous equation leads to a non
linear system of q equations with dP unknowns.

Some remarks and examples follow.

• Trivial case : q = dP = 1. In this case equation (5.38) reads
(
λ±1
)2

= β (G), so that
{
λ±1 = ±

√
β (G)

P±(x) = ±
√
β (G) (x−G)

As already remarked, if β (G) < 0, it yields two plane waves with opposite directions.
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• Counter-example : q = dP = 2. The non linear system obtained from the first two
terms in (5.38) is {

2λ2 + (λ1)2 = β (G) ≡ a,
4λ1λ2 = β′ (G) ≡ b. (5.39)

Elimination of λ2 yields
− 2(λ1)3 + 2aλ1 = b. (5.40)

It is of course possible to compute λ1 as any root of this polynomial, λ2 will then
be computed as a ratio, i.e. λ2 = b

4λ1
. So in principle this method can generate at

least two different polynomials P . But in the case b = 0, λ1 = 0 is one root. In such
a case λ2 would be singular : λ2 = +∞. As a consequence the property 2 of Lemma
5.8 would not satisfied.
It must be noticed that the use of such a method in numerical tests revealed a
singularity near β(x) ≈ 0.
Another problem is the generalization to high order. This procedure requires the
exact computation of the roots of a high order polynomial which generalizes (5.40).
This is not possible for orders ≥ 5. This is why this method is not used.

• Example : q = 2 and dP = 3. This is the direct application of Remark 12. Taking into
account λ3, the system becomes

{
2λ2 + (λ1)2 = a,
6λ3 + 4λ1λ2 = b.

(5.41)

This system now has 3 unknowns and 2 equations. So it has a priori an infinite
number of solutions. A natural normalization condition arises by considering that
the two basis functions should be linearly independent. Since ϕ+(G) = ϕ−(G) = 1
it is sufficient to ensure that ϕ′+(G) 6= ϕ′−(G), for instance imposing that





d

dx
eP−(G) = 0⇐⇒ P ′− (G) = 0

d

dx
eP+(G) = 1⇐⇒ P ′+ (G) = 1.

The first case corresponds to λ−1 = 0, the second one to λ+
1 = 1. With this normali-

zation it is evident that λ2 and λ3 can be computed explicitly from (5.41) and that
the resulting formulas are just polynomial expressions with respect to all coefficients.
One obtains two sets of coefficients which are





λ+
1 = 1, λ+

2 =
1
2

(a− 1), λ+
3 =

1
3

(b− 2a+ 2)

λ−1 = 0, λ−2 =
a

2
, λ−3 =

1
3

(b− 2a) .

These formulas hold for all (a, b) ∈ C
2. Notice that since β± = P ′′± + (P ′±)2, then

λ+
1 6= λ−1 implies that β+ 6= β−.

This method can be generalized to any order q > 1. The first thing is to chose a
convenient degree dP . For any order q, consider the system obtained from (5.38)





(i+ 2)(i + 1)λi+2 =
di

dxi
β (G)−

l+l′=i∑

0≤l,l′≤dP−1

(l + 1)(l′ + 1)λl+1λl′+1,

l+l′=i∑

0≤l,l′≤dP−1

(l + 1)(l′ + 1)λl+1λl′+1 =
di

dxi
β (G) ,
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where the first equation holds for i ≤ q − 1 and the second one for i ≥ q and i ≤ r, as
long as dP > q+ 1. Choosing dP ≤ q+ 1 one gets rid of this second type of equations and
obtains an invertible system





∀i ∈ N such that i ≤ q − 1

(i+ 2)(i + 1)λi+2 =
di

dxi
β (G)−

l+l′=i∑

0≤l,l′≤dP−1

(l + 1)(l′ + 1)λl+1λl′+1.
(5.42)

In fact, the corresponding system of q equations with q+1 unknowns is obtained identifying
the first q coefficients in both parts of the expansion (5.38) with the normalization λ+

1 = 0
which corresponds to P ′+ (G) = 0 and λ−1 = 1 which corresponds to P ′− (G) = 1.

The resulting functions ϕ+ = eP+ and ϕ− = eP− are linearly independent functions,
and

β+ = P ′′+ + (P ′+)2 and β− = P ′′− + (P ′−)2. (5.43)

By construction the first q coefficients of these polynomials β± coincide. But of course all
other coefficients have no reason to be equal, so β+ 6= β− in the general case .

The definition of the basis functions space requires some notation :





Ω =]a, b[⊂ R

Ω =
⋃

k∈[[1,Nh]]

[xk, xk+1] with xk < xk+1

xk+1/2 =
xk + xk+1

2
,

h = maxk∈[[1,Nh]](xk+1 − xk).

As mentioned previously pk = 2 for all k ∈ [[1, Nh]]. On each cell of the mesh, the two basis
functions ϕk,± are defined with G = xk+1/2.

One can summarize as follows.

Lemma 5.8. The corresponding functions βk,± defined in (5.43) satisfy the following
statements.

1. These functions, together with all the coefficients of the polynomials P±, are bounded
independently from the cell number k, as well as all their derivatives.

2. By construction there exists a constant Cq such that ‖βk,±−β‖L∞(Ωk) ≤ Cqhq where
q is the approximation parameter.

3. This construction is valid even if the sign of β changes or if β vanishes.

The last point is essential to be able to address the numerical approximation of the
Airy equation.

The normalization λ± ∈ {0, 1} is arbitrary. It is also possible to choose another nor-
malization such as λ±1 = ±√xk+1/2. This choice gives two basis functions as long as
xk+1/2 6= 0. It will be illustrated as a numerical example in the dedicated chapter.

Item 2 of Lemma 5.8 establishes a property of approximation with respect to h. One
of the numerical tests shows that a similar property of convergence holds with respect to
the order parameter q. In practice the q-convergence is a highly desirable property since
it allows to use large cells.
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In dimension two

Consider a general point G = (xG, yG) ∈ Ω ⊂ R
2. Again the design of the polynomial

P starts with the choice of its degree, and next focuses on giving an explicit expression to
compute its coefficients, using a Taylor expansion around the given point G.

The shape function will be designed to ensure that

β − P∆ = O(hq), (5.44)

where P∆ stands for ∂2
xP +(∂xP )2 +∂2

yP +(∂yP )2. A precise analysis of equation (5.44) in
terms of coefficients of P leads to chose the degree of P such that the computation of the
coefficients appears to be straightforward. For the same reasons as in the one dimensional
case the degree dP will be q + 1, but the normalization will necessarily involve more
coefficients.

The Taylor expansion of P∆ is necessarily more involved than the corresponding term
in dimension one. Since





∂2
xP (x, y) =

∑

0≤i+j≤dP−2

(i+ 2)(i+ 1)λi+2,jx
iyj ,

∂2
yP (x, y) =

∑

0≤i+j≤dP−2

(j + 2)(j + 1)λi,j+2x
iyj,

for any (i0, j0) ∈ [[1,dP − 2]]2 such that i0 + j0 ≤ dP − 2, the term

(i0 + 2)(i0 + 1)λi0+2,j0 + (j0 + 2)(j0 + 1)λi0,j0+2

will appear in the coefficient of xi0yj0. Since

(∂xP (x, y))2 =
∑

1≤i+j≤dP

∑

1≤i′+j′≤dP

(i)(i′)λi,jλi′,j′x
i+i′−2yj+j

′

,

=
∑

0≤i+j≤dP−1

∑

0≤i′+j′≤dP−1

(i+ 1)(i′ + 1)λi+1,jλi′+1,j′x
i+i′yj+j

′

,

then for any (i0, j0) ∈ [[1,dP−2]]2 such that i0+j0 ≤ dP−2 the corresponding contribution
from λi+1,jλi0−i+1,j0−j to the term xi0yj0 could only be such that





j ≤ j0,
j0 − j ≤ j0,
i+ 1 ≤ i0 + 1,

i0 − i+ 1 ≤ i0 + 1.

That means that the λs contributing to P∆ from (∂xP )2 can only be of index (i, j) such
that i + j ≤ i0 + j0 + 1. For similar reasons the λs contributing to P∆ from (∂yP )2 can
only be of index (i, j) such that i + j ≤ i0 + j0 + 1. So since overall all the terms except
∂2
xP and ∂2

yP will only involve λi,j satisfying i+ j ≤ i0 + j0 + 1 : suppose λi0,j0+2 is given,
then λi0+2,j0 is easily determined. For this reason the degree is again set as dP = q + 1.

Since




(∂xP )2 =
∑

0≤i+j≤q−1



i∑

k=0

j∑

l=0

(i− k + 1)(k + 1)λi−k+1,j−lλk+1,l


xiyj +O(hq),

(∂yP )2 =
∑

0≤i+j≤q−1



j∑

k=0

i∑

l=0

(j − k + 1)(k + 1)λi−l,j−k+1λl,k+1


xiyj +O(hq),

∂2
xP =

∑

0≤i+j≤q−1

(i+ 2)(i + 1)λi+2,jx
iyj,

∂2
yP =

∑

0≤i+j≤q−1

(j + 2)(j + 1)λi,j+2x
iyj,
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j
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q + 1i0
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i0 + 2 q
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(∂yP )2

(∂xP )2

i

j

q = 6

q − 1

q + 1

i0

j0
λi0+2,j0

i0 + 2 q

λi0,j0+2

Figure 5.5 – For a given (i0, j0), indices (i, j) such that λi,j contributes to the xi0yj0

term in β − P∆. Left : Contributions from P∆ to the xi0yj0 term in β − P∆. The second
order derivatives are represented in red. Right : Evidence of the invertibility of the system
(5.45) : λi0+2,j0 (in red) can be explicitly expressed as long as λk,l (in blue) are known for
all k ≤ i0 + 1 and l ≤ dP − 2− k.

and since the Taylor expansion of β in two dimensions reads

β(x, y) =
∑

(i,j)/0≤i+j≤q−1

∂ix∂
j
yβ(G)

i!j!
(x− xG)i(y − yG)j +O (‖(x, y) − (xG, yG)‖q) ,

then to satisfy (5.44) the coefficients of P necessarily satisfy the following system

∀(i, j) s.t. 0 ≤ i+ j ≤ q − 1,
∂ix∂
j
yβ(G)

i!j!
= (i+ 2)(i + 1)λi+2,j + (j + 2)(j + 1)λi,j+2

+
i∑

k=0

j∑

l=0

(i− k + 1)(k + 1)λi−k+1,j−lλk+1,l

+
j∑

k=0

i∑

l=0

(j − k + 1)(k + 1)λi−l,j−k+1λl,k+1.

(5.45)

This is an explicit formula which can be used to compute the whole set of coefficients of
P by induction. It is equivalent to the one dimensional formula (5.42) from the previous
paragraph.

Inspecting the formula (5.45), the choice to fix the set of coefficients

{λi,j, i ∈ {0, 1}, j ∈ [[0, q + 1− i]]}

defines explicitly all the coefficients of P . Others choices to obtain an invertible system
would give exactly the same theoretical results. For instance choosing to fix the set of
coefficients {λi,j , j ∈ {0, 1}, i ∈ [[0, q + 1− i]]} is a possible choice as well. But numerically,
as will be seen later on, there is no evidence of the lack of symmetry of the first proposed
choice with respect to the two space variables. This is due to the fact that in any case the
procedure ensures the approximation of β up to the order q, no matter what this choice
can be. In practice a very accurate approximation of β is obtained.
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However, even if explicit, the formula to compute all the coefficients is complicated,
and the algebra associated is non trivial. A general type of shape functions corresponds
to the following definition.

Definition 21. Consider N ∈ C such that N 6= 0. For a given θ ∈ R, the N -normalization
is defined by

1. (λ1,0, λ0,1) = N(cos θ, sin θ).

2. {λi,j , i ∈ {0, 1}, 1 < i+ j ≤ q + 1} are set to zero.

For a given value of θ the formula (5.45) provides an explicit function ϕ = eP (·−G)

depending on N and θ. Varying θ then provides different functions ϕ, only as long as
N 6= 0. This condition N 6= 0 is mandatory to define a set of linearly independent shape
functions.

The first point comes from the idea of considering a classical plane wave plus higher
degree terms since each angle θ ∈ R gives a shape function. It justifies the name given to
the corresponding shape function : generalized plane wave.

The second point greatly simplifies both the analysis of the method - since everything
will only depend on the two quantities (λ1,0, λ0,1) - and the numerical computations by a
substantial decrease of basic operations necessary to evaluate a shape function.

Section 5.4 is dedicated to the analysis in dimension two. The dependence of the
coefficients λi,j with respect to (λ1,0, λ0,1) will be specified.

Definition 22 (Finite dimension approximation space). Suppose p ∈ N is such that p ≥ 3,
consider equispaced directions θl = 2π(l − 1)/p for all l ∈ [[1, p]] and the corresponding
(λl1,0, λ

l
0,1) and ϕl defined by the N -normalization. The local set of shape functions denoted

E(G, p) is defined by {ϕl}l∈[[1,p]].

From the explicit expression of (λ1,0, λ0,1) fixed in the N -normalization, the fact that
the sum (λ1,0)2 + (λ0,1)2 does not depend on θ is important in the analysis proposed in
Section 5.4, but not the value N of the sum. Indeed, as a result some crucial quantities
do not depend on the l ∈ [[1, p]].

Remark 13. The dimension of the approximation space SpanE(G, p) is p, this is a conse-

quence of Lemma 5.20. Indeed, consider a linear combination
p∑

l=1

xlϕl and suppose it is

equal to zero. Then the vector X = (xl)l∈[[1,p]] satisfies MnX = 0, where Mn is introduced
in Definition 26. But since rk(Mn) = p and 0 ∈ Im(Mn) then necessarily X = 0, so that
{ϕl}l∈[[1,p]] is a linearly independent family.

This property is obviously uniform with respect to h.

The link with the approximation space V q described in Section 5.2 is the following.
Consider a mesh of the domain, Ω = ∪Ωk. On a mesh element Ωk which center is denoted
Gk, the local trace space Wk is defined via the shape functions of E(Gk, p(k)), and again

V q =
∏

1≤k≤Nh
Wk,

as in Definition 18.
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Two examples of normalizations

Until that point the design of E(G, p) is explicit up to the choice of the normalization
parameter N . Different choices are then possible. Two different ones will be considered in
this work.

The first normalization is the natural direct generalization of the classical plane waves.

Definition 23. The normalization corresponding to N =
√
β(G) will be called the β-

normalization.

Such a normalization leads indeed to P =
√
β(G)(x cos θ + y sin θ)+higher order terms,

where P̃ =
√
β(G)(x cos θ + y sin θ) corresponds to the associated classical plane wave.

However, keeping in mind the original problem to be addressed, one can notice that at
the cut-off, β(G) = 0, the β-normalization does only provide one shape function which is
constant equal to one regardless of the value of β(G).

A second normalization can theoretically overcome this drawback.

Definition 24. The normalization corresponding to N = i(=
√−1) will be called the

constant-normalization, since it does not depend on β(G).

In this case Proposition 5.21 and Theorem 5.4.1 still holds in this case if β(G) = 0. However
the induction formula used to define the coefficients of P does involve the derivatives of β
at G : even if N does not depend on G, the other coefficients of P do.

The performances of these two normalizations will be compared in the chapter dedi-
cated to the numerical results.

5.3 Numerical analysis in dimension one

This section rolls out the steps of a numerical analysis of the h-convergence of the new
method in dimension one, to result in an explicit theoretical order expressed with respect
to the approximation parameter q.

5.3.1 Convenient global notation

Two polynomials Pk,1 and Pk,2 on Ωk for all k ∈ [[1, Nh]] correspond to the basis func-
tions and approximated coefficients denoted by ϕk,1, βk,1 and ϕk,2, βk,2. For the sake of
simplicity, the basis functions space will be globally denoted by {ϕj}j∈[[1,2Nh]] and the cor-
responding coefficients {βj}j∈[[1,2Nh]] ; {Zj}j∈[[1,2Nh]] will denote the corresponding traces,
i.e.

∀j ∈ [[1, 2Nh]], Zj = {(−∂ν + iσ)ϕj|∂Ωk}k∈[[1,Nh]].

The family {Zj}j∈[[1,2Nh]] is a basis of the functional space V q. A fundamental property

V q = V only in dimension one

was already pointed after the definition of V q. It will radically reduce the technicalities of
the proof. In fact, Lemmas 5.10 and 5.12 rely on the fact that in dimension one dim V q =
2Nh.
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5.3.2 Preliminary results

For the sake of completeness, here are classical results. Both Theorems 5.3.1 and 5.3.2
provide a priori estimates explicit with respect to the mesh parameter h. It has to be noted
that such explicit estimates are not available in dimension two.

Theorem 5.3.1. Let O be a one-dimensional open interval with length h. Let w be the
unique solution of {

−∆w + βw = 0, (O),
(−∂ν + iσ)w = g, (∂O).

(5.46)

Then there exists a constant C which depends of ‖β‖L∞(O) and σ such that for h small
enough

‖w ‖L2(O) ≤ C
√
h ‖g‖L2(∂O) . (5.47)

The existence and uniqueness of the solution is given by theorem 5.2.3. A very classical
Poincaré inequality in one dimension will be needed in the proof.

Proposition 5.9. There exists a constant C such that for all h > 0, for all open interval
O ⊂ R which length is h, for all u ∈ L2(O)

‖u‖L2(O) ≤ C
(√

h‖u‖L2(∂O) + h‖u′‖L2(O)

)
. (5.48)

Proof. There exists a ∈ R such that O =]a, a + h[. From u(x) = u(a) +
∫ x
a u
′(t)dt it

yields ∫ a+h

a
|u(x)|2dx ≤ 2h|u(a)|2 + 2

∫ a+h

a

(∫ x

a
|u′(t)|dt

)2

dx,

so that
‖u‖L2(O) ≤

√
2h‖u‖L2(∂O) +

√
2h‖u′‖L2(O).

It gives the result for C =
√

2.
Proof.Of Theorem 5.3.1. A more general inequality than (5.47) can actually be proved,

on the non homogeneous problem :
{
−u′′ + βu = f, (O)
(−∂ν + iσ)u = g, (∂O).

(5.49)

Using u as test function, one gets
∫

O
|u′|2 + iσ

∫

∂O
|u|2 =

∫

O
fu−

∫

O
β|u|2 +

∫

∂O
gu.

Then



‖u‖2L2(∂O) ≤

1
σ
‖f‖L2(O)‖u‖L2(O) +

1
σ
‖g‖L2(∂O)‖u‖L2(∂O),

‖u′‖2L2(O) ≤ ‖g‖L2(∂O)‖u‖L2(∂O) + ‖β‖L∞(O)‖u‖2L2(O) + ‖f‖L2(O)‖u‖L2(O).

Using the fact that 2ab ≤ a2/σ + σb2 for all a, b ∈ R the first inequality yields

‖u‖2L2(∂O) ≤
2
σ
‖f‖L2(O)‖u‖L2(O) +

1
σ2
‖g‖2L2(∂O),

so that
‖g‖L2(∂O)‖u‖L2(∂O) ≤

1
2σ
‖g‖2L2(∂O) +

σ

2
‖u‖2L2(∂O)
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≤ 1
2σ
‖g‖2L2(∂O) + ‖f‖L2(O)‖u‖L2(O) +

1
2σ
‖g‖2L2(∂O).

Then

‖u′‖2L2(O) ≤
1
σ
‖g‖2L2(∂O) + 2‖f‖L2(O)‖u‖L2(O) + ‖β‖L∞(O)‖u‖2L2(O)

stems from the second inequality. So from (5.48)

‖u‖2L2(O) ≤ C
(
h

(
2
σ
‖f‖L2(O)‖u‖L2(O) +

1
σ2
‖g‖2L2(∂O)

)

+h2
(

1
2σ
‖g‖2L2(∂O) + 2‖f‖L2(O)‖u‖L2(O) + ‖β‖L∞(O)‖u‖2L2(O)

))
.

For h small enough it proves that

‖u‖2L2(O) ≤ C
(
h

σ2
‖g‖2L2(∂O) +

h2

σ2
‖f‖2L2(O)

)
. (5.50)

One can notice that the scaling of this estimate is optimal. Indeed considering that σ has
the inverse dimension of a length - which is evident from the boundary condition - all
quantities have the same dimension at inspection of (5.49). Inequality (5.47) is obtained
by taking f = 0 in the previous inequality.

The next result concerns the approximation error between the problem
{
−∆w + βw = f, (O),

(−∂ν + iσ)w = g, (∂O),
(5.51)

and the modified problem
{
−∆w + βhw = f, (O),
(−∂ν + iσ)w = g, (∂O),

(5.52)

where O represents any open set which length is h, included in Ω.

Theorem 5.3.2. Let O be a one-dimensional open interval which length is h, such that
O ⊂ Ω. If u is solution of the problem (5.51) and uh is solution of the problem (5.52),
then for small h there exists a constant C such that

‖u− uh‖L2(O) ≤ C
(
h

3
2 ‖g‖L2(∂O) + h2‖f‖L2(O)

)
‖β − βh‖L∞(O). (5.53)

Proof. Suppose that u and uh are the solutions of the two following problems
{
−u′′ + βu = f, (O)
(−∂ν + iσ)u = g, (∂O).

and {
−u′′h + βhuh = f, (O)
(−∂ν + iσ)uh = g, (∂O).

Then eh := u− uh satisfies
{
−e′′h + βheh = (βh − β)u, (O)
(−∂ν + iσ)eh = 0, (∂O).
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Inequality (5.50) yields

‖eh‖L2(O) ≤ C
h

σ
‖(βh − β)u‖L2(O) ≤ C

h

σ
‖βh − β‖L∞(O)‖u‖L2(O).

Using one more time (5.50) to estimate u and regarding σ which is a positive number,
then

‖eh‖L2(O) ≤ C
(
h

3
2‖g‖L2(∂O) + h2‖f‖L2(O)

)
‖βh − β‖L∞(O).

5.3.3 Approximation of the operator F

This paragraph is devoted to showing that the new operator F q introduced in Section
5.2.2 is an approximation of the original operator F up to the order q + 1 in h. Consider
the following problem {

Find Xh ∈ Vq such that
(I −Aq)Xh = B,

(5.54)

where Aq = (F q)∗Π. Here h and q are given. This result relies on a preliminary lemma.

Lemma 5.10. Let q ≥ 2. Suppose h is small enough and basis functions are constructed
as described in paragraph 5.2.3. There exists a constant C independent of k such that for
all k ∈ [[1, Nh]], for all (x1, x2) ∈ C

2,

∑

j∈{1,2}
|xj|‖Zj‖L2(∂Ωk) ≤ C

∥∥∥∥∥∥

∑

j∈{1,2}
xjZj

∥∥∥∥∥∥
L2(∂Ωk)

,

where (Z1, Z2) is a local notation for (Z1
k , Z

2
k).

Proof. Set k ∈ [[1, Nh]] and Z = x1Z1 + x2Z2 ∈ V which support is ∂Ωk. First xj can
be written as a function of Z. This is a priori possible using {Yj}j∈{1,2} which is the dual
basis of {Zj}j∈{1,2}. For all (j, l) ∈ {1, 2}2, the dual function Yj is defined by

(Yj , Zl)V = δjl, (5.55)

where δ denotes the Kronecker symbol. The proof proceeds in several steps.

First step. One has that xj = (Z, Yj)V , therefore

∑

j∈{1,2}
|xj|‖Zj‖ ≤


 ∑

j∈{1,2}
‖Zj‖‖Yj‖


 ‖Z‖.

So the claim is proved if the right hand side term can be estimated.

Second step : estimate of
∑

j∈{1,2}
‖Zj‖‖Yj‖. From (5.55) it turns out that





Y1 =
−‖Z2‖2

|(Z1, Z2)|2 − ‖Z1‖2‖Z2‖2
Z1 +

(Z1, Z2)
|(Z1, Z2)|2 − ‖Z1‖2‖Z2‖2

Z2,

Y2 =
(Z1, Z2)

|(Z1, Z2)|2 − ‖Z1‖2‖Z2‖2
Z1 −

‖Z1‖2
|(Z1, Z2)|2 − ‖Z1‖2‖Z2‖2

Z2,
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which yields
∑

j∈{1,2}
‖Zj‖‖Yj‖ ≤ 2

‖Z1‖2‖Z2‖2
‖Z1‖2‖Z2‖2 − |(Z1, Z2)|2 .

Set for convenience D =
|(Z1, Z2)|
‖Z1‖‖Z2‖

so that obviously D < 1 and

∑

j∈{1,2}
‖Zj‖‖Yj‖ ≤ 2

1
1−D2

.

It means that the whole proof relies on a more precise upper bound for D when h
goes to zero.

Third step : end of the proof. By definition (Zj)|∂Ωk =
(
(−∂ν + iσ)ePj(·−xk+1/2)

)
|∂Ωk

.

By construction 



Pj(0) = 0 ∀j = 1, 2,
P ′1(0) = 0,
P ′2(0) = 1,

even if it means exchanging the numbering of Zjs. Since by construction all deriva-
tives of P1 and P2 are uniformly bounded - as mentioned in point 1 of Lemma 5.8 -
one has 




Pj(x− xk+1/2) = O(h) ∀j = 1, 2,
P ′1(x− xk+1/2) = O(h),
P ′2(x− xk+1/2) = 1 +O(h)

when h goes to 0 and for all x ∈ [xk, xk+1]. So one can estimate

||Z1||2 =
1
σ

∣∣∣−P ′1(xk+1 − xk+1/2) + iσ
∣∣∣
2 ∣∣∣eP1(xk+1−xk+1/2)

∣∣∣
2

+
1
σ

∣∣∣P ′1(xk − xk+1/2) + iσ
∣∣∣
2 ∣∣∣eP1(xk−xk+1/2)

∣∣∣
2

=
1
σ

∣∣∣−P ′1(xk+1 − xk+ 1
2
) + iσ

∣∣∣
2

+
1
σ

∣∣∣P ′1(xk − xk+ 1
2
) + iσ

∣∣∣
2

+O(h),

that is ||Z1||2 = 2σ +O(h). With the same method one obtains

||Z2||2 = 2
1 + σ2

σ
+O(h) =

1 + σ2

σ2
2σ +O(h),

and

(Z1, Z2) =
1
σ

(−P ′1(xk+1 − xk+1/2) + iσ)(−P ′2(xk+1 − xk+1/2) + iσ)

+
1
σ

(P ′1(xk − xk+1/2) + iσ)(P ′2(xk − xk+1/2) + iσ) +O(h)

that is (Z1, Z2) = 2σ + O(h). Therefore D2 = σ2

1+σ2 + O(h). It proves the claim for
h sufficiently small.

By construction the polynomials designed in dimension one in Section 5.2.3 by the
approximation of the Taylor expansion (5.38) are such that all their coefficients are uni-
formly bounded up to order q for all cells in the domain. This is why the error O(h) in the
above analysis is uniform with respect to the cell index k, which is therefore not indicated.
Note that this is not true if one constructs the polynomials with the method used in the
counter example (5.39).
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Lemma 5.11. For small h and considering the basis functions constructed as described
in Paragraph 5.2.3, there exists a constant C such that

‖F q − F‖ ≤ Chq+1. (5.56)

Proof. For all j ∈ [[1, 2Nh]], the function ϕj is by construction ϕj = Eq(Zj) such that

ϕj ∈ {ϕl}l∈[[1,2Nh]] satisfies ∀k ∈ [[1, Nh]]

{
Zj = (−∂ν + iσ)ϕj , (∂Ωk),(−dx2 + βj

)
ϕj = 0, (Ωk).

Also define ψj = E(Zj) such that and the equation with the exact coefficient β

ψj ∈ H satisfies ∀k ∈ [[1, Nh]]

{
Zj = (−∂ν + iσ)ψj , (∂Ωk),(−dx2 + β

)
ψj = 0, (Ωk).

So

|(F q − F )Zj |2 = |(∂ν + iσ)(ϕj − ψj)|2,
= |(−∂ν + iσ)(ϕj − ψj)|2 + 2ℜ

(
iσ(ϕj − ψj)∂ν(ϕj − ψj)

)
,

= −2σℑ
(
(ϕj − ψj)∂ν(ϕj − ψj)

)
,

since ϕj and ψj satisfy the same boundary condition : (−∂ν + iσ)(ϕj − ψj) = 0. Then on
the only element where Zj is non zero, numbered k = k(j), the following holds

∫

∂Ωk

1
σ
|(F q − F )Zj |2 = −2ℑ

(∫

∂Ωk

(ϕj − ψj)∂ν(ϕj − ψj)
)
,

= −2ℑ
(∫

Ωk

(ϕj − ψj)∂2
x(ϕj − ψj)− 2ℑ

∫

Ωk

∣∣∣∣
d

dx
(ϕj − ψj)

∣∣∣∣
2
)
,

≤ −2ℑ
(∫

Ωk

(ϕj − ψj)(βjϕj − βψj)
)
,

since both ϕj and ψj satisfy homogeneous equations. So

∫

∂Ωk

1
σ
|(F q − F )Zj |2 ≤ −ℑ

(∫

Ωk

(βj + β)|ϕj − ψj|2 +
∫

Ωk

(βj − β)(ϕj − ψj)(ϕj + ψj)
)
,

≤ ‖βj + β‖L∞(Ωk)

∥∥∥(ϕj − ψj)
∥∥∥

2

L2(Ωk)

+ ‖βj − β‖L∞(Ωk)

∥∥∥(ϕj − ψj)
∥∥∥
L2(Ωk)

(
‖ϕj‖L2(Ωk) + ‖ψj‖L2(Ωk)

)
,

thanks to Cauchy-Schwarz inequality. On the other hand, from general estimate (5.5) on
the initial problem and specific one dimensional estimate (5.53), for small h

‖ϕj − ψj‖L2(Ωk) ≤ Ch
3
2‖Zj‖L2(∂Ωk)‖β − βj‖L∞(Ωk),

‖ϕj‖L2(Ωk) ≤ C
√
h‖Zj‖L2(∂Ωk),

‖ψj‖L2(Ωk) ≤ C
√
h‖Zj‖L2(∂Ωk),

and ‖βj + β‖L∞(Ωk) is bounded as noticed in Remark 5.8. So for small h

‖(F q − F )Zj‖2L2(∂Ωk) ≤ C ′h2‖βj − β‖2L∞(Ωk)‖Zj‖2L2(∂Ωk),
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where still k denotes k(j). Now for all k ∈ [[1, Nh]] let L(k) be the set of indexes l ∈ [[1, 2Nh]]
such that Ωk is the support of Zl. Hence, for all Z ∈ V q then Z|∂Ωk =

∑
l∈L(k) xlZl where

both Zls vanish on ∂Ωj for all j 6= k, it yields

‖(F q − F )Z‖L2(∂Ωk) ≤
∑

l∈L(k)

|xl|‖(F q − F )Zl‖L2(∂Ωk)

≤ Ch max
l∈L(k)

‖βlk − β‖L∞(Ωk)


 ∑

l∈{1,2}
|xl|‖Zl‖L2(∂Ωk)


 .

Thanks to Lemma 5.10 it means that

‖(F q − F )Z‖L2(∂Ωk) ≤
√
C ′h max

l∈L(k)
‖βlk − β‖L∞(Ωk)‖Z‖L2(∂Ωk).

Going back to the definition of the V norm for all Z ∈ V

‖(F q − F )Z‖ ≤ Ch max
j∈[[1,2Nh]]

‖βj − β‖L∞(Ωk(j))‖Z‖,

which exactly means ‖F q−F‖ ≤ Chmaxj∈[[1,2Nh]] ‖β−βj‖L∞(Ωk(j). The index k(j) denotes
the number of the element which is the support of Zj . The result then comes from equation
(5.37) ensured by the construction of approximated coefficients βjs.

5.3.4 A convergence result

This paragraph starts with the definition of a useful norm to adapt the second Strang
lemma.

Lemma 5.12. There exists a constant C such that for all X ∈ V :

Ch3/2‖X‖ ≤ ‖(I −A)X‖.

As a consequence, one can see that ||| · ||| = ‖(I − A) · ‖ separates points, so that it
defines a norm. A second norm, adapted to the new method, will later be defined replacing
A by Aq.

Remark 14. Since in dimension one the dimension of the space V is finite, all the norms
are equivalent on V . But the constants in the continuity inequalities depend on h, and
this lemma specifies the dependence in this mesh parameter between ‖ · ‖ and ||| · |||.

The first step of the following proof is onerous, but it somehow provides an explicit
inverse of the operator (I −A).

Proof.

First step. Take X ∈ V − {0}, and define B = (I − A)X. In order to read into this
equation in V , define u = E(X) and w = E(B), so that (u,w) ∈ H ×H and

∀k ∈ [[1, Nh]]





(
− d

dx
+ β

)
uk = 0, (Ωk),

(−∂ν + iσ)uk = Xk, (∂Ωk),

∀k ∈ [[1, Nh]]





(
− d

dx
+ β

)
wk = 0, (Ωk),

(−∂ν + iσ)wk = Bk, (∂Ωk).
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Since F is an isometry one has FX − ΠX = FB. It means that on every interface
a condition is satisfied : for all k ∈ [[1, Nh]]

{
(−∂ν + iσ)uk(xk)− 1k 6=1(−∂ν + iσ)uk−1(xk) = (−∂ν + iσ)wk(xk),

(∂ν + iσ)uk(xk+1)− 1k 6=Nh(∂ν + iσ)uk+1(xk+1) = (∂ν + iσ)wk(xk+1).

This leads to a system of jump conditions on the interfaces





(−∂ν + iσ)u1(x1) = (−∂ν + iσ)w1(x1),

∀k ∈ [[2, Nh]],

∣∣∣∣∣∣∣

(
d

dx
uk−1 −

d

dx
uk

)
(xk) =

1
2

((−∂ν + iσ)wk − (∂ν + iσ)wk−1) (xk),

(uk − uk−1) (xk) =
1

2iσ
((−∂ν + iσ)wk − (∂ν + iσ)wk−1) (xk),

(∂ν + iσ)uNh(xNh+1) = (∂ν + iσ)wNh(xNh+1).
(5.57)

But in dimension one any second order differential equation has exactly two solu-
tions. Considering U0 and U1 these two fundamental solutions of the homogeneous

equation, the solution u of
(
− d

dx
+ β

)
u = 0 on Ω satisfies

∀k ∈ [[1, Nh]], uk = δk0U0 + δk1U1, (5.58)

where
(
δk0 , δ

k
1

)
k∈[[1,Nh]]

completely determine u ∈ H. Plugging (5.58) in (5.57), and

defining





λ0 = (−∂ν + iσ)w1(x1),

∀k ∈ [[2, Nh]],

∣∣∣∣∣∣∣

λk−1 =
1
2

((−∂ν + iσ)wk − (∂ν + iσ)wk−1) (xk),

µk−1 =
1

2iσ
((−∂ν + iσ)wk − (∂ν + iσ)wk−1) (xk),

µNh = (∂ν + iσ)wNh(xNh+1),

it yields





(−∂ν + iσ)U0(x1)δ1
0 + (−∂ν + iσ)U1(x1)δ1

1 = λ0,

∀k ∈ [[2, Nh]],

∣∣∣∣∣
∂xU0(xk)(δ

k−1
0 − δk0 ) + ∂xU1(xk)(δ

k−1
1 − δk1 ) = λk−1,

U0(xk)(δ
k−1
0 − δk0 ) + U1(xk)(δ

k−1
1 − δk1 ) = µk−1,

(∂ν + iσ)U0(xNh+1)δNh0 + (∂ν + iσ)U1(xNh+1)δNh1 = µNh .

(5.59)

Given the change of variable

∀k ∈ [[1, Nh − 1]]

{
Dk0 = δk0 − δk+1

0 ,

Dk1 = δk1 − δk+1
1 ,

(5.60)

system (5.59) gives a linear system which unknowns are (Dk0 ,D
k
1 )k∈[[1,Nh−1]]. Defining

the Wronskian Wr0 = U1
d

dx
U0 − U0

d

dx
U1 - which is non zero - the solution reads

∀k ∈ [[1, Nh − 1]]





Dk0 =
1

Wr0

(
λkU1(xk+1)− µk

d

dx
U1(xk+1)

)
,

Dk1 =
1

Wr0

(
µk

d

dx
U0(xk+1)− λkU0(xk+1)

)
.
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Then the structure of system (5.59) is





βδ1
0 + βδ1

1 = λ0,

δk0 − δk+1
0 = Dk0 ∀k ∈ [[1, Nh − 1]],

δk1 − δk+1
1 = Dk1 ∀k ∈ [[1, Nh − 1]],

σδNh0 + ηδNh1 = µNh .

Eliminating (δk0 , δ
k
1 )k∈[[1,Nh−1]] it yields δ1

0 = Dθz + δNh0 and δ1
1 =

∑Nh−1
k=1 Dk1 + δNh1 ,

and {
βδNh0 + βδNh1 = L,

σδNh0 + ηδNh1 = µNh ,
(5.61)

with

L = λ0 − (−∂ν + iσ)U0(a)Dθz − (−∂ν + iσ)U1(a)
Nh−1∑

k=1

Dk1 . (5.62)

Wr1 = (−∂ν + iσ)U0(a)(∂ν + iσ)U1(b) − (∂ν + iσ)U0(b)(−∂ν + iσ)U1(a) is the de-
terminant of system (5.61). If it were zero, then its columns would be linearly de-
pendent, say a0C1 +a1C2 = 0 ; this would mean (∂ν + iσ)(a0U0 +a1U1)(x1) = 0 and
(∂ν + iσ)(a0U0 + a1U1)(xNh) = 0 so that u = a0U0 + a1U0 would satisfy




− d

dx
u+ βu = 0,

(∂ν + iσ)u = 0.

So u would be the unique solution (zero) of this last system, which is not possible
since U0 and U1 are independent. Then Wr1 is non zero. One finally obtains that





δNh0 =
1

Wr1

(
L(∂ν + iσ)U1(b)− µNh(−∂ν + iσ)U1(a)

)
,

δNh1 =
1

Wr1

(
µNh(−∂ν + iσ)U0(a)− L(−∂ν + iσ)U1(a)

)
,

∀k ∈ [[1, Nh − 1]]

∣∣∣∣∣∣∣∣∣∣∣

δk0 = δNh0 +
Nh−1∑

j=k

Dj0,

δk1 = δNh1 +
Nh−1∑

j=k

Dj1.

(5.63)

Now u is completely known.

Second step. The next step is the estimate of the coefficients (δk0 , δ
k
1 )k∈[[1,Nh]] using (5.63).

Since F is an isometry, and λk and µk are linear combinations of the components of
FB 



∀k ∈ [[0, Nh − 1]], |λk| ≤

√
σ‖B‖,

∀k ∈ [[1, Nh]], |µk| ≤
1√
σ
‖B‖. (5.64)

Thus from (5.60) and (5.64), with C depending on U0, U1, σ and Wr0,





∣∣∣Dθz
∣∣∣ ≤ CNh‖B‖,∣∣∣∣∣∣

Nh−1∑

k=1

Dk1

∣∣∣∣∣∣
≤ CNh‖B‖.
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From (5.62), |L| ≤ CNh‖B‖, and since |µNh | ≤ C‖B‖ one has from (5.63)
∣∣∣δNhi

∣∣∣ ≤ CNh‖B‖ ∀i ∈ {0, 1},

and next for k ∈ [[1, Nh − 1]] :

∣∣∣δki
∣∣∣ ≤

∣∣∣δNhi
∣∣∣+
Nh−1∑

k=1

∣∣∣Dki
∣∣∣

≤ CNh‖B‖.

As a result all δ terms satisfy
∣∣∣δki
∣∣∣ ≤ CNh‖B‖ for i ∈ {0, 1} and k ∈ [[1, Nh]].

End of the proof. A last calculus leads to the following inequalities

‖x‖2 =
∑

k∈[[1,Nh]]

∥∥∥δk0 (−∂ν + iσ)U0 + δk1 (−∂ν + iσ)U1

∥∥∥
2

L2(∂Ωk)

≤
∑

k∈[[1,Nh]]

(
2C(|δk0 |+ |δk1 |)

)2
≤ C

∑

k∈[[1,Nh]]

N2
h‖b‖2 ≤ C‖b‖2N3

h ,

so that ‖X‖ ≤ Ch−3/2‖B‖.

Now in order to analyze the new method, we turn to the adapted operator Aq.

Definition 25. Define |||X|||q = ‖(I − Aq)X‖ for all X ∈ V . This is a norm under the
condition of the next proposition. The adapted bilinear form is defined for all X,Y ∈ V
by

aq(X,Y ) = ((I −Aq)X,Y ).

Proposition 5.13. Let q ≥ 2 be given and let h be small enough. There exists a constant
C > 0 such that

Ch3/2‖X‖ ≤ ‖(I −Aq)X‖ ∀X ∈ V. (5.65)

Proof. One has for all X ∈ V

‖(I −A)X‖ ≤ ‖(I −Aq)X‖+ ‖(Aq −A)X‖
≤ ‖(I −Aq)X‖+ Chq+1‖X‖,

so that for all X ∈ V

‖(I −A)X‖V − Chq+1‖X‖ ≤ ‖(I −Aq)X‖ .

Lemma 5.12 concludes the proof since hq+1 < h3/2 for h small enough.

Proposition 5.14. For h small enough the bilinear form aq is uniformly coercive, i.e. for
all X ∈ V

|||X|||2q ≤ 3ℜ (aq(X,X)) .

Proof. One has |||X|||2q ≤ ‖X‖2 − 2ℜ (AqX,X) + ‖AqX‖2. Since

‖AqX‖ ≤ ‖AX‖+ ‖(Aq −A)X‖ ≤ (1 + Chq+1)‖X‖ (5.66)

there exists another constant denoted C ′ > 0 such that

‖AqX‖2 ≤ (1 + C ′hq+1)‖X‖2.
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Therefore
|||X|||2q ≤ 2‖X‖2 + C ′hq+1‖X‖2 − 2ℜ (AqX,X) ,

that is |||X|||2q − C ′hq+1‖X‖2 ≤ 2ℜ (aq(X,X)). For small h since q > 3/2 and due to
Proposition 5.13 one has

C ′hq‖X‖2 ≤ C ′h1/3(h3/2 − hq)‖X‖2 ≤ h1/3|||X|||2q ,

then
2
3
|||X|||2q ≤ |||X|||2q − C ′hq‖X‖2.

Combined with the previous inequality it proves the claim.
Remark that the following result was proved in (5.66).

Lemma 5.15. The operator Aq satisfies ‖Aq‖ ≤ 1 + Chq+1.

The main convergence result is an adapted version of second Strang lemma with the
||| · |||q norm. This result stated in Theorem 5.3.3, combined with the additional estimate
from Lemma 5.16, is the corner stone of the estimate (5.69) that concludes this numerical
analysis.

Theorem 5.3.3. Suppose that q ≥ 2 and h is small enough to satisfy hypothesis of
Porpositions 5.13 and 5.14. Denote X ∈ V the solution of the exact problem (5.24) in
dimension one and Xh ∈ V the solution of the discrete problem (5.54). Then there exists
a constant C > 0 such that

|||X −Xh|||q ≤ Ch−3/2

(
inf
Yh∈V
|||X − Yh|||q + sup

Wh∈V \{0}

|aq(X,Wh)− fq(Wh)|
‖Wh‖

)
, (5.67)

where fq(Y ) = (Bq, Y )V .

Proof.

• The first ingredient is the uniform coercivity with respect to |||.|||q needed in the second
Strang lemma. It is proved in Proposition 5.14.

• The second step consists in characterizing the uniform continuity of aq. For all (X,Y ) ∈
V 2

|aq(X,Y )| = |((I −Aq)X,Y )| ≤ |||X|||q ‖Y ‖.
Using (5.65) one has ‖Wh‖ ≤ Ch−3/2|||Wh|||q for some constant C, so that for small
h

∀(X,Y ) ∈ V 2, |aq(X,Y )| ≤ Ch−3/2|||X|||q |||Y |||q.

• The last step is the inequality itself. The triangle inequality yields

|||X −Xh|||q ≤ |||X − Yh|||q + |||Xh − Yh|||q ∀Yh ∈ V.

On the other hand Proposition 5.6 shows that

1
3
|||Xh − Yh|||2q ≤ |aq(Xh − Yh,Xh − Yh)| ,

≤ |aq(X − Yh,Xh − Yh)|+ |aq(X −Xh,Xh − Yh)| ,
≤ Ch−3/2|||X − Yh|||q|||Xh − Yh|||q

+ |aq(X,Xh − Yh)− fq(Xh − Yh)| .
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As Wh = Xh − Yh ∈ V , then

1
3
|||Xh − Yh|||q ≤ Ch−3/2|||X − Yh|||q +

|aq(X,Wh)− fq(Wh)|
‖Wh‖

‖Wh‖
|||Wh|||q

.

Using one more time ‖Wh‖ ≤ Ch−3/2|||Wh|||q, it yields the desired result.

The residual defined by

Dh(X,Wh) = |aq(X,Wh)− fq(Wh)| ∀Wh ∈ V.

can be estimate with respect to the right hand sides of (5.36).

Lemma 5.16. There exists a constant C > 0 such that

∀Wh ∈ V \{0},
Dh(X,Wh)
‖Wh‖

≤ Chq+1
(
‖X‖ + ‖g‖L2(Γ) + h‖f‖L2(Ω)

)
. (5.68)

Proof. For all Wh ∈ V \{0},

Dh(X,Wh) = |((I −Aq)X,Wh)V − (Bq,Wh)V | ,
≤ |((A−Aq)X,Wh)V |+ |((I −A)X,Wh)V − (B,Wh)V |

+ |(B −Bq,Wh)| ,
≤ Chq+1‖X‖ ‖Wh‖+ Chq+1(‖g‖L2(Γ) + h‖f‖L2(Ω))‖Wh‖,

since the second term vanishes because (I − A)X = B. The third term is bounded using
(5.36) and (5.5) like

|(B −Bq,Wh)| ≤ C(‖F − Fq‖ ‖g‖L2(Γ) + ‖E − Eq‖ ‖f‖L2(Ω))‖Wh‖
≤ Chq+1(‖g‖L2(Γ) + h‖f‖L2(Ω))‖Wh‖.

This gives exactly (5.68).
It is now easy to prove the theoretical convergence of the method in dimension one.

Theorem 5.3.4. One has the estimate

|||X −Xh|||q = O(hq−1/2). (5.69)

Proof. In dimension one the discrete space of approximation is equal to V whatever
the method of construction of basis functions is. This is why one can choose Yh = X in
(5.67). So infYh∈V |||X − Yh|||q = 0. The remaining term is bounded with (5.68).

It is useful to rewrite this inequality using a norm with the usual scaling

‖Z‖ =
√ ∑

k∈[[1,Nh]]

h|Zk|2.

By construction ‖Z‖ = h
1
2 ‖Z‖. Using (5.65) one gets ‖Z‖ ≤ Ch−1|||Z|||q . Therefore a

corollary of the theorem is the estimate of convergence

‖X −Xh‖ = O(hq−3/2). (5.70)
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5.4 Dimension two : interpolation property of the GPW

Since the comprehensive numerical analysis presented in dimension one does not hold
in dimension two, a less involved path will be followed in this case. The main result,
Theorem 5.4.1, states that the h-convergence of the projection of the solution X on the
finite dimension space V q - which is explicitly designed in paragraph 5.2.3 - converges
toward X. The operator Ph still denotes the projection from V on V q.

Theorem 5.4.1. Let u be a solution of a homogeneous Helmholtz problem (5.1). Assume
that u is of class Cn+1 with n ≥ 1. Let X ∈ V satisfy X|∂Ωk = (−∂νk + iσ)u|∂Ωk . The
number p of basis functions Zk,l = (−∂ν + iσ)ϕlk per element Ωk is fixed for every element,
p = 2n+ 1. Then a constant C > 0 exists, depending on n and the problem’s data σ such
that

‖(I − Ph)X‖V ≤ Chn−1/2‖u‖Cn+1(Ω).

The uniform independence of the shape functions with respect to h has already been
commented in Remark 13.

Since in this section everything is local, k will be used here as a summation index,
hopefully bringing no confusion with the index of the mesh elements.

5.4.1 Preliminary : Chain rule

This section is dedicated to describing the formula to derive a composition of two
functions, in dimensions one and two. A wide bibliography about this formula is to be
found in [Ma09]. It is linked to the notion of partition of an integer.

Faa Di Bruno formula gives the mth derivative of a composite function with a single
variable. It is named after Francesco Faa Di Bruno, but was stated in earlier work of Louis
Antoine François Arbogast around 1800, see [Cra05].

If f and g are functions with enough derivatives, then

dm

dxm
f(g(x)) = m!

∑
f(
∑
k
bk)(g(x))

m∏

k=1

1
bk!

(
g(k)(x)
k!

)bk
,

where the sum is over all nonnegative integers (bk)k∈[[1,m]] such that
∑
k kbk = m. These

solutions are actually the partitions of m.
The multivariate formula has been widely studied, the version described here is the

one from [CS96] applied to dimension 2. A linear order on N
2 is defined by : for all

(ρ, ξ) ∈ (N2
)2, the relation ρ ≺ ξ holds provided that

• ρ1 + ρ2 < ξ1 + ξ2 ; or

• ρ1 + ρ2 = ξ1 + ξ2 and ρ1 < ξ1.

If f and g are functions with enough derivatives, then

∂ix∂
j
yf(g(x, y)) = i!j!

∑

1≤µ≤i+j
fµ(g(x, y))

i+j∑

s=1

∑

ps((i,j),µ)

s∏

l=1

1
kl!

(
1

il!jl!
∂ilx ∂

jl
y (g(x, y))

)kl
,

(5.71)
where the partitions of (i, j) are defined by the following sets : for all µ ∈ [[1, i+ j]], for all
s ∈ [[1, i + j]],

ps((i, j), µ) =

{
(k1, · · · , ks; (i1, j1), · · · , (is, js)) : ki > 0, 0 ≺ (i1, j1) ≺ · · · ≺ (is, js),



5.4. Dimension two : interpolation property of the GPW 135

s∑

l=1

kl = µ,
s∑

l=1

klil = i,
s∑

l=1

kljl = j

}
.

See [Har06] for a proof of the formula interpreted in terms of collapsing partitions.

5.4.2 A fundamental property of the shape functions

Since the design and the interpolation study are based on different Taylor expansions,
the derivatives of the shape function ϕ are important quantities. Both

• the coefficients λi,js defining a shape function ϕ

• the derivatives of ϕ

are here expressed as polynomials with two variables with respect to (λ1,0, λ0,1). The
following Lemma 5.17 and Proposition 5.18 give a description of these quantities with
respect to the only non zero coefficients fixed by the N -normalization, namely (λ1,0, λ0,1).

Lemma 5.17. The coefficients

{λi,j , 0 ≤ i ≤ q + 1, 0 ≤ j ≤ q + 1− i}

defined by the induction formula (5.45) can be described as polynomials with two variables
with respect to (λ1,0, λ0,1) :

{
∀i ≥ 2
λi,j is of total degree at most i− 2.

(5.72)

The whole proof relies on an investigation of the induction formula (5.45).
Proof. The existence and uniqueness of a solution stems from the induction relation

(5.45) defining the system. See Figure 5.5.
Because of the point 2 of the N -normalization, formula (5.45) for i = 0 and i = 1 reads





β(G) = 2λ2,0 + (λ1,0)2 + (λ0,1)2,
∂jyβ(G)

j!
= 2λ2,j ∀j > 0,

∂xβ(G) = 6λ3,0 + 4λ2,0λ1,0,
∂x∂
j
yβ(G)

j!
= 6λ3,j + 4λ2,jλ1,0 ∀j > 0.

(5.73)

Then (5.72) for i = 2 stems from point 1 of the normalization. Indeed for j = 0 the sum
(λ1,0)2 + (λ0,1)2 does not depend on (λ1,0, λ0,1) themselves but only on N . Afterwards
(5.72) for i = 3 is clear from (5.73).

Now set i ≥ 2 and suppose that the statement (5.72) holds true for all ĩ ∈ [[3, i + 1]].
Then, isolating λi+2,j in (5.45), the highest possible degree of each term is
• i− 2 for the term in λi,j+2,
• (i− 1) + 1 for the term in λi+1,jλ1,0,
• (i− k − 1) + (k − 1) for the terms in λi−k+1,j−lλk+1,l with k 6= 0 and k 6= i,
• (i− 2) + 1 for the term in λi,j+1λ0,1,
• (i − l − 2) + (l − 2) for the term in λi−l,j−k+1λl,k+1 with l 6= 0 and l 6= i, note

that λi−l,j−k+1λl,k+1 = 0 with l 6= 1 and l 6= i − 1 because of the point 2 of the
normalization.

As a consequence the terms with higher degree appearing in the expression of λi+2,j have
degree at most equal to i. It completes the proof of (5.72) for i > 2 by induction.
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Proposition 5.18. Consider a shape function ϕ = eP designed with the N -normalization.
Then for all (i, j) ∈ N

2 such that i+ j ≤ q + 1 there is a polynomial Ri,j ∈ C[X,Y ] such
that dRi,j ≤ i− 2 and such that

∂ix∂
j
yϕ(G) = (λ0,1)j(λ1,0)i +Ri,j(λ1,0, λ0,1). (5.74)

The coefficients of Ri,j only depend on N and on the derivatives of β.

Remark 15. Since (λ1,0)2 + (λ0,1)2 is given, none of the polynomial expressions that are
at stake can be unique. For instance, considering the specificity of the β-normalization,
any occurrence of (λ1,0)2 could be replaced by β(G) − (λ0,1)2 which would change the
term of higher degree. This is the reason why Ri,j is not unique : see Subsection 5.4.3 for a
different point of view. However, the computations described in the proof of Lemma 5.17
give an explicit procedure for the computation of all λi,js : this is the important point that
will be used for practical implementation.

One could have expected the degree of Ri,j to be smaller than i+ j − 1. The fact that
it does not depend on j is clearly due to the choice of {λi,j, i ∈ {0, 1}, i + j > 1} to be
zero, the point 2 of the normalization. The fact that it is smaller than i− 2 and not even
i− 1 is due to the fact that the degree of λ2,j is 0, since (λ1,0)2 + (λ0,1)2 = N is constant.

Proof. Applying the chain rule introduced in equation (5.71) to ϕ = eP one gets for
all (i, j) ∈ N

2,

∂ix∂
j
yϕ(G) = i!j!

i+j∑

µ=1

i+j∑

s=1

∑

ps((i,j),µ)

s∏

l=1

(λil,jl)
kl

kl!
, (5.75)

where ps((i, j), µ) is the set of partitions of (i, j) with length µ :

{
(kl, (il, jl))l∈[[1,s]] : kl ∈ N

∗, 0 ≺ (i1, j1) ≺ · · · ≺ (il, jl),
s∑

l=1

kl = µ,
s∑

l=1

kl(il, jl) = (i, j)

}
.

(5.76)
Now consider such a partition to be given and focus on the degree of the corresponding

product term, namely
s∏

l=1

(λil,jl)
kl . Thanks to Lemma 5.17 one can split this product into

different terms regarding their degree as polynomials with respect to (λ1,0λ0,1). As a result,

since Deg
s∏

l=1

(λil,jl)
kl =

s∑

l=1

klDeg λil,jl, this quantity is also at most equal to

∑

il=0,jl=1

kljl +
∑

il=1,jl=0

klil +
∑

il=2

kl · 0 +
∑

il≥3

kl(il − 2), (5.77)

where the two first sums contain at most one term each.
Obviously the leading term in ∂ix∂

j
yϕ(G) is (λ0,1)j(λ1,0)i, it corresponds to the partition

(i, j) = j(0, 1) + i(1, 0). Indeed, as long as a partition contains at least one term such that
il ≥ 2, the resulting degree computed from (5.77) will contain at least one term kl · 0 or
kl(il−2), and any of them is at most kl(il+ jl)−2 ; as a consequence the degree computed

in (5.77) is then strictly lower than
s∑

l=1

kl(il + jl)− 2 = i+ j − 2.

Since the product term corresponding to the partition j(0, 1)+i(1, 0) is (λ0,1)j(λ1,0)i/(j!i!)
it completes the proof.
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5.4.3 A more algebraic viewpoint

This paragraph presents a more algebraic point of view on the non uniqueness men-
tioned in Proposition 5.18 and commented in Remark 15.

The point 1 of the N -normalization gives that PN = (λ1,0)2 + (λ0,1)2 − N satisfies
PN = 0 for the p different functions of E(G, p). From then on, considering other quantities
as polynomials with two variables in (λ0,1, λ1,0) is in fact computing in the quotient ring
C[λ1,0, λ0,1]/(PN ) of C[λ1,0, λ0,1] modulo the ideal generated by PN . For instance, the
system (5.73) reads





λ2,0 =
β(G)−N

2
(PN ),

λ2,j =
∂jyβ(G)

2(j!)
(PN ), ∀j > 0,

λ3,0 =
∂xβ(G)− 2λ1,0(β(G) −N)

6
(PN ),

λ3,j =
∂x∂
j
yβ(G)

6(j!)
+ 2

∂jyβ(G)

j!
λ1,0 (PN ), ∀j > 0.

(5.78)

Of course in this quotient ring, each equivalence class has an infinite number of elements,
and all the computations of the previous subsection are performed on elements of these
classes. Thus any equality applies to all the elements of the same class. Note that since the
ring considered here is the ring of polynomials with two variables, there is no such thing
as the Euclidean division. As a result there is nothing like a canonical element of a class
used for computations. One can easily see that for q ≥ 4

∂4
x∂yϕ(G) = (λ1,0)4(λ1,0) + 2∂yβ(G)

(
(λ1,0)2 − (λ0,1)2

)
+ 2∂xβ(G)λ0,1λ1,0 + 2∂x∂yβ(G)λ1,0

+(−3∂2
yβ(G) + ∂xβ(G))λ0,1 − ∂3

yβ(G) + ∂2
x∂yβ(G),

= (λ1,0)4(λ1,0) + 2∂yβ(G)
(
(λ1,0)2 + (λ0,1)2

)
+ 2∂xβ(G)λ0,1λ1,0 + 2∂x∂yβ(G)λ1,0

+(−3∂2
yβ(G) + ∂xβ(G))λ0,1 − ∂3

yβ(G) + ∂2
x∂yβ(G)− 2β(G)∂yβ(G),

which gives two possible R4,1 ∈ C[λ1,0, λ0,1] satisfying (5.74) in Proposition 5.18.
This work does definitely not aim at profiting from this algebraic point of view.

5.4.4 Interpolation

This subsection focuses on the interpolation property of the set of shape functions
E(G, p). The sketch of the proof follows the one developed by Cessenat in [CD98], but it is
adapted to the generalized plane wave shape functions. The proof of Theorem 5.4.1 finally
represents the application of this result from the UWVF perspective.

Definition 26. For all l ∈ N let el be the classical plane wave defined as

el(x, y) = eiκ((x−xG) cos θl+(y−yG) sin θl),

and ϕl the shape function defined with the N -normalization with N = iκ ∈ C
∗, θl being

2π(l − 1)/(2n + 1). Suppose n ∈ N
∗. The (n + 1)(n + 2)/2 × (2n + 1) matrices MCn and

Mn are defined as follows : for all (k1, k2) ∈ N
2, such that k1 + k2 ≤ n





(
MCn

)
(k1+k2)(k1+k2+1)

2
+k2+1,l

= ∂
k1
x ∂

k2
y el(G)
k1!k2! ,

(Mn) (k1+k2)(k1+k2+1)

2
+k2+1,l

= ∂
k1
x ∂

k2
y ϕl(G)
k1!k2! .

Their lth columns contain respectively the Taylor expansion coefficients of the functions
el and ϕl.
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For instance, one has M1 =



ϕ1(G) ϕ2(G) ϕ3(G)
∂xϕ1(G) ∂xϕ2(G) ∂xϕ3(G)
∂yϕ1(G) ∂yϕ2(G) ∂yϕ3(G)


, with the classical plane

waves MC1 =




1 1 1
iκ cos θ1 iκ cos θ2 iκ cos θ3

iκ sin θ1 iκ sin θ2 iκ sin θ3


 and

M2 =




ϕ1(G) ϕ2(G) ϕ3(G) ϕ4(G) ϕ5(G)
∂xϕ1(G) ∂xϕ2(G) ∂xϕ3(G) ∂xϕ4(G) ∂xϕ5(G)
∂yϕ1(G) ∂yϕ2(G) ∂yϕ3(G) ∂yϕ4(G) ∂yϕ5(G)
∂2
xϕ1(G)/2 ∂2

xϕ2(G)/2 ∂2
xϕ3(G)/2 ∂2

xϕ4(G)/2 ∂2
xϕ5(G)/2

∂x∂yϕ1(G) ∂x∂yϕ2(G) ∂x∂yϕ3(G) ∂x∂yϕ4(G) ∂x∂yϕ5(G)
∂2
yϕ1(G)/2 ∂2

yϕ2(G)/2 ∂2
yϕ3(G)/2 ∂2

yϕ4(G)/2 ∂2
yϕ5(G)/2



.

The rank of the matrix MCn is computed for a general set of classical plane waves in
Lemma 5.19, which profits from the fact that the result proved by Cessenat and Després
in [CD98] for κ > 0 is actually still valid for κ ∈ C

∗. The proof of Proposition 5.21 relies on
Lemma 5.20 that explicits the link between the matrix MCn and the corresponding matrix
Mn built with the generalized plane waves. The parameter κ is likely to become −iN for
in the study of the N -normalized case.

Lemma 5.19. There are two matrices : a rectangle matrix Pn only depending on β(G) and
a square invertible matrix Sn only depending on the directions θl such that Sn = Pn ·MCn .
Moreover rk(MCn ) = 2n + 1.

As previously announced, the proof follows exactly the steps of [CD98]. Proof. Consider
MCn be the matrix introduced in Definition 26 so that for all (k1, k2) ∈ N

2, such that
k1 + k2 ≤ n

(
MCn

)
(k1+k2)(k1+k2+1)

2
+k2+1,l

=
∂k1
x ∂
k2
y el(G)

k1!k2!
=

(iκ)k1+k2

k1!k2!
cosk1 θl sin

k2 θl.

Define for all k ∈ [[0, n]]

(Sn)n±k+1,l =
1

(iκ)k
(∂x ± i∂y)k el(G) =

k!
(iκ)k

k∑

s=0

(−i)s∂(k−s)
x ∂syel(G)

(k − s)!s! .

Thanks to the definition of MCn one can check that

(Sn)n±k+1,l =
k!

(iκ)k

k∑

s=0

(±i)s(MCn ) ((k−s)+s)((k−s)+s+1)
2

+s+1,l
,

so that Sn is a (2n+ 1)× (2n+ 1) matrix that is a linear transform of MCn . More precisely,
define Pn as an (2n+ 1)× (n+1)(n+2)

2 matrix such that

(Pn)l, k(k+1)
2

+s+1
= k!(±i)s/(iκ)k.

Then Sn = Pn ·MCn . As a consequence, rk(MCn ) ≥ rk(Sn).
The rank of Sn is now to be evaluated thanks to the definition of the plane waves el.

Since el(x, y) = e(iκ)((x−xG) cos θl+(y−yG) sin θl) then

(∂x ± i∂y)k el = (iκ)k(cos θl ± i sin θl)kel.
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Consider that zl = cos θl+i sin θl = (cos θl−i sin θl)−1 because |zl| = 1, and since el(G) = 1
it yields

(∂x ± i∂y)k el(G) = (iκ)k(zl)
±k ⇒ (Sn)n±k+1,l = (zl)

±k.

Thus Sn’s columns are proportional to the one of a Vandermonde matrix and

det Sn =
n∏

i=1

z−ni
∏

i<j

(zi − zj).

From the choice of θls, for all i 6= j : zi 6= zj so that Sn is invertible and rk(MCn ) ≥
rk(Sn) = 2n+ 1. Since

rk(MCn ) ≤ min
(

2n+ 1,
(n+ 1)(n + 2)

2

)
= 2n+ 1

the proof is then completed.

Lemma 5.20. Consider E(G, p) introduced in Definition 22 and MCn built with κ = −iN .
Then there is a lower triangular matrix Ln, which diagonal coefficients are all equal to 1
and which other coefficients are linear combinations of the derivatives of β evaluated at
G, such that

Mn = Ln ·MCn . (5.79)

As a consequence rk(Mn) = rk(MCn ) and both ‖Ln‖ and ‖(Ln)−1‖ are bounded by a
constant only depending on β.

The following proof is straightforward considering the feature of the derivatives of ϕl
described in Proposition 5.18.

Proof. From (5.74) there exists a polynomial Ri,j ∈ C[X,Y ] with Deg Ri,j ≤ i−2 such
that

∀(i, j) ∈ N
2, ∂ix∂

j
yϕl(G) = ∂ix∂

j
yel(G) +Ri,j(∂xel(G), ∂yel(G)). (5.80)

The coefficients of Ri,j do not depend on the shape function considered, but only depends
on β and its derivatives evaluated at G. By construction of the classical plane wave el, one
has {

∂kx∂
m
y el(G) = (∂xel(G))k (∂yel(G))m ,

= (iκ)k+m cos(θ)k sin(θ)m.

The numbering of the rows in matrices MCn and Mn is set up such that the derivatives
of smaller order appear higher in the matrix, which proves (5.79). Indeed (5.80) shows
that any coefficient of Mn is the sum of the corresponding coefficient in MCn plus a linear
combination - which coefficients do not depend on the column that is considered but only
on β and its derivatives evaluated at G - of terms that appear higher in the corresponding
column of Mn.

The rank of Mn is then equal to the rank of MCn , and ‖Ln‖ and ‖(Ln)−1‖ do only
depend on the coefficients of Ri,j . As a result they do not depend on the shape functions
but only on the coefficient β and its derivatives at G.

For all n ∈ N, denote by ‖ · ‖Cn the norm defined by
∑n
j=0 ‖Â · ‖∞.

Proposition 5.21. Suppose u is a solution of Helmholtz equation (5.1) in a vicinity VG of
G ∈ R

2, h denoting the size of VG. In addition, suppose that n ∈ N, q ≥ n+ 1, p = 2n+ 1
and that u satisfies u ∈ Cn+1. Then there are a function ua ∈ SpanE(G, p) depending on
β and n, and a constant C depending on β and n such that for all −→x ∈ VG

{
|u(−→x )− ua(−→x )| ≤ Chn+1 ‖u‖Cn+1 ,
‖∇u(−→x )−∇ua(−→x )‖ ≤ Chn ‖u‖Cn+1 .

(5.81)
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Proof. The idea of the proof is to look for ua =
2n+1∑

l=1

xlϕl by fitting its Taylor expansion

to the one of u. This will be done by solving a linear system concerning the unknowns
(xl)l∈[[1,2n+1]].

Since u belongs to Cn+1 and for all l ∈ [[1, 2n + 1]] the shape function ϕl belongs to
C∞, their Taylor expansions read for all (x, y) ∈ VG

∣∣∣∣∣∣
u(x, y)−

n∑

m=0

∑

k1+k2=m

Bk1k2x
k1yk2

∣∣∣∣∣∣
≤ Chn+1‖u‖Cn+1 ,

∣∣∣∣∣∣
ϕl(x, y)−

n∑

m=0

∑

k1+k2=m

M lk1k2
xk1yk2

∣∣∣∣∣∣
≤ Chn+1‖ϕl‖Cn+1 ,

where for the sake of simplicity M lk1k2
stands for the coefficient of Mn that corresponds to

∂k1
x ∂
k2
y ϕl/(k1!k2!), namely the coefficient (Mn) (k2+k1)(k2+k1+1)

2
+k2+1,l

, and in the same way

Bk1,k2 stands for (Bn) (k2+k1)(k2+k1+1)

2
+k2+1

. The system to be solved is then





Find (xl)l∈[[1,2n+1]] ∈ C
2n+1 s. t.

2n+1∑

l=1

M lk1,k2
xl = Bk1,k2, ∀m ∈ [[0, n]], ∀(k1, k2) ∈ [[0, n]]2 s. t. k1 + k2 = m.

In order to study the system’s matrix, the equations depending on (k1, k2) have to be
numbered : they will be considered with increasing m = k1 + k2, and with decreasing k1

for a fixed value of m. Defining the corresponding vector Bn ∈ C
(n+1)(n+2)

2 , together with
the unknown Xn = (x1, x2, · · · , x2n+1) ∈ C

2n+1, the system now reads
{

Find Xn ∈ C
2n+1 such that

Mn ·Xn = Bn

where Mn ∈ C
(n+1)(n+2)

2
×(2n+1) is the matrix from Definition 26.

Since the system is not square, there is a solution if and only if Bn ∈ Im(Mn).
i) The technical point is to prove that rk(Mn) = 2n + 1. It is straightforward from

Lemmas 5.20 and 5.19.
ii) There exists a subset K ⊂ C

(n+1)(n+2)
2 such that Im(Mn) ⊂ K and Bn ∈ K. This

subspace K is built from the fact that the shape functions are designed to fit the Taylor
expansion of the Helmholtz equation :

K :=



(Ck1,k2) ∈ C

(n+1)(n+2)
2 ,∀(k1, k2) ∈ N

2, k1 + k2 ≤ n− 2,

(k1 + 1)(k1 + 2)Ck1+2,k2 + (k2 + 1)(k2 + 2)Ck1,k2+2 =
k1∑

i=0

k2∑

j=0

∂ix∂
j
yβ(G)

i!j!
Ck1−i,k2−j





(5.82)
All shape function ϕl, l ∈ [[1, 2n + 1]], satisfy (−∆ + β)ϕl = (−P∆,l + β)ϕl. From the
equation (5.44) with q ≥ n+ 1, it is then straightforward to see that Im(Mn) ⊂ K. The
fact that Bn ∈ K simply stems from plugging the Taylor expansions of u and β into
Helmholtz equation.
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iii) The dimension of K defined by (5.82) is 2n+ 1. Indeed, one can check - using the
same numbering as previously for the equations - that K is defined by n(n+ 1)/2 linearly

independent relations on C
(n+1)(n+2)

2 , so that its dimension is (n+1)(n+2)/2−n(n+1)/2.
As a consequence, from the solution to the system Mn ·Xn = Bn that now is known to

exist, one can define ua =
2n+1∑

l=1

xlϕl. Thanks to that definition and to the Taylor expansions

of u and the ϕls it yields

|u(−→x )− ua(−→x )| ≤ Chn+1 (‖u‖Cn+1 + ‖ua‖Cn+1) .

Moreover one has Xn = (SCn )−1PCn (Ln)−1Bn, where (SCn )−1PCn is bounded from above by
sup

l∈[[1,2n+1]]
‖el‖Cn+1 , see Lemma 5.19, (Ln)−1 is bounded from above by a constant depending

only on β and its derivatives from Lemma 5.20, and Bn is bounded by ‖u‖Cn+1 . Since for
all l ∈ [[1, 2n + 1]] it yields |xl| ≤ C‖u‖Cn+1 , it turns out to be the first part of (5.81) :

|u(−→x )− ua(−→x )| ≤ C(2n+ 2)hn+1 ‖u‖Cn+1 .

At last, the second part of (5.81) stems from taking the Taylor Lagrange formula of
the gradient of u− ua, up to the order n, since

n∑

m=0

∑

k1+k2=m

(
Bk1k2(x− xG)k1(y − yG)k2 −

2n+1∑

l=1

(
xlM

l
k1k2

(x− xG)k1(y − yG)k2

))
= 0.

That is : for all −→x = (x, y) ∈ VG there is (ζ1, ζ2) on the segment line between −→x and G
such that





∂x(u− ua)(−→x ) =
n∑

l=0

∂l+1
x ∂n−ly (u− ua)(ζ1)

l!(n− l)! (x− xG)l(y − yG)n−l,

∂y(u− ua)(−→x ) =
n∑

l=0

∂lx∂
n−l+1
y (u− ua)(ζ2)

l!(n− l)! (x− xG)l(y − yG)n−l

which indeed leads to the desired inequality.
Proof.Of Theorem 5.4.1. Applying Proposition 5.21 on every element of the mesh, one

gets an element ua ∈ E , ua =
∑
k,l x

l
kϕ
l
k such that for all −→x ∈ Ω :

{
|u (−→x )− ua (−→x )| ≤ Chn+1 ‖u‖Cn+1(Ω) ,

‖∇u (−→x )−∇ua (−→x )‖ ≤ Chn ‖u‖Cn+1(Ω) ,

where C depends on Ω. If Xa ∈ V is defined by (Xa)|∂Ωk = (−∂νk + iω)(ua)|∂Ωk , then

‖X −Xa‖2L2(∂Ωk) ≤ 2
∫

∂Ωk

‖∇u−∇ua‖2 + 2γ2
∫

∂Ωk

|u− ua|2

≤ 2C2h2n
∫

∂Ωk

(1 + γ2h2)‖u‖Cn+1(Ω),

so that for h small enough

‖X −Xa‖ ≤ Chn+1/2
√
Nh‖u‖Cn+1(Ω).

The result then stems from the fact that, for a regular mesh, the total number of elements
can be bounded by C/h2.
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5.5 Comments

5.5.1 On the generalization of the explicit design procedure

The design of an approximated solution u = eP for a general - not necessarily linear -
differential operator of order m ∈ N

∗ on R
d for d ∈ N

∗ is a justifiable question. Consider
the operator

Au =
m∑

k=0

∑

|η|=k
aη

∏
∑
ρi=η

∂ρ
i

−→x u, (5.83)

where η, ρi are a multi indexes, and the coefficients aη belong to Cr. Considering a linear
order on N

d and ηmax the coefficient of higher index, the condition aηmax 6= 0 is a sufficient
condition to generalize the explicit design procedure of shape functions for the operator
(5.83).

5.5.2 On the numerical analysis in dimension two

It is interesting to identify the crucial points of a potential analysis in dimension two.
Two main points are highlighted here that would establish a basis to adapt the second
Strang lemma in dimension two for the new method.

The estimate of F − F q

This estimate proved in Subsection 5.3.3 relies on two main ingredients : the one
dimensional estimates from Subsection 5.3.2 on the one hand, the estimate given in Lemma
5.10 on the other hand.

The first ingredient is based on the estimate of the L2 norm of a function in the domain
via its L2 norm on the boundary on the domain and the L2 norm of its Jacobian in the
domain. The bounds are explicit with respect to the size of the domain. Obtaining such
an estimate in two dimension requires more attention.

The second ingredient implies heavier computations in dimension two since p basis
functions are then involved. Indeed, expressing the elements Wjs of the dual basis in
the Zj basis means solving a system of p equations which matrix is hermitian since its
coefficients are the scalar products (Zi, Zj). Considering the third step, one can easily
check that (Zi, Zj) = σh+O(h), so that for instance for p = 3 one has

p∑

j=1

‖Zj‖ ‖Wj‖ ≤ 9

when h goes to zero.

The coercivity property

The coercivity of the operator I − A is a key property in the study of the classical
UWVF described in paragraph 5.2.1. However, this coercivity does not hold a priori in
the space (V, ‖ · ‖), but with the adapt norm ‖(I−A) · ‖. This induces technical difficulties
to study the coercivity property of the new method’s operator I −Aq.

In dimension one, both proofs of Propositions 5.13 and 5.14 rely on the the estimate
of F −F q provided in Lemma 5.11. As a result the bilinear form aq the desired coercivity
property is not directly obtained in dimension two.

It would then be interesting to pursue this work in the direction of continuity estimates
in dimension two between the norms ‖ · ‖, ||| · ||| = ‖(I −A) · ‖ and ||| · |||q‖(I −Aq) · ‖.
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The adapted second Strang Lemma

If both the coercivity and the estimate on F − F q were known, one could then think
of generalizing the second Strang Lemma to extend the dimension one result.

In the proof of Lemma 5.11 everything would be the same in dimension two as in
dimension one except that the proof of the estimate (5.53) proposed for the dimension one
does not hold in dimension two.

The proof of Lemma 5.12 in dimension two would require even more onerous compu-
tations.

Recent developments in the direction of the two dimensional case can be found in
[MPS12].

5.5.3 Toward new horizons

Since the UWVF falls into the framework of Discontinuous Galerkin methods in
[HMM07], it is plausible that considering the method that is presented in this chapter
from a DG point of view could provide new tools for the theoretical study.

Another possibility would be to look at the Vekua theory [Vek67a, Hen57] that ad-
dresses general analytic coefficients in 2D. In [MHP11], an explicit study of the Helmholtz
equation with constant coefficient is proposed. More generally Vekua’s theory maps the
solutions of second order elliptic partial differential equations to harmonic functions. Du-
ring discussions with Peter Monk and Andrea Moiola it was pointed out that the kernel
functions are not explicit in the case of varying coefficients, so that further investigations
would be unavoidable.
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6.1 Introduction

This chapter gathers the computational aspects of this work. The main part of the
implementing work started during a visit to Peter Monk at the University of Delaware.
The visit was funded by a grant of the Fondation Pierre Ledoux. The implementation
started from a 2D code for the classical UWVF for elastic equations provided by Temmu
Luostari, see [HMCK04], that has been adapted to the new method in collaboration with
Peter Monk. I would like to thank both of them for this.
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The resulting code is a Matlab 2D code with versions for both structured and unstruc-
tured meshes generated with Matlab pdetoolbox. All the linear systems are assembled and
solved with Matlab. The goal of this code was not to get high performance but rather to
demonstrate that the new method can reach high order convergence.

Section 6.2 concerns the h convergence of the new method in dimension one. It corres-
ponds to Chapter 5. The results of this section were obtained thanks to a specific code in
dimension one that I developed for my Master’s thesis. Section 6.3 aims at highlighting the
main difficulties that were met and overcome to produce a 2D code for the new method
developed during this PhD work. Section 6.4 deals with the interpolation properties of the
generalized plane waves in dimension two, and presents a range of cases for different types
of wave propagation. Section 6.5 displays a comparison between numerical computations
obtained for different choices, concerning either the quadrature formula or the other pa-
rameters of the method. It also presents some first test cases in a more physical test case,
computed on a domain that contains around 50 wavelengths. A last section, Section 6.6,
presents the first steps that were followed to adapt the code for the X mode together with
a first test case.

6.2 O mode simulation in 1D

In one dimension there is no numerical integration required to compute the integrals :
integrating on the skeleton of the mesh only requires the evaluation of the integrand at
two points. As a result the error u − uh is not polluted by the numerical approximation
of the integrals, like in two dimensions.

The test problem considered here is the following : the domain Ω =]a, b[⊂ R is given,
and the system to be approximated is

{
−u′′(x) + x u(x) = 0, (]a, b[),

(∂ν + iσ)u(x) = (∂ν + iσ)Ai(x), ({a, b}),

where Ai is the first Airy function. It corresponds to Q = 0 and g = (∂ν + iσ)Ai. The
exact solution that is approximated is the first Airy function itself.

The flux parameter σ is set to be constant equal to 1 in the following examples.
Simulations run with the classical choice σ =

√
β - evaluated at the edge of the cells - give

similar results, as long as the mesh is such that 0 is not part of any element boundary.

6.2.1 Validation of the theoretical convergence result

The domain is meshed uniformly by the set of points {xk}k∈[[1,Nh+1]], where Nh stands
for the number of elements : x1 = a and xNh+1 = b. The computed solution corresponds
to an element Xh ∈ V q, and since this is in dimension one then

V q = Span {Zk,1, Zk,2}1≤Nh = V,

where Zk,l corresponds to the shape function ϕk,l defined on Ωk. A simple formula expresses

the traces of uh with respect to the solution of the discrete system Xh =
Nh∑

k=1

xk,1Zk,1 +

xk,2Zk,2 ∈ V {
2iσuh = (I + Π)Xh + g ({a, b}),
2iσuh = (I + Π)Xh ({xk}k∈[[2,Nh]]),
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Figure 6.1 – Plot of the analytical Airy function on Ω =]−5, 5[, and comparison with the
numerical solution computed with the generalized basis functions. Here we used 50 cells
and two high order generalized plane waves per cell, precisely q = 5. One distinguishes
between the propagative medium x < 0 and the non propagative medium x > 0.

so that uh is explicitly reconstructed at the vertices of the mesh as




uh(a) =
1

2iσ


(1 +Q)

∑

l=1,2

x1,l(ϕ
′
1,l + iσϕ1,l) + g


 (a),

uh =
1

2iσ


∑

l=1,2

xk,l(ϕ
′
k,l + iσϕk,l)(xk) +

∑

l=1,2

xk−1,l(ϕ
′
k−1,l + iσϕk−1,l)(xk−1)


 ,

∀k ∈ [[2, Nh]],

uh(b) =
1

2iσ


(1 +Q)

∑

l=1,2

xNh,l(−ϕ′1,l + iσϕ1,l) + g


 (b).

In the following, the accuracy is reported using a discrete l2 norm
√√√√
∑
k∈[[1,Nh+1]] |uex(xk)− uh(xk)|2∑

k∈[[1,Nh+1]] |uex(xk)|2
.

A first computation is illustrated on Figure 6.1, representing the exact and approxima-
ted solutions of the Airy equation. It shows that the transition between the propagative
and non propagative zones, at x = 0, is very well recovered by the method.

An investigation of the numerical convergence follows. The computational domain is
Ω =] − 5, 5[. The h-convergence is described in Table 6.1 and Figure 6.2. As expected,
the rate of convergence increases with the parameter q. It highlights the fact that the
numerical method reaches high order convergence on a case that includes a cut-off. Note
that the numerical rates of convergence are better than the theoretical estimates.

Better convergence rates are observed for odd values of q compared to even values.
One can see that on the finest meshes the solution is accurate to machine precision for

the highest values of parameter q.

Remark 16. The reason why Not Evaluated (NE) appears in Table 6.1 is the following.
The computations require the evaluation of eP (±h/2). For q = 6, the degree of P is 7, and
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Table 6.1 – h-convergence of the computed solution of the Airy equation on Ω =]− 5, 5[.
Errors and orders of convergence for different orders of approximation q depending on the
number of unknowns Nu = 2Nh, with Nh = 10/h is the number of elements in the mesh.
NE stands for Not Evaluated, see remark 16

q = 2 q = 3 q = 4 q = 5 q = 6
Nu Error Rate Error Rate Error Rate Error Rate Error Rate
4 9.5e-01 - 9.9e-01 - 8.6e-01 - 8.6e-01 - NE -
8 9.2e-01 0.05 9.7e-01 0.03 9.7e-01 -0.18 9.9e-01 -0.20 9.9e-01 -
16 7.8e-01 0.23 9.5e-01 0.03 9.2e-01 0.09 9.6e-01 0.04 9.4e-01 0.04
32 6.0e-01 0.39 3.3e-01 1.51 2.5e-01 0.89 1.5e-01 2.65 1.1e-01 3.14
64 2.0e-01 1.59 3.2e-02 3.4 2.0e-02 3.61 3.2e-03 5.6 2.0e-03 5.75
128 5.4e-02 1.89 2.1e-03 3.91 1.3e-03 3.93 5.2e-05 5.94 3.2e-05 5.96
256 1.4e-02 1.97 1.3e-04 3.98 8.4e-05 3.98 8.2e-07 5.99 5.0e-07 5.99
512 3.4e-03 1.99 8.3e-06 4.00 5.3e-06 4.00 1.3e-08 6.00 7.9e-09 6.00
1024 8.6e-04 2.00 5.2e-07 4.00 3.3e-07 4.00 2.0e-10 6.00 1.2e-10 6.00
2048 2.2e-04 2.00 3.3e-08 4.00 2.1e-08 4.00 3.1e-12 5.99 1.9e-12 6.00
4096 5.4e-05 2.00 2.0e-09 4.00 1.3e-09 4.00 7.3e-14 5.43 7.5e-14 4.69
8192 1.3e-05 2.00 1.3e-10 4.00 8.1e-11 4.00 1.6e-14 2.21 5.8e-14 0.37
16384 3.4e-06 2.00 7.9e-12 4.01 5.0e-12 4.01 5.0e-14 -1.67 5.0e-14 0.20

for Nu = 4 unknowns the size of the mesh is h = 5. As a consequence the computations
include the evaluation of a quantity close to e(h7), which is considered as infinity up to the
machine precision : it can not be evaluated.

6.2.2 Another normalization

Figure 6.3 and Table 6.2 display the same convergence results as in Section 6.2.1 but
with basis functions designed with the normalization λ±1 = ±

√
α(xk+1/2). Comparing to

Table 6.1 and Figure 6.2, one can see that the convergence rate is not modified by this
new choice, however for a given number of mesh elements the error is smaller when the
method is constructed with this new normalization than with the normalization λ±1 = 0
or 1. In fact, for a given order q, the numerical results show that the constant underlying
in estimate

‖X −Xh‖ = O(hq−3/2)

is much better : the related improvement observed in the numerical error is approximately
≈ 102.

Once again the only difference between these two choices of basis functions relies on the
fact that the leading coefficient in P± does depend or not on the equation’s coefficient β.
The theoretical tools previously developed could be adapted without difficulty to this new
family of basis functions : nevertheless the vertical shift observed between the convergence
plots in Figures 6.2 and 6.3 will require more research to be fully understood.

6.2.3 About q convergence

In Figure 6.2 as well as in Figure 6.3, for a fixed number of unknowns, the error
decreases when the parameter q ≥ 2 increases. To obtain better understanding of this
phenomenon, a specific computation followed by a theoretical estimate illustrates the
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Figure 6.2 – h-convergence of the computed solution of the Airy equation on Ω =] −
5, 5[. The relative discrete l2 error is represented for different orders of approximation q
depending on the number of unknowns N = 2Nh with Nh = 10/h.
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Figure 6.3 – h-convergence of the computed solution of the Airy equation on Ω =]− 5, 5[

using the normalization λ±1 = ±
√
β(xk+1/2). The relative discrete l2 error is represented as

a function of the number of elements defining the mesh for different orders of approximation
q depending on the number of unknowns N = 10/h.
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Table 6.2 – h-convergence of the computed solution of the Airy equation on Ω =]− 5, 5[
using the normalization described in subsection 6.2.2. Errors and orders of convergence
for different orders of approximation q depending on the number of unknowns Nu = 2Nh
with Nh = 10/h.

q = 2 q = 3 q = 4 q = 5 q = 6
Nu Error Rate Error Rate Error Rate Error Rate Error Rate
16 1.9e-01 1.92 3.9e-02 3.69 4.7e-02 5.65 5.4e-03 7.07 2.0e-02 5.19
32 6.2e-02 1.64 2.9e-03 3.75 4.2e-03 3.48 1.4e-04 5.28 4.2e-04 5.54
64 1.6e-02 1.93 1.9e-04 3.95 2.8e-04 3.92 2.4e-06 5.86 6.9e-06 5.93
128 4.2e-03 1.98 1.2e-05 3.99 1.8e-05 3.98 3.8e-08 5.97 1.1e-07 5.98
256 1.0e-03 1.99 7.4e-07 4.00 1.1e-06 3.99 6.0e-10 5.99 1.7e-09 6.00
512 2.6e-04 2.00 4.6e-08 4.00 7.0e-08 4.00 9.4e-12 6.00 2.7e-11 6.00
1024 6.5e-05 2.00 2.9e-09 4.00 4.4e-09 4.00 1.6e-13 5.92 4.3e-13 5.98
2048 1.6e-05 2.00 1.8e-10 4.00 2.7e-10 4.00 9.8e-15 3.99 1.4e-14 4.95
4096 4.1e-06 2.00 1.1e-11 4.00 1.7e-11 4.00 2.4e-14 -1.28 1.9e-14 -0.42
8192 1.0e-06 2.00 7.5e-13 3.90 1.0e-12 4.06 1.3e-13 -2.43 1.4e-13 -2.88
16384 2.6e-07 2.00 2.1e-13 1.84 2.0e-13 2.32 2.1e-13 -0.73 2.1e-13 -0.61

influence of q on the remainder of the Taylor expansion of β−β± that is naturally reflected
in the approximation of Ai by the shape functions.

Figure 6.4 displays the Airy function and its approximations by the two basis functions
ϕ constructed at a point x0, for increasing values of q. Two points x0 are chosen, the
first one is the cut-off point whereas the second one is lying in the propagative zone. In
order to analyze this apparent uniformity of the approximations observed on Figure 6.4
(uniformity with respect to the parameter q), one has to remind of the design process of
the shape functions. Indeed, the process is based on a Taylor expansion and the fact that
the theoretical order of convergence does depend on q, so that the analysis relies on an
estimate of the rest of order q in β − β±. For the sake of simplicity suppose here that
β ∈ C∞. From the detailed design process one can see that this rest is actually

β − β± =
∞∑

i=q

diβ(G)
dxi

(x−G)i

i!
−

2q∑

i=q

(
i∑

l=0

(l + 1)(i − l + 1)λl+1λi−l+1

)
(x−G)i,

so that the coefficient of the leading order term is

Cq =
1
q!
dqβ(G)
dxq

−
q∑

l=0

(l + 1)(q − l + 1)λl+1λq−l+1. (6.1)

The following result specifies how this term behaves with respect to q.

Proposition 6.1. Assume that q ≥ 1 is fixed and that β(x) = x+a, a ∈ R. The coefficient
of the leading order term, Cq can be estimated explicitly with respect to q : there is a
constant C depending on λ1 and on ‖β‖∞,Ω but independent of q such that

|Cq| ≤ Cq. (6.2)

Proof. Because of the definition of Cq, it is convenient to prove a first estimate of the
terms (l + 2)λl+2 such as : for all l ∈ N such that 0 ≤ l ≤ q − 1

|(l + 2)λl+2| ≤
C l+2

l + 1
, (6.3)
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Figure 6.4 – Approximation of Airy function by corresponding basis functions for different
values of q, around the cut-off on the left, x0 = 0, and in the propagative zone in the right,
x0 = −4. See subsection 6.2.3.

where the constant C is a guess for the constant in the right hand side of (6.2). The
induction formula defining the coefficients λs reads for all i ∈ N such that i ≤ q − 1 :

λi+2 =
1

(i+ 2)(i+ 1)

(
diβ(G)
dxi

−
i∑

l=0

(l + 1)(i − l + 1)λl+1λi−l+1

)
.

One can see that 



λ1depends on the normalization,
2λ2 = β(G) − λ2

1,

3λ3 =
1
2

(
dβ(G)
dx
− 2λ1λ2

)
,

(6.4)

while for all i ∈ N such that 2 ≤ i ≤ q − 1 the hypothesis on β gives

(i+ 2)λi+2,=
1

i+ 1

(
−
i∑

l=0

(l + 1)(i − l + 1)λl+1λi−l+1

)
.

So the constant C has to ensure that (6.3) holds at least in the three cases described by
(6.4) : this is why a first guess Cg is set as

Cg = max
{
|λ1|,

√
|β(G)| + |λ1|2, 3

√
1 + 2|β(G)||λ1|+ 2|λ1|3

}
.

Now proceed by induction. For l ≥ 2 suppose that (6.3) holds for all l′ ∈ N such that
0 ≤ l′ < l. Then from the assumption on β one has

|(l + 2)λl+2| ≤
1

(l + 1)



l∑

j=0

|(j + 1)λj+1| · |(l − j + 1)λl−j+1|

 ,

≤ Cq+2
g

l + 1


 2
l + 1

+
l−1∑

j=1

1
j(l − j)


 ,

(6.5)

so that an upper bound for the sum term is now needed. The induction hypothesis shows
that an estimate of

Sl =
l−1∑

j=1

1
j(l − j) =

2
l

l−1∑

j=1

1
j
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for all l ∈ N such that 2 ≤ l < k would provide such a bound. On the other hand

Sl+1 − Sl =
2

l(l + 1)


1−

l−1∑

j=1

1
j


 ≤ 0

holds for all l ≥ 2, so that Sl ≤ S2 = 1 for all l ≥ 2. But

2
l + 1

+
l−1∑

j=1

1
j(l − j) ≤ 1⇔ 4 ≤ l, (6.6)

so the inductive step only holds from l ≥ 4. As a result the constant C actually has to
ensure that the initial condition for the induction holds for all l ∈ N such that l < 4. The
updated constant C can then be defined as

C = max

{
Cg,

4

√
λ1(1 + 2|β(G)||λ1 |+ 2|λ1|3),

5

√

|β(G)| + 2|β(G)|2|λ1|+
5
3
|λ1|2 +

16|β(G)|
3
|λ1|3 +

10
2
|λ1|5

}
.

With this updated constant, the base case is satisfied for l ≤ 3 and the inductive step is
proved combining equations (6.5) and (6.6). This completes the proof of (6.3) by induction.
Then from the definition of Cq stated in (6.1) and applying again the same estimate process
the conclusion is reached.

This estimate holds for all G ∈ Ω, however C does depend on the normalization, so
that - for λ1 ∈ {0, 1} - the constant C can be bounded independently of G by considering
that |β(G)| ≤ ‖β‖. For λ1 = ±

√
β(G) as well, the same inequality provides an upper

bound for C that does not depend on G.
The case of a more general coefficient β could be addressed with an appropriate condi-

tion on the derivatives of β. Indeed, if one can guarantee that the successive derivatives
satisfy

1
l!

∣∣∣∣∣
dlβ(G)
dxl

∣∣∣∣∣+
2

l + 1
+
l−1∑

j=1

1
j(l − j) ≤ 1

instead of (6.6), then a similar proof would be valid in that more general case.

Interpretation

Proposition 6.1 states that

β − β± = (Ch)q +O(hq+1),

where C does only depend on β, Ω and the normalization λ±1 . The q-convergence observed
on Figures 6.2 and 6.3 is then justified for the leading order term as soon as hC < 1 : it
also provides a guess of the length of the interval on which q convergence holds.

6.3 Code development and computational aspects in 2D

The main implementation work was to create a code for the UWVF supplemented
with the new basis functions for the O mode problem. Since the initial code for the elastic
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problem was based on classical plane waves, the integrals for the coefficients of the matrices
were computed in close form. The introduction of the new basis functions required the
implementation of quadrature formulas to approximate these integral terms. Practically,
a computation starts from the definition of some parameters





q the approximation order ,
p the number of basis functions per element ,
N the normalization ,
Nh the mesh parameter .

that are used to build locally the coefficients of the basis functions and so the assembly
of the matrices. The formulas stemming from the Taylor expansion have resulted in a
substantial burden.

As for the theoretical study, the numerical simulation for the X mode problem required
specific attention. The first attempt in this direction was to use finite differences to com-
pute the solution of a simple X mode problem, but reached no conclusive end at that time.
This basic scheme did not include any kind of regularization because it was implemented
prior to the theoretical understanding presented in Chapter 4. Nevertheless it evidenced
the necessity of an appropriate regularization process to stabilize X mode computations.
A 2D UWVF code was later adapted to the regularized X mode problem. Based on a
potential formulation, this code is very close to the O mode one.

The following examples were computed on both personal and high performance com-
puters. The high performance computer available at the Laboratoire Jacques Louis Lions
has a Non Uniform Memory Architecture, with twenty 2.0 GHz Xeon octo-core proces-
sors, and 640 Go of shared memory. It was used to run in parallel the UWVF code for
different sets of parameters (q,Nh) while (p,N) were fixed, each value of (q,Nh) being
sent to each processor, all of them running the same UWVF code. Thanks to this process
it was possible to generate Figures 6.12 and 6.14 to emphasize different features of the
method. The case displayed on Figures 6.19 and 6.20 were computed on a classical bi-core
processor machine within a few hours each. The corresponding matrices inverted in this
case are complex 169792 × 169792 sparse matrices.

6.4 Validation of the interpolation result in 2D

Following the theoretical result, each of the numerical validation case is computed,
for a given value of n, setting q = n + 1 and p = 2n + 1. The test case considered is
β(x, y) = x−1, with the exact solution ue(x, y) = Ai(x)eiy . As stated in the main theorem
of Section 5.4.4 from Chapter 5, ue can be approximated by a function ua that belongs to
the approximation space Span E(G, p), space that is built with either the β-normalization
or the constant-normalization. The vector {cl}1≤l≤p such that ua =

∑

1≤l≤p
clϕl is computed

inverting a system, as (Mn)−1B, where
• the matrix Mn contains the coefficients of the Taylor expansion of the shape func-

tions,
• the vector B contains the coefficients of the Taylor expansion of ue.

Both of them were built as theoretical tools to analyze the order of convergence, it is then
natural to follow this path from the numerical point of view.

The procedure set up for this validation is the following : estimate the error max |ue − ua|
on disks with decreasing radius h in order to observe the order of convergence with respect
to h. This estimate is computed at the nodes of a grid that are situated along equi-angular
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radius of the disk. The errors provided in the upcoming tables are then discrete errors
results computed over 1300 points. Several different cases are proposed to validate the
theoretical order of convergence

• in the propagative zone x < 1,

• in the absorbing zone x > 1,

• at the cut-off x = 1,

and an additional case concerns the behavior of the shape function designed with the
β-normalization as the approximation point gets closer to the cut-off.

6.4.1 In the propagative zone

The point G = [−3, 1] is in the propagative zone. Concentric disks are centered on G
with radius h = 1/2i. Following the interpolation theorem, the expected order of conver-
gence is n+ 1.

Figure 6.5 displays computed convergence results that fit perfectly the theory. A set of
p = 11 classical plane waves is used as a control case, since p = 11 is the highest number
of shape functions used in the different cases with the generalized plane waves. Note that
machine precision is reached in some cases.

6.4.2 In the non propagative zone

The point G = [2, 1] is in the non propagative zone. Again concentric disks are centered
on G with radius h = 1/2i, and the expected order of convergence is n + 1. There is no
classical plane wave that can be computed here since β(G) > 0.

Figure 6.6 displays computed convergence results that fit perfectly the theoretical result
as well. Again machine precision is reached in some cases.

6.4.3 Toward the cut-off

Since at the cut-off β(x = 1, y) = 0, it is interesting to look at what happens with the
normalization N =

√
β long this line. Indeed, when applying the generalized plane waves

with the UWVF and refining the mesh, the center of some mesh cells will get closer to the
cut-off.

For this numerical test the point G = [1− h, 1] remains in the propagative zone. Then
disks are here centered on a point Gh that stands at a distance h from the line x = 1, still
with radius h = 1/2i. Classical plane waves are compared to the normalization N =

√
β

with the same number of shape functions.
Figure 6.7 shows that the generalized plane waves normalized with N =

√
β give a high

order approximation of u even getting closer to the vanishing line x = 1, as long as h is
not too small. Note that there does not seem to be a significant difference between the two
type of functions. This is observed on numerical results even if there is no corresponding
theoretical explanation.

Another possibility is to compare the influence of two parameters : the size of the
disk h and the distance d between G and the line x = 1. The error e depends on both
parameters, so one can write e(h, d). Figure 6.8 displays the error computed for h and
d convergence with the normalization N =

√
β. The h convergence is clearly damaged

for decreasing values of d. This is linked to the low frequency limit when β goes to zero.
However, looking at the h convergence with d = h, one can see that the error e = e(h, h)
converges as the error e(h, 1/2) until h = 1/25.
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n=1, N=i
n=2, N=i
n=3, N=i
n=4, N=i
n=5, N=i
n=1, N=sqrt(β)
n=2, N=sqrt(β)
n=3, N=sqrt(β)
n=4, N=sqrt(β)
n=5, N=sqrt(β)

p = 5 n = 1 n = 2 n = 3 n = 4 n = 5
h PW β CST β CST β CST β CST β CST

1/22 2.98 2.07 1.94 2.96 3.81 4.07 6.08 5.29 6.88 7.06 8.37
1/23 3.01 2.02 1.98 3.00 3.27 3.99 4.50 5.02 6.88 6.44 8.35
1/24 3.01 2.00 2.00 3.00 3.06 4.00 4.04 5.00 6.49 6.09 8.26
1/25 3.01 2.00 2.00 3.00 3.01 4.00 4.00 5.00 5.82 6.00 7.61
1/26 3.00 2.00 2.00 3.00 3.00 4.00 4.00 5.00 5.30 5.97 6.07

Figure 6.5 – Convergence results in the propagative zone, computed at G = [−3, 1] with
different shape functions. Comparison between classical plane waves and generalized plane
waves for both constant and β normalizations. Some of the associated orders of convergence
are also provided.
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n=1, N=i
n=2, N=i
n=3, N=i
n=4, N=i
n=5, N=i

n = 1 n = 2 n = 3 n = 4 n = 5
h β CST β CST β CST β CST β CST

1/22 2.16 2.03 3.05 3.82 4.14 4.82 5.09 7.26 6.24 8.50
1/23 2.07 2.01 3.03 3.27 4.05 4.03 5.04 6.96 6.07 8.28
1/24 2.03 2.00 3.02 3.07 4.02 4.00 5.02 5.83 6.02 7.93
1/25 2.02 2.00 3.01 3.01 4.01 4.00 5.01 5.21 6.00 6.76
1/26 2.01 2.00 3.00 3.00 4.00 4.00 5.00 5.05 5.87 5.70

Figure 6.6 – Convergence results in the non-propagative zone, computed at G = [2, 1] with
different shape functions. Comparison between generalized plane waves for both constant
and β normalizations. Some of the associated orders of convergence are also provided.
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n=1, N=sqrt(β)
n=1, PW
n=2, N=sqrt(β)
n=2, PW
n=3, N=sqrt(β)
n=3, PW
n=4, N=sqrt(β)
n=4, PW
n=5, N=sqrt(β)
n=5, PW

n = 1 n = 2 n = 3 n = 4 n = 5
h PW β PW β PW β PW β PW β

1/22 2.35 2.37 3.27 3.24 3.17 4.09 3.21 5.32 3.21 6.25
1/23 2.23 2.24 3.19 3.19 2.77 4.13 2.82 5.14 2.82 6.11
1/24 2.14 2.15 3.12 3.11 2.47 4.09 2.40 5.08 2.40 6.03
1/25 2.08 2.09 3.08 3.07 2.27 4.06 2.24 5.05 2.24 1.13
1/26 2.05 2.04 3.05 3.04 2.15 4.04 2.13 4.00 2.13 -2.24

Figure 6.7 – Convergence results toward β = 0, computed at G = [1− h, 1]. Comparison
between classical plane waves and generalized plane waves for both normalizations N =

√
β

and N = i. Some of the associated orders of convergence are also provided.

h\ d 1/21 1/22 1/23 1/24 1/25 1/26 1/27 1/28 1/29 1/210

1/2 4.8e-06 5.5e-06 5.5e-06 5.4e-06 5.4e-06 5.3e-06 5.2e-06 5.2e-06 5.2e-06 5.2e-06
1/22 5.7e-08 6.4e-08 6.4e-08 6.2e-08 6.1e-08 6.0e-08 5.9e-08 5.8e-08 5.8e-08 6.9e-08
1/23 8.3e-10 9.2e-10 9.2e-10 9.0e-10 8.8e-10 8.7e-10 9.2e-10 1.2e-09 3.5e-09 2.4e-08
1/24 1.3e-11 1.4e-11 1.4e-11 1.4e-11 1.8e-11 3.6e-11 1.0e-10 5.4e-10 3.2e-09 2.2e-08
1/25 2.0e-13 2.3e-13 3.5e-13 8.8e-13 6.4e-12 2.8e-11 1.2e-10 5.4e-10 3.8e-09 2.2e-08
1/26 4.3e-15 1.7e-14 1.6e-13 7.6e-13 6.2e-12 3.0e-11 1.0e-10 6.0e-10 3.1e-09 2.0e-08
1/27 2.4e-15 1.6e-14 1.6e-13 7.7e-13 6.2e-12 2.8e-11 9.8e-11 5.1e-10 2.9e-09 2.3e-08
1/28 2.3e-15 1.5e-14 1.6e-13 7.9e-13 6.1e-12 2.7e-11 1.0e-10 5.0e-10 2.5e-09 1.6e-08
1/29 2.0e-15 1.5e-14 1.6e-13 7.9e-13 5.4e-12 2.5e-11 9.7e-11 4.9e-10 2.5e-09 1.9e-08
1/210 1.9e-15 1.4e-14 1.5e-13 7.5e-13 6.0e-12 2.5e-11 8.7e-11 5.0e-10 2.5e-09 1.8e-08

Figure 6.8 – Error computed on a disk of radius h centered at G = [1 − d; 1]. The
approximation is computed with the β-normalization and with n = 5, q = n + 1 and
p = 2n+ 1.
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n=1, N=i
n=2, N=i
n=3, N=i
n=4, N=i
n=5, N=i

h n = 1 n = 2 n = 3 n = 4 n = 5
1/22 2.01 3.33 4.15 6.72 8.10
1/23 2.00 3.09 4.01 5.49 7.93
1/24 2.00 3.02 4.00 5.11 7.01
1/25 2.00 3.00 4.00 5.03 6.20
1/26 2.00 3.00 4.00 5.01 5.50

Figure 6.9 – Convergence results computed at G = [1, 1] using generalized plane waves
with the constant-normalization. Some of the associated orders of convergence are also
provided.

6.4.4 At the cut-off

The point G = [1, 1] lies exactly on the vanishing line of β. Then again concentric disks
are centered on G with radius h = 1/2i. Both classical plane waves and generalized plane
waves with the normalization N =

√
β would provide only one function since β(G) = 0.

However the normalization N = i - as described previously - is well defined even at the
cut-off.

As Figures 6.5 and 6.6, Figure 6.9 displays results that fit perfectly the theoretical
result : the point G lays along the cut-off line and the computed orders of convergence for
a given parameter n are exactly n+ 1, as stated in the theorem.

6.4.5 Back to classical plane waves

This is a simple sanity check in the case of a coefficient β piecewise constant on each
element of the mesh.

In dimension two as in dimension one that for q = 1, the new shape functions norma-
lized with N =

√
β(G) are exactly classical plane waves as long as β < 0, since in this
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n = 1 n = 2 n = 3 n = 4 n = 5
h PW β PW β PW β PW β PW β

1/22 1.93 1.93 2.94 2.94 3.94 3.94 4.96 4.96 5.97 5.97
1/23 1.98 1.98 2.99 2.99 3.99 3.99 4.99 4.99 5.99 5.99
1/24 2.00 2.00 3.00 3.00 4.00 4.00 5.00 5.00 6.00 6.00
1/25 2.00 2.00 3.00 3.00 4.00 4.00 5.00 5.00 6.00 6.00
1/26 2.00 2.00 3.00 3.00 4.00 4.00 5.00 5.00 5.99 6.00
1/27 2.00 2.00 3.00 3.00 4.00 4.00 5.00 5.00 5.02 5.46
1/28 2.00 2.00 3.00 3.00 4.00 4.00 4.97 4.98 0.78 1.43
1/29 2.00 2.00 3.00 3.00 4.00 4.00 4.22 4.54 0.14 -0.00
1/210 2.00 2.00 3.00 3.00 4.00 4.00 0.76 0.80 0.02 0.05
1/211 2.00 2.00 3.00 3.00 3.99 3.98 -0.10 -0.00 -0.15 -0.00
1/212 2.00 2.00 3.00 3.00 3.48 3.31 0.04 0.14 -0.02 -0.12

Figure 6.10 – Numerical validation of the fact that generalized and classical plane waves
are the same when the coefficient β is constant. The computations are performed for
β = −4 to approximate the exact solution ue(x, y) = e2iy. The differences between the
convergence rates for h < 1/28 are due to the fact that machine precision is reached :
then the behavior of the algorithm that inverts the interpolation matrix is not controlled
anymore.

case
λ2,0 =

1
2

(
−2λ0,2 − λ2

1,0 − λ2
0,1

)
.

This corresponds to the classical fact of approximating a smooth coefficient by its piecewise
constant value at the center of the cells. This is illustrated by Figure 6.10.

6.5 O mode simulation in 2D

Unlike in the one dimensional case, a quadrature formula is needed in this case, and
since integrals are to be computed over the edge of triangles, only a one dimensional
formula is required. Some formulas are detailed in this section. A study of the relative
influence of the basis functions parameters follows. More physical material concludes the
section.

The test problem considered here is the following : different domains will be considered,
all of them meshed with triangles, and the system is

{
−∆u+ (x− κ2)u = 0, (Ω),

(∂ν + iσ)u = Q(−∂ν + iσ)u+ g, (Γ),

with the parameter σ = 1.
Mainly h convergence results will be pointed out. The error is evaluated as a discrete

l2 relative norm evaluated at the center of the mesh cells : it means the unknown is not
reconstructed at the edges of the mesh, but on the mesh elements.

6.5.1 Comparing performances of the quadrature formulas

The parameter is set as : Q = 0 on the boundary Γ, and g corresponds to the exact
solution ue = Ai(x)eiκy.
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Trapezoidal, order 2.05
Simpson, order 4.08
Boole, order 6.09
Weddle, order 8.1
NC10, order 10.1

Figure 6.11 – Numerical test of different Newton-Cotes quadrature formulas, integrating
the cos function on Ω =]π, π[ and providing the numerical order of convergence. On the
left is the function integrated, and on the right a convergence graph shows the different
rates of h convergence.

Different quadrature formulas

The computation of the integrals is performed by the use of a one dimensional qua-
drature formula. Different Newton-Cotes formulas are implemented :
• with 5 points, called Boole formula, with corresponding weights

(7, 32, 12, 32, 7)/90,

• with 7 points, called Weddle formula, with corresponding weights

(41, 216, 27, 272, 27, 216, 41)/840

• with 10 points, with corresponding weights
(25713, 141669, 9720, 174096, 52002, 52002, 174096, 9720, 141669, 25713)

806400
The formula with 9 points is not used in order to avoid the use of negative weights. The
trapezoidal formula is also considered as a benchmark case. The h-convergence for a test
case is illustrated on Figure 6.11 with these different methods, refining the mesh of the
domain Ω =]π, π[.

A benchmark case

The domain is Ω =]− 6, 3[×] − 1, 1[, and as required by the theorem, the parameters
of the method are set to satisfy the interpolation result :

{
q = n+ 1,
p = 2n+ 1,

where two values of n are considered : n = 3, 4. Figure 6.12 describes the numerical results
obtained in this case, using the normalization N =

√
β. In the case n = 3 the three different

quadrature formulas compared in the figure give very close errors, and the convergence
rates are slightly different between 4.5 and 5. However in the case n = 4 the difference is
much more important. The orders of convergence for the Boole formula start from 4.5 and
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with Boole formula and n=3
with Weddle formula and n=3
with 10 pts formula and n=3
with Boole formula and n=4
with Weddle formula and n=4
with 10 pts formula and n=4

Figure 6.12 – Comparison of h convergence result for different quadrature formula : Boole,
Weddle and the 10 points formula are displayed. The limitation of the Boole formula, that
approximates an integral using 5 evaluating points, is obvious on the case n = 4 (round
markers) while it is almost nonexistent in the case n = 3 (× markers).

decrease to 3.4, 3.1 and 1.9. For the Weddle and 10 points formulas the rates are much
better : they decrease from 6.5 to 3.4.

These remarks evidence the fact that the choice of the quadrature formula has to match
the parameters of interpolation : there is no reason for increasing the accuracy of the
interpolation with n if the accuracy of the final result is limited by a low order quadrature
formula. On the other hand the rate between the processing times for Boole and the 10
points formula is 5/7, so that the raise of computing time linked to the quadrature formula
should not be neglected.

The fact that Weddle and the 10 points formula give similar results might be linked
to the limitation to the square root of the machine precision

√
ǫ that will be described in

the next section. Indeed, one can see in the test case presented in Figure 6.11 that these
two formulas reach this precision

√
ǫ even for a small number of points discretizing the

domain [−5, 5].

6.5.2 A parameter study

Here the integration method is fixed, using the 10 points formula. The reference solution
is ue(x, y) = Ai(x)eiy . It is displayed on Figure 6.13, the solution being reconstructed on
each cell and represented on a refined mesh.

Figure 6.14 compares the results obtained with the normalization N =
√
β and N = i,

using parameters that satisfy the interpolation requirements. There is an obvious difference
between the two normalization : the N =

√
β gives much better results, by a factor 10−2. It

is interesting to see that for the normalization N =
√
β the convergence rate seem to match

the interpolation prediction until n = 3 but there is a deterioration of the convergence for
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Figure 6.13 – The computed solution. Computed for p = 7, q = 5 and with the norma-
lization N =

√
β, on a 576 triangles mesh. Top : the real part of the numerical solution.

Bottom : the imaginary part of the numerical solution.

n = 4. The corresponding case for the constant normalization is not represented because
it blows up.

Figure 6.15 displays the h convergence results for increasing values of the number of
basis functions per element p, in order to see if the default of convergence observed on
Figure 6.14 can be overcome. Starting from p = 7 the number of basis functions per
elements is raised up to p = 10. In the case p = 7, the convergence does not pass 5 and is
not as good for q = 1, 2 than for higher values of q, and the errors are the same for any
value of q higher than 2. For p = 8 the rates in both cases q = 1, 2 is almost 2, both cases
q = 3, 4 between 3.5 and 4.5 and both cases q = 5, 6 tat present very similar results are
only slightly better. For p = 9 the results are even more separated for q = 5, 6 that reach
order 6. The deterioration of the convergence results when the error reaches the threshold
of the square root of the machine precision, namely

√
ǫ ≈ 10−8, has already been observed

with the classical UWVF and is due to poor conditioning of the matrix. A theoretical
estimate on this conditioning number can be found in [Ces96b].

6.5.3 A first reflectometry test case

This case was proposed by Stéphane Heuraux as a first step toward real life problems.
It models a wave sent in a plasma by an antenna from the wall of a reactor. The reactor is
represented by a square domain, while the antenna is represented by a wave guide added
outside the reactor on a wall plus a horn inside the reactor.

The geometry

The geometry is described in Figure 6.16. The domain Ω is a L×L square, the width
and length of the waveguide are l0 and 4l0. The boundaries, the subdomains are created
with the Matlab toolbox pdetool, and they are described together with two examples of
meshes in Figure 6.17. At that point the horn is not yet defined as a boundary since its
edges belong to the interior of the domain : such an edge belongs to two different triangles
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Figure 6.14 – Convergence results for different values of the interpolation parameter n,
with q = n+ 1 and p = 2n+ 1. On the left : with basis functions normalized by N =

√
β.

On the right : with basis functions normalized by N = i.
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Figure 6.15 – h-convergence results for different values of parameters p and for q going
from 1 to 6. Computed with the normalization N =

√
β and the 10 points quadrature

formula. From top left to bottom right : with p = 7, p = 8, p = 9 and p = 10 basis
functions per element.
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Figure 6.16 – Slice of tokamak, specifying the domain parameters : the wave guide width,
the shape of the horn and the size of the main part of the domain.
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Figure 6.17 – Producing the domain and the mesh. The figures represent pdetool win-
dows. Top left : the domain is created thanks to two polygons. Top right : the default edge
labels. Bottom left : a coarse mesh of the domain. Bottom right : a refined mesh of the
domain.
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Modified horn edgeInitial horn edge

Figure 6.18 – Modifications of the initial mesh data : Points and triangles modified along
a horn edge. Left : The red edges are lying on the horn boundary and the blue vertices
are on the horn but not an end of the horn, they are to be modified. Right : Each blue
point is doubled by a new point of the mesh with the same coordinates. Each red edge is
doubled by a new edge which vertices are on one side of the horn. The vertices of each
light blue triangle are updated with the new points numbers.

of the mesh, one lying inside the horn, the other one lying outside the horn but in the
reactor.

Producing the crack along the edges of the horn has required to process the mesh with
the following steps.

• Listing the points on the horn boundary.

• Creating new points with the same coordinates, except for the ends of the horn.

• For each of these new points, updating their number for each triangle that it belongs
to, as long as the triangle is inside the horn.

• Updating the labels of the boundaries.

See figure 6.18 for a graphic illustration of the process.

First results

In both cases the size of the domain is set to be L = 50l0, where l0 is the wavelength
of the incoming signal in the horn.

Wave propagation in a homogeneous medium

The size of the domain is L = 50l0 and the coefficient is constant β = −κ2. See Figure
6.19 that represents a wave propagating from an antenna in a propagative homogeneous
domain. This result was computed with the normalization N =

√
β. As already mentioned,

in such a case classical plane wave are exact solutions of the solution equation.
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Figure 6.19 – Wave propagating in a homogeneous domain. Result computed using ge-
neralized plane waves designed with N =

√
β and the UWVF, for p = 7 and q = 4. Top :

real part of the computed solution. Bottom : modulus of the computed solution.
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A wave reflection

The cut-off is set at x = 40l0. The heterogeneous medium is modeled by the coefficient

β(x) =

{
−κ2, x < 2,
−κ2(x− 4)/(2), x ≥ 2.

(6.7)

One gets a wave propagating from the wave guide through the horn toward the right end
of the domain, reflected by the cut off situated at x = 4. See Figure 6.20. This result was
computed with the normalization N =

√
β. Comparing to Figure 6.19 it is clear that the

wave does not propagate further than the cut off and bounces back toward the antenna.
Notice that simulations for this kind of problem can be found in [BLSS03, BLSS04,

BS00] for caustics related problems and in [DNS08] for laser propagation topics.

6.5.4 Luneburg lens

Another application for this method adapted to smooth coefficients is the simulation
of a Luneburg lens, examlpe suggested by Peter Monk. This is a gradient-index lens which
refractive index is β =

√
2− r/R, see [GJ99], where R stands for the radius of the lens

and r stands for the distance to the center of the lens. It presents a focal point on the
outer surface of the lens. Figure 6.21 displays the modulus of the electric field, highlighting
a focal point. However, this focal point does not stand exactly on the surface of the lens.
Further investigations would be required to get a solution with the correct focal point.
For instance a quadrature formula adapted to the curvature of the lens surface could be
implemented.
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Figure 6.20 – Wave reflected by the cut off. Result computed using generalized plane
waves designed with N =

√
β and the UWVF, for p = 7 and q = 4. Top : real part of the

computed solution. Bottom : modulus of the computed solution.
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Figure 6.21 – Wave sent from an antenna toward a Luneburg lens which is centered
at (1, 2.5) and which radius is equal to the wave length of the incoming wave. Result
computed using generalized plane waves designed with N =

√
β and the UWVF, for p = 7

and q = 4. Top : the quantity represented is the real part of the signal. Bottom : the
quantity represented is the modulus of the signal.



170 Chapter 6. Numerical Results

6.6 X mode simulation in 2D

Adapting the O mode code to the X mode case requires first to write the Ultra-
Weak Variational Formulation in this case. In this section the electric field is denoted
E = (Ex, Ey). {

∇∧∇ ∧ E − ε⊥E = 0,
(∇∧E + iσE ∧ ν) = Q (∇∧ E − iσE ∧ ν) + g,

(6.8)

where

ε⊥(x) =

(
α iγ
−iγ α

)
, (6.9)

σ ∈ R and Q ∈ R satisfies |Q| ≤ 1. Note that in dimension two, because of the definition
of the curl operator, the equation of system (6.8) reads

{
∂y (∂xEy − ∂yEx)− αEx − iγEy = 0,
−∂x (∂xEy − ∂yEx) + iγEx − αEy = 0.

6.6.1 The formulation

Let E be a solution of system (6.8), and F be a solution of the dual homogeneous
equation, namely

∇∧∇ ∧ F − ε∗⊥F = 0, (6.10)

such that for all k ∈ [[1, Nh]] ∇∧ F and F ∧ ν belong to L2(Ωk). Then, since

(∇∧ E − iσE ∧ ν) (∇∧ F − iσF ∧ ν)− (∇∧ E + iσE ∧ ν) (∇∧ F + iσF ∧ ν)

= 2iσ
(
∇∧E · F ∧ ν − E ∧ ν · ∇ ∧ F

)
,

one has for all k ∫

∂Ωk

1
σ

(∇∧ E − iσE ∧ ν) (∇∧ F − iσF ∧ ν)

−
∫

∂Ωk

1
σ

(∇∧ E + iσE ∧ ν) (∇∧ F + iσF ∧ ν) = 0.

As a result, the UWVF of the X mode problem (6.8) reads

∑

k∈[[1,Nh]]

∫

∂Ωk

1
σ

(∇∧E − iσE ∧ ν)k (∇∧ F − iσF ∧ ν)k

−
∑

k∈[[1,Nh]]

∑

j

∫

Σkj

1
σ

(∇∧ E − iσE ∧ ν)j (∇∧ F + iσF ∧ ν)k

−
∑

k∈[[1,Nh]]

∫

Γk

Q

σ
(∇∧ E − iσE ∧ ν) (∇∧ F + iσF ∧ ν)

=
∑

k∈[[1,Nh]]

∫

Γk

g(∇∧ F + iσF ∧ ν)

(6.11)
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6.6.2 Design of shape functions

The design of a shape function is more difficult for the X mode equation than for
the O mode equation. In fact there is no direct generalization of classical plane waves for
the solution of (6.8) because of the non constant coefficients α and γ. However, taking
advantage of the fact that div(ε∗⊥F ) = 0, so that there exists a potential ϕ satisfying

ε∗⊥F =
−−→
curlϕ, (6.12)

the initial equation on F can be turned into the following equation on ϕ :

curl(ε−∗⊥
−−→
curlϕ)− ϕ = 0. (6.13)

Indeed, since −−→
curl(curl F − ϕ) = 0,

then curl F − ϕ is a constant C. But then ϕ = C + curl F shows that C can be chosen
equal to zero because only the derivatives of ϕ take part in (6.12), and F = ε−∗⊥

−−→
curlϕ

plugged into ϕ = curl F gives (6.13).
Taking into account the fact that

ε−∗⊥ (x) =
1

α2 − γ2

(
α −iγ
iγ α

)
,

then ϕ actually satisfies

α

α2 − γ2 (∂2
xϕ+ ∂2

yϕ) +
(
∂x

α

α2 − γ2 + ∂y
iγ

α2 − γ2

)
∂xϕ

+
(
∂y

α

α2 − γ2 − ∂x
iγ

α2 − γ2

)
∂yϕ+ ϕ = 0,

(6.14)

so that ϕ = eP implies that

[
α

α2 − γ2

(
∂2
xP + ∂2

yP + (∂xP )2 + (∂yP )2)+
(
∂x

α

α2 − γ2 + ∂y
iγ

α2 − γ2

)
∂xP

+
(
∂y

α

α2 − γ2 − ∂x
iγ

α2 − γ2

)
∂yP + 1

]
eP = 0.

(6.15)

A shape function ϕ = eP is then sought as a solution of an approximated version of this
last equation (6.15).

Following the idea developed in the design of shape functions for the O mode equation,
the Taylor expansion of (6.15) at a fixed point G ∈ R

2 is considered, and for the sake of
clarity fα and fγ are defined by

fα =
α

α2 − γ2 and fγ =
iγ

α2 − γ2 .

Their Taylor expansions then read

fα =
∞∑

i,j=0

Ai,j(x− xG)i(y − yG)j and fγ =
∞∑

i,j=0

Bi,j(x− xG)i(y − yG)j .
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Looking for ϕ = eP with P =
∑

0≤i+j≤dP

λi,j(x − xG)i(y − yG)j and P (0, 0) = 0, one gets

a system that turns out to have the same feature as the system obtained for the O mode
equation. As a result, the same choice dP = q + 1 provides the following system





∀(i, j) ∈ N
2 s.t. 0 ≤ i+ j ≤ q − 1

i∑

k=0

j∑

l=0

(
Ai−k,j−l

(
(k + 2)(k + 1)λk+2,l + (l + 2)(l + 1)λk,l+2

+
k∑

ni=0

l∑

nj=0

(ni + 1)(k − ni + 1)λni+1,njλk−ni+1,l−nj

+
k∑

ni=0

l∑

nj=0

(nj + 1)(l − nj + 1)λni,nj+1λk−ni,l−nj+1

)

+
(
(i− k + 1)Ai−k+1,j−l + (j − l + 1)Bi−k,j−l+1

)
(k + 1)λk+1,l

+
(
(j − l + 1)Ai−k,j−l+1 − (i− k + 1)Bi−k+1,j−l

)
(l + 1)λk,l+1

)

+ 1{i=0,j=0} = 0.

(6.16)

Here again, as for the O mode case, defining a set {λi,j, i ∈ {0, 1}, j ∈ [[0, q + 1− i]]} pro-
vides an explicit expression to compute all the coefficients of P as long as A0,0 6= 0.
Naturally the same choice stems from this remark to design a set of linearly independent
shape functions :

Definition 27. Consider N ∈ C such that N 6= 0. The local set of shape functions
EX(G, p) = {ϕl}1≤l≤p is defined by ϕ = ePl with Pl ∈ C[X,Y ] such that Pl =

∑

1≤i+j≤q+1

λi,j(x−

xG)i(y − yG)j . For all l ∈ N such that 1 ≤ l ≤ p, the coefficients of Pl are defined by

• θl = 2lπ/p

1. (λ1,0, λ0,1) = N(cos θl, sin θl).

2. {λi,j , i ∈ {0, 1}, 1 < i+ j ≤ q + 1} are set to zero,

• {λi,j , i /∈ {0, 1}, 1 < i+ j ≤ q + 1} are solutions of the system (6.16).

Link with the theory

It is then manifest that the physics of the problem appears through the design process :

• the equation (6.12) has a meaning only if ε⊥ is invertible, that is only if α2(G) −
γ2(G) 6= 0, i.e. not at the cut-off,

• the system (6.16) is invertible as long as α(G) 6= 0, i.e. not at the resonance either.

So even in the simple case α = −x and γ real and constant, the regularization process
proposed in the theoretical study is mandatory to give a meaning to the design process.
Indeed, if α = −x+ iµ, then at the cut-off one has

ℜ(α2 − γ2) = x2 − µ2 − γ2 6= 0

and at the resonance one has ℑ(α(G)) = µ 6= 0, and as a result the shape functions are
well-defined in all the domain.



6.6. X mode simulation in 2D 173

6.6.3 A benchmark case

An analytic solution of the problem (6.8) can be obtained from the solution of the
Budden problem. Looking for a solution that does not depend on the y variable, the
coefficients are {

α(x, y) = −x+ iµ,

γ(x, y) =
√
α2(x, y)− α(x, y)/4 + 1,

(6.17)

so that the y component of the electric field satisfies

−d
2Ey
dx2

+
(

1
4
− 1
x− iµ

)
Ey = 0.

Considering such coefficients, a cut-off occurs at x = 4 and a resonance occurs at x = 0.
Two corresponding solutions of the X mode problem (6.8) are available : a first solution
is given by

E = e(−x+iµ)/2
(
iγ
−α

)
, (6.18)

and is smooth as µ→ 0, whereas a second solution given by

E = (−e(x−iµ)/2 + (x− iµ)e(−x+iµ)/2Eiµ(x))

(
iγ
−α

)
, (6.19)

is singular as µ → 0. In this last expression the modified exponential integral function is
defined by

Eiµ(x) =
∫ x

−∞

et−iµ

t− iµdt.

In this case, since

ε−∗⊥ =
1

α2 − γ2

(
α iγ
−iγ α

)
,

the required Taylor expansions for the design process - see equations (6.13), (6.14) and
(6.15) - are available :





α

α2 − γ2 =
4(xG + iµ)
4− xG − iµ

+
16

4− xG − iµ
∞∑

j=0

(
x− xG

4− xG − iµ

)j
,

γ

α2 − γ2 =
4

xG + iµ− 4

∞∑

j=0

(
∂lxγ(xG)

l!(4− xG − iµ)j−l

)
(x− xG)j .

6.6.4 Interpolation properties

The interpolation properties of the shape functions can be adapted to the X mode case.
This paragraph is organized following two main steps : a first result gathers the properties
of the potential shape functions ϕs while another result states the corresponding result
for the interpolation of the electric field E.

The following definitions correspond to the ones given in the O mode case, where again
el refers to the classical plane wave with wave length κ = −iN and ϕl refers to the shape
function of E(G, p) with n ∈ C

∗, both of them associated to the same θl.
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Definition 28. Suppose n ∈ N
∗ and N ∈ C

∗. The (n + 1)(n + 2)/2 × (2n + 1) matrices
MCn and MXn are defined as follows : for all (k1, k2) ∈ N

2, such that k1 + k2 ≤ n set





(
MCn

)
(k1+k2)(k1+k2+1)

2
+k2+1,l

= ∂
k1
x ∂

k2
y el(G)
k1!k2! ,

(
MXn

)
(k1+k2)(k1+k2+1)

2
+k2+1,l

= ∂
k1
x ∂

k2
y ϕl(G)
k1!k2! .

Their lth columns contain respectively the Taylor expansion coefficients of the functions
el and ϕl.

Let ϕe be a solution of the homogeneous equation (6.14) in a vicinity VG of G ∈ R
2, h

denoting the size of VG, to be approximated.

Proposition 6.2. Any shape function ϕ = eP ∈ EX(G, p) satisfies :

• the coefficients of P {λi,j , 0 ≤ i ≤ q + 1, 1 < i + j < q + 1} can be described as
polynomials with two variables in (λ1,0, λ0,1) as follows.

∀i ≥ 2 λi,j is of total degree at most i− 1. (6.20)

• for all (i, j) ∈ N
2 such that i + j ≤ q + 1 there is a polynomial Si,j ∈ C[X,Y ] is

such that dSi,j ≤ i − 1, and the coefficients of Si,j only depend on N and on the
derivatives of α and γ that satisfies

∂ix∂
j
yϕ(G) = (λ0,1)j(λ1,0)i + Si,j(λ1,0, λ0,1). (6.21)

The rank of MCn is known : rk(MCn ) = 2n+ 1. The matrix MXn satisfies :

• there is a lower triangular matrix Ln, which diagonal coefficients are all equal to 1
and which other coefficients are linear combinations of the derivatives of α and γ
evaluated at G, such that

MXn = LXn ·MCn . (6.22)

• rk(MXn ) = rk(MCn ) and both ‖LXn ‖ and ‖(LXn )−1‖ are bounded by a constant only
depending on β.

As a result, suppose that ϕe ∈ Cn+1 there are a function ϕa ∈ Span EX(G, p) depending
on α, γ and n, and a constant C depending on α, γ and n such that for all −→x ∈ VG

{
|ϕe(−→x )− ϕa(−→x )| ≤ Chn+1 ‖ϕe‖Cn+1 ,
‖∇ϕe(−→x )−∇ϕa(−→x )‖ ≤ Chn ‖ϕe‖Cn+1 .

(6.23)

Only the elements that differ from the O mode case will be commented here. The rest
of the proofs that do not need to be adapted will not be mentioned here.

Proof.Of the first property of the shape function, namely (6.20). From the system
(6.16) one gets for i = 0





A0,0(2λ2,0 + λ2
1,0 + λ2

0,1) + (A1,0 +B0,1)λ1,0 + (A0,1 −B1,0)λ0,1 + 1 = 0,
j∑

l=0

A0,j−l(2λ2,l + 1l=0(λ2
1,0 + λ2

0,1))

+ (A1,j + (j + 1)B0,j+1)λ1,0 + ((j + 1)A0,j+1 −B1,j)λ0,1 = 0,
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so that λ2,l is a polynomial of total degree at most 1 with respect to (λ1,0, λ0,1), thanks
to the normalization that imposes λ2

1,0 + λ2
0,1 to be constant. This proves the basis case of

the induction. Then for all i > 1 suppose that the result holds for all i′ < i. The system
(6.16) gives

i∑

k=0

j∑

l=0

Ai−k,j−l
(
(k + 2)(k + 1)λk+2,l + (l + 2)(l + 1)λk,l+2

+
k∑

ni=0

l∑

nj=0

(ni + 1)(k − ni + 1)λni+1,njλk−ni+1,l−nj

+
k∑

ni=0

l∑

nj=0

(nj + 1)(l − nj + 1)λni,nj+1λk−ni,l−nj+1

)

+ ((i− k + 1)Ai−k+1,j−l + (j − l + 1)Bi−k,j−l+1)(k + 1)λk+1,l

+ ((j − l + 1)Ai−k,j−l+1 − (i− k + 1)Bi−k+1,j−l)(l + 1)λk,l+1 = 0,

Isolating the λi+2,j term in the right hand side, the degree of the others terms are at most :
• k + 1 ≤ i+ 1 for the λk+2,l terms,
• k − 1 ≤ i− 1 for the λk,l+2 terms,
• 2 ≤ i for the λ1,0λ1,l terms corresponding to k = 0,
• k + 1 ≤ i+ 1 for the λ1,0λk+1,l terms that arise only if k > 0,
• k ≤ i for the λni+1,njλk−ni+1,l−nj terms that arise only if k ≥ 2,
• 2 ≤ i for the λ0,1λ0,l+1 terms corresponding to k = 0,
• k + 1 ≤ i+ 1 for the λ0,1λk,l+1 terms that arise only if k > 0,
• k ≤ i for the λni,nj+1λk−ni,l−nj+1 terms that arise only if k ≥ 2,
• 1 ≤ i− 1 for the λ1,l terms corresponding to k = 0,
• k ≤ i for the luk + 1l terms that arise only if k > 0,
• 1 ≤ i− 1 for the λ0,l+1 terms corresponding to k = 0,
• k − 1 ≤ i− 1 for the λk,l+1 terms that arise only if k > 0.

So altogether the total degree of λi+2,j is at most i+1 and the induction step is proved.
Proof.Of the second property of the shape function, namely (6.21). Consider a given

partition of (i, j) with length µ, an element of ps((i, j), µ) defined by

{
(kl, (il, jl))l∈[[1,s]] : kl ∈ N

∗, 0 ≺ (i1, j1) ≺ · · · ≺ (il, jl),
s∑

l=1

kl = µ,
s∑

l=1

kl(il, jl) = (i, j)

}
.

The degree of the corresponding product term, namely
s∏

l=1

(λil,jl)
kl satisfies Deg

s∏

l=1

(λil,jl)
kl =

s∑

l=1

klDeg λil,jl , from (6.20) this quantity is also at most equal to

∑

il=0,jl=1

kljl +
∑

il=1,jl=0

klil +
∑

il≥1

kl(il − 1)

where the two first sums contain at most one term each. And again this degree is maximal
if and only if the partition contains no term such that il ≥ 1. The claim concerning
the matrix MXn represents no difficulty.
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Proof.Of the final estimate (6.23). A linear system of unknowns (xl)1≤l≤2n+1 and of
matrix MXn stems from the idea of approximating the Taylor expansion of ϕe thanks to

ϕa =
2n+1∑

l=1

xlϕl.
∣∣∣∣∣∣
ϕe(x, y)−

n∑

m=0

∑

k1+k2=m

Bk1k2x
k1yk2

∣∣∣∣∣∣
≤ Chn+1‖ϕe‖Cn+1 ,

∣∣∣∣∣∣
ϕl(x, y)−

n∑

m=0

∑

k1+k2=m

M lk1k2
xk1yk2

∣∣∣∣∣∣
≤ Chn+1‖ϕl‖Cn+1 ,

Here again, for the sake of simplicity, M lk1k2
stands for the coefficient of MXn that corres-

ponds to ∂k1
x ∂
k2
y ϕl/(k1!k2!), namely the coefficient (MXn ) (k2+k1)(k2+k1+1)

2
+k2+1,l

, and in the

same way Bk1,k2 stands for (Bn) (k2+k1)(k2+k1+1)

2
+k2+1

. The system to be solved is then





Find (xl)l∈[[1,2n+1]] ∈ C
2n+1 such that

2n+1∑

l=1

M lk1,k2
xl = Bk1,k2, ∀m ∈ [[0, n]], ∀(k1, k2) ∈ [[0, n]]2 such that k1 + k2 = m.

Since the rank of the matrix is known, the next step is to identify a subsetKX ⊂ C
(n+1)(n+2)

2

such that Im(MXn ) ⊂ KX and Bn ∈ KX . This subspace KX is built from the fact that
the shape functions are designed to fit the Taylor expansion of equation (6.14) :

KX :=



(Ck1,k2) ∈ C

(n+1)(n+2)
2 ,∀(k1, k2) ∈ N

2, k1 + k2 ≤ n− 2,

i∑

k=0

j∑

l=0

Ai−k,j−l
(
(k + 2)(k + 1)Ck+2,l + (l + 2)(l + 1)Ck,l+2

+
k∑

ni=0

l∑

nj=0

(ni + 1)(k − ni + 1)λni+1,njCk−ni+1,l−nj

+
k∑

ni=0

l∑

nj=0

(nj + 1)(l − nj + 1)λni,nj+1Ck−ni,l−nj+1

)

+ ((i − k + 1)Ai−k+1,j−l + (j − l + 1)Bi−k,j−l+1)(k + 1)Ck+1,l

+ ((j − l + 1)Ai−k,j−l+1 − (i− k + 1)Bi−k+1,j−l)(l + 1)Ck,l+1 + 1(j=0,i=0) = 0

}
,

It is straightforward to see that Im(MXn ) ⊂ KX . The fact that BXn ∈ KX simply stems
from plugging the Taylor expansions of α, γ and ϕe into equation (6.14).
Figure 6.22 provides numerical convergence results at the resonance, approximating the
regular solution of equation (6.10). It shows that the generalized plane waves are able to
approximate the regular solution with a high order convergence with respect to h even if
the point considered here is lying along the resonance.

The second inequality of (6.14) then directly provides an interpolation result on the
electric field E solution of the homogeneous adjoint equation of the X mode system, namely
(6.10), in a vicinity VG of G ∈ R

2, h denoting the size of VG.
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n=1, N=i
n=2, N=i
n=3, N=i
n=4, N=i
n=5, N=i
n=1, N=sqrt(β)
n=2, N=sqrt(β)
n=3, N=sqrt(β)
n=4, N=sqrt(β)
n=5, N=sqrt(β)

n = 1 n = 2 n = 3 n = 4 n = 5
h error order error order error order error order error order

1/21 1.7e-01 - 7.0e-02 - 4.6e-02 - 3.3e-02 - 2.4e-02 -
1/22 2.8e-02 2.59 2.4e-03 4.89 6.7e-04 6.12 2.5e-04 7.06 9.1e-05 8.03
1/23 6.4e-03 2.12 1.4e-04 4.03 1.0e-05 6.04 1.9e-06 7.03 3.5e-07 8.02
1/24 1.6e-03 2.04 1.5e-05 3.27 1.8e-07 5.85 1.4e-08 7.03 1.4e-09 8.01
1/25 3.9e-04 2.01 1.8e-06 3.05 6.4e-09 4.78 1.1e-10 7.06 5.2e-12 8.01

n = 1 n = 2 n = 3 n = 4 n = 5
h error order error order error order error order error order

1/21 2.1e-01 - 1.1e-01 - 9.1e-02 - 7.5e-02 - 6.3e-02 -
1/22 3.0e-02 2.78 2.9e-03 5.29 1.4e-03 6.05 5.5e-04 7.08 2.3e-04 8.13
1/23 6.6e-03 2.19 1.3e-04 4.41 2.2e-05 6.00 4.2e-06 7.06 8.5e-07 8.05
1/24 1.6e-03 2.05 1.6e-05 3.03 3.9e-07 5.79 3.2e-08 7.03 3.3e-09 8.03
1/25 4.0e-04 2.01 2.0e-06 3.01 1.1e-08 5.14 2.4e-10 7.04 1.3e-11 8.01

Figure 6.22 – Convergence results computed at G = [0, 1] for the X mode interpolation.
Both errors and corresponding orders of convergence are provided, for the normalization
N =
√
β on top, and N = i at the bottom.
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Figure 6.23 – Regularized solution of the X mode problem (6.8) computed for µ = 0.8,
p = 7 and q = 4 over the domain Ω =]− 2, 2[2. Left : computed approximation of the curl
of the electric field. The resonance occurs for x = 0. Right : curl of the analytic solution.
Each vertex of the plotted solution is the center of an edge from the original mesh.

Proposition 6.3. Suppose that E ∈ Cn+1 there are a function Ea ∈ Span
(
curl

(
EX(G, p)

))

depending on α, γ and n, and a constant C depending on α, γ and n such that for all
−→x ∈ VG

|E(−→x )− Ea(−→x )| ≤ Chn ‖E‖Cn+1 .

Proof. It is straightforward considering ϕa defined in Proposition 6.2 and Ea such that

Ea = ε−∗⊥

(
∂yϕa
−∂xϕa

)
.

6.6.5 A first UWVF computation for the X mode

Figure 6.23 displays the first numerical result that I computed with the UWVF and the
generalized plane waves for the regularized X mode problem. The solution approximated
is the regularized regular solution defined in (6.18) which corresponds to the coefficients
α and γ set in (6.17). Since the basis functions are potential functions for the X mode
system, the curl of the solution can be reconstructed at the middle point of every edge of
the mesh. The numerical solution displayed in Figure 6.23 is the curl of the electric field.
The traces of (∇ ∧ E)h are expressed with respect to the solution of the discrete system
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Xh =
Nh∑

k=1

pk∑

l=1

xk,lZk,l ∈ V on an edge e

{
2(∇ ∧ E)h = (I + Π)Xh + g if e ⊂ ∂Ω,
2(∇ ∧ E)h = (I + Π)Xh if e 6 ⊂∂Ω.

So (∇ ∧ E)h is explicitly reconstructed at the R
2 points that are centers xe of the mesh

edges e thanks to the formulas





(∇∧ E)h(xe) =
1
2

(
(1 +Q)

pk∑

l=1

xk,l(∇∧ Ek,l − iσEk,l ∧ νk) + g

)
(xe), e = Γk,

(∇∧ E)h(xe) =
1
2


 ∑

k̃∈{k,j}

pk̃∑

l=1

xk̃,l(∇∧ Ek̃,l − iσEk̃,l ∧ νk̃)

 (xe), e = Σkj.

The accuracy can be reported using a discrete l2 norm
√∑

e |(∇ ∧ E)ex(xe)− (∇∧ E)h(xe)|2∑
e |(∇ ∧E)ex(xe)|2

,

where the sum is computed over the edges e of the initial mesh, xe standing for the
center of the edge e. First convergence computations tend to show that in such a norm
the expected orders of convergence are reached on this test case : as suggested by the
interpolation result, if p = 2n + 1, q = n + 1 are set for some n ∈ N

∗, then the order
of convergence on the electric field is close to n. Further investigation is required in this
direction.

The definition of parameters to compute an approximation of the singular solution
(6.19) is more intricate.
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Appendices





Appendix A

Addendum for the X mode

A.1 Approximation of Airy functions

Suppose that A and B are the two fundamental solutions of the equation −u′′−αu = 0
satisfying the normalization conditions

{
A(0) = 1, A′(0) = 0,
B(0) = 0, B′(0) = 1,

(A.1)

such that the corresponding Wronskian is equal to 1. Let Aµ be an approximation of A in
the following sense





−A′′µ − αAµ = fAµ , with fAµ := iµAµ,

Aµ(0) = 1, A′µ(0) = 0.
(A.2)

From the variation of constants one gets

Aµ(x) = A(x)
(
cA +

∫ x

0
fAµ(t)B(t) dt

)
+B(x)

(
cB −

∫ x

0
fAµ(t)A(t) dt

)
.

The initial values (A.2) yield Aµ(x) = A(x) +
∫ x

0 fAµ(t)k(x, t) dt, where

k(x, y) = A(x)B(y)−A(y)B(x).

So Aµ satisfies a classical Volterra integral equation

Aµ(x)− iµ
∫ x

0
Aµ(t)k(x, t) dt = A(x). (A.3)

Define the series of integral kernels



K1(x, y) = k(x, y),

Kn+1(x, y) =
∫ x

0
k(x, xn)Kn(xn, y) dxn.

The solution of the integral equation (A.3) is

Aµ(x) = A(x) +
∫ x

0

( ∞∑

n=0

(iµ)n+1Kn+1(x, y)

)
A(y) dy.
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For n > 1

Kn+1(x, y) =
∫

0<x1<···<xn<x
k(x, xn)

∏

1≤i≤n−1

k(xi+1, xi) dxi+1k(x1, y) dx1,

and
In(x) =

∫
(x1,...,xn)∈{0<x1<···<xn<x}

∏
1≤i≤n dxi,

=
∫ x

0 In−1(xn) dxn,
= xn

n! since I1(x) = x.

So the iterated kernels satisfy ∀n ≥ 0

|Kn+1(x, y)| ≤ (2 ‖A‖∞ ‖B‖∞)n+1xn/n!.

On the compact interval ]0, L+[ the sum and integral symbols can be inverted, which gives
with a shift of the index n

Aµ(x) = A(x) +
∞∑

n=1

(∫ x

0
Kn(x, y)A(y) dy

)
(iµ)n .

Assuming µ is bounded positive for the simplicity of notations, Aµ is indeed bounded
independently for 0 < µ ≤ 1

|Aµ(x)| ≤ ‖A‖∞
(

1 +
∞∑

n=1

(µC0)n

n!

)
= ‖A‖∞

(
1 + eµC0 − 1

)
= ‖A‖∞eµC0 ,

with C0 = 2L+‖A‖∞‖B‖∞. From (A.3) it yields

|Aµ(x)−A(x)| ≤ µC0 ‖A‖∞ eµC0 .

Similarly if Bµ approximates B in the following sense





−B′′µ − αBµ = iµBµ,

Bµ(0) = 0, B′µ(0) = 1,

then one has the inequality |Bµ(x)| ≤ ‖B‖∞ eµC0 together with

|Bµ(x)−B(x)| ≤ µC0 ‖B‖∞ eµC0 .

Both Aµ(x) and Bµ(x) are C∞ functions with respect to µ and x. Since any H1 function f
is 1/2 Hölder thanks to the inequality |f(x)− f(y)| ≤ ‖f ′‖L2 |x− y|1/2, then Aµ(x), Bµ(x)
as well as all their derivatives with respect to µ and x are also 1/2 Hölder, with constants
bounded independently of µ as far as µ is bounded.

A.2 Adapted Privalov theorem

This section provides two versions of this complex analysis theorem. Regarding the
literature about Cauchy principal value and other singular integrals topics useful in this
perspective, my personal favorite reference is [Mus92].
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A.2.1 A classical version

Lemma A.1. Suppose ϕ is 1/2 Hölder in the vicinity of 0 and L1 on ]L−, L+[. Put ϕ = 0
on C\]L−, L+[. Suppose L∗ is a smooth closed contour of integration including [L−, L+]
and included in the upper half complex plan. Then

∫

L∗

ϕ(z) − ϕ(0)
z ± iµ dz →µ→0

∫

L∗

ϕ(z) − ϕ(0)
z

dz.

Proof. Let ǫ be a positive number.
∫

L∗

ϕ(z) − ϕ(0)
z

dz −
∫

L∗

ϕ(z) − ϕ(0)
z ± iµ dz = ±iµ

∫

L∗

ϕ(z) − ϕ(0)
z(z ± iµ)

dz

Split this integral into two parts separating the vicinity ] − ρ, ρ[ of 0 from the rest of L∗

such that ∀z ∈ L∗\]− ρ, ρ[, |z| > ρ.
Using the Hölder condition |ϕ(z) − ϕ(0)| ≤ C|z|1/2 one obtains, since |z + iµ| ≥ µ,

∣∣∣∣iµ
∫ ρ

−ρ

ϕ(z) − ϕ(0)
z(z ± iµ)

dz

∣∣∣∣ ≤ C
∫ ρ

−ρ
|z|−1/2 dz = 4Cρ1/2.

Take ρ so small that
∣∣∣iµ
∫
L∗
ϕ(z)−ϕ(0)
z(z±iµ) dz

∣∣∣ ≤ ǫ/2 ; the choice of ρ may obviously be made
independently of the position of µ.

Further for z on L∗\]− ρ, ρ[, i.e. not close to 0, |z| ≥ ρ, |z ± iµ| ≥ ρ and therefore
∣∣∣∣∣iµ
∫

L∗\]−ρ,ρ[

ϕ(z) − ϕ(0)
z(z ± iµ)

dz

∣∣∣∣∣ ≤
µ

ρ2

∫

L∗\]−ρ,ρ[
|ϕ(z) − ϕ(0)| dz ≤ µ

ρ2
‖ϕ − ϕ(0)‖L1 .

Thus for sufficiently small µ,
∣∣∣iµ
∫
L∗\]−ρ,ρ[

ϕ(z)−ϕ(0)
z(z±iµ) dz

∣∣∣ ≤ ǫ/2, and the lemma is proved.

Theorem A.2.1. Under the assumptions of Lemma A.1, both functions φ±(µ) =
∫ L+

L−
ϕ(z)
z±iµ dz

admit a continuous limit when µ goes to zero, and therefore are continuous for µ ∈ [0,∞[.

Proof. Let µ be any non zero positive parameter. Then

φ±(µ) =
∫

L∗

ϕ(z)
z ± iµ dz =

∫

L∗

ϕ(z) − ϕ(0)
z ± iµ dz + ϕ(0)

∫

L∗

1
z ± iµ dz,

whence 


φ+(µ) =

∫
L∗
ϕ(z)−ϕ(0)
z+iµ dz,

φ−(µ) =
∫
L∗
ϕ(z)−ϕ(0)
z−iµ dz + 2iπϕ(0).

Then, by the lemma proved above, φ± tends to the limits
{
φ+(0) =

∫
L∗
ϕ(z)−ϕ(0)
z dz,

φ−(0) =
∫
L∗
ϕ(z)−ϕ(0)
z dz + 2iπϕ(0).

Since PV
∫
L∗

1
z dz = iπ it yields

{
φ+(0) = PV

∫ L+

L−
ϕ(z)
z dz − iπϕ(0),

φ−(0) = PV
∫ L+

L−
ϕ(z)
z dz + iπϕ(0).
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Remark 17. These two proofs essentially come from [Mus92]. Moreover the Cauchy
principal value of an integral is also defined in [Mus92] in the following sense

PV
∫ L+

L−

ϕ(z)
z

dz = iπϕ(0) + ϕ(0) log
L+

L−
+
∫ L+

L−

ϕ(z)− ϕ(0)
z

dz,

where log is the principal value of the complex logarithm. Then

PV
∫ L+

L−

ϕ(z)
z

dz = ϕ(0) log
L+

|L−|
+
∫ L+

L−

ϕ(z) − ϕ(0)
z

dz.

A.2.2 An adapted version

Since all the numerators of the kernels appearing in Section 4.3.2 do also depend on
the parameter µ, here is a result specifying one case in which the result of the previous
section can be extended. The following theorem states that if the Hölder condition of a
derivative of the numerator is uniform with respect to µ, then one also has a continuity
when µ goes to zero.

Theorem A.2.2. Suppose ϕ is defined on ]L−, L+[×R
+, and suppose ∂2ϕ exists and is

1/2 Hölder with respect to the first variable uniformly with respect to the second one,
i.e. there exists a constant C independent on µ such that |∂2ϕ(z1, µ) − ∂2ϕ(z2, µ)| ≤
C|z1 − z2|1/2 for all z ∈]L−, L+[. Suppose that ϕ(., 0) and ∂2ϕ(., µ) for each value of µ
belong to L1(]L−, L+[). Suppose that ∂2ϕ(z, .) is continuous. Then both functions φ̃±(µ) =∫ L+

L−
ϕ(z,µ)
z±iµ dz admit a continuous limit when µ goes to zero, and therefore are continuous

for µ ∈ [0,∞[.

Proof. Define ψ(µ) =
∫
L∗
ϕ(z,µ)−ϕ(0,0)
z±iµ dz and consider the difference

ψ(µ)− ψ(0) =
∫

L∗

ϕ(z, µ)− ϕ(z, 0)
z ± iµ dz +±iµ

∫

L∗

ϕ(0, 0) − ϕ(z, 0)
z(z ± iµ)

dz,

=
∫ µ

0

∫

L∗

∂2ϕ(z, v)
z ± iµ dz dv +±iµ

∫

L∗

ϕ(0, 0) − ϕ(z, 0)
z(z ± iµ)

dz.

It has been shown in the proof of lemma A.1 that the second term tends to zero. Moreover,
from lemma A.1 and from the uniform Hölder condition on ∂2ϕ one has when µ tends to
zero ∫

L∗

∂2ϕ(z, v)
z ± iµ dz → PV

∫ L+

L−

∂2ϕ(z, v)
z

dz ∓ iπ∂2ϕ(0, v).

Since ∂2ϕ(z, .) is continuous, a classical argument of continuity under the integral sign
shows that ψ(µ)− ψ(0) goes to zero when µ goes to zero.

As φ̃±(µ) = ψ(µ) +ϕ(0, 0)
∫
L∗

dz
z±iµ it yields that φ̃ is indeed continuous and converges

to {
φ̃+(0) = ψ(0),
φ̃−(0) = ψ(0) + 2iπϕ(0, 0).

in other words {
φ̃+(0) = PV

∫ L+

L−
ϕ(z,0)
z dz − iπϕ(0, 0),

φ̃−(0) = PV
∫ L+

L−
ϕ(z,0)
z dz + iπϕ(0, 0).
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Additional illustrations

UWVF matrices profile
The structure of the sparse matrix to be inverted to solve the UWVF discrete problem

is linked to the numbering of the mesh elements. The kth pk × pk diaganonal blocks are
always non zero because of matrix D blocks and the terms from the possible boundary Γk
of matrix C. On the other hand, the pj × pk off-diagonal block corresponding to the term
from the interface Σkj of matrix C are non zero if and only if the kth and jth elemnts of
the mesh have a common an edge. As a result, in dimension one, because each cell k is at
most the neighbor of cells k + 1 and k − 1, the matrix has a block tridiagonal structure.
In dimension two, these non zero off-diagonal blocks can be anywhere in the matrix, but
every non zero (j, k) block corresponds to a non zero (k, j) block. See Figure B.1.

A look at the generalized plane waves
In dimension two, the basis functions are designed locally at a point G ∈ R

2. Consider
here G = (−2, 2), which is lying in the propagative zone for β(x, y) = x − 1. Figure
B.3 displays the classical plane waves designed at G. The only difference between these
five plane waves is their own direction. Figure B.2 displays some generalized plane waves
designed at G. They also seem to have a main direction, however they have different
shapes.
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Figure B.1 – Sparse profile of the matrices of the UWVF discrete problem. Left : one
dimensional case. Right : two dimensional case.
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Figure B.2 – For p = 5 and q = 5, generalized plane waves designed at G = (−2, 2) with
the β-normalization, β(x, y) = x− 1.
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Figure B.3 – For p = 5, classical plane waves designed at G = (−2, 2) for β(x, y) = x−1.



Appendix C

Some images of ITER

All the following images come from the official ITER website [Org]. It is specified in
the multimedia section of the website that the images from the Iter image galleries may
be freely downloaded for non-commercial, scientific, news and educational purposes.

Figure C.1 represents a cutaway of the ITER tokamak, highlighting the important size
of the diagnostic system with respect to the reactor. Figure C.2 represents a cyclotron
antenna which is used to heat the plasma.
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Figure C.1 – Diagnostic systems. About 50 individual measurement systems will help to
control, evaluate and optimize plasma performance in ITER and to further understanding
of plasma physics.

Figure C.2 – ITER’s ion cyclotron antenna. One of the two 45-ton Ion Cyclotron Resonant
Heating antenna systems that will deliver 10 MW of heating power each into the ITER
machine.
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Lise-Marie Imbert-Gérard

Analyse mathématique et numérique de problèmes
d’ondes apparaissant dans les plasmas magnétiques

Résumé
Cette thèse étudie les aspects mathématiques et numériques de phénomènes d’ondes dans les plasmas magnétiques. La réflecto-

métrie, une technique de sonde des plasmas de fusion, est modélisée par les équations de Maxwell. Le tenseur de permittivité présente

dans ce model des valeurs propres ainsi que des termes diagonaux qui s’annulent. La relation de dispersion met en évidence deux

phénomènes cruciaux : coupures et résonances, lorsque le nombre d’onde s’annule ou tend vers l’infini.

La partie I rassemble les résultats numériques. La grande nouveauté réside dans la définition d’une solution résonante. En effet, à

cause des coefficients s’annulant continuement en changeant de signe, la solution peut être singulière, i.e. avoir une composante non

intégrable. Cependant, grâce au principe d’absorption limite, une solution résonante est explicitement définie comme la limite de

solutions intégrables du problème régularisé. L’expression théorique de la singularité est validée par des tests numériques du passage

à la limite.

La partie II concerne l’approximation numérique. Elle comprend la mise en place d’une nouvelle méthode numérique adaptée aux

coefficients réguliers. Celle-ci est basée sur la Formulation Variationnelle Ultra Faible mais nécessite des fonctions de base spécifiques,

construites comme approximations locales du problème adjoint. L’analyse de convergence est effectuée en dimesion un, en dimension

deux la construction des fonctions de base et leur propritété d’interpolation sont détaillées. La méthode d’ordre élevé obtenue permet

de simuler le phénomène de coupure tandis que simuler le phénomène de résonance en dimension deux reste un défi.

Mots-clefs équations de Maxwell ; équations intégrales singulières ; principe d’absorption limite ; simulations numériques ;

méthode numérique d’ordre élevé ; coefficients réguliers.

Résumé en anglais

Mathematical and numerical analysis of wave problems for magnetic plasmas

This dissertation investigates mathematical and numerical aspects of some wave phenomena appearing in magnetic plasmas. In

order to model a probing technique for fusion plasmas, called reflectometry, a particular form of Maxwell’s equations is studied. In

the model, the dielectric tensor presents vanishing eigenvalues and diagonal terms. The study of the dispersion relation evidences

two kinds of phenomena: cut-offs and resonances if the wave number goes either to zero or to infinity.

Part I of the thesis gathers the theoretical results. The main novelty consists in the definition of a resonant solution. Indeed, because

of a smooth vanishing sign-changing coefficient, the solution may be singular: one of its components may be non-integrable. However,

using a limit absorption principle, a resonant solution is explicitly obtained by studying the integrable solutions of the regularized

system plus a limiting process. The theoretical expression of the singularity is validated by numerical tests concerning the regularized

system as the regularizing term goes to zero.

Part II focuses on the numerical results. It includes the design of a new numerical method adapted to smooth coefficients. The

method is based on the Ultra Weak Variational Formulation but requires specific shape functions, designed as local approximations

of the adjoint equation. The convergence analysis of the method is performed in one dimension, for two dimensions the design

procedure and the interpolation property of the shapes functions are detailed. The resulting high order method numerically tackles

the approximation of cut-offs while the approximation of resonant solutions is still very challenging.

Keywords Maxwell’s equations ; singular integral equations ; limiting absorption principle ; numerical simulations ; high

order numerical method ; smooth varying coefficients.
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