Section 16.5: Integration in Cylindrical and Spherical Coordinates

Integration in Cylindrical Coordinates

The cylindrical coordinates of a point (x, y, z) in \mathbb{R}^{3} are obtained by representing the x and y coordinates using polar coordinates (or potentially the y and z coordinates or x and z coordinates) and letting the third coordinate remain unchanged.

RELATION BETWEEN CARTESIAN AND CYLINDRICAL COORDINATES: Each point in \mathbb{R}^{3} is represented using $0 \leq r<\infty, 0 \leq \theta \leq 2 \pi,-\infty<z<\infty$.

$$
\begin{aligned}
& x=r \cos \theta, \\
& y=r \sin \theta, \\
& z=z .
\end{aligned}
$$

As with polar coordinates in the plane, note that $x^{2}+y^{2}=r^{2}$.

Notice that we can now interpret r as the distance from the point (x, y, z) to the z axis, while the interpretation of θ and z remain unchanged.

Question: What are the surfaces obtained by setting r, θ, and z equal to a constant?

What is $d V$ in Cylindrical Coordinates?

Recall that when integrating in polar coordinates, we set $d A=r d r d \theta$. When viewing a small piece of volume, ΔV, in cylindrical coordinates, we will see that the correct form for $d V$ is rather intuitive based on this.

It is clear from this image that we should have $\Delta V \approx r \Delta r \Delta \theta \Delta z$. This leads us to the following conclusion:

When computing integrals in cylindrical coordinates, put $d V=r d r d \theta d z$. Other orders of integration are possible.

Examples:

1. Evaluate the triple integral in cylindrical coordinates: $f(x, y, z)=\sin \left(x^{2}+y^{2}\right), W$ is the solid cylinder with height 4 with base of radius 1 centered on the z-axis at $z=-1$.

Spherical Coordinates

The spherical coordinates of a point (x, y, z) in \mathbb{R}^{3} are the analog of polar coordinates in \mathbb{R}^{2}. We define $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$ to be the distance from the origin to $(x, y, z), \theta$ is defined as it was in polar coordinates, and ϕ is defined as the angle between the positive z-axis and the line connecting the origin to the point (x, y, z).

From the above figure, we can see that $r=\rho \sin \phi$, and $z=\rho \cos \phi$, so using the relationship between Cartesian coordinates (x, y, z) and cylindrical coordinates, $x=r \cos \theta, y=r \sin \theta, z=z$, we arrive at the following:

RELATIONSHIP BETWEEN CARTESIAN AND SPHERICAL COORDINATES: Each point in \mathbb{R}^{3} is represented using $0 \leq \rho<\infty, 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi$.

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta, \\
& y=\rho \sin \phi \sin \theta, \\
& z=\rho \cos \phi .
\end{aligned}
$$

Also, $x^{2}+y^{2}+z^{2}=\rho^{2}$.

Question: What surfaces are obtained by setting ρ, θ, and ϕ equal to a constant?

What is $d V$ is Spherical Coordinates?

Consider the following diagram:

We can see that the small volume ΔV is approximated by $\Delta V \approx \rho^{2} \sin \phi \Delta \rho \Delta \phi \Delta \theta$. This brings us to the conclusion about the volume element $d V$ in spherical coordinates:

When computing integrals in spherical coordinates, put $d V=\rho^{2} \sin \phi d \rho d \phi d \theta$. Other orders of integration are possible.

Examples:

2. Evaluate the triple integral in spherical coordinates. $f(x, y, z)=1 /\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ over the bottom half of a sphere of radius 5 centered at the origin.
3. For the following, choose coordinates and set up a triple integral, inlcluding limits of integration, for a density function f over the region.

(a)
(b) A piece of a sphere; angle at the center is $\pi / 3$.

(c)
4. Write a triple integral in spherical coordinates giving the volume of a sphere of radius K centered at the origin. Use the order $d \theta d \rho d \phi$.
5. If W is the region shown below, what are the limits of integration in the following exercises?

(a) $\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} f(r, \theta, z) r d z d r d \theta$
(b) $\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} g(\rho, \phi, \theta) \rho^{2} \sin \theta d \rho d \phi d \theta$
(c) $\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} h(x, y, z) d z d y d x$
6. Write a triple integral expressing the volume above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere of radius 2 centered at the origin. Do this in both cylindrical and spherical coordinates, including limits of integration.
