Section 2.6: Applications: Growth and Decay; Mathematics of Finance

THE CONTINUOUS EXPONENTIAL FUNCTION: If a quantity is said to grow or decay continuously at a rate of k per unit time, then the amount present at time t is given by

$$P = P_0 e^{kt},$$

where P_0 is the initial value (when t = 0), and k is the growth constant (if k > 0), or decay constant (if k < 0).

It will be useful to be able to convert exponential functions of the form $P = P_0 a^t$ into exponential functions of the form $P = P_0 e^{kt}$. In this case

Preliminary Exercises

(i) If $a = e^k$, solve for k.

(ii) If a > 1, then what is the sign of k? If 0 < a < 1, then what is the sign of k?

Examples:

- 1. Suppose a piece of property was worth \$6000 in 2009 and its value is growing by 2.1% per year.
 - (a) Write a function that models the value of the property over time.

(b) Convert this function to the form $P = P_0 e^{kt}$. Determine the continuous growth rate.

- 2. Suppose a Treasury Bill (T-Bill) is worth \$500 in 2005 and has a continuous growth rate of 1.7%.
 - (a) Write a function that models the value of the T-Bill over time.

(b) Convert this function to the form $P = P_0 a^t$. Determine the annual growth rate.

Effective Rate of Compound Interest

Exercise: Suppose that Vanessa Adams invests \$1000 in an account with 6% interest, compounded monthly. After one year, what is the value of the account? By what percentage did the account *actually* grow?

EFFECTIVE RATE OF COMPOUND INTEREST: If \boldsymbol{r} is the annual stated rate, the effective rate of interest is

1.
$$r_E = \left(1 + \frac{r}{m}\right)^m - 1$$
 when compounded *m* times per year.

2. $r_E = e^r - 1$ when compounded continuously.

Examples:

3. Chrintine O'Brien, who is self-employed, wants to invest \$60,000 in a pension plan. One investment offers 8% compounded quarterly. Another offers 7.75% compounded continuously. What is the effective rate in each case? 4. (*Present Value*): Frank Steek must make a balloon payment of \$20,000 in 4 years. Find the present value of the payment if it includes an annual interest of 6.5% compounded continuously.