Section 3.1 Continued

LIMITS AT INFINITY: The limit of a function f(x), as x approaches positive or negative infinity, written $\lim_{x\to\pm\infty} f(x)$, if it exists, is the value that f(x) approaches as x becomes infinitely large in magnitude in either the positive or negative direction.

1. We have $\lim_{x\to\infty} \frac{1}{x^n} = 0$ whenever defined.

2. Similarly, $\lim_{x \to -\infty} \frac{1}{x^n} = 0$ whenever defined.

Essentially, one can think of a limit at infinity as a *horizontal asymptote*.

Examples:

1. The graph of a function f(x) is pictured below. Find the limit $\lim_{x\to\infty} f(x)$.

3. The cost of manufacturing a particular videotape is C(x) = 9000 + 5x, where x is the number of tapes produced. The average cost per tape, denoted by $\overline{C}(x)$, is given by the formula

$$\overline{C}(x) = \frac{C(x)}{x}.$$

Find $\lim_{x \to \infty} \overline{C}(x)$.