Section 7.1: Antiderivatives

Up until this point in the course, we have mainly been concerned with one general type of problem: Given a function f(x), find the derivative f'(x). In this section, we will be concerned with solving this problem in the reverse direction. That is, given a function f(x), find a function F(x) such that F'(x) = f(x).

This is called *antidifferentiation*, and any such function F(x) will be called an *antiderivative* of f(x).

DEFINITION: If F'(x) = f(x), then F(x) is called an *antiderivative* of f(x).

Example: If $f(x) = 20x^4$, find a function F(x) such that F'(x) = f(x).

Is the above answer unique?

Write down a formula for *every* antiderivative of $f(x) = 20x^4$.

Examples:

- 1. Find an antiderivative for the following functions.
 - (a) $f(x) = x^4$

(b)
$$f(x) = x^{15}$$

(c)
$$f(x) = \frac{1}{x^2}$$

(d)
$$f(x) = \sqrt{x}$$

Indefinite Integral:

INDEFINITE INTEGRAL: If F'(x) = f(x), we can write this using *indefinite integral* notation as ſ J

$$f(x) \, dx = F(x) + C,$$

where C is a constant called the *constant of integration*.

Note: We call the family of antiderivatives F(x) + C the general antiderivative of f(x).

Antiderivatives and Indefinite Integrals:

Let us develop some rules for evaluating indefinite integrals (antiderivatives). The first will be the *power rule* for antiderivatives. This is simply a way of undoing the power rule for derivatives.

POWER RULE: For any real number
$$n \neq 1$$
,

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C,$$
or
$$\int x^n dx = \frac{1}{n+1} \cdot x^{n+1} + C.$$

1. Find the following indefinite integrals.

(a)
$$\int x^5 dx$$

(b)
$$\int \frac{1}{\sqrt[3]{x}} dx$$

CONSTANT MULTIPLE AND SUM OR DIFFERENCE RULES: If all indicated integrals exist, $\int k \cdot f(x) \, dx = k \int f(x) \, dx,$

for any real number k, and

$$\int (f(x) \pm g(x)) \, dx = \int f(x) \, dx \pm \int g(x) \, dx.$$

The constant multiple and sum or difference rules, combined with the power rule for antiderivatives, will allow us to find the antiderivatives of a plethora of different combinations of power functions.

Examples:

2. Find the following indefinite integrals.

(a)
$$\int \left(17x^{5/2} - \frac{4}{x^3} + 5\right) dx$$

(b)
$$\int 4x(x^2+2x)\,dx$$

Indefinite Integrals of Exponential Functions:

Exercise: Given your knowledge of derivatives, try to find the following indefinite integrals without a formula.

(a)
$$\int e^x dx$$

(b)
$$\int e^{kx} dx$$

(c)
$$\int 2^x dx$$

(d)
$$\int 3^{kx} dx$$

This kind of thinking leads us to easily determine the proper formulas for the indefinite integrals of exponential functions.

INDEFINITE INTEGRALS OF EXPONENTIAL FUNCTIONS:

•
$$\int e^x dx = e^x + C$$

•
$$\int e^{kx} dx = \frac{e^{kx}}{k} + C$$

•
$$\int a^x dx = \frac{a^x}{\ln(a)} + C$$

•
$$\int a^{kx} dx = \frac{a^{kx}}{k \ln(a)} + C$$

In the above formulas, we are assuming that $k \neq 0$ and that a > 0 with $a \neq 1$.

Examples:

- 3. Find the following indefinite integrals.
 - (a) $\int 3e^x dx$

(b)
$$\int 4e^{-0.2x} dx$$

(c)
$$\int (e^{2u} + 4u) du$$

There is one final antiderivative property we need. What happens if we attempt to use the power rule to fine $\int x^{-1} dx$?

INDEFINITE INTEGAL OF $\frac{1}{x}$:

$$\int x^{-1} dx = \int \frac{1}{x} dx = \ln |x| + C.$$

Examples:

4. Find the following indefinite integrals.

(a)
$$\int \frac{3}{x} dx$$

(b)
$$\int \left(\frac{9}{x} - 3e^{-0.4x}\right) dx$$

(c)
$$\int \frac{\sqrt{x}+1}{\sqrt[3]{x}} dx$$

Specific Antiderivatives (Solving for C):

Examples:

5. If $f(x) = e^{2x} - 9x^2$ and F(0) = 4, find F(x), the specific antiderivative of f(x).

6. Find the cost function if the marginal cost function is

$$C'(x) = x + \frac{1}{x^2}$$

and 2 units cost \$5.50.

7. Find the demand function if the marginal revenue is

$$R'(x) = 500 - 0.15\sqrt{x}.$$