Section 5.2: The Definite Integral

In this section we learn that we can apply the techniques from section 5.1 to any continuous function y = f(x). The process of calculating the area under a curve is given a special name. It is called the definite integral. Let us start with some notational issues.

Sigma Notation:

Suppose f(x) is a continuous function on the interval $a \le x \le b$. We divide the interval [a, b] into n equal subdivisions, each with length

 $\Delta x = \frac{b-a}{n}.$

Let $x_0, x_1, x_2, \ldots, x_n$ be the endpoints of the subdivisions. Both the left-hand and right-hand sums can be written more compactly using sigma, or summation, notation. The symbol Σ is a Greek capital-S, and stands for "sum".

Right – hand sum =
$$f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x = \sum_{i=1}^n f(x_i)\Delta x$$
,

and

Left – hand sum =
$$f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x = \sum_{i=0}^{n-1} f(x_i)\Delta x$$
.

Both of the sums above are called *Riemann sums* (named after the phenomenal mathematician Bernhard Riemann). The definite integral is then defined by taking the limit as $n \to \infty$ of either the Left-hand sum or the Right-hand sum.

THE DEFINITE INTEGRAL: Suppose f is continuous for $a \le x \le b$. The definite integral of f from a to b, written

$$\int_{a}^{b} f(x) \, dx,$$

is the limit of the left-hand or right-hand sums with n subdivisions of [a,b] as $n \to \infty$. In other words,

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(x_i) \Delta x$$

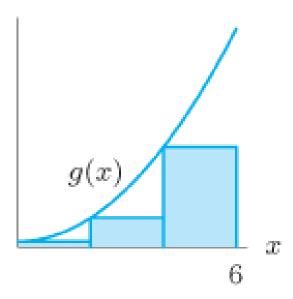
and

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

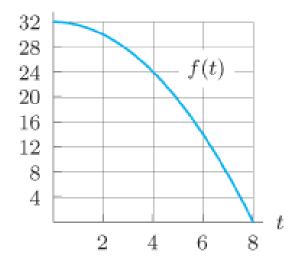
Each of these sums is called a $Riemann\ sum$, f is called the integrand, and a and b are called the $limits\ of\ integration$.

Examples:

- 1. Rectangles have been drawn to approximate $\int_0^6 g(x) dx$.
 - (a) Do the rectangles represent a left-hand or right-hand sum?
 - (b) Do the rectangles lead to an upper or a lower estimate?
 - (c) What is the value of n?
 - (d) What is the value of Δx ?



- 2. Draw rectangles representing each of the following Riemann sums for the function f on the interval $0 \le x \le 8$. Calculate the value of each sum.
 - (a) Left-hand sum with $\Delta t = 2$.
 - (b) Right-hand sum with $\Delta t = 2$

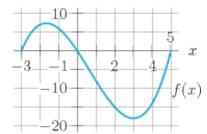


3. Use a computer or a calculator to find the value of $\int_0^3 \ln \left(y^2+1\right) \, dy$

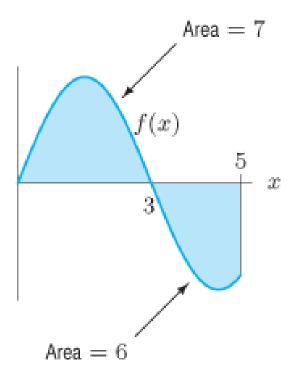
4. Use the table to estimate $\int_0^{12} f(x) dx$

\overline{x}	0	3	6	9	12
f(x)	32	22	15	11	9

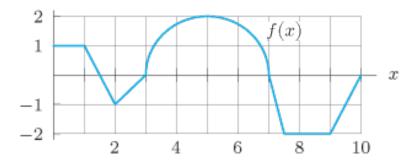
5. Using the figure, estimate $\int_{-3}^{5} f(x) dx$



6. What is the area between the graph of f(x) shown below and the x-axis, between x=0 and x=5? What is $\int_0^5 f(x) \, dx$?



7. Use the figure below to find the following values. Note that the figure consists of semicircles and line segments.



- (a) $\int_0^2 f(x) \, dx$
- (b) $\int_3^7 f(x) \, dx$
- (c) $\int_2^7 f(x) \, dx$
- (d) $\int_5^8 f(x) \, dx$