Section 5.4: Theorems About Definite Integrals

THEOREM 5.2: PROPERTIES OF LIMITS OF INTEGRATION: If a, b, and c are any real numbers and f is a continuous function, then

1.
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

2. $\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$

THEOREM 5.3: PROPERTIES OF SUMS AND CONSTANT MULTIPLES OF THE INTE-GRAND: Let f and g be continuous functions and let c be a constant.

1.
$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

2. $\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx.$

Examples:

1. Given that
$$\int_{a}^{b} f(x) dx = 8$$
, $\int_{a}^{b} (f(x))^{2} dx = 12$, $\int_{a}^{b} g(t) dt = 2$, and $\int_{a}^{b} (g(t))^{2} dt = 3$, find
(a) $\int_{a}^{b} cf(z) dz$

(b)
$$\int_{a}^{b} (f(x))^{2} dx - \left(\int_{a}^{b} f(x) dx\right)^{2}$$

(c)
$$\int_{a+5}^{b+5} f(x-5) \, dx$$

One thing that we can do with definite integrals that turns out to be especially useful is to calculate the area between two curves.

AREA BETWEEN CURVES: If the graph of f(x) lies above the graph of g(x) for $a \le x \le b$, then the area between f(x) and g(x) for $a \le x \le b$ is

$$\int_{a}^{b} (f(x) - g(x)) \, dx.$$

Examples:

- 2. Find the area of the regions indicated.
 - (a) Between $y = x^2$ and $y = x^3$ for $0 \le x \le 1$

(b) Under $y = 5 \ln(2x)$ and above y = 3 for $3 \le x \le 5$

Interestingly, we can also use the definite integral to give us the *average value* of a function f(x) over an interval $a \le x \le b$.

AVERAGE VALUE OF A FUNCTION: The average value of f(x) over the interval [a, b] is given by

$$\frac{1}{b-a}\int_{a}^{b}f(x)\,dx.$$

Note: It isn't difficult to see, using Riemann sums, how this definition of an average coincides with our natural understanding of averages.

Examples:

3. If the average value of a function f on the interval $2 \le x \le 5$ is 4, find $\int_2^5 (3f(x) + 2) dx$

Finally, we can consider what will happen when we integrate over intervals of the form [-a, a] if f is either an even function or an odd function.

Question: Using symmetry, give formulas for the definite integral of a function f(x) over an interval of the form [-a, a] in the case that f is odd and f is even.

Examples:

4. If
$$f(x)$$
 is even and $\int_{-2}^{2} (f(x) - 3) dx = 8$, find $\int_{0}^{2} f(x) dx$

5. Without any computation, find
$$\int_{-\pi/4}^{\pi/4} x^3 \cos(x^2) dx$$

6. Using geometry, construct a formula for $\int_a^b x \, dx$

7. Using the result from problem 6, find $\int_1^3 5x \, dx$