Section 13.3: The Dot Product

Definition of the Dot Product

The dot product gives us a way of "multiplying" two vectors and ending up with a scalar quantity. It can give us a way of computing the angle formed between two vectors. In the following definitions, assume that $\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$ and that $\vec{w} = w_1 \vec{i} + w_2 \vec{j} + w_3 \vec{k}$.

The following two definitions of the **dot product**, or **scalar product**, $\vec{v} \cdot \vec{w}$, are equivalent: • Geometric definition

 $\vec{v} \cdot \vec{w} = \|\vec{v}\| \, \|\vec{w}\| \cos \theta,$

where θ is the angle between \vec{v} and \vec{w} and $0 \le \theta \le \pi$.

- Algebraic definition
- $\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + v_3 w_3.$

Notice that the dot product of two vectors is a *number*, not a vector.

The figure below depicts what is meant when we refer to the angle between two vectors:

A common theme throughout this course will be that many objects will be given two equivalent definitions: a geometric definition and an algebraic definition. It is usually the case that the geometric definition helps us gain insight into what the object is, while the algebraic definition gives us a way to compute the object.

It might not be clear that these two definitions are, in fact, equivalent.

Examples:

1. Suppose $\vec{v} = \vec{j}$ and $\vec{w} = \vec{i} + \vec{j}$. Compute $\vec{v} \cdot \vec{w}$ both geometrically and algebraically.

Properties of the Dot Product

Each of these properties is relatively easy to justify

PROPERTIES OF THE DOT PRODUCT: For any vectors \vec{u}, \vec{v} , and \vec{w} and any scalar λ ,

1. $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$

2. $\vec{v} \cdot (\lambda \vec{w}) = \lambda (\vec{v} \cdot \vec{w}) = (\lambda \vec{v}) \cdot \vec{w}$

3. $(\vec{v} + \vec{w}) \cdot \vec{u} = \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u}$

Perpendicularity, Magnitude, and Dot Products

We are all aware that to lines are perpendicular if and only if they intersect at an angle of $\pi/2$, or 90°. The perpendicularity of two vectors is defined similarly: two vectors are perpendicular if the angle between them is $\pi/2$ (90°). Since the dot product between two vectors \vec{v} and \vec{w} is given by $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \theta$, the dot product gives us a convenient way of characterizing perpendicularity:

Two non-zero vectors \vec{v} and \vec{w} are **perpendicular**, or **orthogonal**, if and only if $\vec{v} \cdot \vec{w} = 0$

Magnitude and dot product are related as follows: $\vec{v}\cdot\vec{v}=\|\vec{v}\|^2.$

Question: If \vec{v} and \vec{w} are any two vectors in \mathbb{R}^3 , what are the maximum and minimum values of $\vec{v} \cdot \vec{w}$?

Examples:

1. Compute the angle between the vectors $\vec{i} + \vec{j} - \vec{k}$ and $2\vec{i} + 3\vec{j} + \vec{k}$.

2. Which pairs (if any) of vectors from the following list

- (a) Are perpendicular?
- (b) Are parallel?
- (c) Have an angle less than $\pi/2$ between them?
- (d) Have an angle more than $\pi/2$ between them?

 $ec{a} = ec{i} - 3ec{j} - ec{k}, \qquad ec{b} = ec{i} + ec{j} + 2ec{k}$ $ec{c} = -2ec{i} - ec{j} + ec{k}, \qquad ec{d} = -ec{i} - ec{j} + ec{k}$

The Dot Product in n Dimensions

If
$$\vec{u} = \langle u_1, u_2, \dots, u_n \rangle$$
 and $\vec{v} = \langle v_1, v_2, \dots, v_n \rangle$, then the dot product of \vec{u} and \vec{v} is the scalar $\vec{u} \cdot \vec{v} = \sum_{j=1}^n u_j v_j = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$

Resolving a Vector into Components: Projections

We have already seen how to resolve a vector \vec{v} into components that point in the directions of \vec{i} , \vec{j} , and \vec{k} . There is no reason that we shouldn't be able to resolve a vector into components that point in any directions we desire. After all, there is nothing fundamentally special about the placement of the x, y, and z-axes.

Suppose we have a unit vector, \vec{u} , and we want to resolve a vector \vec{v} into components that point in a direction parallel to \vec{u} and perpendicular to \vec{u} . The vector component of \vec{v} that points in a direction parallel to \vec{u} will be referred to as the *projection* of \vec{v} onto \vec{u} , and we will denote it by $\vec{v}_{\text{parallel}}$. The component of \vec{v} in the direction perpendicular to \vec{u} will be denoted by \vec{v}_{perp} .

Problem: Using the geometry of the figures above, try to come up with a formula for $\vec{v}_{\text{parallel}}$

Projection of \vec{v} on the Line in the Direction of the Unit Vector \vec{u}

If $\vec{v}_{\text{parallel}}$ and \vec{v}_{perp} are components of \vec{v} that are parallel and perpendicular, respectively, to the unit vector \vec{u} , then

$$\vec{v}_{\text{parallel}} = \left(\vec{v} \cdot \vec{u}\right) \vec{u},$$

and since $\vec{v} = \vec{v}_{\text{parallel}} + \vec{v}_{\text{perp}}$, we have

 $\vec{v}_{\text{perp}} = \vec{v} - \vec{v}_{\text{parallel}}.$

Examples:

3. Write $\vec{a} = 3\vec{i} + 2\vec{j} - 6\vec{k}$ as the sum of two vectors, one parallel, and one perpendicular, to $\vec{d} = 2\vec{i} - 4\vec{j} + \vec{k}$

A Physical Interpretation of the Dot Product: Work

You might recall that if a force of magnitude F acts on an object through a displacement d, then the work done on that object by F is given by

$$W = Fd$$
,

provided that the force and the displacement are in the same direction. If the force and the displacement do not point in the direction, the dot product gives us a convenient way of calculating the work done by the force.

It is easiest to see what is going to happen if we assume that the angle θ , between the force \vec{F} and the displacement \vec{d} is between 0 and $\pi/2$. In this case, we can resolve \vec{F} into components which point parallel and perpendicular to \vec{d} :

$$\vec{F} = \vec{F}_{\text{parallel}} + \vec{F}_{\text{perp}}.$$

Then the work done by \vec{F} is given by

$$W = \|\vec{F}_{\text{parallel}}\| \, \|\vec{d}\|.$$

But it is easy to see, using the figure below, that this means that

$$W = (\|\vec{F}\|\cos\theta)\|\vec{d}\| = \|\vec{F}\| \|\vec{d}\|\cos\theta = \vec{F} \cdot \vec{d}.$$

The work, W, done by a force \vec{F} acting on an object through a displacement \vec{d} is given by $W = \vec{F} \cdot \vec{d}.$

Examples:

- 4. Given $\vec{v} = 3\vec{i} + 4\vec{j}$ and force vector $\vec{F} = -3\vec{i} 5\vec{j}$, fin
 - (a) The component of \vec{F} parallel to \vec{v} .
 - (b) The component of \vec{F} perpendicular to \vec{v} .
 - (c) The work, W, done by force \vec{F} through displacement \vec{v} .

- 5. A cance is moving with velocity $\vec{v} = 5\vec{i} + 3\vec{j}$ m/s relative to the water. The velocity of the current in the water is $\vec{c} = \vec{i} + 2\vec{j}$ m/s.
 - (a) What is the speed of the current?

(b) What is the speed of the current in the direction of the canoe's motion?