## Section 14.1: The Partial Derivative

A partial derivative of a two-variable function f(x, y) is nothing more than a derivative with respect to one of the variables while keeping the other variable held constant.

## Partial Derivatives of f With Respect to x and y

For all points at which the limit exists, we define the *partial derivatives at the point* (a, b) by

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

and

$$f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

If we let a and b vary, we have the partial derivative functions  $f_x(x, y)$  and  $f_y(x, y)$ .

## Alternative Notation for Partial Derivatives

If z = f(x, y), we can write

$$f_x(x,y) = \frac{\partial z}{\partial x}$$
 and  $f_y(x,y) = \frac{\partial z}{\partial y}$   
 $f_x(a,b) = \frac{\partial z}{\partial x}\Big|_{(a,b)}$  and  $f_y(a,b) = \frac{\partial z}{\partial y}\Big|_{(a,b)}$ 



## **Examples:**

1. Given the following table of values for z = f(x, y), estimate  $f_x(3, 2)$  and  $f_y(3, 2)$ . Assume that f is differentiable.

| $x \setminus y$ | 0   | 2 | 5 |
|-----------------|-----|---|---|
| 1               | 1   | 2 | 4 |
| 3               | -1  | 1 | 2 |
| 6               | - 3 | 0 | 0 |

- 2. The price P in dollars to purchase a used car is a function of its original cost, C, in dollars, and its age, A, in years.
  - (a) What are the units of  $\partial P/\partial A$ ?
  - (b) What is the sign of  $\partial P/\partial A$  and why?
  - (c) What are the units of  $\partial P / \partial C$ ?
  - (d) What is the sign of  $\partial P/\partial C$  and why?

3. Determine the sign of  $f_x$  and  $f_y$  at the point using the contour diagram of f in the figure below.



- (a) P
- (b) Q
- (c) R
- (d) S
- 4. Approximate  $f_x(3,5)$  using the contour diagram of f(x,y) shown in the figure below.



5. The figure below shows the contours of f(x, y) with values of f on the contours omitted. If  $f_x(P) > 0$ , find the signs of  $f_y(P)$ ,  $f_x(Q)$ , and  $f_y(Q)$ .



6. The surface z = f(x, y) is shown in the figure below. The points A and B are in the xy-plane.



- (a) What is the sign of (i)  $f_x(A)$ 
  - (ii)  $f_y(B)$
- (b) The point P moves in the xy-plane along a straight line from A to B. How does the sign of  $f_y(P)$  change?