Section 14.5: Gradients and Directional Derivatives in Space

Directional Derivatives of Functions of Three Variables

If w = f(x, y, z) is a function of three variables, and $\vec{u} = u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k}$, then the derectional derivative of f in the direction of \vec{u} at the point (a, b, c) is given by

 $f_{\vec{u}}(a,b,c) = f_x(a,b,c)u_1 + f_y(a,b,c)u_2 + f_z(a,b,c)u_3.$

The Gradient Vector of a Function of Three Variables

If w = f(x, y, z) is a function of three variables, the gradient vector, grad f or ∇f , is given by

grad $f(a, b, c) = \nabla f(a, b, c) = f_x(a, b, c)\vec{i} + f_y(a, b, c)\vec{j} + f_z(a, b, c)\vec{k}.$

PROPERTIES OF THE GRADIENT VECTOR IN SPACE: If f is differentiable at (a, b, c) and if \vec{u} is a unit vector, then

$$f_{\vec{u}}(a,b,c) = \nabla f(a,b,c) \cdot \vec{u}.$$

If, in addition, $\nabla f(a, b, c) \neq 0$, then

- $\nabla f(a, b, c)$ is in the direction of the greatest rate of increase of f.
- $\nabla f(a, b, c)$ is perpendicular to the level surface of f passing through (a, b, c).
- $\|\nabla f(a, b, c)\|$ is the maximum rate of change of f at (a, b, c).

TANGENT PLANE TO A LEVEL SURFACE: If f(x, y, z) is differentiable at (a, b, c), then an equation for the tangent plane to the level surface of f passing through the point (a, b, c) is

$$f_x(a,b,c)(x-a) + f_y(a,b,c)(y-b) + f_z(a,b,c)(z-c) = 0.$$

Examples:

- 1. Find the directional derivative using $f(x, y, z) = xy + z^2$.
 - (a) At the point (1, 1, 1) in the direction of $\vec{i} + 2\vec{j} + 3\vec{k}$.

(b) At the point (2,3,4) in the direction of a vector making an angle of $3\pi/4$ with $\nabla f(2,3,4)$.

(c) At the point (2,3,4) in the direction of the maximum rate of change of f.

2. Check that the point (-1, 1, 2) lies on the surface $x^2 - xyz = 3$. Then, viewing the surface as the level surface of a function f(x, y, z), find a vector normal to the surface and an equation for the tangent plane to the surface at (-1, 1, 2).

3. Find an equation for the tangent plane to the surface $3x^2 - 4xy + z^2 = 0$ at the point (a, a, a), where $a \neq 0$.

4. Consider the surface $g(x, y) = 4 - x^2$. What is the relation between $\nabla g(-1, -1)$ and a vector tangent to the path of steepest ascent at (-1, -1, 3)? Illustrate your answer with a sketch.

- 5. Find the equation of the tangent plane to the surface $x^2 + y^2 xyz = 7$. Do this in two ways.
 - (a) Viewing the surface as the level set of a function of three variables f(x, y, z).

(b) Viewing the surface as the graph of a function of two variables z = f(x, y).

- 6. Consider the function $f(x,y) = (e^x x) \cos y$. Suppose S is the surface z = f(x,y).
 - (a) Find a vector which is perpendicular to the level curve of f through the point (2,3) in the direction in which f decreases most rapidly.

(b) Suppose $\vec{v} = 5\vec{i} + 4\vec{j} - a\vec{k}$ is a vector in \mathbb{R}^3 which is tangent to the surface S at the point P lying on the surface above (2,3). What is a?