Section 16.3: Triple Integrals

A function of two-variables is integrated over a two-dimensional region \mathbb{R}^2 . A function of three variables, then, will be integrated over a three-dimensional solid in \mathbb{R}^3 . We will begin by considering the case where we are integrating a function f(x, y, z) over a rectangular prism W.

We first slice the box up into subdivisions with volume $\Delta V = \Delta x \Delta y \Delta z$

We pick a point $(u_{ijk}, v_{ijk}, w_{ijk})$ in the ijk-th box, and we form the sum

$$\sum_{i,j,k} f(u_{ijk}, v_{ijk}, w_{ijk}) \,\Delta V$$

Then, much as before, we take the limit as Δx , Δy and $\Delta z \rightarrow 0$. If f is continuous, the sum converges to the *triple integral* of f over W:

$$\int_{W} f \, dV = \lim_{\Delta x, \Delta y, \Delta z \to 0} \sum_{i,j,k} f(u_{ijk}, v_{ijk}, w_{ijk}) \, \Delta x \, \Delta y \, \Delta z.$$

TRIPLE INTEGRAL AS AN ITERATED INTEGRAL :

$$\int_{W} f \, dV = \int_{p}^{q} \left(\int_{c}^{d} \left(\int_{a}^{b} f(x, y, z) \, dx \right) dy \right) dz,$$

where y and z are treated as constants in the innermost (dx) integral, and z is treated as a constant in the middle (dy) integral. Other orders of integration are possible. **Example:** Set up an iterated integral to compute the mass of the solid cone bounded by $z = \sqrt{x^2 + y^2}$ and z = 3, if the density is given by $\delta(x, y, z) = 3$.

LIMITS ON TRIPLE INTEGRALS:

- The limits for the outer integral are constants.
- The limits for the middle integral can involve only one variable (the one in the outer integral).
- The limits for the inner integral can involve two variables (those on the two outer integrals).

Examples:

1. Sketch the region of integration in the following examples.

(a)
$$\int_0^1 \int_{-1}^1 \int_0^{\sqrt{1-z^2}} f(x,y,z) \, dy \, dz \, dx$$

(b)
$$\int_0^1 \int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} \int_0^{\sqrt{1-x^2-z^2}} f(x,y,z) \, dy \, dx \, dz$$

2. Decide whether the integrals are positive, negative, or zero. Let S be the solid sphere $x^2 + y^2 + z^2 \le 1$, and T be the top half of the sphere (with $z \ge 0$), and B be the bottom half (with $z \le 0$), and R be the right half (with $x \ge 0$), and L be the left half (with $x \le 0$).

(a)
$$\int_T e^z dV.$$

(b)
$$\int_S \sin z \, dV.$$

(c)
$$\int_R \sin z \, dV.$$

3. Find the volume in the region in the first octant bounded by the coordinate planes and the surface x + y + z = 2.

4. Write a triple integral, including limits of integration, for the volume of the solid between the paraboloid $z = x^2 + y^2$ and the sphere $x^2 + y^2 + z^2 = 4$ and above the disk $x^2 + y^2 \le 1$.